内力组合最不利表

合集下载

框架柱正截面设计时最不利内力组合的选择

框架柱正截面设计时最不利内力组合的选择

配钢筋愈多 。 [1~2] 因此,在框架柱正截面设计时,设计 人员往往采用以下 3 种组合方式: ① Mmax 及相应 的 N;②Nmax 及相应的 M;③Nmin 及相应的 M。
这种最不利内力组合的选择方法是各混凝土结 构设计教材中普遍采用的方法,此方法论据充足,条 理清晰,易于理解和掌握。 但不足之处是计算量大, 至少要计算 3 种组合的情况,这无疑给设计工作增加 了难度。 基于此,笔者在研究工作中发现了一直新的 组合方式,即:直接选取弯矩绝对值最大值和轴力最 大值作为一组组合,弯矩绝对值最大值和轴力最小值 作为另一组组合,该方法能够简单有效地将最大内力 进行组合。
天津市应用基础与前沿技术研究计划12jcqnjc0530019表4抗震组合配筋计算结果编号计算方法mknmnkn偏心asasmm23方法144347164599小偏心2866431481777202828298421598821509方法24434717772029354434715988228174方法137023161665大偏心638289281658985998313101042401007方法2370231658981645370231042404078表2非抗震组合配筋计算结果编号计算方法mknmnkn偏心asasmm21方法18627236001小偏心3233914252064298121233237236方法2862725206456786272332372832方法19872183279大偏心18307285200063200141291778762066方法29872200063186398721778761757表3框架柱抗震内力组合编号截面mm计算长度mm截面位置内力抗震组合左震右震34504104500柱顶mknm2855029842nkn173002159882柱底mknm4314844347nkn17772016459946607004500柱顶mknm3131037023nkn104240161665柱底mknm2181528928nkn108478165898表1框架柱非抗震内力组合编号截面mm计算长度mm截面位置内力组合1组合2组合3左风右风14504104500柱顶mknm812173537703914nkn233237236317239631248955柱底mknm8627471619962073nkn23600123908024239525206426607004500柱顶mknm4129987271507407nkn177876183279183470194109柱底mknm4535923570337285nkn183168188571188762200063别考虑了3种组合方式

主梁内力计算

主梁内力计算

主梁的内力计算主梁的内力计算包括恒载内力计算和活载内力计算。

根据上述梁跨结构纵、横截面的布置,计算活载作用下的梁桥荷载横向分布系数,求出各主梁控制截面(取跨中、四分点、变化点截面及支点截面)的恒载和最大活载内力,然后再进行主梁内力组合。

一、恒载内力计算1、恒载集度⑴预制梁自重(第一期恒载)①.跨中截面段主梁自重(四分点截面至跨中截面,长7.25m )(1)0.861625.07.25156.165g KN =⨯⨯=②.马蹄抬高与腹板变宽段梁的自重近似计算(长3.7m ) 主梁端部截面面积为A=1.176m 2()(2) 1.17600.8616 3.725.0/294.239g KN =+⨯⨯=③.支点段梁的自重(长3.55m )(3) 1.1760 3.5525.0=104.37g KN =⨯⨯④.横隔梁的自重 中横隔梁体积为:()30.16 1.590.920.240.72/20.120.12/20.219072m ⨯⨯-⨯-⨯= 端横隔梁体积为:()30.25 1.840.80.20.6/20.353m ⨯⨯-⨯=故半跨内横隔梁重量()(4)20.21907210.3532519.7786g KN =⨯+⨯⨯=⑤.主梁永久作用集度()156.16594.239104.3719.7786/14.9825.00/g KN m KN m I =+++= (2)第二期恒载①翼缘板中间湿接缝集度()50.40.1625.0 1.6/g KN m =⨯⨯=②现浇部分横隔梁一片中横隔梁(现浇部分)体积:30.16 1.590.20.05088m ⨯⨯= 一片端横隔梁(现浇部分)体积:30.250.2 1.840.092m ⨯⨯= 故()()630.0508820.09225.0/29.960.2809/g KN m =⨯+⨯⨯=③桥面铺装层6cm 沥青混凝土铺装:0.0612.52317.25/KN m ⨯⨯=将桥面铺装重量均分给五片主梁,则()717.25/5 3.45/g KN m ==④防撞栏:两侧防撞栏均分给五片主梁,则()87.52/53/g KN m =⨯=⑤主梁二期永久作用集度II 1.60.2809 3.4538.3309/g KN m =+++=2、永久作用效用:下面进行永久作用效用计算(参照图1-4),设c 为计算截面至左侧支座的距离,并令/a c l =。

