充分条件和必要条件测试题
高三数学充分条件与必要条件试题答案及解析
高三数学充分条件与必要条件试题答案及解析1.设,则“”是“”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】C.【解析】若,①,则,即成立;②,则显然成立;③,则,即,∴成立;若,①,,则;②,,则显然成立;③,,则,故综上所述,“”是“”的充要条件.【考点】1.不等式的性质;2.充分必要条件.2.在△中,“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由已知,当A,B都为锐角,且A<B时,正弦函数在(0,90°)单调递增,所以,故;当A为锐角,B为钝角时,A+B<180°,所以,所以,故选:C.【考点】充要条件.3.已知a∈R,且a≠0,则是“a>1”的( ).A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】B【解析】由或.所以是“a>1”的必要不充分条件.故选B【考点】1.分式不等式的解法.2.充要条件.4.“”是“函数(且)在区间上存在零点”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】令,得,若,则,所以充分性成立;若函数在区间上存在零点时,则有,显然存在,且由不能得出,所以必要性不成立.故正确答案为A.【考点】1.充分条件;必要条件;充要条件;2.函数零点.5.“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当时,有,但当时,,故选A.【考点】充分与必要条件.6.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当a=1时,N={1},此时有N⊆M,则条件具有充分性;当N⊆M时,有a2=1或a2=2得到a1=1,a2=-1,a3=,a4=-,故不具有必要性,所以“a=1”是“N⊆M”的充分不必要条件,选A.7.已知a∈R,则“a>2”是“a2>2a”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.8.设a,b∈R,则“a>1且0<b<1”是“a-b>0且>1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】显然a>1且0<b<1⇒a-b>0且>1;反之,a-b>0且>1⇒a>b且>0⇒a>b且b>0,推不出a>1且0<b<1.故“a>1且0<b<1”是“a-b>0且>1”的充分而不必要条件.9.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3D.4【答案】B【解析】命题①在c=0时不正确,即“a=b”只是“ac=bc”的充分而不必要条件;注意到无理数的概念与实数的加法运算,可知命题②是真命题;命题③在a,b至少有一个是负数时不一定正确,命题③为假命题;由不等式的性质,若a<3,必有a<5,命题④是真命题.综上所述,命题②④是真命题,选B.10.设,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】即又,,,即成立,相反,代入特殊值,当时,满足,但不成立.所以是充分不必要条件,故选A.【考点】充分必要条件的判定11.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】解不等式得;解不等式得;因为,而,所以“”是“”的必要不充分条件,故选B【考点】1、一元一次、二次不等式的解法;2、充要条件.12.己知实数满足,则“成立”是“成立”的().A.充分非必要条件.B.必要非充分条件.C.充要条件.D.既非充分又非必要条件.【答案】C【解析】这是考查不等式的性质,由于,因此不等式两边同乘以可得,即,同样在不等式两边同除以可得,即,因此应该选C.当然也可这样分析:说明同正同负,由于函数在和两个区间上都是减函数,因此“”与“”是等价的,即本题选C.【考点】不等式的性质,13.记实数…中的最大数为{…},最小数为min{…}.已知的三边边长为、、(),定义它的倾斜度为则“t=1”是“为等边三角形”的。
专题04 充分条件与必要条件(练)(解析版).pdf
《2020-2021学年高一数学同步讲练测(新教材人教A 版必修第一册)》专题04充分条件与必要条件(练)1.a ,b 中至少有一个不为零的充要条件是( )A .ab =0B .ab>0C .a 2+b 2=0D .a 2+b 2>0【参考答案】D 【解析】,ab =0是a ,b 中至少有一个不为零的非充分非必要条件;A ab>0是a ,b 中至少有一个不为零的充分非必要条件;,B ,a 2+b 2=0是a ,b 中至少有一个不为零的非充分非必要条件;C ,a 2+b 2>0,则a ,b 不同时为零;a ,b 中至少有一个不为零,则a 2+b 2>0.所以a 2+b 2>0是a ,b 中至少有一个不D 为零的充要条件.故选:D2.a >b 的一个充分不必要条件是( )A .a 2>b 2B .|a |>|b |C .D .a -b >111a b <【参考答案】D 【解析】,,,则ABC 错误;22a b a b >⇒>/11b a a b <⇒/>||||a b a b>⇒>/a -b >1⇒a -b >0而a -b >0⇏a -b >1,则D正确;故选:D3.一元二次函数的图像的顶点在原点的必要不充分条件是( )2y ax bx c =++A .B .C .D .0,0b c ==0a b c ++=0b c +=0bc =【参考答案】D 【解析】若一元二次函数的图像的顶点在原点,则,且,所以顶点在2y ax bx c =++02b a -=0c =原点的充要条件是故A 是充要条件,B 、C 既不充分也不必要,D 是必要条件,非充分条件.0,0,b c ==故选:D.4.【黑龙江省海林市朝鲜族中学人教版高中数学同步练习】设集合,,则“”是“{}1,2M ={}2N a =1a =-”的( )N M ⊆A .充分不必要条件B .必要不充分条件.C .充分必要条件D .既不充分又不必要条件【参考答案】A 【解析】解:当时,,满足,故充分性成立;1a =-{}1N =N M ⊆当时,或,所以不一定满足,故必要性不成立.N M ⊆{}1N ={}2N =a 1a =-故选:A.5.【浙江省湖州市2019-2020学年高二上学期期中】已知,那么“”是“”的()a R ∈1a >21a >A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【参考答案】A 【解析】当时,成立,1a >21a >取,此时成立,但是不成立,2a =-21a >1a >“”是“”的充分不必要条件,1a >21a >故选:A.6.【必修第一册 逆袭之路】若,则“且”是“且”的( ),a b ∈R 1a >1b >1ab >2a b +≥A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【参考答案】A 【解析】因为且,所以根据同向正数不等式相乘得,根据同向不等式相加得,即成1a >1b >1ab >2a b +>2a b +≥立,因此充分性成立;当时满足且,但不满足且,即必要性不成立;1,2a b ==1ab >2a b +≥1a >1b >从而“且”是“且”的充分不必要条件,1a >1b >1ab >2a b +≥故选:A7.【必修第一册 逆袭之路】设,则“”是“”的( )x ∈R 250x x -<|1|1x -<A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【参考答案】B 【解析】化简不等式,可知 推不出;05x <<11x -<由能推出,11x -<05x <<故“”是“”的必要不充分条件,250x x -<|1|1x -<故选B .8.若“”是“”的必要不充分条件,则实数的最大值为_______.21x >x m <m 【参考答案】1-【解析】由得,21x >-11x x <>或“”是“”的必要不充分条件,21x >x m <,(,)(,1)(1,)m ∴-∞⊆-∞-⋃+∞.1m ∴≤-故参考答案为.1-9.“方程没有实数根”的充要条件是________.220x x a --=【参考答案】1a <-【解析】解析因为方程没有实数根,所以有,解得,因此“方程没220x x a --=440a ∆=+<1a <-220x x a --=有实数根”的必要条件是.反之,若,则,方程无实根,从而充分性成立.故“方1a <-1a <-∆<0220x x a --=程没有实数根”的充要条件是“”.220x x a --=1a <-故参考答案为:1a <-10.已知a 、b 是实数,则“a >1,且b >1”是“a +b >2,且ab >1”的____条件.【参考答案】充分不必要【解析】解:a 、b 是实数,则“a >1,且b >1”⇒“a +b >2,且ab >1”正确,当a =10,b =0.2时,a +b >2,且ab >1,所以a >1,且b >1不成立,即前者是推出后者,后者推不出前者,所以a 、b 是实数,则“a >1,且b >1”是“a +b >2,且ab >1”的充分而不必要条件.故参考答案为:充分而不必要.11.设集合A ={x |x (x ﹣1)<0},B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的____条件(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”).【参考答案】充分不必要【解析】解:由于A ={x |0<x <1},则A ⊊B ,由m ∈B 不能推出m ∈A ,如x =2时,故必要性不成立.反之,根据A ⊊B ,“m ∈A ”⇒“m ∈B ”.所以“m ∈A ”是“m ∈B ”的充分不必要条件.故参考答案为:充分不必要12.“a >1且b >1”是“ab >1”成立的____条件.(填充分不必要,必要不充分,充要条件或既不充分也不必要.【参考答案】充分不必要【解析】解:若a >1且b >1时,ab >1成立.若a =﹣2,b =﹣2,满足ab >1,但a >1且b >1不成立,∴“a >1且b >1”是“ab >1”成立的充分不必要条件.故参考答案为:充分不必要.13.试判断“”是“”的充分条件还是必要条件?并给出证明.:1p x =32:10q x x x --+=【参考答案】充分条件,证明见解析【解析】是充分条件,但不是必要条件,证明如下由()()()()2322111110x x x x x x x x --+=---=-+=得或1x =1x =-或,或不能.:1:1p x q x =⇒=1x =-:1q x =1x =-:1p x ⇒=所以是充分条件,但不是必要条件.14.已知是实数,求证:成立的充分条件是,该条件是否为必要条件?试证,a b 44221a b b --=221a b -=明你的结论.【参考答案】必要条件,证明见解析.【解析】由,即44221a b b --=442210a b b ---=由()()()()244242222221111a b b a b a b a b -++=-+=++--则由()()222222442111021a b a b a b a b b -=⇒++--=⇒--=所以成立的充分条件是44221a b b --=221a b -=另一方面如果()()442222221110a b b a b a b --=⇒++--=因为,2210a b ++≠故,()()2222221101a b a b a b ++--=⇒-=所以成立的必要条件是.44221a b b --=221a b -=15.不等式x 2﹣3x +2>0的解集记为p ,关于x 的不等式x 2+(a ﹣1)x ﹣a >0的解集记为q ,若p 是q 的充分不必要条件,求实数a 的取值范围.【参考答案】﹣2<a ≤﹣1【解析】解:由不等式x 2﹣3x +2>0得,x >2或x <1;不等式x 2+(a ﹣1)x ﹣a >0等价为(x ﹣1)(x +a )>0,①当﹣a ≤1,即a ≥﹣1时,不等式的解是x >1或x <﹣a ,∵p 是q 的充分不必要条件,∴﹣a ≥1,即a =﹣1,②若﹣a >1,即a <﹣1时,不等式的解是x >﹣a 或x <1,∵p 是q 的充分不必要条件,∴﹣a <2,即﹣2<a <﹣1,综上﹣2<a ≤﹣1.1.【必修第一册(上) 重难点知识清单】已知a ,b ∈R,则“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【参考答案】A 【解析】若“0≤a ≤1且0≤b ≤1”,则“0≤ab ≤1”.当a =-1,b =-1时,满足0≤ab ≤1,但不满足0≤a ≤1且0≤b ≤1,∴“0≤a ≤1且0≤b ≤1”是“0≤ab ≤1”成立的充分不必要条件.故选A.2.【必修第一册(上) 重难点知识清单】“不等式在上恒成立”的充要条件是( )A .B .C .D .【参考答案】A 【解析】∵“不等式x 2﹣x +m >0在R 上恒成立”,∴△=(﹣1)2﹣4m <0,解得m ,又∵m ⇒△=1﹣4m <0,所以m是“不等式x 2﹣x +m >0在R 上恒成立”的充要条件,故选:A .3.