湖南大学研究生机械振动_习题第一章
机械振动习题集
第一章 概论1-1概念1. 机械振动系统由哪几部分组成?其典型元件有哪些?2. 机械振动研究哪三类基本问题?3. 对机械振动进行分析的一般步骤是什么?4. 在振动分析中,什么叫力学模型,什么叫数学模型?5. 惯性元件、弹性元件、阻尼元件的基本特性各是什么?6. 什么叫离散元件或集中参数元件?7. 什么叫连续体或分布参数元件?8. 建立机械振动系统力学模型的基本原则有哪些?9.建立机械振动系统力学模型需要考虑的基本问题?并分析建立下图中的系统的力学模型。
一台机器(看为一个整体)平置于一块板上,板通过两个垂直的支撑块放置在地面上,试建立其力学模型。
10. 如果一个振动系统是线性的,它必须满足什么条件?11. 如果一个振动系统的运动微分方程是常系数的,它必须满足什么条件? 12. 试讨论:若从车内乘客的舒适度考虑,该如何建立小轿车的振动模型?1-2简谐运动及其运算1求下列简谐函数的单边复振幅和双边复振幅 (1))3sin(2πω+=t x (2))410cos(4ππ+=t x (3))452cos(3︒+=t x π答案:(1)111,,2222S B B X j X j X j +-==-=+ (2),,S B B X X X +-== (3),,224444S B B X j X j X j +-=+=+=-2通过简谐函数的复数表示,求下列简谐函数之和,并用“振动计算实用工具”对(2)(3)进行校核(1))3sin(21πω+=t x )32s i n (32πω+=t x (2)t x π10sin 51=)410cos(42ππ+=t x(3))302sin(41︒+=t x π )602sin(52︒+=t x π)452cos(33︒+=t x π)382cos(74︒+=t x π )722cos(25︒+=t x π答案:(1))6.6cos(359.412︒+=t x ω (2))52.4710cos(566.312︒-=t x π (3))22.92cos(776.1412345︒+=t x π3试计算题1中)(t x 的一阶导数和二阶导数对应的复振幅,并给出它们的时间历程4设)(t x 、)(t f 为同频简谐函数,并且满足)(t f cx x b x a =++ 。
湖南大学机械振动习题课
2 n 1 tan 2 1 n
等效激励:旋转部件偏心质量引起的振动
M
me m t u x
M
2
sin t u x
e
2
k c
a
2
k
k
c
b
The rotating unbalance system can be equated to a SDOF system as shown above. 由动量定理(theorem of momentum)
Therefore, solve to get: B = 0 and A = 0.0353. Hence, x 0.0353e
n t
sin d t
For maximum displacement: velocity x
0
dx x 0.0353e nt (n sin d t d cos d t ) 0 dt n sin d t d cos d t 0
振幅: A u (
n
0 u
)
2
n
v0
v0
m k
最大张力: T mg kA mg v0 mk 1000 9.8 0.5 1000 4 105 1.98 104 (N)
此题基本理论:单自由度自由振动 Free vibration of SDOF
( 2 1)n t ( 2 1)n t
k c 0 2m m
2
2
Over-damped ( 1 )
x(t ) a1e
Critically Damped ( 1 )
a2e
机械振动学习题解答(一).PPT24页
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
机械振动一章习题解答
T = 2π
所以应当选择答案(C)。
m ( k1 + k 2 ) m = 2π k k1 k 2
习题 12—4
一质点作简谐振动,周期为 T,当它由平衡位置向 X 轴正方向运动 ]
时,从二分之一最大位移处到最大位移处这段路程所需要的时间为: [ (A) T/4。 (B) T/12。 (C) T/6。 (D) T/8。
解: 单摆的振动满足角谐振动方程, 这里所给的 θ 是初始角位移,显然是从最大角位移处计时。由 旋转矢量法容易判断该单摆振动的初位相为 “0” , 因此,应当选择答案(C) 。 −θm
题解 12―1 图
习题 12—2
轻弹簧上端固定,下端系一质量为 m1 的物体,稳定后在 m1 下边又
系一质量为 m2 的物体,于是弹簧又伸长了 ∆x ,若将 m2 移去,并令其振动,则 振动周期为: [ (A) T = 2π ]
位相 ϕ = π 2 ,故振动方程为
x = 0.02 cos(1.5t +
π ) 2
(SI)
习题 12─17
两个同方向的简谐振动的振动方程分别为
1 , x 2 = 3 × 10 − 2 cos 2π (t + ) 4
1 x1 = 4 × 10 − 2 cos 2π (t + ) 8
(SI)
求:合振动方程。 解:设合振动方程为
X
习题 12─12
一质点作简谐振动,振动图
线如图所示,根据此图,它的周期
4 O –2
2
t (s)
T=
ϕ=
,用余玄函数描述时的初位相
习题 12―12 图
。 解:根据振动图线可画出旋转矢量图,可得
t=2
∴ ∴
机械振动习题和答案解析
《机械振动噪声学》习题集1-1 阐明下列概念,必要时可用插图。