刚架结构计算参考

刚架结构计算参考
对于刚架柱,截面可能的最不利内力组合有:
(1)Mmax及相应的N、V;(2)Mmin及相应的N、V
(3)Nmax及相应的±Mmax、V;(4)Nmin及相应的±Mmax、V
内力组合见表1。
刚架内力组合表(以左半跨为例)
表1
截面
内力组组合项目
荷载组合方式
荷载组合项目
M
(KN·m)
N
(KN)
V
(KN)

Ix=28181cm4,Wx=1252cm3,ix=18.53cm
Iy=1602cm4,Wx=160.2cm3,ix=4.42cm
(二)构件验算
1
翼缘部分:
腹板部分:
2
(1)抗剪验算
梁截面的最大剪力为Vmax=77.60KN
考虑仅有支座加劲肋,
fv=125N/mm2
Vu=hwtwfv=426×8×125=426000N=426.0KN
(3)整体稳定验算
N=39.89KN,M=193.30KN·m
A.梁平面内的整体稳定性验算。
计算长度取横梁长度lx=18090mm,
λx=lx/ix=18090/185.3=97.63<[λ]=150,b类截面,查表得ψx=0.570
,βmx=1.0
=165.15N/mm2<f=215 N/mm2,满足要求。
MC=3.00×182[1-(1+0.15)×0.5289]/8=47.60KN·m
MB=MD=-3.00×182×0.5289/8=-64.26KN·m
刚架在活荷载作用下的内力如图。
3
对于作用于屋面的风荷载可分解为水平方向的分力qx和竖向的分力qy。现分别计算,然后再叠加。

门式刚架荷载计算及内力组合

门式刚架荷载计算及内力组合

(一)荷载分析及受力简图:1、永久荷载永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。

恒载标准值(对水平投影面):板及保温层 0.30kN/㎡檩条 0.10kN/㎡悬挂设备 0.10kN/㎡0.50kN/㎡换算为线荷载:7.50.5 3.75 3.8/=⨯=≈q KN m2、可变荷载标准值门式刚架结构设计的主要依据为《钢结构设计规范》(GB50017-2003)和《冷弯薄壁型钢结构技术规范》(GB50018-2002)。

对于屋面结构,《钢结构设计规范》m,但构件的荷载面积大于602m的可乘折减系数0.6,门规定活荷载为0.5KN/2m。

由荷载规范查得,大连地区式刚架符合此条件,故活荷载标准值取0.3KN/2雪荷载标准值为0.40kN/㎡。

屋面活荷载取为 0.30kN/㎡雪荷载为 0.40kN/㎡取二者较大值 0.40kN/㎡换算为线荷载:7.50.43/q KN m =⨯=3、风荷载标准值 :0k z s z ωβμμω=(1) 基本风压值 20kN/m 6825.065.005.1=⨯=ω(2) 高度Z 处的风振系数z β 取1.0(门式刚架高度没有超过30m ,高宽比不大于1.5,不考虑风振系数)(3) 风压高度变化系数z μ由地面粗糙度类别为B 类,查表得:h=10m ,z μ=1.00;h=15m ,z μ=1.14 内插:低跨刚架,h=10.5m ,z μ= 1.14 1.111.00(10.510)1510-+⨯--=1.014;高跨刚架,h=15.7m ,z μ= 1.25 1.141.14(15.715)2015-+⨯--=1.155。