【浙江省杭州二中检测】“”的一个充分但不必要的条件是( )260x x --<A .B .23x -<<03x <<C .D .32x -<<33x -<<【参考答案】B 【解析】由解得,260x x --<23x -<<要找“”的一个充分但不必要的条件,260x x --<即是找的一个子集即可,{}23x x -<<易得,B 选项满足题意.故选B4.【必修第一册 逆袭之路】设且,则是的( ),a b ∈R 0ab ≠1ab >1a b >A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要【参考答案】D 【解析】若“ab >1”当a =﹣2,b =﹣1时,不能得到“”,1a b >若“”,例如当a =1,b =﹣1时,不能得到“ab >1“,1a b >故“ab >1”是“”的既不充分也不必要条件,1a b >故选:D .5.【河南省6月联考】关于的不等式成立的一个充分不必要条件是,则的取x ()()30x a x -->11x -<<a 值范围是( )A .B .C .D .1a ≤-0a <2a ≥1a ≥【参考答案】D 【解析】由题可知是不等式的解集的一个真子集.()1,1-()()30x a x -->当时,不等式的解集为,此时 ;3a =()()30x a x -->{}3x x ≠()1,1-{}3x x ≠当时,不等式的解集为,3a >()()30x a x -->()(),3,a -∞⋃+∞,合乎题意;()1,1- (),3-∞当时,不等式的解集为,3a <()()30x a x -->()(),3,a -∞⋃+∞由题意可得,此时.()1,1-(),a -∞13a ≤<综上所述,.1a ≥故选:D.6.【河南省开封市2020届高三第三次模拟】设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【参考答案】C 【解析】由a >b ,①当a >b ≥0时,不等式a |a |>b |b |等价为a •a >b •b ,此时成立.②当0>a >b 时,不等式a |a |>b |b |等价为﹣a •a >﹣b •b ,即a 2<b 2,此时成立.③当a ≥0>b 时,不等式a |a |>b |b |等价为a •a >﹣b •b ,即a 2>﹣b 2,此时成立,即充分性成立;由a |a |>b |b |,①当a >0,b >0时,a |a |>b |b |去掉绝对值得,(a ﹣b )(a +b )>0,因为a +b >0,所以a ﹣b >0,即a >b .②当a >0,b <0时,a >b .③当a <0,b <0时,a |a |>b |b |去掉绝对值得,(a ﹣b )(a +b )<0,因为a +b <0,所以a ﹣b >0,即a >b .即必要性成立,综上可得“a >b ”是“a |a |>b |b |”的充要条件,故选:C .7.【必修第一册 过关斩将】设,则“”是“”的( )R x ∈11||22x -<31x <A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【参考答案】A 【解析】绝对值不等式,1122x -<⇔111222x -<-<⇔01x <<由.31x <⇔1x <据此可知是的充分而不必要条件.1122x -<31x <本题选择A 选项.8.【必修第一册 过关斩将】设集合,,那么“或”是“{|2}M x x =>{|3}P x x =<x M ∈x P ∈x P M ∈⋂”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)【参考答案】必要不充分【解析】解:条件是或等价于;结论是.:p x M ∈x P ∈x P M ∈⋃:q x P M ∈⋂依题意得是的真子集,所以“”能推出“”,反之不成立,P M ⋂P M ⋃x P M ∈⋂x P M ∈⋃即结论条件p ,必要性成立;条件结论q ,充分性不成立.q ⇒p ⇒综上,“或”是“”的必要不充分条件.x M ∈x P ∈x P M ∈⋂故参考答案为:必要不充分9.【必修第一册 逆袭之路】设,则“”是“”的______条件选填“充分不必要”,“必要不充a R ∈1a >1a >.(分”,“充要”,“既不充分也不必要”之一)【参考答案】充分不必要条件【解析】解:解绝对值不等式“”,得或,1a >1a >1a <-又“”是“或”的充分不必要条件,1a >1a >1a <-即“”是“”的充分不必要条件,1a >1a >故参考答案为充分不必要条件.10.【必修第一册 过关斩将】已知,若是p 的一个必要条件,则使:13p x -<<1(0)a x a a -<-<>恒成立的实数b 的取值范围是________.a b >【参考答案】{|2}b b <【解析】∵,111a x a a x a -<-<⇔-<<+∴,所以解得{|13}{|11}x x x a x a -<<⊆-<<+11,13,a a -≤-⎧⎨+≥⎩2a ≥又使恒成立,因此,故实数b 的取值范围是.a b >2b <{|2}b b <故参考答案为:.{|2}b b <11.【必修第一册 过关斩将】若M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则M 是Q 的________条件.【参考答案】充分不必要【解析】命题的充分必要性具有传递性.根据题意得,但,,且,因此M N P Q ⇒⇔⇒Q P ⇒N P ⇔N M ⇒,但,故M 是Q 的充分不必要条件.M Q ⇒Q M ⇒故参考答案为:充分不必要12.【必修第一册 过关斩将】若实数a ,b 满足,,且,则称a 与b 互补记0a ≥0b ≥0ab =,那么“”是“a 与b 互补”的________条件.(填“充分不必要”“必要不充(,)a b a b ϕ=--(,)0a b ϕ=分”“充要”或“既不充分也不必要”)【参考答案】充要【解析】解析若,,平方得,当时,所以;(,)0a b ϕ=a b =+0ab =0a =b =0b ≥当时,所以,故a 与b 互补;0b =a =0a ≥若a 与b 互补,易得.(,)0a b ϕ=故“”是“a 与b 互补”的充要条件(,)0a b ϕ=故参考答案为:充要条件13.【必修第一册(上) 重难点知识清单】已知,.{}2320P x x x =-+≤{}11S x m x m =-≤≤+(1)是否存在实数,使是的充要条件?若存在,求出的取值范围,若不存在,请说明理由;m x P ∈x S ∈m (2)是否存在实数,使是的必要条件?若存在,求出的取值范围,若不存在,请说明理由.m x P ∈x S ∈m 【参考答案】(1)不存在实数,使是的充要条件m x P ∈x S ∈(2)当实数时,是的必要条件0m ≤x P ∈x S ∈【解析】(1).{}{}232012P x x x x x =-+≤=≤≤要使是的充要条件,则,即 此方程组无解,x P ∈x S ∈P S =11,12,m m -=⎧⎨+=⎩则不存在实数,使是的充要条件;m x P ∈x S ∈(2)要使是的必要条件,则 ,x P ∈x S ∈S ⊆P 当时,,解得;S =∅11m m ->+0m <当时,,解得S ≠∅11m m -≤+0m ≥要使 ,则有,解得,所以,S ⊆P 11,1+2m m -≥⎧⎨≤⎩0m ≤0m =综上可得,当实数时,是的必要条件.0m ≤x P ∈x S ∈14.已知两个关于的一元二次方程和,求两方程的根都是x 2440mx x -+=2244450x mx m m -+--=整数的充要条件.【参考答案】1m =【解析】∵是一元二次方程,∴.2440mx x -+=0m ≠又另一方程为,且两方程都要有实根,2244450x mx m m -+--=∴()()212224160,1644450,m m m m ⎧∆=--≥⎪⎨∆=---≥⎪⎩解得.5,14m ⎡⎤∈-⎢⎥⎣⎦∵两方程的根都是整数,∴其根的和与积也为整数,即24,4,445,Z m m Z m m Z ⎧∈⎪⎪∈⎨⎪--∈⎪⎩∴为的约数.m 4又∵,5,14m ⎡⎤∈-⎢⎥⎣⎦∴或.1m =-1当时,第一个方程可化为,其根不是整数;1m =-当时,两方程的根均为整数,∴两方程的根均为整数的充要条件是.1m =1m =15.设集合,,若“”是“”的充分不必要条件,试求满足条{}2|320A x x x =-+={}|1B x ax ==x B ∈x A ∈件的实数组成的集合.a 【参考答案】10,1,2⎧⎫⎨⎬⎩⎭【解析】∵,{}{}2|3201,2A x x x =-+==由于“”是“”的充分不必要条件.∴ .x B ∈x A ∈B A 当时,得;B =∅0a =当时,由题意得或.B ≠∅{}1B ={}2B =当时,得;当时,得.{}1B =1a ={}2B =12a =综上所述,实数组成的集合是.a 10,1,2⎧⎫⎨⎬⎩⎭。
充分条件和必要条件经典练习及答案详解
[基础巩固]1.(2022·邵阳模拟)“a =1”是“|a |=1”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析 由a =1可推出|a |=1,由|a |=1,即a =1或a =-1,推不出a =1,故“a =1”是“|a |=1”的充分不必要条件.故选B.答案 B2.“四边形的四条边相等”是“四边形是正方形”的( )A .充分条件B .必要条件C .既是充分条件又是必要条件D .既不是充分条件也不是必要条件解析 因为正方形的四条边相等,但四条边相等的四边形不一定是正方形,所以“四边形的四条边相等”是“四边形是正方形”的必要条件.答案 B3.(多选)下列“若p ,则q ”形式的命题中,p 是q 的充分条件的是( )A .若1x =1y,则x =y B .若x =1,则x 2=1 C .若x =y ,则x =y D .若x <y ,则x 2<y 2解析 B 项中,x =1⇒x 2=1;C 项中,当x =y <0时,x ,y 无意义;D 项中,当x <y <0⇒x 2>y 2,所以C ,D 中p 不是q 的充分条件.答案 AB4.下列说法不正确的是________.(只填序号)①x 2≠1是x ≠1的必要条件;②x >5是x >4的充分不必要条件;③xy =0是x =0且y =0的充分条件;④x 2<4是x <2的充分不必要条件.解析 若“x 2≠1,则x ≠1”的意思是“若x =1,则x 2=1”,易知x =1是x 2=1的充分不必要条件,故①不正确;③中由xy =0不能推出x =0且y =0,,则③不正确;②④正确.答案 ①③5.已知p :1-x <0,q :x >a ,若p 是q 的充分不必要条件,则a 的取值范围是________. 解析 p :x >1,若p 是q 的充分不必要条件,则p ⇒q ,但q ⇒/p ,也就是说,p 对应集合是q 对应集合的真子集,所以a <1.答案 {a |a <1}6.指出下列各组命题中,p 是q 的什么条件:(1)在△ABC 中,p :A >B ,q :BC >AC ;(2)p :a =3,q :(a +2)(a -3)=0;(3)p :a <b ,q :a b<1. 解析 在(1)中,由大角对大边,且A >B 知BC >AC ,反之也正确,所以p 是q 的充要条件;在(2)中,若a =3,则(a +2)(a -3)=0,但(a +2)(a -3)=0不一定a =3,所以p 是q 的充分不必要条件;在(3)中,若a <b <0,则推不出a b <1,反之若a b<1,当b <0时,也推不出a <b ,所以p 既不是q 的充分条件,也不是必要条件.[能力提升]7.(多选)下列命题中,p 是q 的充分条件的是( )A .p :a 是无理数,q :a 2是无理数B .p :四边形为等腰梯形,q :四边形对角线相等C .p :x >2,q :x ≥1D .p :a >b ,q :ac 2>bc 2解析 A 中,a =2是无理数,a 2=2是有理数,所以p 不是q 的充分条件;B 中,因为等腰梯形的对角线相等,所以p 是q 的充分条件;C 中,x >2,x ≥1,所以p 是q 的充分条件;D 中,当c =0时,ac 2=bc 2,所以p 不是q 的充分条件.答案 BC8.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么( )A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙既不是甲的充分条件,也不是甲的必要条件解析 因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙⇒/丙,如图.综上,有丙⇒甲,但甲⇒/丙,即丙是甲的充分条件,但不是甲的必要条件.答案 A9.若A ={x |2a -1<x <2a +1},B ={x |x <-3或x >1},且A 是B 的充分不必要条件,则实数a 的取值范围为____________ .解析 因为A 是B 的充分不必要条件,所以A B ,又A ={x |2a -1<x <2a +1},B ={x |x <-3或x >1}.因此2a +1≤-3或2a -1≥1,所以实数a 的取值范围是a ≤-2或a ≥1.答案 a ≤-2或a ≥110.(1)是否存在实数m ,使2x +m <0是x <-1或x >3的充分条件?(2)是否存在实数m ,使2x +m <0是x <-1或x >3的必要条件?解析 (1)欲使2x +m <0是x <-1或x >3的充分条件,则只要⎩⎨⎧⎭⎬⎫x |x <-m 2⊆{x |x <-1或x >3},即只需-m 2≤-1,所以m ≥2. 故存在实数m ≥2,使2x +m <0是x <-1或x >3的充分条件.(2)欲使2x +m <0是x <-1或x >3的必要条件,则只要{x |x <-1或x >3}⊆⎩⎨⎧⎭⎬⎫x |x <-m 2,这是不可能的.故不存在实数m ,使2x +m <0是x <-1或x >3的必要条件.[探索创新]11.命题“对任意x 且1≤x <2,x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >1解析 要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.答案 B。
