电气工程基础
电气工程基础
电气工程基础电气工程基础是电气工程学科中最基础、最重要的一门课程。
它主要涉及电路分析、电磁场与电磁波、信号与系统、电机与变压器等方面的基础知识。
在电气工程领域,电气工程基础承担着培养学生电气工程素养的重要任务。
本文将从电路分析、电磁场与电磁波、信号与系统以及电机与变压器四个方面,对电气工程基础进行论述。
一、电路分析电路分析是电气工程基础课程的核心内容之一。
电路分析主要研究各种类型电路中电流、电压、功率等电路参数之间的关系。
学习电路分析的目的是为了理解电路的工作原理,掌握电路分析方法,进而解决电路中的实际问题。
在电路分析中,首先需要了解电路中的基本元件,如电阻、电容和电感等,并掌握它们之间的关系和特性。
然后,可以利用“基尔霍夫定律”和“欧姆定律”等电路定律来分析电路。
通过对电路的节点电压和支路电流的分析,可以得到电路中各个电阻、电容和电感的具体数值。
最后,还需运用“戴维南定理”和“叠加原理”等方法来求解更复杂的电路问题,例如电路的功率分配和电路的频率响应等。
二、电磁场与电磁波电磁场与电磁波是电气工程基础课程中的另一个重要内容。
电磁场与电磁波主要研究电磁场的基本理论和电磁波的传播特性。
学习电磁场与电磁波,需要了解电磁场的数学描述、电场和磁场的物理特性以及它们之间的相互作用。
电磁场与电磁波还涉及到电磁感应、麦克斯韦方程组等领域的知识。
此外,学生还应了解电磁波的传播特性,包括电磁波的速度、频率和波长等。
电磁场与电磁波在电气工程中具有广泛的应用,例如在通信系统中的电磁波传输、电磁辐射和天线设计等方面。
因此,掌握电磁场与电磁波的基本理论对于电气工程学生来说至关重要。
三、信号与系统信号与系统是电气工程基础课程中涉及到的另一个重要方面。
信号与系统主要研究信号的表示、采样、变换以及信号在系统中的传输和处理。
在信号与系统的学习中,首先需要了解不同类型的信号,包括连续时间信号和离散时间信号,并学习信号的表示方法,如指数信号、正弦信号和复指数信号等。
电气工程基础
1.N-1法则:是电力系统可靠性评估或设计的一条准则,是指系统在失去任一元件后,对系统的影响能控制在规定的范围以内。
2.发电站或变电所的电气主接线是由发电厂或变电所的所有高压电气设备通过连接线组成的用来接受和分配电能的电路。
又称电气一次接线图或电气主系统。
电气主接线是发电厂和变电所电气部分的主题,是电力系统网络结构的重要组成部分。
一般采用单线图要满足可靠性,灵活性和经济性3频率,电压和波形是电能质量的三个基本指标额定电压等级3,6,10,20,35,63,110,220,330,500,750用户处的额定电压比电网额定电压5%±发电机+5%UAV为各元件所在处的平均额定电压,与各级额定电压相应的平均电压规定为525,345,230,115,37,10.5,6.3,3.15变压器一次侧=电网电压或发电机二次侧比同级电网高%10.4.电力系统运行特点1.电能的生产和使用同时完成2.正常输电过程和故障过程都非常迅速3.具有很强的地区性特点4与国名经济各部门关系密切大电网优点:1.合理利用资源,提高系统运行经济效益2.较少总负荷峰值充分利用装机容量,降低备用3.提高供电可靠4.效率电力系统运行基本要求:供电安全可靠2.保证电能的良好质量3.保证电力系统运行的稳定性4,。
保证运行人员和电气设备工作的安全5.保证电力系统运行的经济性电力系统用户用电设备所消耗的电功率的总合称为电力系统的综合负荷。
简称负荷。
符合加上电力网的功率损耗成为电力系统的供电负荷,供电负荷与发电厂的厂用电之和称为电力系统的发电负荷一些名词:网损率:在同一时间内,电力网的损耗电量占供电量的百分比,称为电力网的损耗率,简称网损率或线损率。
最大负荷损耗时间:如果线路中疏松的功率一直保持为最大负荷功率Smax,在τ小时内的能量消耗恰好等于线路的全年实际电能损耗,则称τ为最大负荷损耗时间耗量特性:反应发电设备单位时间内能量输入(F)和输出功率(P)关系的曲线。
电气工程基础
出线2
出线3
QSo
QSl QF QSw
W
一类用户
L1 L2 L3 L4
单 母 分 段
Ⅰ
Ⅱ
QF1
15
带 旁 路 母 线 的 单 母 线 接 线
W2
QS2 QF
QS1
旁路母线
W1
工作母线 电源侧
16
检 修 Hale Waihona Puke 线 l1 的 断 路 器 QF1
l1 QS3 QS2 QF
W2
QF1
QS1
W1
电源侧
W3
QS3 QF1 QS2
l2
QF2
(1)L1故障 仅QF1跳闸,T1及其它 回路继续运行
QS1
QF
T1
内桥接线
(2) T1检修 ①断开QF、QF1,再拉 开QS1,出线L1停电 ②关合QF和QF1,恢复 T2 L1供电。
34
l1
跨越 功率
l2
QS2 QF
QS1 QF1
T1
外桥接线
(1) L1故障 ①QF和QF1同时自动跳闸, T1被切除 ②断开QS2,合QF1和QF, 恢复T1运行。
– 单母线接线的送电、停电操作 – 单母带旁路,检修出线断路器的倒闸操作 – 双母线接线,检修工作母线时的倒闸操作
• 桥形接线
– 出线故障和切除变压器时,内桥、外桥接线操 作步骤的不同 – 适用范围
41
总结(二)
• 单母线接线的优缺点及适用范围
– 优点:简单、经济、操作方便、不易误操作、 便于扩建; – 缺点:可靠性差
有汇流母线
无汇流母线
单元接线 桥形接线 多角形接线
11
1)单母线接线
电气工程基础
选择不同的电感量有:全补偿,欠补偿和过补偿三种不 同程度. 目前多采用过补偿方式,由于消弧线圈保留有一定的 裕度,即使将来电力网发展,对地电容增加,原有消弧线 圈还可以使用。
3. 中性点直接接地系统
中性点直接接地方式被应用于110kv以上系统.主要缺 点是产生单相短路电流和对邻近通信线有电磁干扰.
