中考一轮复习第8讲 二次函数的图像与性质
中考数学第一轮思维方法复习讲义:第8讲 二次函数图象的应用
意林数学思维方法讲义之八 年级: 九年级§第8讲 二次函数图象的应用(一)【今日目标】1、二次函数图象与系数的关系(二次函数c bx ax y ++=2中a,b,c 的作用):⑴a 决定__________。
①当__ 时,图象开口向上,当x=_________时,函数有最___值________;当x ﹥-a b 2时,y 随x 的增大而________;当x ﹤-ab2时,y 随x 的增大而________。
②当_________时,图象开口向下,当x=_________时,函数有最___值________;x ﹥-ab2时,y 随x 的增大而________;当x ﹤-ab2时,y 随x 的增大而________。
③当|a |越大,图象开口越_____。
(2)a 和b 共同决定________。
①b=0时,对称轴为______;②a 和b 同号时对称轴在y 轴___侧;③a 和b 异号时对称轴在y 轴___侧。
简记为 。
(3)c 的大小决定抛物线与_____的交点的位置。
当___ 时,图象与y 轴正半轴相交;当___ 时,图象与y 轴负半轴相交;当___ 时,图象过原点。
(4)当__ _时,图象与x 轴有两个交点;当_ 时,图象与x 轴仅有一个交点;当__ _时,图象与x 轴没有交点。
2、以二次函数图象为载体,通过对四大要素的理解,结合动点、特殊三角形、特殊四边形、相似,利用勾股定理、相似为框架、以方程为工具解决存在型问题、最值问题、图形形状问题等。
【思想方法】数形结合法、特殊值法、整体思想、构造思想等。
【精彩知识】题型一 二次函数的图象与系数的关系【例1】已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a+c )2<b 2;⑤a >1.其中正确的项是 (填番号)●变式练习:如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④a +b +c <0.其中正确的个数是( )A. 1B. 2C. 3D. 4题型二 二次函数的图象和性质的基本应用 【例2】已知,二次函数的解析式y 1=-x 2+2x +3. (1)求这个二次函数的顶点坐标;(2)求这个二次函数图象与x 轴的交点坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小?(5)若直线y 2=ax +b (a ≠0)的图象与该二次图象交于A (12-,m ),B (2,n )两点,结合图象直接写出当x 取何值时y 1>y 2?●变式练习:对于二次函数322--=mx x y ,有下列说法:①它的图象与x 轴有两个公共点; ②如果当x ≤1时y 随x 的增大而减小,则1=m ; ③如果将它的图象向左平移3个单位后过原点,则1-=m ;④如果当4=x 时的函数值与2008=x 时的函数值相等,则当2012=x 时的函数值为3-. 其中正确的说法是 .(把你认为正确说法的序号都填上) 【例3】 二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A .-3B .3C .-5D .9●变式练习:如图,已知抛物线y 1=﹣2x 2+2,直线y 2=2x +2,当x 任取一值时,;若y 1=y 2,记M =y 1=y 2.例如:当=0.下列判断:①当大于2的=1的x 值是或.其中正确的是 (填番号)题型三 二次函数图象为载体解决存在型问题、最值问题、图形形状问题等A D C B O x yA OB y x 【例4】如图,若抛物线y =-<n . (1)求抛物线的解析式;(2)若(1)中的抛物线与x 轴的另一个交点为C.根据图像回答,当x 取何值时,抛物线的图像在直线BC 的上方?(3)点P 在线段OC 上,作PE ⊥x 轴与抛物线交与点E ,若直线BC 将△CPE 的面积分成相等的两部分,求点P 的坐标.●变式练习:如图,已知二次函数c bx x y ++-=2的图象经过A (2-,1-),B (0,7)两点. ⑴求该抛物线的解析式及对称轴; ⑵当x 为何值时,0>y ?⑶在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.【例5】如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线y =ax 2+bx +c (a ≠0).所得抛物线与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式;(2)判断ACD △的形状,并说明理由;(3)在线段AC 上是否存在点M ,使AOM △∽ABC △?若存在,求出点M 的坐标;若不存在,说明理由.【例6】如图,在平面直角坐标系中,已知点A (-2,-4),OB =2,抛物线y =ax 2+b 是抛物线对称轴上一点,试求AM +OM 的最小值; (3)在此抛物线上,是否存在点P ,使得以点P 与点O 、A 、B 为顶点的四边形是梯形.若存在, 求点P 的坐标;若不存在,请说明理由.【例7】如图,在平面直角坐标系xOy 中,AB ⊥x 轴于点B ,AB =3,tan ∠AOB =34。
初三二次函数的图像与性质
初三二次函数的图像与性质二次函数是初中数学中的一个重要概念。
在数学学习的过程中,我们常常会接触到二次函数,并且需要了解它的图像特点以及性质。
本文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。
一、二次函数的定义及一般式二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。
它的图像是抛物线,并且开口的方向由$a$的正负决定。
当$a>0$时,抛物线开口向上;而当$a<0$时,抛物线开口向下。
二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。
其中,$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,$c$影响抛物线和$y$轴的交点。
【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图像和性质。
解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,$c=1$。
由于$a>0$,所以抛物线开口向上。
考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。
首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-\frac{b}{2a}$。
代入$a=2$,$b=-3$,我们得到$x=-\frac{-3}{2\times2}=\frac{3}{4}$。
因此,对称轴的方程为$x=\frac{3}{4}$。
接下来,我们需要计算抛物线的顶点坐标。
顶点坐标可以通过将对称轴的$x$坐标代入原函数方程计算得到。
将$x=\frac{3}{4}$代入$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。
因此,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二次函数的图像。
它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
2020年中考一轮复习 二次函数的图像与性质 讲义