(4) 风荷载体型系数s μ-0.5-0.6-0.4-0.4-0.5-0.5-0.2+0.8μsμs1其中,s μ=0.2010.24.760.032301230arctg -⨯=⨯=+ 1s μ=12 1.00.6(1)0.6(12)0.36915.710.5h h ⨯-=⨯-=+-各部分风荷载标准值计算:w 1k =0z s z βμμω=7.5×1.0×0.8×1.014×0.6825=4.15 kN/m w 2k =0z s z βμμω=7.5×1.0×0.032×1.014×0.6825=0.17kN/m w 3k =0z s z βμμω=7.5×1.0×(-0.6)×1.014×0.6825=-3.11kN/m w 4k = 0z s z βμμω=7.5×1.0×0.369×1.014×0.6825=1.91 kN/m w 5k = 0z s z βμμω=7.5×1.0×(-0.2)×1.014×0.6825=-1.04 kN/mw 6k = w 7k =w 8k =0z s z βμμω=7.5×1.0×(-0.5)×1.014×0.6825=-2.60 kN/m w 9k = w 10k =0z s z βμμω=7.5×1.0×(-0.4)×1.014×0. 6825=-2.08 kN/m 用PKPM 计算门式刚架风荷载结果如下:其中,'1k ω=4.2KN/m ≈1k ω=4.15 kN/m ;'2kω=0.2KN/m ≈2k ω=0.17 kN/m ; '3k ω=-3.1N/m ≈1k ω=-3.11 kN/m ;'4kω=2.2KN/m ≈2k ω=1.91 kN/m ; '5k ω=-1.2KN/m ≈1k ω=-1.04kN/m ;'6kω=-3.0KN/m ≈6k ω=-2.60kN/m ; '7kω=-3.0KN/m ≈7k ω=-2.60kN/m ;'8k ω=-2.6KN/m =8k ω; '9k ω=-2.1KN/m ≈9k ω=-2.08kN/m ;'10kω=-2.1KN/m ≈10k ω=-2.08kN/m 。

关于结构活荷载不利布置(值得收藏)

关于结构活荷载不利布置(值得收藏)

关于结构活荷载不利布置(值得收藏)一、教科书里荷载的最不利组合的描述连续梁所受荷载包括恒载和活荷载两部分,其中活荷载的位置是变化的,所以在计算内力时,要考虑荷载的最不利组合和截面的内力包络图。

对于单跨梁,显然是当全部恒载和活荷载同时作用时将产生最大的内力。

但对于多跨连续梁某一指定截面往往并不是所有荷载同时布满梁上各跨时引起的内力为最大。

结构设计必须使构件在各种可能的荷载布置下都能可靠使用,这就要求找出在各截面上可能产生的最大内力,因此必须研究活荷载如何布置使各截面上的内力为最不利的影响,即活荷载的最不利布置。

如下图所示为五跨连续梁,当活荷载布置在不同跨间时梁的弯矩图和剪力图。

从上图中可以看出其内力图的变化规律,当活荷载作用在某跨时,该跨跨中为正弯矩,邻跨跨中为负弯矩,然后正负弯矩相间;比较各弯矩图可以看出,例如对于1跨,本跨有活荷载,当在3、5跨同时也有活荷载时,使1跨+M值增大,而2、4跨同时有活荷载时,则在1跨引起-M,使1跨+M值减小,因此欲求1跨跨中最大正弯矩时,应在1、3、5跨布置活荷载。

同理可以类推出求其他截面产生最大弯矩时活荷载的布置原则。

根据上述分析,可以得出确定连续梁活荷载最不利布置的原则如下:1.欲求某跨跨中最大正弯矩时,应在该跨布置活荷载;然后向两侧隔跨布置。

2.欲求某跨跨中最小弯矩时,其活荷载布置与求跨中最大正弯矩时的布置完全相反。

3.欲求某支座截面最大负弯矩时,应在该支座相邻两跨布置活荷载,然后向两侧隔跨布置。

4.欲求某支座截面最大剪力时,其活荷载布置与求该截面最大负弯矩时的布置相同。

根据以上原则可确定活荷载最不利布置的各种情况,它们分别与恒载(布置各跨)组合在一起,就得到荷载的最不利组合,如下图所示为五跨连续梁最不利荷载的组合。

二、规范里活荷载不利布置的相关条文《建筑结构荷载规范》GB50009-2012第3.2.1条:建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载组合,并应取各自的最不利的组合进行设计。