1.计算三绕组变压器的电阻
当三个绕组容量相同时有:
与双绕组变压器计算公式原理一样,可得各绕组的电阻。
三绕组变压器的3个绕组的容量不一定完全相等,如若3个绕 组的容量比为100/100/50。各绕组的短路功率和电阻具 体公式如下(对100/100/50的容量比):
新型号的三绕组变压器只给出一个短路损耗~ 最大短路损耗Pmax…最 大短路损耗是指两个100%容量绕组中流过额定电流,另一个100%或 50%容量绕组空载时的损耗。3个绕组的电阻计算公式如下:
25.2.2 额定电压与输电距离和传输功率的 关系
线路中输送的三相功率s和线电压u、线电流I之间的关 系为: 为了确定电力网最合适的电压等级,通常是根据运行 和设计的经验,对各种方案进行技术和经济的分析,计算 和比较,从而确定出最合理的额定电压。 根据以往的运行和设计经验,电力网额定电压等级与 输电距离和传输功率的范围如表25—5所示。
2. 基准值变化时的标幺值的计算
在电力系统中,某些电力设备的参数,常用设备的三相额定容量Sn和 额定电压Un为基准值的标幺值表示。但实际使用在新的基准值条件下, 此时需作如下的转换.
第26章 电力线路及变压器参数和等值电路
26.1 架空输电线路参数及等值电路
基本内容和知识点 本节重点介绍架空输电线路的参数及等值电路,掌握输电线路4个电气 参数的物理意义、影响因素。理解几何均距概念,领会短、中、长输电线路 等值电路不同的物理原因。能应用输电线路导线型号及几何均距获得线路单 位长度的各参数,并能制定相应的等值电路,掌握分裂导线的原理。 ’
电气工程基础第一章PPT优质课件
3、电力网 4、变电站
5、电力线路
6、用电设备及电气设备
.
1.3 电力系统
一、电力系统的基本概念
1、电力系统的含义
电力
输送和 分配
锅炉、汽机; 水库、水轮机;
反应堆等
发电厂 发电机
电力网
变压器、 输电线路
用户 用电设备
发电厂的 动力部分
+
按照一定规律ቤተ መጻሕፍቲ ባይዱ接而组成的统一整体,称为电力系统
动力系统
.
1.3 电力系统
电力系统规模增大后的好处 1、提高供电的可靠性 2、减少系统装机容量 3、减少系统备用容量
规模越大越容易发生事 故波及现象;系统短路 容量也会随系统容量的 增加而不断增加。
4、采用高效率大容量的发电机组
5、合理利用能源,充分发挥水电在系统中的作用
美国东部时间2003年8月14日下午约4时20分开始,美国东北部和 加拿大部分地区发生大面积停电。初步调查显示,停电是由于纽约 一家发电厂遭雷击起火所致。1996年7月2日,爱达荷州输电线路发 生的故障使美国西部15个州和加拿大及墨西哥的部分地区断电,大 约200万人的工作生活受到影响。
电能质量三指标:电压、频率和波形 4、提高电力系统运行经济性
降低煤耗、水耗,减少厂用电和电网损耗,降低电力成本
.
1.4 电能的质量指标
电能的质量 指标
一、 二、 三、 电频波 压率形
.
1.4 电能的质量指标
一、电压
我国的技术标准规定了各种额定电压,而用电设备都是按照额定电压进行
设计、制造的。因此电压质量对各类用电设备的安全经济运行都有直接的
一、电力系统的基本概念
1、电力系统的含义
电气工程基础介绍
电气工程基础介绍电气工程是研究电力的产生、传输、分配和应用的一门学科,涉及电力系统、电力设备、电力工程及电力自动化等方面。
本文将介绍电气工程的基础知识,主要包括电路理论、电动力学、电机与变压器、电力系统、电气设备及安全等内容。
1. 电路理论电路理论是电气工程的基础,研究电流、电压、电阻等基本概念,掌握基本的电路定律,如欧姆定律、基尔霍夫定律等。
参考内容:《电路基础》(郑根元著)2. 电动力学电动力学研究电场、磁场以及它们之间的相互作用。
掌握电场力、电场能、电场电势等概念,了解静电场、稳恒电流场、电动势、电感、电容等基本原理。
参考内容:《电动力学》(David J. Gri ths著)3. 电机与变压器电机与变压器是电气工程中常见的电器设备。
学习电机的工作原理、运行特性、控制方法,以及变压器的结构、原理、性能等。
参考内容:《电机与变压器》(邓建国著)4. 电力系统电力系统涉及电能的传输、分配和应用。
学习电力系统的组成、调度、稳定性和保护等内容,了解电力负荷、发电机组、输电线路、变电站等的运行与维护。
参考内容:《电力系统概论》(向凤年等著)5. 电气设备电气设备是电气工程中的重要组成部分,包括发电设备、变压器、高压开关设备、输电线路、配电设备等。
学习电气设备的选型、设计、运行与维护等,了解不同类型的电气设备的特点和应用。
参考内容:《电气设备与安全》(翟明国等编著)6. 电气安全电气安全是电气工程中非常重要的内容,涉及电气设备的安装、操作、维护以及电气事故的防范和处理。
学习电气安全的基本要求、规范和操作技能,掌握电气事故的处理方法和紧急救护知识。
参考内容:《电气安全与电气设备操作》(毛俊芳等编著)除了上述内容,还可以了解电气工程中的相关技术和新进展,如电力电子技术、智能电网、可再生能源等。
不断学习更新的知识能够帮助电气工程师更好地应对电力系统的设计、运行和维护等工作。
总之,电气工程基础知识是电气工程师必备的基本功,通过学习电路理论、电动力学、电机与变压器、电力系统、电气设备及安全等方面的知识,可以对电气工程中的各个方面有一定的了解和掌握,为实际工作提供基础支持。
电气工程基础通用课件
03 电子技术基础
半导体器件
半导体器件
介绍半导体的基本性质和常见的 半导体器件,如二极管、晶体管 等,以及它们在电路中的作用和 工作原理。
半导体材料
介绍常用的半导体材料,如硅、 锗等,以及它们在制造半导体器 件中的应用。
半导体器件的特性
参数