二次函数的图像与性质中考一轮复习教学目标1.理解懂得二次函数的图像的开口、对称轴、顶点坐标与a、b、c的关系;会根据图像推断a、b、c及相关式子的符号;2.能借助二次函数的图像进行推理探究;3.学会进行数形转化,能从图形中抽象出数量关系,建立方程模型和不等式模型求解.4.经典考题【例1】根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的图象与x轴( ) A.只有一个交点B.有两个交点,且它们分别在x轴两侧C.有两个交点,且它们均在y轴同侧D.无交点x…-1 0 1 2 …y…-174--274-…【解法指导】本题要先画出啊、二次函数的图像。
根据对称性知(1,-2)是抛物线的顶点,且其开口向上。
因而二次函数的图像与x轴有两个交点,且它们分别在y轴两侧。
本题应选B。
【变式题组】1.2x…-2 -1 0 1 2 …y…162--4122--2122-…根据表格上的信息回答问题:该二次函数y=ax+bx+c在x=3时,y= 。
2.已知二次函数2x…-1 0 1 2 3 4 …y…10 5 2 1 2 5 …(1)(2)当x为何值时,y有最小值,最小值是多少?(3)若两点A(m,y1),B(m+1,y2)都在该函数的图像上,试比较y1与y2的大小.【例2】函数y=ax+1与y=ax2+bx+c(0a≠)的图像可能是()【解法指导】本题应用逐一排除法.解:两函数图像与y轴交于同一点(0,1),A不正确;B中直线中a>0,抛物线中a<0,不正确;D中直线的a<0,抛物线中a>0,不正确。
故应选C。
【变式题组】3.已知0a≠,在同一直角坐标系中,函数y=ax与y=ax2的图像有可能是()4.在同一直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且0m≠)的图像可能是()5.二次函数y=ax2+bx+c的图像如图所示,则一次函数y=-bx-4ac+b2与反比例函数a b cyx++=在同一坐标系内的图像大致为()【例3】已知二次函数y=ax2+bx+c的图像与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方。
二次函数的图象和性质课件
解决实际问题
实际应用场景
二次函数在许多实际问题中都有应用,如物体运动、经济 活动等。通过建立数学模型,我们可以利用二次函数来描 述和解决这些实际问题。
实际问题的求解策略
对于实际问题,我们通常需要结合二次函数的性质和实际 问题的特点来制定求解策略。这可能包括分析函数的单调 性、最值、零点等。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的最值点即为顶点。对于一般形式的二次函数y=ax^2+bx+c,其顶点的x坐标为-b/2a,y坐 标为c-b^2/4a。Biblioteka 二次函数的对称轴总结词
二次函数的对称轴为x=-b/2a。
详细描述
二次函数的对称轴是一条垂直于x轴的直线,其方程为x=-b/2a。这是由二次函数的最值性质决定的,对称轴上 方的函数值与对称轴下方的函数值相等。
二次函数图象的绘制
01
02
03
步骤一
确定二次函数的表达式, 例如 $f(x) = ax^2 + bx + c$。
步骤二
选择一个或多个点,代入 二次函数表达式中,计算 出对应的y值。
步骤三
在坐标系上标出这些点, 通过这些点绘制出二次函 数的图象。
二次函数图象的形状
形状特征一
二次函数图象是一个抛物 线。根据a的值(正或负) ,抛物线开口向上或向下 。
二次函数的图象和性质课 件
• 二次函数的基本概念 • 二次函数的图象 • 二次函数的性质 • 二次函数的解析式 • 二次函数的应用
01
二次函数的基本概念
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
二次函数的图像与性质ppt课件
函数的凹凸性
当a>0时,函数凹;当a<0时,函数凸。
函数的零点和方程
零点是方程y=0的解,方程求解可以用二次公式。
二次函数的应用
1
抛物线运动
抛物线可以描述物体在空中的轨迹,如
弹性系数
2
抛出物体的运动轨迹。
二次函数可以表示材料的弹性特性,如
描述力和变形的关系。
3
跳水成绩预测
通过二次函数建模,可以预测跳水运动
二次函数的图像与性质 ppt课件
通过本课件,你将深入了解二次函数的定义和表达式,并学习二次函数的图 像特征,如开口方向、对称轴、最值点和零点等。还将探究二次函数的性质, 如增减性、凹凸性、最值和零点方程。从抛物线运动到报价模型,掌握二次 函数的应用。最后,了解二次函数的变形与拓展,包括平移、缩放、翻转和 混合运用。同时,我们将解决常见错误和实际问题应用。
常见错误和解决方法
1 符号错误
检查符号的正确使用,特别是a的正负。
3 图像理解错误
注意开口方向、对称轴和最值点的判断。
2 方程解法错误
仔细检查求解方程是否正确,特别是二次方 程。
4 实际问题应用
将数学模型应用到实际问题时,需考虑问题 的实际情况并合理使用二次函数。
开口方向
当a>0时,抛物线开口向上;当a<0时, 抛物线开口向下。
最值点
最值点是抛物线的最高点(当a>0)或最 低点(当a<0)。最值点的坐标为(-b/2a, f(-b/2a))。
二次函数的性质
函数的增减性
当a>0时,函数单调递增;当a<0时,函数单调 递减。
函数的最值
最值主要由最值点确定,注意开口方向和a的值 来确定最值。
人教版九年级数学 中考复习 二次函数的图像和性质
二次函数的图像与性质一、知识要点1.二次函数的定义、图象和性质:(1)定义:形如 的函数叫做二次例函数。
例如 。
(2)二次函数定义中要求a ≠0,那么b 和c 是否可以为零呢?若b=0,则y = 。
若c=0,则y = 。
若b=c=0,则y = 。
以上三种形式都是二次函数的特殊形式,y=ax 2+bx+c 是二次函数的一般形式. (3)图像:二次函数2(0)y a x b x c a =++≠的图像是 ,其顶点坐标是 ,对称轴是直线 。
(4)性质:当a >0时,开口向 ,在对称轴左侧y 随x 的增大而 ;在对称轴的右侧,y 随x 的增大而 ;当24b x y a a=-=2最小值4ac-b 时,。
当a <0时, 开口向 ,在对称轴左侧y 随x 的增大而 ;在对称轴的右侧,y 随x 的增大而 ;当24b x y a a=-=2最大值4ac-b 时, 。
2.抛物线2y ax bx c =++中a 、b 、c 符号的确定。
(1)a 的符号由抛物线开口方向决定:当抛物线开口向上时,a 0;当抛物线开口向下时,• a 0。
(2)c 的符号由抛物线与y 轴交点的纵坐标决定。
当抛物线交y 轴于正半轴时,c 0;交y 轴于负半轴时, c 0。
(3)b 的符号由对称轴来决定。
当对称轴在y •轴左侧时,b 的符号与a 的符号 ;当对称轴在y 轴右侧时,b 的符号与a 的符号 ;•简记左同右异。
(4)24b ac -的符号由抛物线与x 轴的交点个数决定。