内力组合及内力调整

内力组合及内力调整

7 内力组合及内力调整7.1内力组合各种荷载情况下的框架内力求得后,根据最不利又是可能的原则进行内力组合。

当考虑结构塑性内力重分布的有利影响时,应在内力组合之前对竖向荷载作用下的内力进行增幅。

分别考虑恒荷载和活荷载由可变荷载效应控制的组合和由永久荷载效应控制的组合,并比较两种组合的内力,取最不利者。

由于构件控制截面的内力值应取自支座边缘处,为此,进行组合前,应先计算各控制截面处的(支座边缘处的)内力值。

1)、在恒载和活载作用下,跨间max M 可以近似取跨中的M 代替,在重力荷载代表值和水平地震作用下,跨内最大弯矩max M 采用解析法计算:先确定跨内最大弯矩max M 的位置,再计算该位置处的max M 。

当传到梁上的荷载为均布线荷载或可近似等效为均布线荷载时,按公式7-1计算。

计算方式见图7-1、7-2括号内数值,字母C 、D 仅代表公式推导,不代表本设计实际节点标号字母。

2max182M M M ql +≈-右左 且满足2max 116M ql = (7-1) 式中:q ——作用在梁上的恒荷载或活荷载的均布线荷载标准值;M 左、M 右——恒载和活载作用下梁左、右端弯矩标准值;l ——梁的计算跨度。

2)、在重力荷载代表值和地震作用组合时,左震时取梁的隔离体受力图,见图7-1所示, 调幅前后剪力值变化,见图7-2。

图7-1 框架梁内力组合图图7-2 调幅前后剪力值变化图中:GC M 、GD M ——重力荷载作用下梁端的弯矩; EC M 、CD M ——水平地震作用下梁端的弯矩C R 、D R ——竖向荷载与地震荷载共同作用下梁端支座反力。

左端梁支座反力:()C 1=2GD GC EC ED ql R M M M M l--++;由0M ddx=,可求得跨间max M 的位置为:1C /X R q = ; 将1X 代入任一截面x 处的弯矩表达式,可得跨间最大弯矩为: 弯矩最大点位置距左端的距离为1X ,1=/E X R q ;()101X ≤≤; 最大组合弯矩值:2max 1/2GE EF M qX M M =-+;当10X <或11X >时,表示最大弯矩发生在支座处,取1=0X 或1=X l ,最大弯矩组合设计值的计算式为:2max C 11/2GE EF M R X qX M M =--+; 右震作用时,上式中的GE M 、EF M 应该反号。

内力组合最不利表

内力组合最不利表

Mmax N 166.59 909.63 120.87 956.29 197.59 907.42 140.53 954.08 197.59 907.42 140.53 954.08 166.59 909.63 111.44 711.39
M Nmax 35.49 919.04 120.87 956.29 31.69 1055.26 31.65 1107.75 31.69 1055.26 31.69 1107.75 35.49 919.04 20.1 971.53
框架柱内力组合最不利内力组合
层次
杆件
截面 上端
内力种类 M N M N V M N M N V M N M N V M N M N V 内力种类 M N M N V M N M N V M N M N V M N M N V
B1B0
下端
最不利内力组合 Mmax M M N Nmax Nmin 179.74 179.74 27.55 2333.32 2333.32 2117.18 376.64 376.64 11.57 2392.28 2392.28 2185.52 191.43 2162.52 414.89 2221.5 20.8 2460.73 414.89 2221.5 179.74 2333.32 376.64 2392.28 20.8 2460.72 10.39 2527.07 191.43 2162.53 10.39 2527.07 179.74 2333.32 376.64 2392.28 20.73 2395.63 10.36 2454.59 20.73 2395.63 10.36 2354.59 27.55 2117.18 11.57 2183.52
Nmax 78.46 287.68 45.99 340.17 69.16 268.95 40.72 321.44 69.16 268.95 40.72 321.44 78.46 287.68 1.59 240.42