高三数学充分条件与必要条件试题答案及解析
高三数学充分条件与必要条件试题答案及解析1.在△中,“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由已知,当A,B都为锐角,且A<B时,正弦函数在(0,90°)单调递增,所以,故;当A为锐角,B为钝角时,A+B<180°,所以,所以,故选:C.【考点】充要条件.2.若实数满足,且=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件【答案】C【解析】由φ(a,b)=0得-a-b=0且;所以φ(a,b)=0是a与b互补的充分条件;再由a与b互补得到:,且=0;从而有,所以φ(a,b)=0是a与b互补的必要条件;故得φ(a,b)=0是a与b互补的充要条件;故选C.【考点】充要条件的判定.3.在中,角、、所对应的变分别为、、,则是的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件【答案】A【解析】由正弦定理得(其中为外接圆的半径),则,,,因此是的充分必要必要条件,故选A.【考点】本题考查正弦定理与充分必要条件的判定,属于中等题.4.已知条件:,条件:,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件【答案】A【解析】解:因为::,所以:而:所以是的充分不必要条件,故选A.【考点】1、一元二次不等式及分式不等式的解法;2、充要条件.5.求证:方程x2+ax+1=0的两实根的平方和大于3的必要条件是|a|>,这个条件是其充分条件吗?为什么?【答案】必要条件但不是充分条件,见解析【解析】证明:设x2+ax+1=0的两实根为x1,x2,则平方和大于3的等价条件是即a>或a<-.∵{a|a>或a<-},{a||a|>},∴|a|>这个条件是必要条件但不是充分条件.6.(2011•浙江)若a、b为实数,则“0<ab<1”是“a<”或“b>”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵a、b为实数,0<ab<1,∴“0<a<”或“0>b>”∴“0<ab<1”⇒“a<”或“b>”.“a<”或“b>”不能推出“0<ab<1”,所以“0<ab<1”是“a<”或“b>”的充分而不必要条件.故选A.7.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】【解析】若,则知即所以即;令,满足,但.所以是的充分而不必要条件.选.【考点】充要条件.8.(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.9.设a>0且a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】a>0 a≠1,则“函数f(x)=a x在R上是减函数”,所以a∈(0,1),“函数g(x)=(2﹣a)x3在R上是增函数”所以a∈(0,2);显然a>0 a≠1,则“函数f(x)=a x在R上是减函数”,是“函数g(x)=(2﹣a)x3在R上是增函数”的充分不必要条件.故选A.10.已知向量,,则的充要条件是()A.B.C.D.【答案】A【解析】,,由于,则,即,即,故选A.【考点】平面向量垂直的等价条件11.设,则是的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要【答案】B【解析】当时,,而当时,;当时,,∴,∴综上可知:是的必要而不充分条件.【考点】充分必要条件.12.设则是“”成立的 ( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】C【解析】,,由于,因此应选C.【考点】解不等式,充要条件.13.“”是“” 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为,,所以“”是“” 的必要不充分条件.【考点】充分与必要条件.14.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的 ().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当x=2且y=-1时,满足方程x+y-1=0,但方程x+y-1=0有无数多个解,不能确定x=2且y=-1,∴“x=2且y=-1”是“点P在直线l上”的充分不必要条件.15.“m=1”是“直线x-my=1和直线x+my=0互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为m=1时,直线x-my=1和直线x+my=0即可化为x-y=1和x+y=0.即y=x-1和y=-x所以斜率积为-1,所以这两条直线垂直.所以充分性成立.若直线x-my=1和直线x+my=0互相垂直,因为m=0显然不成立.所以两条直线分别为和.所以由斜率乘积为-1可得.所以即.所以必要条件不存在.故选A.【考点】1.充分必要条件.2.直线的位置关系.3.含参数的讨论.16.“”是“函数为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】函数为奇函数,则当时,,即,因此“”是“函数为奇函数” 的充分不必要条件,故选A.【考点】1.三角函数的奇偶性;2.充分必要条件17.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】解不等式得;解不等式得;因为,而,所以“”是“”的必要不充分条件,故选B【考点】1、一元一次、二次不等式的解法;2、充要条件.18.设命题甲:关于的不等式对一切恒成立,命题乙:对数函数在上递减,那么甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若的不等式对一切恒成立,则,解得;在上递减,则,解得,易知甲是乙的必要不充分条件,故选B.【考点】1.充分条件与充要条件;2.二次函数与对数函数的性质.19.设数列是首项大于零的等比数列,则“”是“数列是递增数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】若已知,则设数列的公比为,因为,所以有,又,解得,所以数列是递增数列;反之,若数列是递增数列,则公比且,所以,即,所以是数列是递增数列的充分必要条件.故选C.【考点】等比数列的通项公式,充要条件.20.两个非零向量的夹角为,则“”是“为锐角”的( )A.充分不必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】B【解析】由可得,所以“”是“为锐角”的必要不充分条件.【考点】充分必要条件.21.或是的条件.【答案】必要不充分【解析】若,,则,故或是的必要不充分条件.【考点】充要条件的判断.22.“”是“”的条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)【答案】充分不必要【解析】如果时,那么,所以“”是“”的充分条件,如果,那么,或,所以“”是“”的不必要条件,综上所以“”是“”的充分不必要条件.【考点】充分条件和必要条件.23.“函数在区间上存在零点”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】函数在区间上存在零点,则:.即.所以“函数在区间上存在零点”是“”的必要不充分条件.【考点】1、函数的零点;2、充分条件与必要条件.24.“a≥0”是“函数在区间(-∞,0)内单调递减”的()A.充要条件B.必要不充分条件C.充分不必要条件D.即不充分也不必要条件【答案】A【解析】令t=(ax-1)x=ax2-x,则,设=0,解得x=,所以,当a≥0时,函数t=(ax-1)x在(-∞,)上是减函数,在(,+∞)上是增函数,即极小值为-,当x<0时,t>0,所以a≥0时,函数在区间(-∞,0)内单调递减;若函数在区间(-∞,0)内单调递减,则x时,<0,即成立,所以2a ≥0,故选A.【考点】1.导数的应用;2.充分必要条件的判断.25.若数列满足(为正常数,),则称为“等方比数列”.甲:数列是等方比数列;乙:数列是等比数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】显然是等比数列一定是等方比数列,是等方比数列不一定是等比数列,故甲是乙的必要不充分条件,选B.【考点】充要条件.26.已知“命题”是“命题”成立的必要不充分条件,则实数的取值范围为_________________.【答案】【解析】将两个命题化简得,命题,命题.因为是成立的必要不充分条件,所以或,故的取值范围是.【考点】1.一元二次不等式的解法;2.必要不充分条件.27.已知是实数,则“且”是“且”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】C【解析】因为,且,所以,且;反之,当且时,说明a,b同号,而若a,b均为负数,与a+b>0矛盾,所以且。
高三数学充分条件与必要条件试题答案及解析
高三数学充分条件与必要条件试题答案及解析1.函数在处导数存在,若;是的极值点,则()A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件D.既不是的充分条件,也不是的必要条件【答案】C【解析】若是函数的极值点,则;若,则不一定是极值点,例如,当时,,但不是极值点,故是的必要条件,但不是的充分条件,选C .【考点】1、函数的极值点;2、充分必要条件.2.设,则|“”是“”的A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要又不必要条件【答案】C.【解析】设,则,∴是上的增函数,“”是“”的充要条件,故选C.【考点】1.充分条件、必要条件、充要条件的判断;2.不等式的性质.3.“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是()A.m>B.0<m<1C.m>0D.m>1【答案】C【解析】不等式x2-x+m>0在R上恒成立,则Δ=1-4m<0,∴m>.∴“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是m>0.4.中,角的对边分别为,则“”是“是等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,由余弦定理得,,故,即,所以是等腰三角形,反之,当是等腰三角形时等腰三角形时,不一定有,故“”是“是等腰三角形”的充分不必要条件.【考点】1、余弦定理;2、充分必要条件.5.“”是“直线与平行”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既充分而不必要条件【答案】【解析】因为直线与平行所以,得或由“”是“或”充分而不必要条件故选【考点】两直线平行的充要条件;充分性和必要性.6.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当φ=π时,y=sin(2x+φ)=sin(2x+π)=-sin 2x,此时曲线y=sin(2x+φ)必过原点,但曲线y=sin(2x+φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.7.若且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】所以当时,所以“”是“”的充分不必要条件.故选【考点】充分条件和必要条件;三角恒等变换.8.“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当时,有,但当时,,故选A.【考点】充分与必要条件.9.命题甲:或;命题乙:,则甲是乙的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既不充分条件也不必要条件【答案】B【解析】该命题的逆否命题为:,则且,这显然不成立,从而原命题也不成立,所以不是充分条件;该命题的否命题为:且,则,这显然成立,从而逆命题也成立,所以是必要条件.【考点】逻辑与命题.10.“”是“函数存在零点”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A【解析】“函数存在零点”,的充要条件是“m≤0”,∴充分不必要条件.【考点】函数的零点.11.