初三九年级上册数学压轴题专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三九年级上册数学压轴题专题练习(解析版)

一、压轴题 1.问题提出

(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.

问题探究

(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且

2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.

问题解决

(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.

2.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:

若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,

都是

点A ,B ,C 的外延矩形,矩形

是点A ,B ,C 的最佳外延矩形.

(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若

,则点A ,B ,C 的最佳外延矩形的面积为 ;

②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线

上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范

围;

(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形

OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.

3.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)

(1)t为何值时,四边形APQD为矩形.

(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?4.问题发现:

(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.

问题探究:

(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;

问题解决:

(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③

为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.

5.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.

(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .

(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.

(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.

6.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着

A C

B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).

(1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;

(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.

7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,

(1)求证:AE=DE;

(2)若PB=2,求AE的长;

(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.

8.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.

(1)如图1,当PB=3时,求PA的长以及⊙O的半径;

(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;

(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.

MN=,在劣弧MN和优弧MN上分别有点9.MN是O上的一条不经过圆心的弦,4

AM BM.

A,B(不与M,N重合),且AN BN

=,连接,

(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:

290MOD DMO ︒∠+∠=;

(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求

出这个值;若不是,请说明理由.

10.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.

(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;

(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,

2AB =,6BD =CD 的长;

(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).

11.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:

如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;

②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;

相关文档
最新文档