介绍半导体器件的特性参数,如 伏安特性、频率特性、噪声等, 以及如何选择和使用合适的半导 体器件。
电路的分析方法
电路的分析方法是根据电路的基本定律,对电路进行建模、分析和优化的过程。
常见的电路分析方法包括时域分析、频域分析和复域分析。时域分析关注电路在时间域上的动态行为,频域分析则将电路转 换为频率域进行解析,复域分析则结合了时域和频域的特性,能够全面分析电路的性能。这些分析方法对于理解电路的工作 原理、优化电路设计和提高系统性能具有重要意义。
涉及面广,实践性强,与实际应用 紧密结合。
电气工程发展历程
01
02
03
18世纪
电学研究的萌芽阶段,以 静电和静磁现象的研究为 主。
19世纪
进入电磁现象的研究阶段, 包括电磁感应、交流电等。
20世纪
电子技术和计算机技术的 飞速发展,电气工程领域 不断拓展。
电气工程在现代社会中的应用
电力系统
电子技术
电力电子器件
应用领域
介绍晶体管、可控硅整流器、绝缘栅 双极晶体管等常用电力电子器件的结 构、特性及工作原理。
分析电力电子技术在电力系统、新能 源、智能电网等领域的应用。
变换技术
阐述直流-直流变换、直流-交流变换、 交流-直流变换等基本电力电子变换技 术。
电机控制技术基础
01
控制策略
介绍电机的调速控制、位置控制 等基本控制策略,以及PID控制、 模糊控制等现代控制策略。
注册电气工程师 (供配电)专业基础和专业考试
注册电气工程师 (供配电)专业基础和专业考试电气工程师(供配电)专业的基础知识主要包括电气工程基础、供配电工程基础、电力系统与自动化以及电力系统运行与管理。
专业考试主要涉及电力工程法规、电力系统计算、供配电工程设计与施工等方面的内容。
以下是与该专业相关的参考内容。
1. 电气工程基础电气工程基础是电气工程师(供配电)必备的知识基础。
包括电路理论、电磁场与电磁波、电力电子技术等方面内容。
例如,电路理论涉及电路分析方法、定理与应用、交流电路分析、三相电路等;电磁场与电磁波涉及电荷、电场、磁场、电磁波的概念、性质与应用;电力电子技术涉及半导体器件、开关电源、变流器、逆变器等。
2. 供配电工程基础供配电工程基础包括配电设备与线路、电力负荷与供电网络、电力系统保护与自动化等内容。
例如,配电设备与线路涉及变压器、开关设备、配电线路的基本原理、选型与运行;电力负荷与供电网络涉及负荷特性与分类、电气负荷计算、供电网络布置与可靠性分析;电力系统保护与自动化涉及电力保护原理、设备及选型、电力系统自动化与远动技术等。
3. 电力系统与自动化电力系统与自动化是电气工程师(供配电)所需掌握的重要知识。
包括电力系统基础、电力系统稳定与控制、电力系统计算与仿真等方面的内容。
例如,电力系统基础涉及电力系统的组成、结构与性能、传输与分配、供电可靠性等;电力系统稳定与控制涉及电力系统稳态与暂态稳定性分析与控制技术;电力系统计算与仿真涉及电力系统计算方法、潮流计算、电力系统仿真软件等。
4. 电力系统运行与管理电力系统运行与管理是电气工程师(供配电)专业的重要内容。
包括电力系统运行管理、电力市场与电能计量、电力质量与能效管理等方面的知识。
例如,电力系统运行管理涉及电力系统调度与控制、电力系统应急处理、事故分析与故障处理等;电力市场与电能计量涉及电力市场模式、电力定价与电能计量技术;电力质量与能效管理涉及电力质量与稳定、能源管理与节能技术等。
电气工程基础介绍
电气工程基础介绍电气工程是关于电力、电路和电子设备的学科,是现代社会发展中不可或缺的一部分。
本文将对电气工程的基础知识进行介绍,帮助读者对该领域有一个全面而清晰的了解。
一、电气工程的概述电气工程是一门涉及电力传输、电力利用和电路设计等领域的学科。
它的研究对象包括了发电、输电、变电、配电以及各种电气设备的设计与应用等。
电气工程广泛应用于能源、交通、通信、信息技术、制造业等各个领域。
比如,电厂发电过程中使用的发电机、变压器等设备,交通信号灯、电车的电力系统,手机、电脑等电子设备以及家用电器等,都与电气工程密切相关。
二、电气工程的基本原理与知识1. 电力基础知识电力是指电流通过导体时所传输的能量,单位为瓦特(W)。
电压(V)代表电流的压力,而电流(A)则代表电荷的流动。
另外,功率(P)等于电压和电流的乘积,单位为瓦特。
直流电和交流电是电力传输的两种主要形式。
直流电是指电荷的流动方向始终不变,而交流电则是电荷的流动方向周期性变化。
2. 电路分析与设计电路是导电材料的路径,用以使电流流动。
电路中包括了电源、负载和导线等组成部分。
根据电流的流动方式,电路可以分为串联电路和并联电路。
在电路中,欧姆定律是一个基本原理,描述了电流、电压和电阻之间的关系。
它的数学表达式为V = I * R,其中V代表电压,I代表电流,而R代表电阻。
在电路的分析与设计中,常用的工具包括电阻、电容和电感等元件,以及电源和信号发生器等仪器。
3. 电力系统与能源转换电力系统是由发电厂、变电站和配电网等组成的电力传输与分配网络。
电力系统的主要任务是将发电厂产生的电力传输到各个用户,以满足人们的用电需求。
在电力系统中,发电机将机械能转化为电能,变压器则用于电压的升降。
为了确保电力系统的稳定运行,需要进行功率调节和电压调节等控制。
能源转换通常指将非电能转化为电能的过程,包括太阳能、风能、水能等的转换。
4. 控制系统与自动化控制系统是为了实现对电气设备运行状态的控制而设计的系统。
电气工程基础PE_09
HUST_CEEE
2、有功负荷在运行机组 间的最优分配
三、电力系统的频率调整
1、频率调整的必要性
频率是衡量电能质量的指标之一,频率质量 下降的危害: 异步电动机的转速与输出功率; 各种电气设备均按额定频率设计; 频率降低,无功损耗增加,无功平衡和电 压调整变得困难。