当抛物线与x 轴有 交点时,240b ac ->; 当抛物线与x 轴只有 交点时,240b ac -=; 当抛物线与x 轴没有交点时,240b ac -<二、知识运用典型例题例1、m 为何值时()2321--+=m m x m y例2、(云南)二次函数21(4)52y x =-+标分别是( )A.向上、直线x=4、(4,5)C.向上、直线x=4、(4,-5)例3、(2008威海)已知二次函数ax y +=2B (3,2),C (5,7).若点M (-2,二次函数c bx ax y ++=2A .y 1<y 2<y 3 B .y 2<y 1<y 3 C . 例4、(荆门)函数y =(x -2)(3-x )例5、(玉溪)如图是二次函数2+=bx ax y ① c >0;② a +b +c <0;③ 2a -b ④b 2+8a >4a c 例6、(广州)二次函数221y x x =-+与x 轴的交点个数是( ) A .0 B .例7、(兰州)13. 抛物线c bx x y ++=23个单位,所得图像的解析式为22-=x y A . b=2, c=2 B. b=2,c=0C . b= -2,c=-1 D. b= -3, c=2例8、(金华)若二次函数k x x y ++-=22图象如图所示,则关于x 的一元022=++-k x x 的一个解31=x ,另一个解xxyO三、知识运用课堂训练1.(桂林)将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( ).A .221216y x x =--+B .221216y x x =-+-C .221219y x x =-+-D .221220y x x =-+-2. (兰州) 二次函数2365y x x =--+的图像的顶点坐标是A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4) 3.(湖北咸宁)已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是A .1y >2yB .1y 2y =C .1y <2yD .不能确定 4.(毕节)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )5.(黄石)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( ) A .①② B . ①③④ C .①②③⑤ D .①②③④⑤6.(天津)已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .7.(遵义市)如图,两条抛物线12121+-=x y 、12122--=x y 与分别经过点()0,2-,()0,2且平行于y 轴的两条平行线围成的阴影部分的面积为A.8 B.6 C.10 D.48.(湖北咸宁)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠).(1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.(第5题) (7题图)课后训练1.(乌鲁木齐)要得到二次函数222y x x =-+-的图象,需将2y x =-的图象( ) A .向左平移2个单位,再向下平移2个单位 B .向右平移2个单位,再向上平移2个单位 C .向左平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位2. (金华) 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )A. 最小值 -3B. 最大值-3C. 最小值2D. 最大值2 3.(潍坊)若一次函数(1)y m x m =++的图象过第一、三、四象限,则函数2y mx mx =-A .有最大值4m B .有最大值4m - C .有最小值4m D .有最小值4m -4.(咸宁)抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为 .5.(新疆)(1)用配方法把二次函数243y x x =-+变成2()y x h k =-+的形成. (2)在直角坐标系中画出243y x x =-+的图象.(3)若1122()()A x y B x y ,,,是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y ,的大小关系.(直接写结果)(4)把方程2432x x -+=的根在函数243y x x =-+的图象上表示出来.。
一轮复习(二次函数)
函数一轮复习学案八(二次函数)一、知识梳理1.二次函数的解析式2.二次函数的图象与性质3.二次函数图像的对称轴通常有以下三种求法:(1)利用配方法求二次函数y =ax 2+bx +c (a ≠0)的对称轴为x =-b2a. (2)若二次函数f (x )对任意x 1,x 2∈R 都有f (x 1)=f (x 2),则对称轴为x =x 1+x 22.(3)若二次函数y=f(x)对定义域内所有x都有f(a+x)=f(a-x),则对称轴为x=a(a为常数).4.二次函数最值的类型及解法(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系实行分类讨论;(2)常结合二次函数在该区间上的单调性或图象求解,最值一般在区间的端点或顶点处取得.二、典型例题考点一求二次函数解析式例1设二次函数f(x)满足f(x-2)=f(-x-2)且图象在y轴上的截距为1,在x轴上截得的线段长为求f(x)的解析式.例2已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.求f(x)与g(x)的解析式.考点二二次函数在某个闭区间上的最值例3 已知f(x)=-4x2+4ax-4a-a2在区间[0,1]内有最大值-5,求a的值及函数表达式f(x).例4函数f(x)=-x2+4x-1在区间[t,t+1] (t∈R)上的最大值为g(t).(1)求g(t)的解析式;(2)求g(t)的最大值.考点三二次函数图象与性质的应用例5已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=-1时,求f(|x|)的单调区间.例6 已知函数f(x)=x|x-2|.(1)写出f(x)的单调区间;(2)解不等式f(x)<3;(3)设0<a≤2,求f(x)在[0,a]上的最大值.考点四:二次函数与一元二次方程、一元二次不等式的综合问题例7设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围.例8若二次函数f(x)=ax2+bx+c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.二次函数反馈练习一命题人:徐相炳 做题人:程云一、填空题.1、若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =______.2、设函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增函数,则实数a 的取值范围是________.3、已知二次函数f(x)=ax 2+bx+1的值域为[0,+∞)且f(-1)=0,则a =________,b =________.4、若函数f(x)=(x+a)(bx+2a)(a 、b ∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=__________.5、若二次函数)(x f y =满足)3()3(x f x f -=+,则方程0)(=x f 的两根和为_________.6、若函数y=x 2-3x-4的定义域为[0,m],值域为[-254,-4],则m 的取值范围为_________.7、已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围是_________.8、已知函数()f x 是二次函数,不等式()0f x >的解集是(0,4),且()f x 在区间[1,5]-上的最大值是12,则()f x 的解析式为 .9、函数)2()1()(22-+-+=a x a x x f 的一个零点比1大,一个零点比1小,求实数a 的取值范围为 .10、已知f (x )=m (x-2m )(x +m +3),g (x )=2x-2。
2024年中考第一轮复习 二次函数的图象与性质 课件
∴|-m+1|=|m-(m- - + 1)|,解得 m=0 或 1,
∴存在 m=0 或 1,使得函数图象的顶点与 x 轴的两个交点构成等腰直角三角形,故结
论②正确;
∵x1+x2>2m,
1 + 2
∴
>m.
2
∵二次函数 y=-(x-m)2-m+1(m 为常数)的图象的对称轴为直线 x=m,
数y=ax2+bx+c(a≠0)在-3≤x≤3内既有最大值又有最小值,∴结论④正确.