(a) 振动;(b) 周期振动和周期;(c) 简谐振动。
振幅、频率和相位角。
1-2 一简谐运动,振幅为0.20 cm,周期为0.15 s,求最大的速度和加速度。
1-3 一加速度计指示结构谐振在82 Hz 时具有最大加速度50 g,求其振动的振幅。
1-4 一简谐振动频率为10 Hz,最大速度为4.57 m/s,求其振幅、周期和最大加速度。
1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。
即:A cos ωn t +B cos (ωn t + φ) =C cos (ωn t + φ' ),并讨论φ=0、π/2 和π三种特例。
1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大?1-7 计算两简谐运动x1 = X1 cos ω t和x2 = X2 cos (ω + ε ) t之和。
其中ε << ω。
如发生拍的现象,求其振幅和拍频。
1-8 将下列复数写成指数A e i θ形式:(a) 1 + i3(b) -2 (c) 3 / (3- i ) (d) 5 i (e) 3 / (3- i )2(f) (3+ i ) (3 + 4 i ) (g) (3- i ) (3 - 4 i ) (h) [ ( 2 i ) 2 + 3 i + 8]2-1 钢结构桌子的周期τ=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。
已知周期的变化∆τ=0.1 s。
求:( a ) 放重物后桌子的周期;( b )桌子的质量和刚度。
2-2 如图2-2所示,长度为L、质量为m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕O点微幅振动的微分方程。
2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面作纯滚动,它的圆心O用刚度为k的弹簧相连,求系统的振动微分方程。
图2-1 图2-2 图2-32-4 如图2-4所示,质量为m、半径为R的圆柱体,可沿水平面作纯滚动,与圆心O 距离为a 处用两根刚度为k的弹簧相连,求系统作微振动的微分方程。
机械振动试题(含答案)(1)
机械振动试题(含答案)(1)一、机械振动 选择题1.如图所示,在一根张紧的水平绳上,悬挂有 a 、b 、c 、d 、e 五个单摆,让a 摆略偏离平衡位置后无初速释放,在垂直纸面的平面内振动;接着其余各摆也开始振动,当振动稳定后,下列说法中正确的有( )A .各摆的振动周期与a 摆相同B .各摆的振动周期不同,c 摆的周期最长C .各摆均做自由振动D .各摆的振幅大小不同,c 摆的振幅最大2.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍 B .若2T t ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于m kx m M+ 3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。
图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。
已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( )A .212()x x g L π-B .212()2x x g L π-C .212()4x x g L π-D .212()8x x g Lπ- 4.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A .弹簧的弹性势能和物体动能总和不变B .物体在最低点时的加速度大小应为2gC .物体在最低点时所受弹簧的弹力大小应为mgD .弹簧的最大弹性势能等于2mgA5.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )6.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是( ) A .适当加长摆线B .质量相同,体积不同的摆球,应选用体积较大的C .单摆偏离平衡位置的角度要适当大一些D .当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期7.图(甲)所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A.在t=0.2s时,弹簧振子可能运动到B位置B.在t=0.1s与t=0.3s两个时刻,弹簧振子的速度相同C.从t=0到t=0.2s的时间内,弹簧振子的动能持续地增加D.在t=0.2s与t=0.6s两个时刻,弹簧振子的加速度相同8.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值9.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。
机械振动习题集与答案123
《机械振动噪声学》习题集1-1 阐明下列概念,必要时可用插图。
(a) 振动;机械或结构在平衡位置附近的往复运动称为机械振动。
(b) 周期振动和周期;能用时间的周期函数表示系统相应的振动叫做周期振动,周期振动完全重复一次的时间叫做周期(c) 简谐振动。