“”是“”的A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】由显然可得,而当时,对应的角有无数多个,比如,所以答案是B.【考点】(1)充要条件;(2)三角函数.12.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3D.4【答案】B【解析】命题①在c=0时不正确,即“a=b”只是“ac=bc”的充分而不必要条件;注意到无理数的概念与实数的加法运算,可知命题②是真命题;命题③在a,b至少有一个是负数时不一定正确,命题③为假命题;由不等式的性质,若a<3,必有a<5,命题④是真命题.综上所述,命题②④是真命题,选B.13.已知空间三条直线a,b,m及平面α,且a,bα.条件甲:m⊥a,m⊥b;条件乙:m⊥α,则“条件乙成立”是“条件甲成立”的()A.充分非必要条件B.必要非充分条件C.充分且必要条件D.既非充分也非必要条件【答案】A【解析】m⊥α,m⊥a,m⊥b,而当a∥b时,不能反推,选A.14.已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.【答案】a<5【解析】命题“x∈A”是命题“x∈B”的充分不必要条件,∴A⊆B,∴a<5.15.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的 ().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当x=2且y=-1时,满足方程x+y-1=0,但方程x+y-1=0有无数多个解,不能确定x=2且y=-1,∴“x=2且y=-1”是“点P在直线l上”的充分不必要条件.16.“M>N”是“log2M>log2N”成立的______条件(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写).【答案】必要不充分【解析】“M>N”⇒/ log2M>log2N,”因为M,N小于零不成立;“log2M>log2N”⇒M>N.故“M>N”是“log2M>log2N”的必要不充分条件.17.设函数,则“为奇函数”是“”的条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)【答案】必要不充分【解析】必要性:当时,为奇函数;而当时,也为奇函数,所以充分性不成立.解答此类问题,需明确方向.肯定的要会证明,否定的要会举反例.【考点】充要关系.18.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】当时,,则;当时,,此时无法得出,当时不成立.【考点】充要条件的判断.19.“成立”是“成立”的().A.充分非必要条件.B.必要非充分条件.C.充要条件.D.既非充分又非必要条件.【答案】B【解析】把两个命题都化简,“成立”等价于“”,“成立”等价于“”,而,故选B.【考点】解不等式与充分必要条件.20.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要【答案】B.【解析】因,所以“”是“”必要不充分条件.【考点】充要条件.21.已知α,β为不重合的两个平面,直线mα,那么“m⊥β”是“α⊥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若直线mα,且“m⊥β”,则定有α⊥β,若直线mα,且α⊥β,则得不到m⊥β,所以直线mα,那么“m⊥β”是“α⊥β”的充分而不必要条件,选A.【考点】线面关系、充分必要条件.22.实数,条件: ,条件:,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由条件知,则,故由不等式的性质知,则能够推出成立;而:中还存在的情况,故不能推出成立,所以是的充分不必要条件.【考点】不等式性质的应用,充分不必要条件的判定.23.“x=3”是“x2=9”的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【答案】A【解析】当时有,当时,故是的充分不必要条件,选A.【考点】充要条件24.“”是“直线与直线互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若直线与直线互相垂直,则,即,即,解得或,故“”是“直线与直线互相垂直”的充分不必要条件,故选A.【考点】1.两直线的位置关系;2.充分必要条件25.设,则“直线与直线平行”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】则直线与直线平行,但直线与直线平行,则,故“直线与直线平行”是“”的必要不充分条件.【考点】充要条件的判断.26.已知命题方程在上有解,命题函数的值域为,若命题“或”是假命题,求实数的取值范围.【答案】实数的取值范围是.【解析】先就命题为真和命题为真时求出相应的参数的值,然后就复合命题“或”为假命题对命题和命题的真假性进行分类讨论,从而得出参数的取值范围.试题解析:若命题为真,显然,或,故有或, 5分若命题为真,就有或命题“或”为假命题时, 12分【考点】1.一元二次方程;2.二次函数;3.复合命题27.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件【答案】A.【解析】当,若,则定有;当,若,不一定有,所以,当时,“”是“”的充分而不必要条件,选A.【考点】充分不必要条件.28.若命题:,:方程表示双曲线,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】方程表示双曲线,则满足或,解得或,因此是的充分不必要条件.【考点】1.充要条件;2.双曲线的方程.29.“”是“”成立的条件.(从“充要”,“充分不必要”,“必要不充分”中选择一个正确的填写)【答案】必要不充分【解析】若去此时无法推出,但是反之,根据对数函数单调递增可知成立,故填“必要不充分”.【考点】充分必要条件的判断.30.“”是“直线和直线互相垂直”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】根据题意,由于直线和直线互相垂直” 等价于1-m=0,则“”是““直线和直线互相垂直”的充要条件,故选C.【考点】充分条件点评:主要是考查了两直线垂直的充要条件的运用,属于基础题。
(完整版)充分条件和必要条件练习题
充分条件和必要条件练习题1.设x R ∈,则“”是“2210x x +->”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.若a R ∈,则“0a =”是“cos sin a a >”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.设x R ∈,且0x ≠, ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知a R ∈,则“2a >”是“22a a >”的( )A .充分非必条件B .必要不充分条件C .充要条件D .既非充分也非必要条件5.设x R ∈,则“”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件6.若a ,b 为实数,则“0<a b <1”是“b <) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.“0>>b a ”是“22b a >”的什么条件?( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.“1<x <2”是“x<2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.12x <<“”是”“2<x 成立的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件10.A,B 是任意角,“A=B ”是“sinA=sinB ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.设a R ∈,则“1a <”是“11a>”( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件12.“20x >”是“0x >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.x=y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.””是““00>≠x x 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件15.命题5:>x p ,命题3:>x q ,则p 是q 的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件16.“1x =”是“2210x x -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件17.若R a ∈,则“2a =”是“()()240a a -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件一、填空题18.已知条件p :13x ≤≤,条件q :2560x x -+<,则p 是q 的 条件.A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件参考答案1.A【解析】”是“2210x x +->”的充分不必要条件,故选A .考点:充要条件.2.B【解析】即充分条件成立,但当ααsin cos >故必要条件不成立,综合选B.考点:1.正余弦函数的单调性;2.充分条件和必要条件的定义.3.A【解析】,得1x <-,由,解得01x <<或0x <,所以“A. 考点:充要条件的应用.4.A【解析】试题分析:因为当“2a >” 成立时,()2220,a a a a -=->∴ “22a a >” 成立. 即“2a >”⇒“22a a >” 为真命题;而当“22a a >” 成立时, ()2220a a a a -=->, 即2a >或0,2a a <∴>不一定成立, 即“22a a >”⇒“2a >”的充分非必要条件,故选A. 考点:1、充分条件与必要条件;2、不等式的性质.【方法点睛】本题主要考查不等式的性质及充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.5.A【解析】试题分析:由得31<<x ,由220x x +->得1>x 或2-<x ,即是“220x x +->”的充分不必要条件,故选:A .考点:充分条件与必要条件的判断.6.D【解析】 时,p 不能推出q ,当0,0b a <>时,q 不能推出p ,故是既不充分也不必要条件.考点:充要条件.7.A【解析】试题分析:当0>>b a 时,能推出22b a >,反过来,当22b a >不能推出0>>b a ,所以是充分不必要条件,故选A.考点:充分必要条件8.A【解析】试题分析:若“12x <<”,则“2x <”成立,反之不成立,所以“12x <<”是“2x <”的成立充分不必要条件.故选A.考点:充分条件和必要条件的判断.9.A【解析】试题分析:当12x <<时可得2x <成立,反之不成立,所以12x <<“”是”“2<x 成立的充分不必要条件考点:充分条件与必要条件10.A【解析】试题分析:由B A =可得B A sin sin =,由B A sin sin =不一定有B A =,如:0=A ,π=B ,所以B A =是B A sin sin =的充分不必要条件.故选A.考点:充分条件、必要条件.11.B.【解析】 试题分析:111110001a a a a a->⇔->⇔>⇔<<,故是必要不充分条件,故选B . 考点:1.解不等式;2.充分必要条件.12.B .【解析】 试题分析:因为由20x >解得:0x >或0x <,∴“0x >或0x <”是“0x >”的必要而不充分条件.考点:充分必要条件.13.B【解析】或x y =-,所以是“x y =”的必要不充分条件.故B 正确.考点:充分必要条件.14.B【解析】 试题分析:00x x >⇒≠“”“”,反之不成立,因此选B .考点:充要关系15.B【解析】试题分析:若5x >成立则3x >成立,反之当3x >成立时5x >不一定成立,因此p 是q 的充分不必要条件考点:充分条件与必要条件16.A【解析】试题分析:当1x =时,2210x x -+=;同时当2210x x -+=时,可得1x =;可得“1x =”是“2210x x -+=”的充要条件.考点:充分、必要条件的判断.【易错点晴】本题主要考查的是一元二次不等式、对数不等式和集合的交集、并集和补集运算,属于容易题.解不等式时一定要注意对数的真数大于0和2x 的系数大于0,否则很容易出现错误.17.B【解析】 试题分析:若“2a =”,则“()()240a a -+=”;反之 “()()240a a -+=”,则2,a =或4a =-.故“2a =”是“()()240a a -+=”的充分不必要条件.考点:充分、必要条件的判断.18.C【解析】 试题分析:解不等式2560x x -+<得23x <<,由p :13x ≤≤可知p 是q 的必要不充分条件条件考点:充分条件与必要条件。