毕业设计指导书(框架结构设计)-内力计算及组合

毕业设计指导书(框架结构设计)-内力计算及组合
2.杆件固端弯矩
计算杆件固端弯矩时应带符号,杆端弯矩一律以顺时针方向为正,如图3-6。
图 3-6 杆端及节点弯矩正方向
1)横梁固端弯矩:
(1)顶层横梁
自重作用:
板传来的恒载作用:
(2)二~四层横梁
自重作用:
板传来的恒载作用:
2)纵梁引起柱端附加弯矩:(本例中边框架纵梁偏向外侧,中框架纵梁偏向内侧)
顶层外纵梁
相交于同一点的多个杆件中的某一杆件,其在该节点的弯矩分配系数的计算过程为:
(1)确定各杆件在该节点的转动刚度
杆件的转动刚度与杆件远端的约束形式有关,如图3-1:
(a)杆件在节点A处的转动刚度
(b)某节点各杆件弯矩分配系数
图 3-1 A节点弯矩分配系数(图中 )
(2)计算弯矩分配系数μ
(3)相交于一点杆件间的弯矩分配
(3)求某柱柱顶左侧及柱底右侧受拉最大弯矩——该柱右侧跨的上、下邻层横梁布置活荷载,然后隔跨布置,其它层按同跨隔层布置(图3-4c);
当活荷载作用相对较小时,常先按满布活荷载计算内力,然后对计算内力进行调整的近似简化法,调整系数:跨中弯矩1.1~1.2,支座弯矩1.0。
(a)(b) (c)
图 3-4 竖向活荷载最不利布置
∑Mik/l
V1/A=gl/2+u-∑Mik/l
M=gl/2*l/4+u*1.05-MAB-V1/A*l/2
4
21.9
4.08
2.25
6
12.24
41.06
-30.54
2.55
50.75
-60.24
3
16.61
4.08
2.25
6
12.24
31.14

第七章-内力组合

第七章-内力组合
-69.2956
-98.5282
-95.3882
-102.29
-64.4735
M
68.24
27.54
12.603
-18.2556
-14.5966
-23.351
37.679
-69.779
C4D4
M
-68.58
-22.51
6.719
-6.719
77.76
-77.76
-113.81
-115.093
-72.8894
-91.7026
-102.193
-119.125
5.286
-196.89
V
-67.62
-24.59
-1.671
-7.929
-67.131
V
-12.96
-0.88
-1.333
1.333
-16.87
16.87
-16.784
-18.376
-17.4182
-13.6858
-18.3404
-14.9812
-38.011
5.851
跨中
M
-32.24
-1.43
0
0
0
0
-40.69
-44.954
-38.688
-38.688
-69.261
-100.696
-98.9193
-93.808
-74.8405
M
69.53
24.59
5.039
-5.039
63.17
-63.17
117.862
118.4555
90.4906
76.3814
120.7685

吊车荷载

吊车荷载
根据影响线知识,两台吊车并行,当其中一 台在刚的一架个柱最轴线大轮处压,P而1m另ax(一台P1与max其≥紧靠P2并max行)时,,作即用 为两台吊车的最不利轮压位置。
用在左因右为两吊侧车的轮吊压车Pma梁x和上P,min当同一时侧出柱现由,P且ma分x产别生作最 大竖向荷载标准值时,另一侧柱则相应地由Pmin产 生最小竖向荷载标准值Dmink,由影响线可得吊车 竖向荷载的设计值计算公式:
式中
a 腹板横向加劲肋的间距,可取a hw 2hw k 腹板在纯剪切荷载作用下的屈曲系数,
当不设中间加劲肋时取为5.34。
3、腹板的有效宽度
当工字形截面梁、柱构件的腹板受弯及受压板幅利 用屈曲后强度时,应按有效宽度计算其截面几何 特性。有效宽度取为:
腹板全部受压 he hw 腹板部分受拉 he hc 式中:he—腹板受压区有效宽度。
Ns V 0.9hwtw cr
0.8w 1.25时, cr 1 0.8w 0.8 fv