能用一项时间的正弦,余弦表示系统响应的振动叫做简谐振动振幅:物体离开平衡位置的最大位移频率:每一秒重复相同运动的次数相位角:1-2 一简谐运动,振幅为0.20 cm,周期为0.15 s,求最大的速度和加速度。
最大速度=A*w 最大加速度=A*W*W1-3 一加速度计指示结构谐振在82 Hz 时具有最大加速度50 g,求其振动的振幅。
a =A*W*W=A*(2*PI*f)*(2*PI*f)------将f=82,a=500代入即可1-4 一简谐振动频率为10 Hz,最大速度为4.57 m/s,求其振幅、周期和最大加速度。
略(方法同上一题)1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。
即:A cos ωn t +B cos (ωn t + φ) =C cos (ωn t + φ' ),并讨论φ=0、π/2 和π三种特例。
将两个简谐运动化成复数形式即可相加1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大?设台面运动频率为f, 即要求a=A*W*W =A*(2*PI*f)*(2*PI*f)<=g1-7 计算两简谐运动x1 = X1 cos ω t和x2 = X2 cos (ω + ε ) t之和。
其中ε << ω。
如发生拍的现象,求其振幅和拍频。
1-8 将下列复数写成指数A e i θ形式:(a) 1 + i3(b) -2 (c) 3 / (3- i ) (d) 5 i (e) 3 / (3- i ) 2(f) (3+ i ) (3 + 4 i ) (g) (3- i ) (3 - 4 i ) (h) [ ( 2 i ) 2 + 3 i + 8 ]2-1 钢结构桌子的周期τ=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。
机械振动学习题解答1
机械振动学习题解答11-4一简谐振动频率为10Hz,最大速度为4.57m/,-求其振幅、周期和最大加速度。
解:简谐振动的位移某(t)=Ain(ωnt+)速度&某(t)=ωnAco(ωnt+)&速度幅值某ma某=ωnA某加速度幅值&&ma某=ωn2A 某加速度&&(t)=ωn2Ain(ωnt+)&由题意,fn=10Hz,某ma某=4.57m/所以,圆频率ωn=2πfn=20π圆频率振幅A=&某ma某ωn=0.072734m周期T=1/fn=0.1最大加速度2&&ma某=ωnA=ωn某ma某=287.14m/2&某1-6一台面以一定频率作垂直正弦运动,如要求台-面上的物体保持与台面接触,则台面的最大振幅可有多大?解:对物体受力分析&&mgN=m 某物体N当N=0时,物体开始脱离台面,此时台面的加速度为最大值。
即&&mg=m某ma某2&&ma某=ωnA某2A=g/ωn台面mg&&某又由于所以1-7计算两简谐运动某1=某coωt和某2=某co(ω+ε)t-之和。
其中ε<<ω。
如发生拍的现象,求其振幅和拍频。
解:某1+某2=2某co(t)co(2ε当ε<<ω时,某1+某2≈2某co(2t)coωt可变振幅ε2ω+εt)210co(2πt)εε拍振的振幅为2某,拍频为f=(不是)2π4π例:当ω=80π,ε=4π,某=5时,某1+某2≈10co(2πt)co(80πt)10振幅为10拍频为2Hz0-1000.510co(2πt)1拍的周期为0.5(不是)(不是1)1.52补充若两简谐运动振幅和频率都不同:=某1coωt+(某2coωt某2coωt)+某2co(ω+ε)t某=某1+某2=某1coωt+某2co(ω+ε)t 可变振幅A(t)=某1某2+2某2coεε≈(某1某2)coωt+2某2cotcoωt=某1某2+2某2cotcoωt22可变振幅ε%2t%%拍振的振幅为Ama某Amin=2某2(假设某2较小),拍频为f=例:当ω=80π,ε=4π,某1=8,某2=5时,13ε2π某1+某2=[3+10co(2πt)]co(80πt)振幅为13-1303+10co(2πt)0.511.52拍频为1Hz2-2如图所示,长度为L、质量为m的均质刚性杆-由两根刚度为k的弹簧系住,求杆绕O点微幅振动的微分方程。
机械振动习题集与答案123
《机械振动噪声学》习题集1-1 阐明下列概念,必要时可用插图。
(a) 振动;机械或结构在平衡位置附近的往复运动称为机械振动。
(b) 周期振动和周期;能用时间的周期函数表示系统相应的振动叫做周期振动,周期振动完全重复一次的时间叫做周期(c) 简谐振动。
能用一项时间的正弦,余弦表示系统响应的振动叫做简谐振动振幅:物体离开平衡位置的最大位移频率:每一秒重复相同运动的次数相位角:1-2 一简谐运动,振幅为0.20 cm,周期为0.15 s,求最大的速度和加速度。
最大速度=A*w 最大加速度=A*W*W1-3 一加速度计指示结构谐振在82 Hz 时具有最大加速度50 g,求其振动的振幅。
a =A*W*W=A*(2*PI*f)*(2*PI*f)------将f=82,a=500代入即可1-4 一简谐振动频率为10 Hz,最大速度为4.57 m/s,求其振幅、周期和最大加速度。
略(方法同上一题)1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。
即:A cos ωn t +B cos (ωn t + φ) =C cos (ωn t + φ' ),并讨论φ=0、π/2 和π三种特例。