2、电力系统的频率特性
第一节电力系统有功功率与频率的调整第二节电力系统无功功率与电压的调整第三节电力网运行的经济性第四节电力系统运行的稳定性第九章现代电力系统的运行第一节电力系统有功功率与频率的调整一电力系统的有功功率平衡二电力系统有功功率的分配三电力系统的频率调整gili2有功功率电源和备用容量总装机容量
第九章 现代电力系统的运行
二、中枢点的电压管理
中枢点指反映系统电压水平的主要发电厂或枢 纽变电站的母线,系统中大部分负荷由这些节点 供电。根据负荷对电压的要求及电压损耗的实际 情况,确定中枢点的电压允许调整范围(负荷点 电压UA和UB的允许变化范围均为(0.95~1.05)UN )。
0~8时:U(A)=UA+△UA=(0.95~1.05)UN+0.04UN=(0.99~1.09)UN 8~24时:U(A)=UA+△UA=(0.95~1.05)UN+0.1UN=(1.05~1.15)UN
HUST_CEEE
三、电力系统的调压措施
调压的原理
发电机通过升压变压器、线路和降压变压器向用户供电,要求调 整负荷节点b的电压Ub。略去线路的电容充电功率和变压器的激磁 功率,忽略串联支路的功率损耗,变压器的参数均已归算到高压侧。 b点的电压 : PR QX
U
b
(U
G
K 1 U ) / K
电气工程基础
❖ 热游离
灭弧原理
在高温下,气体分子和原子热运动加快, 它们互相碰撞,在温度足够高时会撞击产生离 子和自由电子,这种现象称为热游离。
灭弧原理
❖ 热电子发射
在弧光放电过程中,电极表面少数点上有局部 较集中的电流,同时因开关触头分离后,触头 间接触压力及接触面积逐渐减小,接触电阻也 随之增加,会使电极表面有相应高温,从而造 成其中的电子获得很大的动能后逸出到周围空 间。这种现象称为热电子发射,其强弱程度与 阴极的材料及表面温度有关,是气体介质中带 电质点产生的主要原因之一。
处于分闸位置的断路器从接到合闸信号瞬间起到断路 器三相触头全接通为止所经历的时间为合闸时间。
高压断路器
❖ 断路器的型号
1 2 3 —4 5 / 6 7 8 1——表示断路器的字母代号,有S—少油;D—多油;Z— 真空;K—空气;L—SF6; 2——安装场所代号,N—表示屋内型;W—表示屋外型; 3 ——设计序列号; 4——额定电压,KV; 5——其它标志,如G—改进型,F表示分相操作; 6 ——额定电流,A; 7——额定开断能力(KA或MVA); 8——特殊环境代号。
基于交流电弧熄灭的基本原理,还可以在开关 电器灭弧过程中采用固体介质狭缝灭弧,把长 弧分成串联短弧以及加快断路器触头分离速度 等众多措施,结合具体的开断电路特点加以应 用。
高压断路器
❖ 开关电器按功能可分为以下几种:
(1)仅用于正常情况下断开或接通正常工作电流的 开关设备,如高压负荷开关、低压闸刀开关、接触 器和磁力启动器等; (2)仅在故障或过负荷情况下切断或闭合故障电流 和过载电流的开关设备,如高低压熔断器; (3)既能开断或闭合正常工作电流,又能开断、闭 合故障电流的开关设备,常见的有:高低压断路器 和低压空气开关; (4)仅用于检修时隔离带电部分的开关电器,主要 指隔离开关。
电气工程基础
1.3电力系统的负荷
1.3.1电力负荷的组成 由第一、二、三产业及城乡居民生活用电组成,其中第二产业用电比重最高。
1.3.2电力负荷的特性 1.负荷特性 负荷特性:交流用电设备所消耗的有功、无功功率与其电源的电压及频率的 关系。 2.负荷静特性 负荷静特性:系统频率及电压缓慢变化时,地区负荷的有功、无功功率的变 化情况,通常以电压和频率的多项式或指数函数表示。 (1)多项式表示
3.日负荷曲线特性 (1)日负荷率 日负荷率:日平均负荷与日最大负荷之比,常以γ表示。 γ=Pdav/Pdmax 式中:Pdav为日平均负荷;Pdmax为日最大负荷。 (2)日最小负荷率 日最小负荷率:日最小负荷与日最大负荷之比,常以β表示。 β=Pdmin/Pdmax 式中:Pdmin为日最小负荷。
(2)指数表示
PL jQL PL0 (U / U 0 ) NPV jQL0 (U / U 0 )
式中:NPV,NQV为常数。
NQ V
]
1.3.3电力负荷曲线 一.影响负荷变化的因素 1.作息时间 2.生产工艺 3.气候 4.季节
二.负荷曲线种类 1.负荷曲线 负荷曲线:电力负荷随时间变化的关系。 2.种类 (1)根据持续时间分为:日负荷曲线、周负荷曲线、年负荷曲线 (2)根据涉及的范围分为:个别用户负荷曲线、变电站负荷曲线、电力系统 负荷曲线 注:电力负荷一般指有功功率,电力系统规划和设计中,日负荷曲线应用最多。
2.作用 发电厂:把一次能源转化为电能; 输电系统:完成远距离大容量输电任务(距离达几百、甚至上千km,电压 在110kV到750kV之间); 配电系统:将电能分配给用户(高压配电系统:110kV-220kV,低压配电 系统:380/220V);
3. 电压等级 (1)用电设备额定电压与电网(线路)额定电压相等 由于线路和变压器等元件上产生的电压损失,使线路上电压处处不相等,各点 实际电压偏离了额定值,顺着远离电源的方向,线路电压下降。一般用户处 (用电设备)电压偏移不得超过±5% ,取线路的平均电压为用电设备的额定 电压:
电气工程基础
1.电力网:由各类升降压变电站、各种电压等级的输电线路所组成的整体。
电力网的作用是输送、控制和分配电能。
2.电力系统:由发电机、升降压变压器、各种电压等级的输电线路和广大用户的用电设备所组成的统一整体3.动力系统:由带动发电机转动的动力部分、发电机、升压变电站、输电线路、降压变电站和负荷等环节构成的整体。