w
1.25时,
cr

fv
/ 2w
式中
Ns — 拉力场产生的压力;
cr — 利用拉力场时腹板的屈曲剪应力; w — 参数,参考前面公式。
加劲肋稳定性验算按GB50017规定进行,计算长度取腹板
工字形截面构件腹板的受剪板幅,当腹板的高度变化不超过 60mm/m时,其抗剪承载力设计值可按下列公式计算:
其中:
Vd
hwtw
f
' v
当w 0.8时 当0.8 w 1.4时 当w 1.4时
式中
f
' v

fv
f
' v

[1

第六章荷载组合及最不利内力确定

第六章荷载组合及最不利内力确定

第六章 荷载组合及最不利内力确定6.1 基本组合公式6.1.1框架梁内力组合公式(1)梁端负弯矩组合: ①1.350.7 1.4GK QK M M +⨯②1.2 1.0 1.40.6 1.4GK QK WK M M M +⨯+⨯ ③1.20.7 1.4 1.0 1.4GK QK WK M M M +⨯+⨯ ④1.2 1.3GE EhK M M + (2)梁端正弯矩组合公式: ⑤1.0 1.0 1.4GK WK M M +⨯⑥1.0 1.3GE EhK M M +(3)梁跨中正弯矩组合公式: ⑦1.350.7 1.4GK QK M M +⨯⑧1.2 1.0 1.40.6 1.4GK QK WK M M M +⨯+⨯ ⑨1.20.7 1.4 1.0 1.4GK QK WK M M M +⨯+⨯ ⑩1.2 1.3GE EhK M M + (4)梁端剪力组合公式: 11) 1.350.7 1.4GK QK V V +⨯12) 1.2 1.0 1.40.6 1.4GK QK WK V V V +⨯+⨯ 13) 1.20.7 1.4 1.0 1.4GK QK WK V V V +⨯+⨯ 14) 1.2 1.3GE EhK V V +6.1.2框架柱内力组合公式(1)框架柱max M 组合公式: ①1.2 1.0 1.40.6 1.4GK QK WK M M M +⨯+⨯ ②1.20.7 1.4 1.0 1.4GK QK WK M M M +⨯+⨯ ③1.2 1.3GE EhK M M +(2)框架柱max N 组合公式: ④1.350.7 1.4GK QK N N +⨯⑤1.2 1.0 1.40.6 1.4GK QK WK N N N +⨯+⨯ ⑥1.20.7 1.4 1.0 1.4GK QK WK N N N +⨯+⨯ ⑦1.2 1.3GE EhK N N + (3)框架柱min N 组合公式: ⑧1.0 1.0 1.4GK WK N N +⨯⑨1.0 1.3GE EhK N N +6.2 梁的内力组合6.2.1梁端弯矩的调幅说明:考虑抗震需要,梁端应该先于柱端出现塑性绞,故对于竖向荷载下的梁端负弯矩进行调幅,调幅系数为0.8,并相应地增大跨中弯矩。

混凝土结构及砌体结构设计(五版)思考题及技术题答案

混凝土结构及砌体结构设计(五版)思考题及技术题答案

混凝土结构与砌体结构设计中册(第四版) 十一章思考题答案12.1单层厂房排架结构中,哪些构件是主要承重构件?单层厂房中的支撑分几类?支撑的主要作用是什么? 答:主要承重构件有:屋盖结构、吊车梁、排架柱、抗风柱、基础梁、基础单层厂房中的支撑:屋架间垂直支撑、横向、纵向水平支撑以及天窗架支撑和柱间支撑支撑的主要作用是:增强空间刚度及稳定性,传递风荷载和水平吊车荷载。

2.2排架内力分析的目的是什么?排架内力分析的步骤是怎样的?排架内力分析的目的是:为了获得排架柱在各种荷载作用下,控制截面的最不利内力,作为设计柱的依据;同时,柱底截面的最不利内力,也是设计基础的依据,并绘制出排架柱的弯矩图、轴力图及剪力图(M图、N图及V图)。