20道充分条件必要条件判断总结练习题(含答案)
20道充分条件必要条件判断总结练习题(含答案)20道高中数学充分条件,必要条件判断练习题(含答案)1.设,,a b c 为正数,则“a b c +>”是“222a b c +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.“ 11()()33a b <”是“22log log a b >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.不等式01>-xx 成立的一个充分不必要条件是( ) 1.>x A 1.->x B 101.<<-<<-x x D 或4、设a ∈R ,则“2a a >”是“1>a ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.若1a >,则“y x a a >”是“log log a a x y >”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件6.在实数范围内,使得不等式110x->成立的一个充分而不必要的条件是( ) A .1x < B .02x << C .01x << D . 103x << 7.“sin cos αα=”是“cos20α=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.“2211og a og b <”是“11a b<”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.设p :x<3,q :-1<x<=""></xA.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件10.设,a b 为非零向量,则“//a b ”是“a 与b 方向相同”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.“43m =”是“直线x -my +4m -2=0与圆224x y +=相切”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12已知p :(x -1)(x -2)≤0,q :log 2(x +1)≥1,则p 是q 的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件13.已知“命题”是“命题”成立的必要不充分条件,则实数的取值范围为()A .B .C .D .14、“0a =”是“复数(),a bi a b R +∈为纯虚数”的().A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件.设a b 、是非零向量,则“=2a b ”是“=||||a b a b ”成立的A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件16.已知向量,则“”是“与反向”的() A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件17、设集合{}A x x a =<,{}3B x x =<,则“3a <”是“A B ?”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件18.设R x ∈,则“1<2x ”是“1<="">A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19.“1a ≥”是“()()1,,ln 1x x x a ?∈+∞--<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要2:()3()p x m x m ->-2:340q x x +-<-或17m m ≥≤-或71m -<<71m -≤≤20.在ABC ?中,“A B >”是“cos cos A B <”的 ( )A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件答案1.B.∵,,a b c 为正数,∴当2,2,3a b c ===时,满足a b c +>,但222a b c +>不成立,即充分性不成立,若222a b c +>,则()2 22+->a b ab c ,即()2222+>+>a b c ab c ,>a b c +>,成立,即必要性成立,则“a b c +>”是“222a b c +>”的必要不充分条件,故选:B2.B3.A5.【答案】A【解析】【分析】先找出y x a a >及log log a a x y >的等价条件,然后根据充分条件和必要条件的定义分别进行判断即可.【详解】由a>1,得y x a a > 等价为x>y; log log a a x y >等价为x>y>0故“y x a a > ”是“log log a a x y >”的必要不充分条件故选:A【点睛】本题主要考查充分条件和必要条件的判断,指对函数的单调性,根据充分条件和必要条件的定义是解决本题的关键.6.D7.A【解析】【分析】由2211og a og b <可推出a b <,再结合充分条件和必要条件的概念,即可得出结果.【详解】若2211og a og b <,则0a b <<,所以110ab>>,即“2211og a og b <”不能推出“11a b <”,反之也不成立,因此“2211og a og b <”是“11a b <”的既不充分也不必要条件.故选D【点睛】本题主要考查充分条件和必要条件,熟记概念即可,属于基础题型.9.C10.B12A13.B14【答案】B【解析】试题分析:0a =,00b a bi =?+=为实数;复数(),a bi a b R +∈为纯虚数0,00a b a ?=≠?=,所以“0a =”是“复数(),a bi a b R +∈为纯虚数”的必要不充分条件,选B.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ?q ”为真,则p 是q 的充分条件.2.等价法:利用p ?q 与非q ?非p ,q ?p 与非p ?非q ,p ?q 与非q ?非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ?B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.15.B16【答案】C【解析】与反向则存在唯一的实数,使得,即所以是“与反向”的充要条件故选C17.A18.B19.B20.A。
充分条件与必要条件(经典练习及答案详解)
充分条件与必要条件1.设x∈R,则“1<x<2”是“1<x<3”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】“1<x<2”⇒“1<x<3”,反之不成立.所以“1<x<2”是“1<x<3”的充分不必要条件.故选B.2.(2020年佛山高一期末)“x=1”是“x2-4x+3=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x =1或x=3,不是必要条件.故选A.3.(2021年荆州期末)x2<9的必要不充分条件是()A.-3≤x≤3 B.-3<x<0C.0<x≤3 D.1<x<3【答案】A【解析】x2<9即-3<x<3.因为-3<x<3能推出-3≤x≤3,而-3≤x≤3不能推出-3<x<3,所以x2<9的必要不充分条件是-3≤x≤3.4.(多选)对任意实数a,b,c,下列命题中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.“a>b”是“a2>b2”的充分条件D.“a<5”是“a<3”的必要条件【答案】BD【解析】因为A中“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac =bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;因为B中“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;因为C中“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;因为D中{a|a<5}{a|a<3},故“a<5”是“a <3”的必要条件,故D为真命题.故选BD.5.(多选)已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件,下列命题正确的是()A.r是q的充要条件B.p是q的充分条件而不是必要条件C.r是q的必要条件而不是充分条件D.r是s的充分条件而不是必要条件.【答案】AB【解析】由已知有p⇒r,q⇒r,r⇒s,s⇒q,由此得r⇒q且q⇒r,A正确,C不正确,p⇒q,B正确,r⇒s且s⇒r,D不正确.故选AB.6.“m=9”是“m>8”的________条件,“m>8”是“m=9”的________条件(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”).【答案】充分不必要条件必要不充分条件【解析】当m=9时,满足m>8,即充分性成立,当m=10时,满足m>8,但m=9不成立,即必要性不成立,即“m=9”是“m>8”的充分不必要条件,“m>8”是“m=9”的必要不充分条件.7.条件p:1-x<0,条件q:x>a,若p是q的充分不必要条件,则a的取值范围是________.【答案】{a|a<1}【解析】p:x>1,若p是q的充分不必要条件,则p⇒q,但q⇒/ p,即p对应集合是q对应集合的真子集,所以a<1.8.下列说法正确的是________(填序号).①“x>0”是“x>1”的必要条件;②“a3>b3”是“a>b”的必要不充分条件;③在△ABC中,“a>b”不是“A>B”的充分条件.【答案】①【解析】①中,当x>1时,有x>0,所以①正确;②中,当a>b时,a3>b3一定成立,但a3>b3也一定能推出a>b,即“a3>b3”是“a>b”的充要条件,所以②不正确;③中,当a>b时,有A>B,所以“a>b”是“A>B”的充分条件,所以③不正确.9.指出下列各命题中,p是q的什么条件,q是p的什么条件.(1)p:x2>0,q:x>0.(2)p:x+2≠y,q:(x+2)2≠y2.(3)p:a能被6整除;q:a能被3整除.(4)p:两个角不都是直角;q:两个角不相等.解:(1)p:x2>0,则x>0或x<0,q:x>0,故p是q的必要条件,q是p的充分条件.(2)p:x+2≠y,q:(x+2)2≠y2,则x+2≠y,且x+2≠-y,故p是q的必要条件,q是p的充分条件.(3)p:a能被6整除,故也能被3和2整除,q:a能被3整除,故p是q的充分条件,q 是p的必要条件.(4)p:两个角不都是直角,这两个角可以相等,q:两个角不相等,则这个角一定不都是直角,故p是q的必要条件,q是p的充分条件.B级——能力提升练10.设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】因为a 2≥0,而(a -b )a 2<0,所以a -b <0,即a <b ;由a <b ,a 2≥0,得到(a -b )a 2≤0,(a -b )a 2可以为0,所以“(a -b )a 2<0”是“a <b ”的充分不必要条件.11.已知a ,b 为实数,则“a +b >4”是“a ,b 中至少有一个大于2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】“a +b >4”⇒“a ,b 中至少有一个大于2”,反之不成立.所以“a +b >4”是“a ,b 中至少有一个大于2”的充分不必要条件.故选A .12.设p :12≤x ≤1;q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则a 的取值范围是________.【答案】⎩⎨⎧⎭⎬⎫a ⎪⎪0≤a ≤12 【解析】因为q :a ≤x ≤a +1,p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧ a ≤12,a +1>1,解得0≤a ≤12. 13.(2020年大庆高一期中)已知p :-4<x -a <4,q :2<x <3.若q 是p 的充分条件,则实数a 的取值范围为________.【答案】{a |-1≤a ≤6} 【解析】因为p :-4<x -a <4,即a -4<x <a +4,q :2<x<3.若q 是p 的充分条件,则{x |2<x <3}⊆{x |a -4<x <a +4},则⎩⎪⎨⎪⎧a -4≤2,a +4≥3,即-1≤a ≤6.所以实数a 的取值范围为{a |-1≤a ≤6}.14.若集合A ={x |x >-2},B ={x |x ≤b ,b ∈R },试写出:(1)A ∪B =R 的一个充要条件;(2)A ∪B =R 的一个必要不充分条件;(3)A ∪B =R 的一个充分不必要条件.解:(1)集合A ={x |x >-2},B ={x |x ≤b ,b ∈R }.(1)若A ∪B =R ,则b ≥-2,故A ∪B =R 的一个充要条件是b ≥-2.(2)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个必要不充分条件可以是b≥-3.(3)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个充分不必要条件可以是b≥-1.C级——探究创新练15.已知关于x的实系数二次方程x2+ax+b=0有两个实数根α,β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设y=x2+ax+b,则y=x2+ax+b的图象是开口向上的抛物线.又|α|<2,|β|<2,所以当x=2时,y>0且当x=-2时,y>0,即有-(4+b)<2a<4+b.因为|b|<4,所以4+b>0,即2|a|<4+b.(2)必要性:令y=x2+ax+b,由2|a|<4+b,得当x=2时,y>0且当x=-2时,y>0,因为|b|<4,所以方程y=0的两根α,β同在{x|-2<x<2}内或无实根.因为α,β是方程y=0的实根,所以α,β同在{x|-2<x<2}内,即|α|<2且|β|<2.。