4.电力网的分类:地方电力网:是指电压等级在35~110kV ,输电距离在50km 以内的中压电力网。
区域电力网:是指电压等级在110~220kV ,输电距离在50~300km 的电力网。
超高压电力网:是指电压等级在330~750kV ,输电距离在300~1000km 的电力网。
5.变电站的分类 :枢纽变电站:处于电力系统的中枢地位,它连接电力系统高压和中压的几个部分,汇集多个电源,并具有多条联络线路。
中间变电站:是指将发电厂或枢纽变电站与负荷中心联系起来的变电站。
一般汇集2~3个电源,起系统交换功率或使长距离输电线路分段的作用。
终端变电站:处于电力网末端的变电站,一般是降压变电站,也称为末端变电站。
6.电力网的电压等级及确定原则确定原则:输送功率、输送距离、同系统中电压等级不宜过多或过少,级差不宜过大。
1用电设备的额定电压和电网的额定电压相等。
国家规定,用户处的电压偏移一般不得超过±5%。
2发电机的额定电压比所连接线路的额定电压高5%,用于补偿电网上的电压损失3变压器的额定电压,分一次绕组和二次绕组。
一次绕组的额定电压:降压变压器一次绕组的额定电压与用电设备的相同,等于电网的额定电压;升压变压器一次绕组的额定电压与发电机的额定电压相同。
二次绕组的额定电压:升、降压变压器二次绕组的额定电压一般比同级电网的额定电压高10%;当变压器二次侧输电距离较短,或变压器阻抗较小(小于7%)时,二次绕组的额定电压可只比同级电网的额定电压高5%7.电力系统的特点:①电能不能大量储存;②过渡过程十分短暂;③电能生产与国民经济各部门和人民生活有着极为密切的关系;④电力系统的地区性特点较强。
电气工程基础知识点汇总
电气工程基础知识点汇总1. 单相导线线路电抗:0157.0lg 1445.0x 1+=rD m2. 分裂导线线路电抗:n0157.0lg1445.0x eq 1+=r D m 3. 双绕组变压器等值电路:注意单位!U N -KV ,折算到哪一侧参数,用相应的额定电压U N ; S N -MVA221000N N K T S U P R ∆=NNK T S U U X 2*100%= 201000N T U P G ∆=20*100%NNT U S I B = 4. 三绕组变压器等值电路: 电阻:221212⎪⎪⎭⎫ ⎝⎛∆=∆•N NK K S S P P ()2322323,min ⎥⎦⎤⎢⎣⎡∆=∆•N N N K K S S S P P 233131⎪⎪⎭⎫ ⎝⎛∆=∆•NNK K S S P P 22331121K K K K P P P P ∆-∆+∆=∆22111000NNK T S U P R ∆= 电抗:2%%%%2331121K K K K U U U U -+=NNK T S U U X 211*100%= 5. 标幺值计算:B B B U S I 3=BBB S U Z 2= 一般选定S B 、U B ,以平均额定电压U av =1.05U N 做基准值不同基准值的标幺值之间的变换22**BB N N N B U SS U X X •= 6. 多电压级电网中参数的归算 7. ()221'⋅⋅⋅=k k X XX 归算后的值,X ’归算前的值,k 1、k 2经过的变压器的变比8. 电压降落2221U QR PX j U QX PR U U -++=- 线路功率损()jX R U Q P S ++=∆2222 9. 变压器的有功损耗20⎪⎪⎭⎫ ⎝⎛∆+∆=∆N CK T SS P P P n 台变压器并联运行有功损耗()20n ⎪⎪⎭⎫ ⎝⎛∆+∆=∆NCK T nSS P n P n P 10. 变压器的无功损耗⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=∆20100%100%N CK N T S S U I S Q 11. 输电线路有功功率ϕSIN XUU P 21=12. 输电线路无功()XU U U Q 221-=13. 输电线路空载运行电压222122U BRj U BX U U +-= 14. 中枢点电压调整方式:逆调压(供电距离长,负荷变动大):大负荷1.05U N ,小负荷U N顺调压(供电距离近,负荷变动小):大负荷>1.025小负荷<1.075恒调压:1.02-1.05U N15. 电容调压计算补偿容量min22'min2U U U U NT ⨯='m in 2U 为最小负荷归算到高压侧电压,U 2min 为要求最小电压,U T 为计算得到的变压器分接头电压,选定最接近的分接头U 1T ,确定变压器变比NTU U k 21= U 2N 变压器低压侧额定电压()XU kUkU Q C C C 'max2max 2max2-= m ax 2C U 为要求最大电压,'ax 2m U 为最大负荷归算到高压侧电压,Q C 为补偿容量得到Q C 代入最大负荷处,用潮汐电流计算得到'ax 2m U ,然后除以变比k ,同要求电压比较,同时'm in 2U 也除以k 比较。
电气工程基础
电气工程基础
电气工程基础,是指研究和应用电子技术,电力系统,电磁学,
电物理学和电机的学科领域,它是其他电气领域的基础。
它包括电子,电力,电机,开关等组件,可以构建具有控制性能的电气系统,满足
特定的运行要求。
电气工程基础主要涉及四个方面:电力,电磁,电子学和电机。
电力方面,涉及电力电子元件,如半导体器件,变压器,变流器,控制开关等;控制电力系统的规则,例如电路,控制算法等;电力系
统的运行模式,如安全,稳定,可靠的运行要求;电力系统的设计和
控制,如控制器的设计、改善电力系统的性能等。
另外,电磁方面涉及电磁学,即研究电磁学原理,如电磁场,电
磁屏蔽,电磁兼容性等;电磁仿真,采用电磁仿真软件对电磁元件进