2.[2020·温州]已知(-3,y1),(-2,y2),(1,y3)是 [答案]B
抛物线y=-3x2-12x+m上的点,则
(
[解析] 由对称轴
-12
x=- ==-2,知
2 2×(-3)
)
(-3,y1)和(-1,y1)关于对称轴对称.因为
②b-2a<0;③b2-4ac<0;④a-b+c<0.正确的是(
A.①②
B.①④
C.②③
D.②④
)
图13-2
[答案]A
[解析] ∵抛物线开口向下,且与 y 轴的正半轴相交,
∴a<0,c>0,∴ac<0,故①正确;
∵对称轴与
x 轴交点的横坐标在-1 至-2 之间,∴-2<-2 <-1,
∴4a<b<2a,∴b-2a<0,故②正确;
若已知二次函数的图象与x轴的两个交点的坐标(x1,0),(x2,0),设所求二次函数表达
式为y=a(x-x1)(x-x2),将第三个点(m,n)的坐标(其中m,n为常数)或其他已知条件代
2024年中考数学一轮复习考点精讲课件—二次函数的图象与性质
前提条件
当已知抛物线上的无规律的三个点的坐标时,常用
一般式求其表达式.
顶点式
y=a(x–h)²+k(a,h,k为常数, 当已知抛物线的顶点坐标(或者是对称轴) 时,常用
a≠0),顶点坐标是(h,k)
交点式
y=a(x–x1)(x–x2) (a≠0)
顶点式求其表达式.
其中x1,x2是二次函数与x轴的交点的横坐标,若题
【详解】解:∵二次方程 2 + + = 0的两根为−1和 5,
∴
1−+ =0
= −4
,解得
,
25 + 5 + = 0
= −5
∴二次函数 = 2 + + = 2 − 4 − 5 = ( − 2)2 − 9,
∵ 1 > 0,
∴当 = 2时,有最小值,最小值为−9,
2)自变量的最高次数是2;
3)二次项系数a≠0,而b,c可以为零.
根据实际问题列二次函数关系式的方法:
1)先找出题目中有关两个变量之间的等量关系;
2)然后用题设的变量或数值表示这个等量关系;
3)列出相应二次函数的关系式.
考点一 二次函数的相关概念
二次函数的常见表达式:
名称
解析式
一般式
y=ax²+bx+c (a≠0)
状相同,
∴可设该二次函数的解析式为 = ±3 − ℎ
2
+ ,
∵该二次函数的顶点为 1,4 ,
∴该二次函数的解析式为 = ±3 − 1
2
+ 4,
∴该二次函数的解析式为 = 3 2 − 6 + 7或 = −3 2 +
二次函数的图像和性质 复习课教案
yxOyx O二次函数的图像和性质复习课(一)一、复习目标1.掌握并理解二次函数的性质。
2.会用二次函数的性质解决相关的问题。
二、复习重、难点重点:二次函数的性质及应用。
难点:综合应用二次函数的性质解题。
三、课前准备重点知识扫描1.二次函数的定义:形如 (a 、b 、c 为常数,a )的函数是二次函数。
2.二次函数的图像:它是一条 ,图像是 对称图形。
3.二次函数的图像和性质4.求二次函数的解析式的方法(1)若知道抛物线上任意三个点的坐标,则设为一般式: , (2)若知道抛物线的顶点坐标(h , k ),则设为顶点式: ,二次函数顶点式: )0()(2≠+-=a k h x a y一般式:)0(2≠++=a c bx ax y图 象a >0a <0 a >0a <0开 口对称轴 直线 x = 直线 x = 顶点坐标( , )( , )最 值当x = 时,=最小y当x = 时,=最大y当x = 时,=最小y当x = 时,=最大y增减性当x 时y 随x 的增大而减小;当x 时y 随x 的增大而增大。
当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。
当x 时y 随x 的增大而减小; 当x 时y 随x 的增大而增大。
当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。
(3)若知道抛物线与x 轴的两个交点的坐标(1x ,0),(2x ,0),则设为交点式:)0)()((21≠--=a x x x x a y5.抛物线的平移6.二次函数)0(2≠++=a c bx ax y 的图像特征与系数a 、b 、c 及ac b 42-的关系项目字母字母符号 图像特征 aa >0 开口向上 a <0开口向下 bb=0对称轴是y 轴a 、b 同号 对称轴在y 轴左侧 左同 右异a 、b 异号对称轴在y 轴右侧cc=0 经过原点 c >0 与y 轴的正半轴相交 c <0与y 轴的负半轴相交 ac b 42-ac b 42-=0与x 轴有唯一交点(顶点)ac b 42->0与x 轴有两个交点 ac b 42-<0与x 轴有没有交点四、考点剖析考点1:二次函数的定义例1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y A 、1个; B 、2个; C 、3个; D 、4个考点2:二次函数的图像和性质的应用例2.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+m 的图象上,若x 1>x 2>1,则y 1 y 2考点3:二次函数图像的平移例3.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )(A)23(1)2y x =-- (B)23(1)2y x =+- (C )23(1)2y x =++ (D )23(1)2y x =-+ 考点4:二次函数的图像与系数关系例4.如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①b c >0 ②2a+b=0 ③a+b+c>0 ④ac b 42-﹤0其中正确的个数为( )A .1B .2C .3D .4 考点5:求二次函数的解析式例5.一条抛物线经过(-2,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.五、变式训练1.二次函数22(1)3y x =-+的图象的最低点的坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)2.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是 。
初三数学:《二次函数的图象和性质》知识点归纳
初三数学:《二次函数的图象和性质》知识点归纳二次函数图像的性质:1.二次函数(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点是原点(0,0)。
(1)二次函数图像怎么画作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。
(2)二次函数与的图像和性质:2.二次函数(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是(0,k),它与的图像形状相同,只是位置不同。
函数的图像是由抛物线向上(或下)平移|k|个单位得到的。
当a>0时,抛物线的开口向上,在对称轴的左边(x<0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>0时),曲线自左向右上升,函数y随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k。
当a<0时,抛物线的开口向下,在对称轴的左边(x<0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>0时),曲线自左向右下降,函数y随x的增大而减小。
顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k。
3.二次函数(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x=h,顶点坐标是(h,0),它与的图像形状相同,位置不同,函数(a≠0)的图像是由抛物线向右(或左)平移|h|个单位得到的。
画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。
当a>0时,抛物线的开口向上,在对称轴的左边(xh时),曲线自左向右上升,函数y随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。
中考数学一轮复习课件 二次函数的图象与性质
b2-4ac 的大小决定抛物线与 x 轴交点的个数.