(完整版)充分条件与必要条件测试题(含答案)
充分条件与必要条件测试题(含答案)班级 姓名一、选择题1.“”是“”的 ( )2x =(1)(2)0x x --=(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件2.在中,,则是的 ( )ABC ∆:,:p a b q BAC ABC >∠>∠p q (A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件3.“或是假命题”是“非为真命题”的( )p q p A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.若非空集合,则“或”是“”的( )M N ≠⊂a M ∈a N ∈a M N ∈ A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件B 提示:“或”不一定有“”。
a M ∈a N ∈a M N ∈ 5.对任意的实数,下列命题是真命题的是( ),,a b c (A )“”是“”的必要条件ac bc >a b >(B )“”是“”的必要条件ac bc =a b =(C )“”是“”的充分条件ac bc <a b >(D )“”是“”的必要条件ac bc =a b =6.若条件,条件,则是的( ):14p x +≤:23q x <<q ⌝p ⌝(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件7.若非空集合满足,且不是的子集,则( ),,A B C A B C = B A A. “”是“”的充分条件但不是必要条件x C ∈x A ∈B. “”是“”的必要条件但不是充分条件x C ∈x A ∈C. “”是“”的充要条件x C ∈x A ∈D. “”既不是“”的充分条件也不是“”必要条件x C ∈x A ∈x A ∈ 8.对于实数,满足或,则是的(),x y :3,:2p x y q x +≠≠1y ≠p q (A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“”是“函数的值恒为正值”的 ( )40k -<<2y x kx k =-- (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件10.已知条件,条件,则是的 ( ):2p t ≠2:4q t ≠p q (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件11.“a =2”是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件12.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,p r q r s r q 是 的必要条件。
充分条件与必要条件练习题及答案
例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔C B C B∵是成立的充要条件,∴③由①③得A C④由②④得A D.∴D是A成立的必要条件.选B.说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C ),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C ).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C ),但AB 不成立, 综上所述:“A B ”“A(B ∪C )”,而“A (B ∪C )”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p:ab =0,q :a 2+b 2=0;(2)p:xy ≥0,q :|x|+|y |=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件(2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d"是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b (逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q,qs )r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B,结合数轴,构造不等式(组),求出a .解 A ={x |2a ≤x ≤a 2+1},B ={x |(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[]A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
20道充分条件必要条件判断总结练习题(含答案)
20道高中数学充分条件,必要条件判断练习题(含答案)1.设,,a b c 为正数,则“a b c +>”是“222a b c +>”的( )A .充分不必要条件B .必要不充分条件C . 充要条件D .既不充分也不必要条件2.“ 11()()33a b <”是“22log log a b >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3.不等式01>-xx 成立的一个充分不必要条件是( ) 1.>x A 1.->x B 101.<<-<x x C 或 101.><<-x x D 或4、设a ∈R ,则“2a a >”是“1>a ”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.若1a >,则“y x a a >”是“log log a a x y >”的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件6.在实数范围内,使得不等式110x->成立的一个充分而不必要的条件是( ) A .1x < B . 02x << C .01x << D . 103x << 7.“sin cos αα=”是“cos20α=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.“2211og a og b <”是“11a b<”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.设p :x<3,q :-1<x<3,则p 是q 成立的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件10.设,a b 为非零向量,则“//a b ”是“a 与b 方向相同”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.“43m =”是“直线x -my +4m -2=0与圆224x y +=相切”的 A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12已知p :(x -1)(x -2)≤0,q :log 2(x +1)≥1,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件13.已知 “命题”是“命题”成立的必要不充分条件,则实数的取值范围为 ( )A .B .C .D .14、“0a =”是“复数(),a bi a b R +∈为纯虚数”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 .设a b 、是非零向量,则“=2a b ”是“=||||a b a b ”成立的A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件16.已知向量,则“”是“与反向”的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件17、设集合{}A x x a =<,{}3B x x =<,则“3a <”是“A B ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件18.设R x ∈,则“1<2x ”是“1<lg x ”的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19.“1a ≥”是“()()1,,ln 1x x x a ∃∈+∞--<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要2:()3()p x m x m ->-2:340q x x +-<m 17m m ><-或17m m ≥≤-或71m -<<71m -≤≤20.在ABC ∆中,“A B >”是“cos cos A B <”的 ( )A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件答案1.B.∵,,a b c 为正数,∴当2,2,3a b c ===时,满足a b c +>,但222a b c +>不成立,即充分性不成立,若222a b c +>,则()222+->a b ab c ,即()2222+>+>a b c ab c ,>a b c +>,成立,即必要性成立,则“a b c +>”是“222a b c +>”的必要不充分条件,故选:B2.B3.A4.A5.【答案】A【解析】【分析】先找出y x a a >及log log a a x y >的等价条件,然后根据充分条件和必要条件的定义分别进行判断即可.【详解】由a>1,得y x a a > 等价为x>y; log log a a x y >等价为x>y>0故“y x a a > ”是“log log a a x y >”的必要不充分条件故选:A【点睛】本题主要考查充分条件和必要条件的判断,指对函数的单调性,根据充分条件和必要条件的定义是解决本题的关键.6.D7.A【解析】【分析】由2211og a og b <可推出a b <,再结合充分条件和必要条件的概念,即可得出结果.【详解】若2211og a og b <,则0a b <<,所以110ab>>,即“2211og a og b <”不能推出“11a b <”,反之也不成立,因此“2211og a og b <”是“11a b <”的既不充分也不必要条件.故选D【点睛】本题主要考查充分条件和必要条件,熟记概念即可,属于基础题型.9.C10.B11.A12A13.B14【答案】B【解析】试题分析:0a =,00b a bi =⇒+=为实数;复数(),a bi a b R +∈为纯虚数0,00a b a ⇒=≠⇒=,所以“0a =”是“复数(),a bi a b R +∈为纯虚数”的必要不充分条件,选B.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.15.B16【答案】C【解析】与反向则存在唯一的实数,使得,即所以是“与反向”的充要条件故选C17.A18.B19.B20.A。
充分条件与必要条件练习题及答案