行仿真,设计电子元件;电磁信号,即研究电磁属性、电磁辐射,电
磁衰减,电磁耦合等物理现象。
电子方面主要涉及电子技术,即研究电子器件如电子管,晶体管,继电器,可控硅,电路结构,电路案例等。
最后,电机方面涉及电机原理,即研究电机的运行模式,通过对
永磁电机,交流电机,直流电机,交变涡轮机,发电机,马达等电动
机的原理及它们的特性,进而推导出控制电机的方法和算法。
电气工程基础是其他电气领域的基础,它涉及电力,电磁,电子
学和电机,为这些领域的研究提供了坚实的理论基础,是研究电气工
程的基础。
电气工程基础
电气工程基础电气工程基础是电气工程专业学习的第一门入门课程,是学习电气工程的基础知识的重要组成部分。
电气工程基础主要涉及电路基本知识、电磁场理论和传感器等方面的内容。
本文将从电路、电磁场和传感器三个方面来介绍电气工程基础的相关内容。
一、电路基本知识电路基本知识是电气工程的基础,它包括电流、电压、电阻的概念和关系,以及直流回路和交流回路的分析等内容。
电流是指电荷的流动,是电气信号传输的基础。
电压是电场力量的表现,是驱动电流流动的动力。
电阻是指电流在电路中受阻碍的程度。
直流回路是指电流方向不变的电路,交流回路是指电流方向周期性改变的电路。
在电路分析中,我们可以利用基尔霍夫定律和欧姆定律来解决各种电路分析问题。
基尔霍夫定律包括基尔霍夫电流定律和基尔霍夫电压定律,它们是电路分析中重要的基本定律。
基尔霍夫电流定律指出,在电路中,流入某个节点的电流等于流出该节点的电流的代数和。
基尔霍夫电压定律指出,在电路中,沿着闭合回路的各个电压代数和为零。
欧姆定律指出,电流和电压之间存在线性关系,电阻是电流和电压之间的比值。
二、电磁场理论电磁场理论是电气工程基础中的重要内容,它研究电荷和电流所产生的电场和磁场的性质和相互作用。
电场是由电荷产生的力场,包括静电场和变化的电场。
静电场是由静止电荷产生的电场,它的性质由库仑定律描述。
变化的电场是由电流和变化的电荷所产生的电场,它遵循麦克斯韦方程组。
磁场是由电流所产生的力场,在电气工程中主要涉及恒定磁场和电磁感应。
恒定磁场是由恒定电流所产生的磁场,它的性质由安培定律描述。
电磁感应是由变化的磁场所产生的感应电场,根据法拉第电磁感应定律,磁场的变化会导致感应电动势的产生。
电磁场理论为电气工程中的电磁设备和电机的设计和分析提供了理论基础。
三、传感器传感器是电气工程中的重要设备,它能将非电信号转化为电信号,并对环境中的各种物理量、化学量和生物量进行检测和控制。
常见的传感器包括温度传感器、压力传感器、湿度传感器、光照传感器等。
电气工程基础(第一章)
张刘春设计
电气工程概论
第一章绪论
在支持和加强电工科学技术发展时,应从宏观方面考虑 到以下几个重要问题:
(1)电工科学是一门技术科学,只从纵向关系看,它与其所依 赖的基础科学(如电磁学、力学、数学、化学等)和指引并支持 的生产技术(包括设计、工艺、产品开发等)是一条连续线,但 又各有分工。 (2)电工科学应指导电力和电工的生产应用.而生产应用应促 进电工科学进步。
张刘春设计
电气工程概论
第一章绪论
在电力系统方面:
1949年,只有东北、京津唐和上海三个容量不大(分别为646 ,259和250MW)的电力系统; 2003年,已有11个电力系统发电装机容量超过20000MW,其 中东北、华北、华东、华中电网发电装机容量均超过30000MW, 华东、华中电网甚至超过40000MW ,西北电网的装机容量也达 到20000MW; 其他几个独立省网,如四川、山东、福建等电网发电装机容 量超过或接近10000MW; 大区电力系统目前正进入各自加强和彼此互联以及进一步发 展形成全国统一电力系统的过程中。
张刘春设计
电气工程概论
第一章绪论
张刘春设计
电气工程概论
第一章绪论
张刘春设计
电气工程概论
第一章绪论
在断路器和避雷器等电器制造方面:
解放时,我国只能制造10kV的充油式断路器;
目前,可制造500kV新型的SF6的断路器;从10kV管式避雷器 提高到500kV氧化锌避雷器的制造水平,均已进入了世界先进行 列。
著名例子是美加“8.14大停电”,2003年8月14日下午,美 国的中西部和东北部以及加拿大的安大略省经历了一次大停电 事故,其影响范围包括美国的俄亥俄州、密西根州、宾夕法尼 亚州、纽约州、佛蒙特州、马萨诸塞州、康涅狄格州、新泽西 州和加拿大的安大略省,损失负载大61.8GW,影响了5千万人 口的用电。停电在美国东部时间下午4时06分开始,在美国的 一些地区两天内未能恢复供电,加拿大的安大略省甚至一周未 能恢复供电。这次停电事故引起了全世界的关注。 综合资料,基本可以判断本次大停电对全网而言属于潮流大 范围转移导致的快速电压崩溃,同时伴有潮流大范围转移和窜 动导致的断面线路相继跳闸和系统解列后的频率崩溃。
电气工程基础
电力系统分析第一章绪论1.发电厂、变电站、电力网、电力系统、动力系统发电厂:生产电能的工厂,它把不同种类的一次能源转换成电能。
变电站:联系发电厂和用户的中间环节,一般安装有变压器及其控制和保护装置,起着变换和分配电能的作用。
电力网:由变电站和不同电压等级输电线路组成的网络,称为电力网。
电力系统:由发电厂内的发电机、电力网内的变压器和输电线路及用户的各种用电设备,按照一定的规律连接而组成的统一整体称为电力系统。
动力系统:在电力系统的基础上,还把发电厂的动力部分,如火力发电厂的锅炉、汽轮机,水力发电厂的水库、水轮机,核动力发电厂的核反应堆等也包含在内的系统,称之为动力系统。
注:从广义上来说动力系统+电力网称为电力系统,狭义上来说电力网就是电力系统。