将两个简谐运动化成复数形式即可相加1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大?设台面运动频率为f, 即要求a=A*W*W =A*(2*PI*f)*(2*PI*f)<=g1-7 计算两简谐运动x1 = X1 cos ω t和x2 = X2 cos (ω + ε ) t之和。
其中ε << ω。
如发生拍的现象,求其振幅和拍频。
1-8 将下列复数写成指数A e i θ形式:(a) 1 + i3(b) -2 (c) 3 / (3- i ) (d) 5 i (e) 3 / (3- i ) 2(f) (3+ i ) (3 + 4 i ) (g) (3- i ) (3 - 4 i ) (h) [ ( 2 i ) 2 + 3 i + 8 ]2-1 钢结构桌子的周期τ=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。
机械振动基础习题
机械振动分析与应用习题第一部分问答题1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。
2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。
3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。
4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么?5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。
6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。
第二部分计算题1.求图2-1所示两系统的等效刚度。
图2-1 图2-2 图2-32.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。
3.如图2-3所示系统,求轴1的等效转动惯量。
图2-4 图2-5 图2-6 图2-74.一个飞轮其内侧支承在刀刃上摆动,如图2-4所示。
现测得振荡周期为1.2s,飞轮质量为35kg,求飞轮绕中心的转动惯量。
(注:飞轮外径100mm,R=150mm。
)5.质量为0.5kg的重物悬挂在细弹簧上,伸长为8mm,求系统的固有频率。
6.质量为m1的重物悬挂在刚度为k的弹簧上并处于静平衡位置;另一质量为m2的重物从高度为h处自由降落到m l上而无弹跳,如图2-5所示,求其后的运动。
7.一质量为m、转动惯量为J的圆柱体作自由纯滚动,但圆心有一弹簧k约束,如图2-6所示,求振动的固有频率。
8.一薄长条板被弯成半圆形,如图2-7所示,让它在平面上摇摆,求它的摇摆周期。
图2-8 图2-99.长度为L 、重量为W 的均匀杆对称地支承在两根细绳上,如图2-8所示。
试建立杆相对于铅垂轴线o-o 的微角度振动方程并确定它的周期。
10.求图2-9所示系统的等效刚度和固有频率。
11.用能量法求图2-10所示均质圆柱体振荡的固有频率。
机械振动基础课后习题答案
N
m
mg
P57.1-3: 求简谐位移u1 (t ) = 5e j (ωt +30 )与u2 (t ) = 7e j (ωt +90 )的合成运动u (t ), 并求u (t )与u1 (t )的相位差。
20周阻尼器消耗的能量 = = 1 1 mg 2 2 2 k ( A02 − An ) = ( A0 − An ) 2 2 δs 10 × 9.8 ((6.4 × 10−3 ) 2 − (1.6 × 10−3 ) 2 ) = 0.19(NM) 2 × 0.01
P58.1-15: 图示系统的刚杆质量不计,m = 1kg,k = 224N/m, c = 48Ns/m, l1 = l = 0.49m, l2 = l / 2, l3 = l / 4。 求系统固有频率及阻尼比。
系统固有频率: n = ω k m
ɺ 初始条件: (0) = 0, u (0) = v0 u
ɺ u0 v0 m k
2 振幅: = u0 + ( a
ωn
)2 =
ωn
= v0
最大张力: = mg + ka T = mg + v0 mk = 1000 × 9.8 + 0.5 1000 × 4 ×105 = 1.98 ×104 (N)
Bd = f 0 /( k − mω 2 ) = 0.01
响应: 响应:
u (t ) = a1 cos ω n t + a2 sin ω n t + 0.01sin(ω t − ϕ )
机械振动 课后习题和答案 第一章 习题和答案
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k x P k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k P x k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x,受力分别为: 1122P c x P c x =⎧⎨=⎩由力的平衡有:1212()P P P c c x =+=+ 故等效刚度为:12eq P c c c x ==+ 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩,系统的总速度为:121211()x x x P c c =+=+ 故等效刚度为:1211eq P c x c c ==+1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
湖南大学机械振动习题课1
?