例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;对.且,即,是的充要条件.选.⇒⇒⇔D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔∵是成立的充要条件,∴③C B C B由①③得A C④由②④得A D.∴D是A成立的必要条件.选B.说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的[ ] A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析先解不等式再判定.解解不等式|x-2|<3得-1<x<5.∵0<x<5-1<x<5,但-1<x<50<x<5∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1.其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件 (4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题),∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤de ≤f 即c ≤d 是e ≤f 的充分条件.答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1. 说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s rq ,q s)r 是q 的充要条件;(r q ,q s r)p 是q 的必要条件;(qsrp) 说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222 分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥a b pq(p a b a4b 0)2ab21 11⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
充分条件与必要条件测试题 含答案
充分条件与必要条件测试题含答案在逻辑学中,充分条件与必要条件是非常重要的概念。
它们用来描述一个事件或条件对另一个事件或条件的影响关系。
了解充分条件与必要条件的概念和应用对提高逻辑思维能力及解决问题非常有帮助。
下面是一些关于充分条件与必要条件的测试题,希望能帮助你加深理解。
测试题1:如果一个数是偶数,那么它一定能被2整除。
请判断下面的说法是否为真:正数a能够被2整除,那么a一定是偶数。
答案:这个说法是正确的。
根据偶数的定义,偶数是能够被2整除的数。
如果一个数能被2整除,那么它一定是偶数。
测试题2:如果一个人是成年人,那么他一定年满18岁。
请判断下面的说法是否为真:某人年满18岁,那么他一定是成年人。
答案:这个说法是正确的。
根据成年人的定义,成年人是指年满18岁的人。
如果一个人年满18岁,那么他一定是成年人。
测试题3:如果天气晴朗,那么我会去公园散步。
请判断下面的说法是否为真:我去了公园散步,那么天气一定是晴朗的。
答案:这个说法是不正确的。
根据条件句的逻辑关系,如果天气晴朗,那么我会去公园散步。
但是在这个逻辑关系中,并没有说如果我去了公园散步,那么天气一定是晴朗的。
测试题4:如果一个人失去味觉,那么他一定患有感冒。
请判断下面的说法是否为真:某人患有感冒,那么他一定失去味觉。
答案:这个说法是不正确的。
根据条件句的逻辑关系,如果一个人失去味觉,那么他一定患有感冒。
但是在这个逻辑关系中,并没有说如果一个人患有感冒,那么他一定失去味觉。
测试题5:如果一个人是中国公民,那么他一定会说汉语。
请判断下面的说法是否为真:某人会说汉语,那么他一定是中国公民。
答案:这个说法是不正确的。
虽然大部分中国公民会说汉语,但是并不代表所有会说汉语的人都是中国公民。
可能有其他原因导致他们会说汉语,所以不能推断某人会说汉语就一定是中国公民。
通过测试题的答案,我们可以看出充分条件与必要条件的逻辑关系。
充分条件是指如果条件A发生,那么结果B一定会发生;而必要条件是指结果B发生所必须的条件是A。
高三数学充分条件与必要条件试题
高三数学充分条件与必要条件试题1.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的____________条件.【答案】必要不充分【解析】M={x|0<x≤3},N={x|0<x≤2},所以N M,故a∈M是a∈N的必要不充分条件.2.“”是“”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,,;当时,,解得:,或,或.所以“”是“”的充分而不必要条件.【考点】1.对数函数的单调性;2. 充分条件、必要条件和充要条件的判断3.以q为公比的等比数列{}中,,则“”是“”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】等比数列中,若,则由可得,,即或;若,则有,所以,,即.所以,“”是“”的必要而不充分条件.故选.【考点】充要条件,等比数列的通项公式.4.“是真命题”是“为假命题”的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件【答案】A.【解析】①是真命题为真命题或为真命题,不能得出是假命题,即是真命题不能得出是假命题;②是假命题是真命题是真命题.由①②可知“是真命题”是“为假命题”的必要不充分条件,故选A.【考点】逻辑关系与充要条件.5.设函数f(x)=ax+b(0≤x≤1),则a+2b>0是f(x)>0在[0,1]上恒成立的________条件.(填充分但不必要,必要但不充分,充要,既不充分也不必要)【答案】必要但不充分【解析】由∴a+2b>0.而仅有a+2b>0,无法推出f(0)>0和f(1)>0同时成立.6.条件,条件,则是的()A.充分非必要条件B.必要不充分条件C.充要条件D.既不充分也不必要的条件【答案】A【解析】不等式的解集为:或,不等式的解集为:,故为,为,则,则是的充分非必要条件.【考点】必要条件、充分条件与充要条件的判断.7.“”是“” 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为,,所以“”是“” 的必要不充分条件.【考点】充分与必要条件.8.设a∈R,则“a=1”是直线l1:ax+2y=0与直线l2:x+(a+1)y+4=0平行().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】a=1⇒l1∥l2,反之不一定成立.9.已知平面向量a=(1,2),b=(-2,m),且a∥b,则m=【答案】【解析】,,解得【考点】向量共线的充要条件是.10.圆与直线有公共点的充分不必要条件是()A.B.C.D.【答案】B【解析】圆与直线有公共点,则,即或,那么其充分不必要条件选B.【考点】1.点到直线的距离;2.充分不必要条件.11.已知直线、,平面、,且,,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当时,因为,故,又,∴;当时,可能相交,所以选A.【考点】1、面面平行的判定和性质;1、充分条件和必要条件.12.已知是实数,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若中有非正数,则虽有成立,但不成立,所以不是的充分条件;若,根据函数在上是增函数,有,又在上是减函数,所以,所以是的必要条件,选B.【考点】充分条件与必要条件,指数函数和对数函数.13.已知是直线,是平面,且,则“”是“”的( )A.必要不充条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】A【解析】有线面垂直的判断定理可知,由“”推不出“”,但是反之成立,故答案为A.【考点】条件的判断.14.设,那么“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】取,,则,此时,;当时,则,在不等式的两边同时除以正数得,,故,即“”是“”的必要不充分条件.【考点】不等式的性质、充分必要条件15.已知向量,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】因为,所以选A.【考点】向量的坐标运算.16.“”是“”成立的条件.(从“充要”,“充分不必要”,“必要不充分”中选择一个正确的填写)【答案】必要不充分【解析】若去此时无法推出,但是反之,根据对数函数单调递增可知成立,故填“必要不充分”.【考点】充分必要条件的判断.17.已知在平面内有一区域M,命题甲:点;命题乙:点,如果甲是乙的必要条件,那么区域M的面积有()A.最小值8B.最大值8C.最小值4D.最大值4【答案】B【解析】根据题意,由于在平面内有一区域M,命题甲:点;命题乙:点,如果甲是乙的必要条件,则说明甲表示的区域中包含点(a,b)所在的区域M,那么结合不等式表示的平面区域,区域可知有最大值为围成的面积8,故答案为B。
充分条件与必要条件
10.已知条件 p:-1<x<1,q:x>m,若 q 是 p 的必要条件,则实数 m 的取值范 围是________. 【解析】条件 p:-1<x<1,q:x>m, 因为 q 是 p 的必要条件,所以 m≤-1. 答案:m≤-1
四、解答题(每小题 10 分,共 20 分) 11.判断下列各题中 p 是 q 的什么条件. (1)在△ABC 中,p:A>B,q:a>b. (2)p:x>1,q:x2>1. (3)p:(a-2)(a-3)=0,q:a=3.
【加固训练】
点 P(x,y)是第二象限的点的充要条件是( )
A.x<0,y<0
B.x<0,y>0
C.x>0,y>0
D.x>0,y<0
【解析】选 B.第二象限的点横坐标小于 0,纵坐标大于 0,所以点 P(x,y)是第二象
限的点的充要条件是 x<0,y>0.
4.已知集合 A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( ) A.充分条件 B.必要条件 C.既是充分条件也是必要条件 D.既不是充分条件也不是必要条件
A.x<1
B.0<x<1
C.-1<x<1
D.-1<x<0
【解析】选 BCD.由于 x2<1 即-1<x<1,A 显然不能使-1<x<1 成立,BCD 满足
பைடு நூலகம்
题意.
8.下列条件中是“a+b>0”的充分条件的是( )
A.a>0,b>0
B.a<0,b<0
C.a=3,b=-2
D.a>0,b<0 且|a|>|b|
所以x12≤x≤1 {x|a≤x≤a+1},
则a≤12,
高三数学充分条件与必要条件试题
高三数学充分条件与必要条件试题1.已知且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】时,;反之,时,或,所以“”是“”的必要不充分条件. 选.【考点】1.充要要件;2.分式不等式的解法.2.“实数”是“复数(为虚数单位)的模为”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分条件又不必要条件【答案】【解析】时,即其模为;当的模为时,,解得,即“实数”是“复数(为虚数单位)的模为”的充分非必要条件,选.【考点】复数的概念,充要条件.3.已知是定义在R上的偶函数,且以2为周期,则“为上的增函数”是“为上的减函数”的()A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件【答案】D【解析】因为为偶函数,所以当在上是增函数,则在上则为减函数,又函数的周期是4,所以在区间也为减函数.若在区间为减函数,根据函数的周期可知在上则为减函数,又函数为偶函数,根据对称性可知,在上是增函数,综上可知,“在上是增函数”是“为区间上的减函数”成立的充要条件.4.以q为公比的等比数列{}中,,则“”是“”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】等比数列中,若,则由可得,,即或;若,则有,所以,,即.所以,“”是“”的必要而不充分条件.故选.【考点】充要条件,等比数列的通项公式.5.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵曲线y=sin(2x+φ)过坐标原点,∴sin φ=0,∴φ=kπ,k∈Z,故选A.6.“”是“直线与直线互相垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】直线与直线互相垂直,,解得:,所以“”是“直线与直线互相垂直”的充分不必要条件.【考点】1.充分,必要条件的判断;2.两条直线垂直的判定.7.己知实数满足,则“成立”是“成立”的().A.充分非必要条件.B.必要非充分条件.C.充要条件.D.既非充分又非必要条件.【答案】C【解析】这是考查不等式的性质,由于,因此不等式两边同乘以可得,即,同样在不等式两边同除以可得,即,因此应该选C.当然也可这样分析:说明同正同负,由于函数在和两个区间上都是减函数,因此“”与“”是等价的,即本题选C.【考点】不等式的性质,8.“”是“”的()A.充分不必要条件B.既不充分也不必要条件C.充要条件D.必要不充分条件【答案】D【解析】由可得.其中的值可以是正数也可以是负数或零.所以不能推出.但是由可得>0.由>0可得成立.所以“”是“”的必要不充分条件.故选D.【考点】1.指数的单调性.2.对数的单调性.3.充分必要条件的知识.9.给定两个命题,.若是的必要而不充分条件,则是的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若是的必要而不充分条件,则,但,故它的逆否命题为,,但,故是的充分而不必要条件.【考点】充要条件的判断.10.