考点二二次函数表达式的确定[必考] 典例2 已知二次函数的顶点坐标为(1,4),且其图象经过点 (-2,-5),求此二次函数的表达式. 【解析】由于二次函数的顶点坐标为(1,4),所求二次函数的 表达式可设为顶点形式y=a(x-1)2+4,再把点(-2,-5)代入 即可求解. 【答案】 依题意,设二次函数的表达式为y=a(x-1)2+4. 将点(-2,-5)代入,得a(-2-1)2+4=-5,解得a=-1, 所以二次函数的表达式为y=-(x-1)2+4.
【解析】由于y=2x2+4x-1=2(x+1)2-3,所以当x=0时, y=-1,所以图象与y轴的交点坐标为(0,-1),A项错误;图象的 对称轴是x=-1,在y轴的左侧,B项错误;因为抛物线的对称轴 是x=-1,开口向上,所以当x<-1时,y的值随x的增大而减小 ,C项错误;二次函数y=2x2+4x-1的顶点坐标是(-1,-3),所 以当x=-1时,y的最小值为-3,D项正确. 【答案】 D
∴b>0,∴abc<0,①正确;∵二次函数 y=ax2+bx+c(a≠0)的图象过点(2,0),
∴0=4a+2b+c,③错误;又可知 b=-a,∴0=-4b+2b+c,即-2b+c=0,②正确;
∵抛物线开口向下,对称轴是 x= 1 ,且 1 - - 1 =1, 5 - 1 =2,
22
2 22
∴y1>y2,
x
的图象开口向上,与 y 轴的交点坐标位于 y 轴的负半轴, 对称轴为直线 x=- b >0,位于 y 轴右侧,只有选项 B 符合条件.
2a
考向 2 结合函数图象考查字母系数之间的关系
2.(2021·山东枣庄)二次函数 y=ax2+bx+c(a≠0)的部分图象如图
中考数学第一轮复习二次函数的图象与性质(共26张PPT)
函数
二次函数 y=ax2+bx+c(a,b,c 为常数,a≠0)
a>0
a<0
在对称轴的左侧,即当 x< 在对称轴的左侧,即当 x<
-2ba时,y 随 x 的增大而减 -2ba时,y 随 x 的增大而增
增减性 小;在对称轴的右侧,即 大;在对称轴的右侧,即
当 x>-2ba时,y 随 x 的增 当 x>-2ba时,y 随 x 的增
3.结合图象及性质,比较函数值的大小.
例 1 已知二次函数 y=x2-4x+3. (1)用配方法求其图象的顶点 C 的坐
标,并描述该函数的函数值随自变量的增 减而增减的情况;
(2)求函数图象与 x 轴的交点 A,B 的 坐标,及△ABC 的面积.
解: (1)y=x2-4x+3=x2-4x+4-1=(x-2)2-1
, 顶点坐标 (
)
4. y=a(x-h) 2 +k对称轴
,顶点坐标 (
)
考向探究
探究1 二次函数的图象与性质
命题角度: 1.已知二次函数的解析式,画出图象, 求抛物线的开口方向、对称轴、顶点坐标、 与坐标轴的交点坐标以及函数增减性等;
2.在同一平面直角坐标系中识别一次函 数或反比例函数及二次函数的图象;
∴AB=1-3=2.
过点 C 作 CD⊥x 轴于点 D,
则△ABC 的面积=12AB·CD=12×2×1=1.
方法模型
(1) 求二次函数图象的顶点坐标有两种方法: ①配方法, ②顶点公式法-2ba,4ac4-a b2.
(2)画抛物线 y=ax2+bx+c 的草图,要确定五 点,即:①开口方向;②对称轴;③顶点;④ 与 y 轴的交点;⑤与 x 轴的交点.
中考数学一轮复习课件二次函数的图象和性质 副本
2.确定二次函数的解析式
解析式的三种形式
一般式:y=ax2+bx+c顶点式:y=a(x-h)2+k交点式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴交点的横坐标
步骤
(1)对于二次函数y=ax2+bx+c,若系数a,b,c中只有一个未知,则代入任意一个已知点的坐标即可;若有两个未知,则代入任意两点的坐标即可;若解析式未知,根据所给点的坐标特征选择适当的解析式形式;(2)代入点的坐标:将已知点的坐标代入相应解析式中,得到关于待定系数的方程(组);(3)求解:解方程(组),求得待定系数的值,从而写出函数解析式
已知抛物线y=a(x-1)2-4(a为常数,a>0).
(1)直线y=m与抛物线只有1个交点时,m的值为 -4 ;
(2)若一元二次方程a(x-1)2-4-n=0有两个不相等的实数根,则n的取值范围为 n>-4 ;
-4
n>-4
(3)若该抛物线与x轴的两个交点坐标分别为(-1,0),(3,0),关于x的一元二次方程a(x-1)2-4-p=0(p>0)的两根分别为b,c(b<c),则b < -1,c > 3.(填“>”“<”或“=”);
二次函数的图像和性质ppt课件
二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件
目
CONTENCT
录
• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答
第8讲:二次函数(专题讲座)
(聚焦2008)第8讲:二次函数专题讲座(一)二次函数的解析式的三种形式(1)标准式:y=ax 2+bx+c (a ≠0);(2)顶点式:y=a (x+m )2+n (a ≠0);(3)两根式:y=a (x -x 1)(x -x 2)(a ≠0)【例1】已知二次函数y=f (x )同时满足条件:(1)f (1+x )= f (1-x );(2)y=f (x )的最大值是15;(3)f (x )=0的两根立方和等于17。
求y =f (x )的解析式。
(二)二次函数的基本性质(1)二次函数f (x )=a x 2+bx+c (a ≠0)的图像是一条抛物线,对称轴方程为x =-a b 2,顶点坐标是(-a b 2,acb ac 442-)。
当a >0时,抛物线开口向上,函数在(-∞,-a b 2]上递减,在[-ab 2,+∞)上递增。
当a <0时,抛物线开口向下,函数在(-∞,-a b 2]上递增,在[-a b 2,+∞)上递减。
(2)直线与曲线的交点问题:①二次函数f (x )=a x 2+bx+c (a ≠0),当Δ=b 2-4ac >0时,图像与x 轴有两个交点M1(x 1,0)M2(x 2,0),于是|M1M2|=|x 1-x 2|=||a ∆。
②若抛物线y=ax 2+bx+c (a ≠0)与直线y=mx+n ,则其交点由二方程组成的方程组的解来决定,而方程组的解由一元二次方程ax 2+bx+c =mx+n ,即px 2+qx+r=0的解来决定,从而将交点问题归结为判定一元二次方程的判别式Δ的符号决定。
特别地,抛物线与x 轴的交点情况由ax 2+bx+c=0的解的情况决定,于是也归结为判定一元二次方程ax 2+bx+c = 0的判别式Δ的符号问题。
当Δ= b 2-4ac>0时,方程ax 2+bx+c=0有两个不同的实数根,即对应的抛物线与x 轴有两个交点,此时二次函数的图像被x 轴截得的弦长L=|x 2-x 1|=||4)()(21212212a x x x x x x ∆=-+=-。
2024年中考数学一轮复习课件--二次函数的图象和性质(70张PPT)
A.m<-3
B.m>-3
C.m≤-3
D.m≥-3
类型二 二次函数解析式的确定及图象的平移
9.把函数y=-3x2的图象向右平移2个单位,再向下平移1个单
位,得到的图象解析式为( A )
2
2
A.y=-3(x-2) -1
B.y=-3(x+2) -1
C.y=-3(x-1)2+2
时 , y 随 时 , y 随