2.电力系统的特点和要求特点:(1)电能不能大量存储;(2)过渡过程十分短暂(3)与国民经济各部门和人民生活有着极为密切的关系(4)地区性特点较强要求:(1)保证供电可靠(2)保证良好的电能质量(3)为用户提供充足的电力(4)提高电力系统运行经济性3.电能的质量指标、我国电压允许偏差、频率变化允许偏差衡量电能质量的主要指标有电压、频率和波形。
我国电压允许偏差为±5%频率变化允许偏差为±0.2%~±0.7%4.电力系统额定电压制定原则、我国电压等级原则:根据技术经济上的合理性、电气制造工业的水平和发展趋势等各种因素而规定的。
电压等级:低于3kV系统的额定电压和3kV及以上系统的额定电压两类。
5.接地及接地的种类为了保证电力网或电气设备的正常运行和工作人员的人身安全,人为地使电力网及其某个设备的某一特定地点通过导体与大地作良好的连接,称为接地。
5种接地方式:工作接地、保护接地、保护接零、防雷接地、防静电接地。
6.中性点的接地方式及特点(1)中性点不接地------保护接地(2)中性点直接接地------保护接零(3)中性点经消弧线圈接地(4)中性点经电阻接地第二章发电系统1.能源的分类、电能(1)按获得的方法分:一次能源:能源的直接提供者,例如煤炭、石油、天然气、水能、风能等二次能源:由一次能源转成而成的能源,例如电能、蒸汽、煤气等(2)按被利用的程度分常规能源:已被人们广泛利用的能源,例如煤炭、石油、天然气、水能等新能源:用新发展的科学技术开发利用的能源,例如太阳能、风能、海洋能、地热能等(3)按能否再生分可再生能源:自然界中可以不断再生并且有规律地得到补充的能源,例如水能、风能、太阳能、海洋能等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)单位长度线路电导 电晕临界电压
U cr = 84m1m2δ r lg( D jp / r ) kV 1.26 × 400 = 84 × 0.85 × 1× 1× 0.951× lg( ) 0.951 = 185 KV > 110 KV
所以运行电压110KV没有超过电晕的临界电压,所以不会出现电晕现 象所以不用考虑电晕的 每相等值电导
励磁电路以励磁导纳的形式出现。 变压器的原副方阻抗合并。 因为变压器的励磁电流相对较小,所以由分流精度导致的计算误差 很小! 当变压器实际运行电压与额定电压接近时,变压器等值电路中的 励磁支路可以用对应的功率损耗表示
对于等级在35KV及以下的变压器,因励磁支路的损耗较小, 所以在近似计算中,励磁支路可以略去不计! 变压器的参数一般是指等值电路中的: RT(电阻),XT(电抗) ---由变压器短路实验测试出 GT(电导),BT(电纳) ---由变压器空载试验测试出 而这四个参数可由变压器出厂试验书给出的四个参数得到: ΔPK---短路损耗 UK%---短路电压百分值 ΔP0---空载损耗 I0%---空载电流百分值
第二节 架空输电线路的参数计算及等值电路
1.输电线路的参数计算 电阻: 单根导线的直流电阻为:R .2%~1%,主要是因为: 应考虑集肤效应和邻近效应的影响; 导线为多股绞线,使每股导线的实际长度比线路长度大; 导线的额定截面(即标称截面)一般略大于实际截面。
图 一次整循环换位 图 三相导线的布置方式
a)等边三角形布置 b)水平等距布置
分裂导线------减少线路电抗和减低电晕损耗
S av 0.0157 µ ) Ω / km x0 = (0.1445 lg + rD n rD = nrA
n n −1
d A= 2 sin(π / n)
一般单导线的电抗为0.4 Ω /km左右,而分裂导线为n=2、3、 4时,电抗为0.33、0.3、0.28 Ω /km左右。 架空线路的电抗值为 架空线路的电抗值为
架空导线的型号有: TJ——铜绞线 LJ——铝绞线,用于10kV及以下线路 GJ——钢绞线,用作避雷线 LGJ——钢芯铝绞线,用于35kV及以上线路 线间距离:380V为0.4~0.6m;6~10kV为0.8~1m;35kV 为2~3.5m;110kV 为3~4.5m。
导线在杆塔上的排列方式:
三相四线制低压线路的导线,一般都采用水平排列; 三相三线制的导线,可三角排列,也可水平排列; 多回路导线同杆架设时,可三角、水平混合排列,也可全 部垂直排列;
c)钢芯铝绞线
b)多股绞线
分裂导线
分裂线:将输电线的每相导线分裂成若干根子导线,用金属材料或 绝缘材料制作的间隔棒支撑,按一定的规律分散排列所构成的导线 分裂导线能使导线的等效半径增大,从而减小线路的等值电抗、增 大线路的等值电容及降低线路的电晕损耗。 所以分裂导线的合理布局很重要,可以使输电线路的参数接近或到 达阻抗匹配,从而提高线路的传输功率。
3 因为导线水平排列, sav = 2s 3
= 1.26s = 1.26× 400
所以
x0 = 0.1445 lg
s av 1.26 × 400 + 0.0157 µ r = 0.1445 lg( ) + 0.0157 × 1 r 0.951 = 0.409 Ω / Km
(3)单位长度线路电纳 b0 = 7.58 × 10 −6 = 2.78 × 10 -6 S / Km
电缆的敷设方式:
直接埋入土中:埋设深度一般 为0.7~0.8m,应在冻土层以下。 当多条电缆并列敷设时,应留有 一定距离,以利于散热。 电缆沟敷设:当电缆条数较多 时,宜采用电缆沟敷设,电缆置 于电缆沟的支架上,沟面用水泥 板覆盖。 穿管敷设:当电力电缆在室内 明敷或暗敷时,为了防电缆受到 机械损坏,一般多采用穿钢管的 敷设方式。
导线材料:要求电阻率小、机械强度大、质量轻、不 易腐蚀、价格便宜、运行费用低等,常用材料有铜、铝 和钢。 导线的结构型式:导线分为裸导线和绝缘导线两大类, 高压线路一般用裸导线,低压线路一般用绝缘导线。 架空线路采用的导线结构型式主要有单股、多股 绞线和钢芯铝绞线三种,如图所示。