排架内力分析的步骤是:等高排架在水平荷载作用下的内力分析方法采用剪力分配法,步骤如下:(1)在柱顶水平集中力F作用下等高排架在柱顶作用一水平集中力F,在F作用下,柱顶产生水平位移。

沿柱顶将横梁与柱切开,在切口处代之一对剪力,如图2-4-16(b)所示。

取横梁为脱离体,由平衡条件有:又知,在单位水平力F=1作用下,柱顶水平侧移为。

反之要使柱顶产生单位水平位移即u =1,则需在柱顶施加的水平集中力。

如图2-4-17所示。

对于相同材料的柱,柱越粗,所需的越大,即所需施加的水平力越大。

反映了柱子抵抗侧移的能力,故称为柱子的抗侧刚度。

切开后的排架拄顶作用有水平力,在作用下产生柱顶位移为,根据上面分析可得等高排架,当各跨横梁EA时,有:将(2)、(3)式代入(1)式,得:由此可得:将(5)式代回(2)式得:式中称为第i根柱的剪力分配系数,它等于i柱的抗侧刚度与整个排架柱总的杭侧刚度的比值,且。

值可按附图1计算,由可求出分配系数,从而求出各柱顶剪力,最后按静定悬臂柱求出在已知作用下的柱截面内力。

附图1由此可见,剪力分配法就是将作用在顶部的水平集中力F按抗侧刚度分配给各柱,再按静定悬臂柱求解柱子内力的方法。

框架钢结构内力组合

框架钢结构内力组合

77框架钢结构内力组合根据《建筑结构荷载规范》进行内力组合,考虑如下可能的组合方式: 1)可变荷载控制的组合:2) 永久荷载控制的组合:3)抗震组合:(选取最不利内力组合时考虑抗震调整系数0.75) 控制界面及最不利内力组合:对梁而言,控制界面在梁梁端和跨中,最不利内力组合为梁端最大正弯矩和最大负弯矩以及最大剪力,跨中的最大正弯矩。

柱为偏压构件,控制界面为柱的两端。

大偏压时弯矩越大越不利,小偏压时轴力越大越不利,考虑如下四种情况:(1) 及相应的N 、V ; (2) 及相应的M 、V ; (3) 及相应的M 、V ; (4)比较大或都较小。