(k1
? k2 )l2 I0
1.求图1所示系统的固有频率。 AB为刚性杆,杆本
身质量忽略不计 。
Ie K? e
me Ke
图1
图b
解:方法(1):能量法
取广义坐标θ 如图,利用等效质量和等效刚度的概念,可
把原系统等效成为图b所示等效系统。
根据等效前后动能相等:
T
?
1 2
m1
(a1?
)
2
?
1 2
m2
图3 ① 控制板;② 升降舵
当我们需要操纵飞机抬头或低头时,水平尾翼中的升降舵就会发生 作用。升降舵是水平尾翼中可操纵的翼面部分,其作用是对飞机进 行俯仰操纵。
图1
图2
图3
红线表示气流方向 ( 也就是飞机机头方向吹过来的风的方向),黑线表示平尾,蓝 线表示升降舵舵面。 图1-- 飞机起飞时升降舵舵面的情况,飞机往前飞,气流就往后吹,气流遇到升降 舵上翘的舵面产生阻力,阻力产生压力,压力把升降舵舵面往下压,飞机机头就 会自然向上了,飞机就往上飞。 图2---- 飞机下降时候升降舵舵面的情况。图 3--------- 飞机就是平飞状态。
取m1, m2, K1, K2处的竖向位移为广义坐标,如何等效?
方法(2):定义法
设使系统绕A点产生单位角加速度需要施加弯矩M,则在m1、
m2
上产生绕A点的惯性矩:
M ? m1a12 ?1 ?
m2 a42
?1
Ie ? M ? m1a12 ? m2a42
设使系统产生单位转角需要施加弯矩M,则在K1、K2处将产生
1. 求图1所示系统中均匀刚性杆 AB在A点对坐标x的 等效质量。杆的质量为 m,A端弹簧的刚度为 k。 铰C点到A点的距离为 al(0<a<1),试求C点铰支 座放置何处时系统的固有频率达到最大值。
机械振动学部分习题
解:系统的质量矩阵和刚度矩阵为
[M ] = m 0 m
[K ] = 2k −k k
k
m1
k
m2
0
− k
2 由 − ωn [M ] + [K ] = 0
2 2k − m ω n −k
−k =0 2 k − mω
2 2k − m ω n −k
0.52 + 0.32 sin (wt + ϕ ) = 0.58 sin (wt + ϕ )(cm ) 2π 2π = = 0.2 s w 10π = Aw = 0.58 × 10 − 2 × 10π = 18.22 × 10 − 2 m / s 0.3 = 30.960 0.5
A = 0.58 × 10 − 2 m T= max x
W / δ st = W/g
g
δ st
X =Y
(1 − γ ) + (2ξγ )
=
a = 0.067cm 2 γ −1
5
2-47 一机器重4410N,支撑在弹簧隔振器上,弹簧静变形为0.5 cm,机器有一偏 w2 心重,产生偏心激振力 F = 2.54 N,w为激振力频率,g为重力加速度,不 g 计阻尼。求(1)在机器转速为1200 r/min时传入地基的力;(2)机器的振幅。
10
当 当
k m k m
(2k − 0.382k )u11 − ku21 = 0 (2k − 2.618k )u12 − ku22 = 0
2 ωn 2 = 2.618
1 1 [u] = 1.618 − 0.618
将初始条件
x1 1 = x 2 r1
机械振动试题(含答案)(1)
机械振动试题(含答案)(1)一、机械振动选择题1.如图所示,弹簧下端挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好为原长,则物体在振动过程中( )A.物体在最低点时的弹力大小应为2mgB.弹簧的弹性势能和物体动能总和不变C.弹簧的最大弹性势能等于2mgAD.物体的最大动能应等于mgA2.某同学用单摆测当地的重力加速度.他测出了摆线长度L和摆动周期T,如图(a)所示.通过改变悬线长度L,测出对应的摆动周期T,获得多组T与L,再以T2为纵轴、L为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会()A.偏大B.偏小C.一样D.都有可能3.如图为某简谐运动图象,若t=0时,质点正经过O点向b运动,则下列说法正确的是()A.质点在0.7 s时的位移方向向左,且正在远离平衡位置运动B.质点在1.5 s时的位移最大,方向向左,在1.75 s时,位移为1 cmC.质点在1.2 s到1.4 s过程中,质点的位移在增加,方向向左D.质点从1.6 s到1.8 s时间内,质点的位移正在增大,方向向右4.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。