x的增大 x 的 增 大
减小
增大
而
; 而
;
顶点式:y=a
(x-h)2+k(a,
h, k是常数,
a≠0)
在 对 称
轴
右
增 侧 , 即
减 当 x > h
性 时,y随x
的 增 大
而 增大
在 对 称
轴右侧,
即当x>h
时,y随x
的 增 大
而 减小
交点式:y=a
一般式:y=ax +bx+c
5.(2023·杭州)设二次函数y=a(x-m)(x-m-k)(a>0,
m,k是实数),则( A )
A.当k=2时,函数y的最小值为-a
B.当k=2时,函数y的最小值为-2a
C.当k=4时,函数y的最小值为-a
D.当k=4时,函数y的最小值为-2a
6.(2023·福建质检)二次函数y=ax2-2ax+c(a>0)的图象过
①抛物线翻折的本质为抛物线的翻折→抛物线上点的翻折→关
注抛物线的开口,并对顶点进行翻折→抛物线顶点式;
②将抛物线y=a(x-h)2+k沿着直线x=m(或y=k)翻折,
其解题策略与沿着坐标轴翻折一致,同学们不妨一试.
冀教版数学中考一轮复习二次函数的图像与性质课件
二次函数 y ax2 bx c
字母或代数式
符号
图象的特征
特殊关系
当 x=1 时,y=a+b+c ; 当 x=-1 时,y= a-b+c. 若 a+b+c>0,即当 x=1 时,y>0; 若 a+b+c<0,即当 x=1 时,y<0.
y=a(x-x1)(x-x2);
2.二次函数图象的平移
方法1: 直接平移
方法1: 直接平移
方法2:可将二次函数的解析式化为顶点式y=a(x-h)2+k的形式,再 按照下列方式变换:
1.根据下列已知条件,求二次函数的解析式.
(1)已知二次函数的顶点在原点,且过另一点(2,-4),则二次函数的解
①开口向上a 0;对称轴左同右异b 0 与y轴交点在y轴负半轴c 0;abc 0 ②与x轴有两个交点 b2 4ac 0
③x -1时y 0,代入得到a - b c 0 ④x 1时y 0,带入得到a b c 0
⑤对称轴在x 1的左侧- b 1a 0
2a b 2a,2a b 0
(7)若抛物线上有 C(-4,y1),D(a,y2)两点,且 a<-4,则 y1 和 y2 的
大小关系是 y1<y2 ;
(8)当-3≤x≤5 时,函数值 y 的最大值为 48 .
比大小,求函数范围 方法:画图像
抛物线图象与字母系数 a,b,c 的关系
字母或 代数式
a
符号
a>0 a<0
图象的特征
开口向 上. 开口向 下.
(1)抛物线的开口方向为 向上;(2)抛物线的对称轴为直线 x=-2 ; (3)抛物线的顶点坐标为 (-2,-1);(4)抛物线与 y 轴的交点坐标 是(0,3) ,与 x 轴的交点坐标为(-1,0),(-3,0)
二次函数的图像和性质
二次函数的图像和性质一、二次函数的一般形式二次函数是一种形式为f(x)=ax2+bx+c的函数,其中a、b、c是实数且a eq0。
二、二次函数的图像1.抛物线二次函数的图像是一条抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
2.判别法利用二次函数的判别式 $\\Delta = b^2 - 4ac$ 的正负性可以确定二次函数的图像开口方向和与x轴的交点情况。
3.最值点二次函数的顶点为抛物线的最值点,当a>0时,最小值在顶点处取得;当a<0时,最大值在顶点处取得。
顶点的横坐标为 $-\\frac{b}{2a}$,纵坐标为 $f\\left(-\\frac{b}{2a}\\right)$。
三、二次函数的性质1.对称轴二次函数的对称轴为直线 $x = -\\frac{b}{2a}$,即抛物线关于对称轴对称。
2.单调性当a>0时,二次函数在对称轴左侧递增,在对称轴右侧递减;当a<0时,二次函数在对称轴左侧递减,在对称轴右侧递增。
3.零点二次函数的零点为方程f(x)=0的解,可以利用求根公式 $x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$ 求得。
4.图像的平移如f(x)=a(x−ℎ)2+k,其中(ℎ,k)为平移后的顶点坐标,抛物线上下平移,方向与a的正负有关。
四、应用二次函数在几何、物理、经济等领域有着广泛的应用。
例如几何问题中的抛物线轨迹、物体自由落体运动方程、经济学中的成本、收益关系等均可用二次函数描述。
结语二次函数作为高中数学中重要的函数类型,在图像和性质上有着独特的表现,通过对其图像和性质的深入理解,可以更好地应用于解决实际问题。
希望本文的介绍能帮助读者更好地掌握二次函数的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8讲 二次函数的图象与性质一——考点梳理(一)二次函数的定义形如2y ax bx c =++(其中0a ≠,a 、b 、c 是常数)的式子,称y 是x 的二次函数. (二)二次函数的性质 ()k h x a y +-=22y ax bx c =++()()21x x x x a y --=开口方向0a >⇔⇔⇔开口向上函数有最小值顶点为最低点0a <⇔⇔⇔开口向下函数有最大值顶点为最高点对称轴 直线x h= 直线2b x a=-直线122x x x +=顶点坐标()h k ,24()24b ac b a a--, (2-()121224x x a x x +-,)增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少;最值当x h =时,y k =最值当2bx a=-时,244ac b y a-=最值当122x x x +=时,y 最值=2-()124a x x -(或用代入法)(1)a 决定抛物线的开口方向①0a >⇔开口向上;②0a <⇔开口向下. (2)c 决定抛物线与y 轴交点的位置①0c >⇔图象与y 轴交点在x 轴上方;②0c =⇔图象过原点;③0c <⇔图象与y 轴交点在x 轴下方. (3)a b 、决定抛物线对称轴的位置(对称轴:2b x a=-) ①a b 、同号⇔对称轴在y 轴左侧;②0b =⇔对称轴是y 轴;③a b 、异号⇔对称轴在y 轴右侧,简记为:左同右异中为0. (4)顶点坐标24()24b ac b a a--,. (5)24b ac ∆=-决定抛物线与x 轴的交点情况. ①△>0⇔抛物线与x 轴有两个不同交点; ②△=0⇔抛物线与x 轴有唯一的公共点(相切); ③△<0⇔抛物线与x 轴无公共点.学-科网(6)二次函数是否具有最大、最小值由a 判断.①当a>0时,抛物线有最低点,函数有最小值;②当a<0时,抛物线有最高点,函数有最大值. (7)242a b a b c a b c ±±+±+、、 的符号的判定:x yO-112a-b 2a+b①若对称轴在直线x=1的左侧,则2a b +与a 同号,若对称轴在直线x=1的右侧,则2a b +与a 异号,若对称轴为直线x=1,则2a b +=0,简记为:1的两侧判2a b +,左同右异中为0;②若对称轴在直线1x =-的左侧,则2a b -与a 异号,若对称轴在直线1x =-的右侧,则2a b -与a 同号,若对称轴为直线1x =-,则2a b -=0,简记为:-1的两侧判2a b -,左异右同中为0; ③当1x =时,y a b c =++,所以a b c ++的符号由1x =时,对应的函数值y 的符号决定; 当1x =-时,y a b c =-+,所以a b c -+的符号由1x =-时,对应的函数值y 的符号决定; 当2x =时,42y a b c =++,所以42a b c ++的符号由2x =时,对应的函数值y 的符号决定; 当2x =-时,42y a b c =-+,所以42a b c -+的符号由2x =-时,对应的函数值y 的符号决定; 简记为:表达式,请代值,对应y 值定正负; 对称轴,用处多,三种式子a 相约;y 轴两侧判a b 、,左同右异中为0;1的两侧判2a b +,左同右异中为0; -1两侧判2a b -,左异右同中为0. (三)二次函数的解析式①一般式:2y ax bx c =++()0≠a ,用于已知三点,求抛物线的解析式.