购物大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件【答案】B【解析】在购物大姐眼中,便宜,则不是好货,这是一个真命题,它的逆否命题是:好货,则不便宜,也该是一个真命题.所以“不便宜”是“好货”的必要条件. 购物大姐没说“不是好货就便宜”,所以不能说“不便宜,则是好货”是一个真命题.故选.【考点】充分条件与必要条件.11.设数列是首项大于零的等比数列,则“”是“数列是递增数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】若已知,则设数列的公比为,因为,所以有,又,解得,所以数列是递增数列;反之,若数列是递增数列,则公比且,所以,即,所以是数列是递增数列的充分必要条件.故选C.【考点】等比数列的通项公式,充要条件.12.已知“”是“”的充分不必要条件,则k的取值范围是( )A.[2,+)B.[1,+)C.(2,+)D.(一,-1]【答案】A【解析】由,得,所以或,因为“”是“”的充分不必要条件,所以.【考点】1.充分必要条件;2.分式不等式的解法.13.是的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】,即,故可推出,反之不能,选A.【考点】充分必要条件的判断,三角函数的二倍角公式.14.设,,则“”是“”的 ( )A.必要不充分条件B.充分不必要条件C.必要条件D.既不充分也不必要条件【答案】D【解析】因为集合是分式不等式,所以,因为集合是对数不等式,所以,因为集合和没有子集关系,所以“”是“”的既不充分也不必要条件.【考点】1.分式不等式的解法;2,对数不等式的解法;3.充要条件.15.若表示直线,表示平面,且,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D【解析】由于表示直线,表示平面,且,则根据条件中a不在平面内时成立,反之由于“”是“”,可能是异面直线,故错误,因此得到”是“”的既不充分也不必要条件,选D.【考点】线面平行点评:解决的关键是根据线面平行的判定定理来分析结论,属于基础题。
高三数学充分条件与必要条件试题
高三数学充分条件与必要条件试题1.对于非零向量、,“”是“”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】取,,则,且,所以,另一方面,,则,与互为相反向量,则,所以,所以“”是“”成立的必要不充分条件,故选B.【考点】1.共线向量;2.充分必要条件2.(5分)(2011•天津)设集合A={x∈R|x﹣2>0},B={x∈R|x<0},C={x∈R|x(x﹣2)>0},则“x∈A∪B”是“x∈C”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件【答案】C【解析】化简集合A,C,求出A∪B,判断出A∪B与C的关系是相等的即充要条件.解:A={x∈R|x﹣2>0}={x|x>2}A∪B={x|x>2或x<0}C={x∈R|x(x﹣2)>0}={x|x>2或x<0}∴A∪B=C∴“x∈A∪B”是“x∈C”的充要条件故选C点评:本题考查判断一个命题是另一个命题的什么条件,先化简各个命题.考查充要条件的定义.3.中,角的对边分别为,则“”是“是等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,由余弦定理得,,故,即,所以是等腰三角形,反之,当是等腰三角形时等腰三角形时,不一定有,故“”是“是等腰三角形”的充分不必要条件.【考点】1、余弦定理;2、充分必要条件.4.设且,命题:函数在上是增函数,命题:函数在上是减函数,则是的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D【解析】由函数在上是增函数,所以.由函数在上是减函数,所以.所以既不是的充分也不是必要条件.故选D.【考点】1.指数函数的单调性.2.幂型函数的单调性.5.已知两个平面、,直线,则“”是“直线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由直线,则“”是“直线”成立,因为两平面没有公共点,则平面内直线与平面自然没有公共点;反过来,由直线与平面平行,则经过直线的平面与平面的位置关系是平行或相交,所以“”是“直线”不成立;所以“”是“直线”的充分不必要条件.【考点】1、直线与平面、平面与平面的位置关系;2、命题与充要条件.6.设在()上单调递增;,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.以上都不对【答案】A【解析】,命题成立等价于恒成立,即,,即,所以是充要条件,故选A.【考点】1.函数的单调性;2.充要条件的判断.7.“函数y=sin(x+φ)为偶函数”是“φ=”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】时,为偶函数;若为偶函数,则;选B.【考点】1三角函数的性质;2充分必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
充分条件和必要条件测试题基础训练1.“a b c d >>且”是“a c b d +>+”的 ( ) A . 必要不充分条件 B . 充分不必要条件C. 既是充分条件又是必要条件D. 既不是充分条件也不是必要条件2.设””是“则“x x x R x ==∈21,的( )A . 充分不必要条件B .必要不充分条件C. 既是充分条件又是必要条件D. 既不是充分条件也不是必要条件3.“x 2-1>0”是“x <-1”的 ( )A .充分不必要条件B . 必要不充分条件C. 既是充分条件又是必要条件D. 既不是充分条件也不是必要条件 4.方程2210ax x ++=有实根的必要不充分条件是 ( ) A .0=a B .1≤a C .0<a D .2<a 5.“1>x ”是“x x >2”的_________条件 6.“11<x”是“1>x ”的_____________条件 7.已知p :x 2-4x -5≤0,q :|x -3|<a (a >0).若p 是q 的充分不必要条件,求a 的取值范围.8.已知102:≤≤-x p ,)0(11:>+≤≤-m m x m q ,若p ⌝是q ⌝的必要而不充分条件,求m 的取值范围.能力提升9.设集合}2,1{=M ,}{2a N =,则“1a =”是“N M ⊆”的( )A .充分不必要条件B . 必要不充分条件C. 既是充分条件又是必要条件D. 既不是充分条件也不是必要条件10.0a <是方程2210ax x ++=至少有一个负数根的 ( ) A .充分不必要条件B . 必要不充分条件C. 既是充分条件又是必要条件D. 既不是充分条件也不是必要条件11.若已知A 是B 的充分条件,C 是D 的必要条件,而B 是C 的充分条件,同时也是D 的充分条件,则D 是A 的__________条件。
12.在下列命题中,(1)1<x 是11>x的充分条件;(2)已知非零向量b a ,,则0<⋅是向量b a ,的夹角为钝角的必要不充分条件;(3)若A :“1||,<∈a R a ”,B :“关于x 的二次方程02)1(2=-+++a x a x 的一根大于0,另一根小于0”,则A 是B 的充分不必要条件。
正确的命题是______13.已知p :|x -3|≤2,q :01222≤-+-m mx x ,若⌝p 是⌝q 的充分不必要条件,求实数m 的取值范围.扩展应用14.已知全集U =R ,非空集合A =⎩⎨⎧⎭⎬⎫x |x -2x -(3a +1)<0,B =⎩⎨⎧⎭⎬⎫x |x -a 2-2x -a <0. (1)当a =1时,求(C U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围答案和解析1.【答案】选B【解析】由不等式性质可知“a b c d >>且” “a c b d +>+”,当取,1,4-==b a 1,0==d c 时满足条件“a c b d +>+”但不满足“a b c d >>且”,所以“a c b d +>+”≠>“a b c d >>且”,所以选B 。
2.【答案】选A【解析】因为x x =2等价于0=x ,或1=x ,所以集合{}1=A {}2,1=B ,故选A 。
3.【答案】选B【解析】因为x 2-1>0等价于1-<x ,或1>x ,所以集合{}1|-<=x x A{}1,1|>-<=x x x B 或,所以“x 2-1>0”是“x <-1”的必要不充分条件,故选B 。
另解 因为1-<x ,或1>x 的取值范围比x <-1取值范围大,所以“x 2-1>0”是“x <-1”的必要不充分条件。
4.【答案】选D【解析】因为方程2210ax x ++=有实根,所以0=a 或⎩⎨⎧≥-≠0440a a ,所以一定有1≤a ,只有2<a 的取值范围比1≤a 取值范围大,所以2<a 是方程2210ax x ++=有实根的必要不充分条件,故选D 5.【答案】充分不必要条件【解析】由x x >2得0<x 或1>x ,所以{}1|>=x x A {} 1或x 0 x |><=x B ,故“1>x ”是“x x >2”的充分不必要条件。
6.【答案】必要不充分条件 【解析】由11<x得0<x 或1>x ,所以{}1|>=x x A {} 1或x 0 x |><=x B ,所以“11<x”是“1>x ”的必要不充分条件。
7.【答案】a >4.【解析】设A ={x |x 2-4x -5≤0}={x |-1≤x ≤5},{}a x x B <-=|3|| ={x |-a +3<x <a +3},因为p 是q 的充分不必要条件,所以A B .故⎩⎪⎨⎪⎧-a +3<-1,a +3>5,解得a >4. 【答案】[)+∞,98.【解析】因为p ⌝是q ⌝的必要而不充分条件等价于q 是p 必要不充分条件,即p 是q 的充分不必要条件,所以{}102|≤≤-=x x A {}0,11|>+≤≤-=m m x m x B ,故⎪⎩⎪⎨⎧>+<-≤-011021m m m 或⎪⎩⎪⎨⎧>+≤-<-011021m m m ,解得9≥m ,所以m 的取值范围是[)+∞,9 能力提升9.【答案】选A【解析】因为“N M ⊆”等价于1±=a ,又因{}1=A {}1,1-=B ,所以“1a =”是“N M ⊆”的充分不必要条件,故选A 。
10.【答案】选A【解析】当0a <时,由根与系数关系可知,方程2210ax x ++=一定有实根,且两根之积为01<a,所以有一个负根,所以0a <是方程2210ax x ++=至少有一个负数根的充分条件,但当0=a 时方程2210ax x ++=也有一个负数根:21-=x ,所以0a <是方程2210ax x ++=至少有一个负数根的充分不必要条件,故选A 。
11.【答案】必要不充分条件【解析】由条件可得B A ⇒,D C ⇐,C B ⇒,D B ⇒,综合得D B A ⇒⇒,且D C B A ⇐⇒⇒所以D 是A 的必要不充分条件。
12.【答案】(2)(3) 【解析】(1)由11>x可得10<<x ,所以{}10|<<=x x A {}1|<=x x B ,所以1<x 是11>x的必要不充分条件,故命题(1)为假;(2)由非零向量b a ,的夹角θ为钝角,则0cos ||||<=⋅θb a b a ,而当0cos ||||<=⋅θb a b a 时,πθπ≤<2,所以0<⋅b a 是非零向量b a ,的夹角为钝角的必要不充分条件,故命题(2)为真;(3)因为关于x 的二次方程02)1(2=-+++a x a x 的一根大于0,另一根小于0,设2)1()(2-+++=a x a x x f ,由数形结合的思想作二次函数的图象可知只要0)0(<f ,即2<a ,而集合{}R a a a A ∈<=,1|||={}11|<<-a a {}2|<=a a B ,所以A 是B的充分不必要条件,故命题(3)为真。
13.【答案】2≤m ≤4【解析】由题意得p :-2≤x -3≤2,∴1≤x ≤5.q :0)1)(1(≤--+-m x m x ∴m -1≤x ≤m +1, 又∵⌝p 是⌝q 的充分不必要条件∴q 是p 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5,且等号不能同时取到,∴2≤m ≤4 14.【答案】(1) {}43|<≤x x (2) -12≤a <13 或13<a ≤3-52.【解析】 (1)当a =1时,A =⎭⎬⎫⎩⎨⎧<--042|x x x ={}42|<<x x , B =⎭⎬⎫⎩⎨⎧<--013|x x x ={}31|<<x x , ∴{}31|≥≤=x x x B C U 或 ∴(C U B )∩A ={}43|<≤x x (2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵ q 是p 的必要条件,∴p 是q 的充分条件,∴A B .∴⎩⎪⎨⎪⎧a ≤23a +1≤a 2+2,即13<a ≤3-52.②当3a +1=2,即a =13时,A =φ,不符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由A B 得⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,∴-12≤a <13.综上得实数a 的取值范围是:-12≤a <13或13<a ≤3-52.。