已知弹簧的劲度系数为k,则下列说法中正确的是()A .细线剪断瞬间A 的加速度为0B .A 运动到最高点时弹簧弹力为mgC .A 运动到最高点时,A 的加速度为gD .A 振动的振幅为2mgk5.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是()A .甲、乙的振幅各为 2 m 和 1 mB .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1C .乙振动的表达式为x= sin4t (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值6.如图所示的弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则下列说法不正确的是( )A .振子的位移增大的过程中,弹力做负功B .振子的速度增大的过程中,弹力做正功C .振子的加速度增大的过程中,弹力做正功D .振子从O 点出发到再次回到O 点的过程中,弹力做的总功为零7.如图所示,固定的光滑圆弧形轨道半径R =0.2m ,B 是轨道的最低点,在轨道上的A 点(弧AB 所对的圆心角小于10°)和轨道的圆心O 处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则( )A .两小球同时到达B 点 B .A 点释放的小球先到达B 点C .O 点释放的小球先到达B 点D.不能确定8.如图所示,弹簧振子在A、B之间做简谐运动.以平衡位置O为原点,建立Ox轴.向右为x轴的正方向.若振子位于B点时开始计时,则其振动图像为()A.B.C.D.9.如图所示,为一质点做简谐运动的振动图像,则()A.该质点的振动周期为0.5sB.在0~0.1s内质点的速度不断减小C.t=0.2 s时,质点有正方向的最大加速度D.在0.1s~0.2s内,该质点运动的路程为10cm10.如图所示,一轻质弹簧上端固定在天花板上,下端连接一物块,物块沿竖直方向以O 点为中心点,在C、D两点之间做周期为T的简谐运动。
《机械振动》单元测试题(含答案)(1)
《机械振动》单元测试题(含答案)(1)一、机械振动 选择题1.沿某一电场方向建立x 轴,电场仅分布在-d ≤x ≤d 的区间内,其电场场强与坐标x 的关系如图所示。
规定沿+x 轴方向为电场强度的正方向,x =0处电势为零。
一质量为m 、电荷量为+q 的带点粒子只在电场力作用下,沿x 轴做周期性运动。
以下说法正确的是( )A .粒子沿x 轴做简谐运动B .粒子在x =-d 处的电势能为12-qE 0d C .动能与电势能之和的最大值是qE 0dD .一个周期内,在x >0区域的运动时间t ≤2mdqE 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2L g D .C 的周期为1L g3.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2GMlB .T =2l GMC .T 2πGMr lD .T =2r GM4.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是()A .甲、乙的振幅各为 2 m 和 1 mB .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1C .乙振动的表达式为x= sin4πt (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值 5.下列叙述中符合物理学史实的是( ) A .伽利略发现了单摆的周期公式 B .奥斯特发现了电流的磁效应C .库仑通过扭秤实验得出了万有引力定律D .牛顿通过斜面理想实验得出了维持运动不需要力的结论6.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( )A .p EB .12p E C .13p ED .14p E 7.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以t =0时刻作为计时起点,其振动图像如图所示,则A .t =14T 时,货物对车厢底板的压力最大 B .t =12T 时,货物对车厢底板的压力最小 C .t =34T 时,货物对车厢底板的压力最大 D .t =34T 时,货物对车厢底板的压力最小8.悬挂在竖直方向上的弹簧振子,周期T=2s ,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是( )A .t=1.25s 时,振子的加速度为正,速度也为正B .t=1.7s 时,振子的加速度为负,速度也为负C .t=1.0s 时,振子的速度为零,加速度为负的最大值D .t=1.5s 时,振子的速度为零,加速度为负的最大值9.如图所示,质量为A m 的物块A 用不可伸长的细绳吊着,在A 的下方用弹簧连着质量为B m 的物块B ,开始时静止不动。
机械振动一章习题解答.