②顶点式:2()y a x h k =-+,用于已知顶点坐标或最值或对称轴,求抛物线的解析式.③交点式:()()21x x x x a y --=,其中1x 、2x 是二次函数与x 轴的两个交点的横坐标.若已知对称轴和在x 轴上的截距,也可用此式. (四)二次函数的增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少.(五)二次函数图象的平移 方法一:顶点法二次函数的平移实际上是顶点的平移,故可以把原抛物线化为顶点式,通过顶点的平移来寻找答案。
方法二:直接法如果y 是x 的函数,则可以用直接法。
平移规律如下:左右平移变x ,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找. (六)对称:2y ax bx c =++关于x 轴对称的解析式为2y ax bx c -=++,关于y 轴对称的解析式为2()()y a x b x c =-+-+,关于原点轴对称的解析式为2()()y a x b x c -=-+-+,在顶点处翻折后的解析式为2()y a x h k =--+(a 相反,顶点坐标不变).(七)二次函数的最值 (1)一般二次函数求最值根据最值公式计算即可,或把对称轴代入表达式,对应的函数值就是最值。
(2)给定自变量取值范围求二次函数的最值①如果给定的范围在对称轴的一侧,只需要计算两个端点的函数值,两个值中最大的为最大值,最小的为最小值。
②如果给定的范围包含对称轴,需要计算两个端点的函数值和顶点的纵坐标,三个值中最大的为最大值,最小的为最小值。
(3)分段函数求最值根据(2)中的方法求出每一段的最大(小)值,最后比较得出整个函数的最大(小)值。
(八)二次函数与不等式(组)若2y ax bx c =++,则0y >的解集是x 轴上方的图象对应的自变量x 的取值范围,0y <的解集是x 轴下方的图象对应的自变量x 的取值范围。
二——题型解析(一)对二次函数的性质的考查例1下列关于函数1062+-=x x y 的四个命题: ①当x =0时,y 有最小值10;②n 为任意实数,x =3+n 时的函数值大于x =3﹣n 时的函数值;③若n >3,且n 是整数,当n ≤x ≤n +1时,y 的整数值有(2n ﹣4)个; ④若函数图象过点(a ,y 0)和(b ,y 0+1),其中a >0,b >0,则a <b .其中真命题的序号是( )A .①B .②C .③D .④ (二)对二次函数的图象的考查例2 如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a ﹣b =0;②c <0;③﹣3a +c >0;④4a ﹣2b >at 2+bt (t 为实数);⑤点(92-,1y ),(52-,2y ),(12-,3y )是该抛物线上的点,则123y y y <<,正确的个数有( )A .4个B .3个C .2个D .1个 (三)对二次函数与方程、不等式相结合的考查 例3已知关于x 的一元二次方程221(1)(1)02x m x m -+++=有实数根. (1)求m 的值;(2)先作221(1)(1)2y x m x m =-+++的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y =2x +n (n ≥m )与变化后的图象有公共点时,求24n n -的最大值和最小值. (四)对二次函数的增减性的考查例4 如图,抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论: ①4ac<b 2;②方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3; ③3a+c>0④当y >0时,x 的取值范围是﹣1≤x<3 ⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是( )A .4个B .3个C .2个D .1个 (五)对二次函数图象的平移的考查例5 把抛物线2y x =先向左平移2个单位,再向上平移3个单位,平移后抛物线的表达式是 _____ (六)对二次函数图象对称的考查:例6如图,二次函数2y ax bx c =++(a >0)图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1和3,则下列结论正确的是( )A .2a ﹣b=0B .a+b+c >0C .3a ﹣c=0D .当a=12时,△ABD 是等腰直角三角形 例7如图,抛物线y=﹣12x 2+bx+c 与x 轴交于点A ,点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD . (1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA=∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.(七)对二次函数的最值的考查例8如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3).D 是抛物线26y x x =-+上一点,且在x 轴上方.则△BCD 的最大值为 .三——方法点睛(一)数形结合思想由于二次函数(数)的图像是抛物线(形),故有二次函数−−→←−−形数抛物线的内在联系,二次函数的性质由图像反映出来,反之抛物线刻画二次函数的性质,能直观、形象地反应问题,因此数形结合思想有着广泛的应用。
(二)分类讨论思想分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分析问题、解决问题的能力是十分重要的。
正确的分类,必须是周全的,既不重复,也不遗漏。
(三)转化(或化归)思想转化思想:就是化未知为已知、化繁为简、化难为易。
如将分式方程化为整式方程,将代数问题化为几何问题。
将四边形问题化为三角形问题等。
(四)函数及方程思想在实际中,根据已知条件、公式和定理,建立函数或方程等数学模型,再根据它们的性质或图像解决问题,就是函数和方程思想。