图
a)单股线
裸导线的构造
低压针式绝缘子
高压针式绝缘子
高压线路瓷横担绝缘子
瓷横担的特点:有良好 瓷横担的特点:有良好 的电气绝缘性能,兼有 绝缘子和横担的双重功 能,能节约大量的木材 和钢材,有效地降低杆 塔的高度,可节省线路 投资30%~40%。
2.电缆线路
电缆的结构:包括导体、绝缘层和保护包皮三部分。 电缆的结构:包括导体、绝缘层和保护包皮三部分。 导体:由多股铜绞线或铝绞线制成。 分为单芯、三芯和四芯等 种类。单芯电缆的导体截面是 圆形的;三芯或四芯电缆的导 体截面除圆形外,更多是采用 扇形,如图所示。
X = x1l
电纳: 每相导线单位长度的等值电容(F/km)为:
C1 = 0 .0241 × 10 − 6 s av lg r
7.58 × 10 −6 则单位长度的电纳(S/km)为: b1 = ωC1 = sav lg r
一般架空线路b1的值为 2.58 × 10 −6 S/km左右,则 B = b1 l 电导: 电导参数是反映沿线路绝缘子表面的泄露电流和导 线周围空气电离产生的电晕现象而产生的有功功率损耗 。
1、电阻
IN
RT
X
T
变压器短路试验,将其中一侧绕组 ∆ PK 短接,在另一侧施加电压,使短路 GT 侧绕组通过的电流达到额定值。 此时励磁支路电流很小,可以认为 U K 短路损耗等于变压器通过额定电 流时原、副方绕组电阻中的总损 耗(铜损)
图 一字型等效电路
π型或T型等效电路: 用于长度为100~300km的架空线路 (110~220kV)和 长度不超过100km 的电缆线路(10kV 以上)。
图 π型或T型等效电路
a)π型 b)T型
解:
(1)单位长度线路电阻:
ρ Al = 31.5Ω ⋅ mm 2 / km
(2)单位长度线路电抗:查附表I-1得到LGJ-185导线的计算直 径为19.02mm
图 扇形三芯电缆
1—导体 2—纸绝缘 3—铅包皮 4—麻衬 5—钢带铠甲 6—麻被
绝缘层:用来使导体与导体之间、导体与保护包 皮之间保持绝缘。绝缘材料一般有油浸纸、橡胶、 聚乙烯、交联聚氯乙烯等。 保护包皮:用来保护绝缘层,使其在运输、敷设 及运行过程中免不受机械损伤,并防止水分浸入和 绝缘油外渗。常用的包皮有铝包皮和铅包皮。此外, 在电缆的最外层还包有钢带铠甲,以防止电缆受外 界的机械损伤和化学腐蚀。
杆塔:用来支撑导线和避雷线,并使导线与导线、导线与大 杆塔:用来支撑导线和避雷线,并使导线与导线、导线与大 地之间保持一定的安全距离。 杆塔的分类 按材料分:有木杆、钢筋混凝土杆(水泥杆)和铁塔。
500KV输电线路
绝缘子和金具:绝缘子用来使导线与杆塔之间保持足够的绝 绝缘子和金具:绝缘子用来使导线与杆塔之间保持足够的绝 缘距离;金具是用来连接导线和绝缘子的金属部件的总称。 常用的绝缘子主要有针式、悬式和棒式三种。 针式绝缘子:用于35kV及以 下线路上。 下线路上 。 悬式绝缘子:用于35kV以上 的高压线路上,通常组装成绝 缘子串使用(35kV为3片串接; 60kV为5片串接;110kV为7片 串接)。 棒式绝缘子:棒式绝缘子多 兼作瓷横担使用,在110kV及 以下线路应用比较广泛。
导线表面状况系数,多股绞线为0.83~0.87; 气象状况系数,晴天为1,雨雪雾为0.8~1; 导线计算半径(cm); 三相导线间的几何均距(cm); 空气相对密度,一般取1
δ
2.输电线路的等效电路
一字型等效电路 :用于长度不超过 100km的架空线路(35kV及以下)和线 路不长的电缆线路(10kV及以下)。
因此, G = g 1l
∆Pg
式中,
为实测线路单位长度的电晕损耗功率(kW/km)。
注意:通常由于线路泄漏电流很小,而电晕损耗在设计线路 注意:通常由于线路泄漏电流很小,而电晕损耗在设计线路 时已经采取措施加以限制,故在电力网的电气计算中,近似 G=0 认为 。
计算电晕临界电压
U cr = 84m1m2δ r lg( D jp / r ) kV m1 m2 r D jp
式中,μr为相对磁导率,铜和铝的 µ r = 1 ; r为导线半径(m); Sav为三相导线的线间几何均距(m)。
sav =
3
sab sbc sca
若三相导线等边三角形 排列,则 s av = s 若三相导线水平等距离 3 3 排列,则 sav = 2s = 1.26s 注意:为了使三相导线的 注意:为了使三相导线的 电气参数对称,应将输电 线路的各相导线进行换位, 如图所示。
g1 = ∆Pg U
2
× 10
−3
在设计架空线路时依据电晕临界电压规定了不需要验算电晕的 导线最小外径:110kV导线外径不应小于9.6mm;220kV导线外 径不应小于21.3mm;60kV及以下的导线不必验算电晕临界电 压;220kV以上的超高压输电线,采用分裂导线或扩径导线以 增大每相导线的等值半径,提高电晕临界电压
说明:通常架空线路的绝缘良好,泄露电流很小,可以忽略不计。 说明:通常架空线路的绝缘良好,泄露电流很小,可以忽略不计。
电晕现象:在架空线路带有高电压的情况下,当导线表面的 电晕现象:在架空线路带有高电压的情况下,当导线表面的 电场强度超过空气的击穿强度时,导线周围的空气被电离而 产生局部放电的现象。 当线路电压高于电晕临界电压 当线路电压高于电晕临界电压时,将出现电晕损耗,与 电晕临界电压时,将出现电晕损耗,与 电晕相对应的导线单位长度的等值电导(S/km)为:
2 2 ρ = 31 . 5 Ω ⋅ mm / km ρ = 18 . 8 Ω ⋅ mm / km ; Al 通常取 Cu