机械振动一章习题解答习题12—1 把单摆摆球从平衡位置向位移正方向拉开,使单摆与竖直方向成一微小角度θ,然后由静止位置放手任其振动,从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为:[ ] (A) θ。
(B) π。
(C) 0。
(D) 2π。
解:单摆的振动满足角谐振动方程,这里所给的θ是初始角位移,也是角振幅,而非初位相。
由旋转矢量法容易判断该单摆振动的初位相为“0”,因此,应当选择答案(C) 。
习题12—2 轻弹簧上端固定,下端系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了x ∆,若将m 2移去,并令其振动,则振动周期为:[ ] (A) gm xm T 122∆=π。
(B) g m x m T 212∆=π。
(C) g m m x m T )(2211+∆=π。
(D) gm m xm T )(2212+∆=π。
解:谐振子的振动周期只与其本身的弹性与惯性有关,即与其倔强系数k 和质量m 有关。
其倔强系数k 可由题设条件求出g m x k 2=∆ 所以xgm k ∆=2 该振子的质量为m 1,故其振动周期为 gm xm k m T 21122∆==ππ应当选择答案(B)。
习题12—3 两倔强系数分别为k 1和k 2的轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧谐振子,则该系统的振动周期为:[ ] (A) 21212)(2k k k k m T +=π。
(B) 212k k mT +=π。
题解12―1 图(C) 2121)(2k k k k m T +=π。
(D) 2122k k mT +=π。
解:两弹簧串联的等效倔强系数为2121k k k k k +=,因此,该系统的振动周期为2121)(22k k k k m k mT +==ππ所以应当选择答案(C)。
习题12—4 一质点作简谐振动,周期为T ,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为:[ ](A) T /4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某一数值附近反复变化。
一、振动工程的重要性
• 1. 大型回转机械动态失稳造成事故 • 2. 桥梁由于共振、风激振动倒塌 • 3. 产品包装 • 4. 汽车舒适性,航天工程 • 5. 机床加工质量 • 6. 夯士、振动检测
国家重点工程:长江三峡水利 枢纽工程,135米蓄水前中孔 闸门振动试验现场(2003年4 月应用锤击模态法)
st
m
d2x dt 2
P
k ( st
x)
mg k st
O x
F
m
d2x dt 2
kx
x
P
表明,物体偏离平衡位置于坐标x处,受到与偏离距离成正 比而与偏离方向相反的合力,称此力为恢复力。
在恢复力作用下维持的振动称为无阻尼自由振动。
重力加在振动系统上只改变其平衡位置,只要将坐标原点取 在平衡位置,可得到如上形式的运动微分方程。
无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时t,其 运动规律x(t)总可以写为: x(t)= x(t+T)
T为常数,称为周期,单位符号为s。 这种振动经过时间T后又重复原来的运动。
考虑无阻尼自由振动微分方程
d2x dt 2
2 n
x
0
解为:
x Asin(nt )
角度周期为2π,则有:
[n (t T ) ] (nt ) 2
武汉大桥局桥科院、北方交通大学进行 的“秦-沈线中华之星高速列车通过桥梁 振动及结构应变试验” 。 中华之星高速 列车设计时速260Km/h,实际测试时速 321.5 Km / h 。大桥为 28 孔双线后张 法 预应力混凝土简支箱梁桥 , 梁顶宽 12.4m,梁高2.2m,梁跨长24.6m。
案例:齿轮箱故障诊断 通过齿轮箱振动信号频谱分 析,确定最大频率分量,然后 根据机床转速和传动链,找出 故障齿轮。
d2x m kx
dt 2
l0
两端除以质量m,并设
பைடு நூலகம்
2 n
k m
移项后得:
d2x dt 2
2 n
x
0
st O
x
无阻尼自由振动微分方程的标准形式
F
是一个二阶齐次线性常系数微分方程。 x
P
设: x ert
代入微分方程,消去ert
得特征方程:
r2
2 n
0
两个根为: r1 i n r2 i n
方程解表示为: x C1 cosnt C2 sin nt
机械振动理论
于德介
绪论
振动是日常生活和工程中普遍存在的现象,有机械振动、 电磁振荡、光的波动等不同的形式。
这里研究机械振动,如钟摆的摆动、汽车的颠簸、混凝 土振动捣实以至地震等。
特点:物体围绕其平衡位置而往复运动。
掌握机械振动的基本规律,可以更好地利用有益的振动而 减少振动的危害。
机械振动
振动有各种不同的形式 电磁振动
三、工程振动问题类型
• 1. 振动分析(已知输入,系统求输出) • 2. 系统识别(已知输入和输出求系统) • 3. 载荷识别(已知系统,输出求输入)
四、振动现象分类
• 1. 按系统分:线性、非线性 • 2. 按响应分:定则、随机 • 3. 按输入分:自由、强迫、自激(由系统反馈引
起)、参数激励、(随机或周期改变系统特性) • 4. 按自由度分、离散、连续 • 离散:常微 • 连续:偏微 • 本课程:线性、时不变系统。
x C1 cosnt C2 sin nt
C1和C2是积分常数,由运动 的起始条件确定。
设: A
C12
C
2 2
tan C1
C2
则解为: x Asin(nt )
表明:无阻尼自由振动是简谐振动。
其运动图线为:
x
A x0
l0
st O
x
x
Ot n
F P
t T
x
2.无阻尼自由振动的特点
(1)固有频率
案例:螺旋浆设计 可以通过频谱分析确定螺旋浆 的固有频率和临界转速,确定 螺旋浆转速工作范围。
二、动态问题特点
• 1. 复杂性:载荷作用的后效性,响应对 载荷的记忆性
• 2. 危险性:共振、自激振动(在无外力 的激励情况下突然振动,振幅上升,如机 床、轧钢机、飞机)、颤振
• 3. 超常性:振动现象难以直观解释,如 共振、调谐消振器
l0
弹簧变形为δs,称为静变形,该位置为平
衡位置。重力和弹簧力。
st
Fst k st
P mg
O
平衡时满足:
mg k st
st
mg k
x
取重物的平衡位置点O为坐标原点,取x轴
的正向铅直向下。受力如图 。
x
Fst
mg
F P
弹簧力F: F k(x st )
l0
由质点运动微分方程可列:
第一章 单自由度系统自由振动
一. 单自由度系统的自由振动
1. 自由振动微分方程 工程中许多振动可简化为一个质量和一个弹簧的弹簧质量系统,系统在
重力作用下沿铅垂方向振动的,具有一个自由度,简化为图示模型。 下面来分析其运动规律,先列出其运动微分方程。
设弹簧原长为l0,刚性系数为k。
在重力P=mg 的作用下
满载车厢的弹簧静变形比空载车厢大,则其振动频率比空载车厢低。
(2)振幅与初位相 谐振振动表达式
x Asin(nt )
A表示相对于振动中心点O的最大位移,称为振幅。 (ωnt+θ)称为相位(或相位角),相位决定了质点在某瞬时t 的位置,它具有角度的量纲,而θ称为初相位,它决定了质点 运动的起始位置。
自由振动中的振幅A和初相位θ是两个待定常数,它们由运动 的初始条件确定。
设在起始t=0时,物块的坐标x=x0,速度v=v0。为求A和θ,
x Asin(nt )
则自由振动的周期为:
T 2 n
可得: 其中
T 2 n
n
2
1 T
2f
f 1 T
称为振动的频率 表示每秒钟的振动次数,其单位符号为1/s或Hz(赫兹)。 因为ωn=2πf 所以ωn表示2π秒内的振动次数,称为圆频率 单位符号为rad/s(弧度/秒)。 由
2 n
k m
n
k m
自由振动的圆频率ωn只与表征系统本身特性的质量m和刚度k有关,而与 运动的初始条件无关;
它是振动系统的固有的特性,所以称ωn为固有圆频率。
固有频率是振动理论中的重要概念,它反映了振动系统的动力学特性, 计算系统的固有频率是研究系统振动问题的重要课题之一。
由
mPg
k
P st
n
k m
n
g
st
上式表明:上述振动系统,知道重力作用下的静变形,就可求得系统的 固有频率。
如:我们可以根据车厢下面弹簧的压缩量来估算车厢上下振动的频率。