(五)二次函数的增减性在对称轴两边发生变化,如果所给点在对称轴同侧,则可由增减性直接判断,若所给点在对称轴两侧,则可用对称轴122x x x +=来进行转化,从而是所有点都在对称轴同侧. 四——随堂小练1.二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数cy x=在同一平面直角坐标系中的大致图象为( )A .B .C .D .2.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是( )A . c >0B . 2a+b=0C . b 2﹣4ac >0D . a ﹣b+c >03.当x m =或x n =(m n ≠)时,代数式322+-x x 的值相等,则n m x +=时,代数式322+-x x 的值为 .4.设抛物线y=ax 2+bx+c (a≠0)过A (0,2),B (4,3),C 三点,其中点C 在直线x=2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为 .5.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①abc >0,②a ﹣b +c <0,③2a =b ,④4a +2b +c >0,⑤若点(﹣2,1y )和(13-,2y )在该图象上,则12y y >.其中正确的结论是 (填入正确结论的序号).6.二次函数213222y x x =-++的图象如图所示,当﹣1≤x≤0时,该函数的最大值是( )A .3.125B .4C .2D .07.受国内外复杂多变的经济环境影响,去年1至7月,原材料价格一路攀升,义乌市某服装厂每件衣服原材料的成本y1(元)与月份x(1≤x≤7,且x为整数)之间的函数关系如下表:月份x 1 2 3 4 5 6 7成本(元/件)56 58 60 62 64 66 688至12月,随着经济环境的好转,原材料价格的涨势趋缓,每件原材料成本y2(元)与月份x的函数关系式为y2=x+62(8≤x≤12,且x为整数).(1)请观察表格中的数据,用学过的函数相关知识求y1与x的函数关系式.(2)若去年该衣服每件的出厂价为100元,生产每件衣服的其他成本为8元,该衣服在1至7月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤7,且x为整数);8至12月的销售量p2(万件)与月份x满足关系式p2=﹣0.1x+3(8≤x≤12,且x为整数),该厂去年哪个月利润最大?并求出最大利润.8. 已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线kyx交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.五——预测提升1. 如图,已知二次函数2y ax bx c =++(a ≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x =1.下列结论: ①abc >0,②4a +2b +c >0,③24ac b -<8a ,④13<a <23,⑤b >c . 其中含所有正确结论的选项是( )A .①③B .①③④C .②④⑤D .①③④⑤ 2.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( )A .B .C .D .3.二次函数223y x x =--的图象如图所示,下列说法中错误的是( )A .函数图象与y 轴的交点坐标是(0,﹣3)B .顶点坐标是(1,﹣3)C .函数图象与x 轴的交点坐标是(3,0)、(﹣1,0)D .当x <0时,y 随x 的增大而减小4. 抛物线22221y x x =-+与坐标轴的交点个数是( )A .0B .1C .2D .35.如图,观察二次函数2y ax bx c =++的图象,下列结论:①0a b c ++>,②20a b +>,③240b ac ->,④0ac >. 其中正确的是( )A .①②B .①④C .②③D .③④6.某同学在用描点法画二次函数2y ax bx c =++的图象时,列出了下面的表格:x … ﹣2 ﹣1 0 1 2 … y … ﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A .﹣11 B .﹣2 C .1 D .﹣57. 在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线256y x x =++,则原抛物线的解析式是( )A .2511()24y x =---B .2511()24y x =-+-C .251()24y x =---D .251()24y x =-++8. 二次函数2y ax bx c =++(a ≠0)和正比例函数23y x =的图象如图所示,则方程22()03ax b x c +-+=(a ≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定 9. 对于函数mnx x y +=,我们定义11--+='m n mx nx y (n m 、为常数).例如24x x y +=,则x x y 243+='. 已知:()x m x m x y 223131+-+=. (1)若方程0='y 有两个相等实数根,则m 的值为 ; (2)若方程41-='m y 有两个正数根,则m 的取值范围为 .10. 二次函数2y ax bx c =++的图象如图所示,且P =|2a +b |+|3b ﹣2c |,Q =|2a ﹣b |﹣|3b +2c |,则P ,Q 的大小关系是 .11. 如图,抛物线223y x x =-++与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为 .12. 已知关于x 的二次函数2y ax bx c =++的图象经过点(﹣2,1y ),(﹣1,2y ),(1,0),且120y y <<,对于以下结论:①abc >0;②a +3b +2c ≤0;③对于自变量x 的任意一个取值,都有24a b x x b a +≥-;④在﹣2<x <﹣1中存在一个实数0x ,使得0a b x a+=-,其中结论错误的是 (只填写序号). 13.小明在课外学习时遇到这样一个问题: 定义:如果二次函数y=a 1x 2+b 1x+c 1(a 1≠0,a 1,b 1,c 1是常数)与y=a 2x 2+b 2x+c 2(a 2≠0,a 2,b 2,c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x 2+3x ﹣2的“旋转函数”.小明是这样思考的:由函数y=﹣x 2+3x ﹣2可知,a 1=﹣1,b 1=3,c 1=﹣2,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)写出函数y=﹣x 2+3x ﹣2的“旋转函数”;(2)若函数y=﹣x 2+mx ﹣2与y=x 2﹣2nx+n 互为“旋转函数”,求(m+n )2015的值;(3)已知函数y=﹣(x+1)(x ﹣4)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分布是A 1,B 1,C 1,试证明经过点A 1,B 1,C 1的二次函数与函数y=﹣(x+1)(x ﹣4)互为“旋转函数.”14.已知二次函数2y x bx c =++( b ,c 为常数).(Ⅰ)当b =2,c =-3时,求二次函数的最小值;(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式; (Ⅲ)当c=b 2时,若在自变量x 的值满足b ≤x ≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.15.如果抛物线c bx ax y ++=2过定点M (1,1),则称此抛物线为定点抛物线。