梁内力组合如表6-1:由于本结构所选用的梁的尺寸都一样,故仅需验算受力较大的梁。

由以上的弯矩图可知本结构第一层的梁在各种荷载作用下受力最大,故仅需验算第一层的梁即可。

柱内力组合如表6-2:柱尺寸一层与二、三、四层尺寸不同,而三、四层柱与二层柱相比,二层受力大于三、四层柱,故仅需验算一层和二层柱即可。

梁截面内力恒载活载风载地震荷载A C 跨A端M-171.311-50.86810.462(-10.462)220.86(-220.86)-268.00(-285.57)-240.78(-270.07)-281.1238.27(-408.97) V115.3531.54-2.261(2.261)-48.243(48.243)180.70(184.48)166.21(172.49)186.6370.97(168.66)跨中M132.4138.560.738(-0.738)-12.357(12.357)213.50(212.26)197.71(195.65)216.54124.47(149.50) V-38.99-12.46-2.261(2.261)-48.243(48.243)-66.13(-62.33)-62.16(-55.83)-64.85-87.73(9.96)C端M-214.526-60.765-8.758(8.758)-189.207(189.207)-349.86(-335.15)-329.24(-304.72)-349.16-404.89(-21.75)7777(13.23 7) (283.3 3)V -75.88-19.54-3.794(3.794)-81.551(81.551)-121.60(-115.23)-104.89(-121.59)-121.59-156.60(8.54)(注:括号中的力为反方向的风荷载或地震荷载)表6-2.1 底层柱内力组合柱截面内力恒载活载风载地震荷载A 柱柱顶M86.15127.044-6.386(6.386)-108.18(108.18)135.88(146.61)120.94(132.65)142.81-15.77(195.18) N893.84203.48-5.591(5.591)-142.086(142.086)1352.78(1362.18)1264.19(1224.17)1406.09757.49(1034.56) V25.988.2-5.20(5.20)-106.6(106.6)38.29(47.02)31.93(45.60)43.11-76.86(131.01)777777底 4 (-19.371) (-423.60)(13.10) (-0.17) (394.25)N 757.82154.53-9.309(9.309)-236.421(236.421)1117.91(1133.55)1047.79(1031.99)1174.50521.07(982.09)V -10.98-3.30-5.60(5.60)-114.9(114.9)-22.5(-13.09)-24.25(-6.25)-18.06-123.39(100.66)(注:括号中的力为反方向的风荷载或地震荷载)柱截面内力恒载活载风载地震荷载A 柱柱顶M87.27727.386-5.865(5.865)-137.72(137.72)138.15(148.00)123.36(139.78)144.66-43.40(225.15) N647.40149.24-3.330(3.330)-93.843(93.843)983.02(988.61)918.47(927.80)1020.25558.32(741.31)777777(注:括号中的力为反方向的风荷载或地震荷载)77根据内力组合结果,选取结构最不利内力组合如下表:77。

【土木毕设】横梁内力组合_内力组合最不利表

【土木毕设】横梁内力组合_内力组合最不利表
138.9 231.19 68.48 277.84
138.9 231.19 69.48 277.84
132.14 266.76 53.43 271.5
Nmax 78.46 287.68 45.99 340.17
69.16 268.95 40.72 321.44
69.16 268.95 40.72 321.44
1633.46 1633.46 1023.66
181.33 181.33 35.59
1680.12 1680.12 1521.48
258.49 1605.26 216.59 1651.92
31.69 1841.58 32.17 1894.06
205.66 1518.53 163.17 1565.18
内力种类
M N M N V M N M N V M N M N V M N M N V
内力种类
Mmax N
166.59 909.63 120.87 956.29
M Nmax 35.49 919.04 120.87 956.29
M Nmin 107.76 664.74 62.03 711.39
197.59 907.42 140.53 954.08
31.59 1402.98 136.8 1248.64
225.9 1254.58 189.63 1301.24
225.9 1254.58 31.64 1500.91
31.59 1402.97 136.8 1248.64
189.27 1261.06 160.2 1307.7
189.27 1261.06 160.2 1307.7
截面 上端 下端
上端 下端
上端 下端
上端 下端

活荷载的最不利位置

活荷载的最不利位置
活荷载的最不利位置
①荷载的最不利组合 对于多跨连续梁,永久荷载必须每跨满布,可变荷 载往往不是满布于梁上时出现最大内力,因此需要研究 可变荷载作用的位置对连续梁内力的位置的布置原则(7.1.9图◆):
●如求某跨跨中截面最大正弯矩时,除应在该跨布
置活荷载外,还应在其左,右每隔一跨布置活荷载。
●如求各中间支座最大负弯矩时,除应在该支座左 右两跨布置活荷载外,还应每隔一跨布置活荷载。
返回
返回
② 内力计算 活荷载的最不利位置确定后,对等跨度(或跨度差≤10%) 的连续梁,即可直接应用表格查得在恒载和各种活荷载作用 下梁的内力系数,并按下列公式求出梁有关截面的弯矩M 和 剪力V: 均布荷载作用时 M=K1g l 02+K2q l02 ( 7.1.1) V=K3g l 0+K4q l 0 (7.1.2) 集中荷载作用时 M=K1G l 0+K2Ql0 (7.1.3) V =K3 G +K4 Q ( 7.1.4) 式中 g 、q ——单位长度上的均布恒荷载及活荷载; G、Q —— 集中恒荷载及活荷载; K1~K4 —— 内力系数,按附录3查取; l 0 —— 梁的计算跨度。
谢谢
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M Nmin 107.76 664.74 62.03 711.39 144.75 881.92 87.7 928.57 144.75 881.91 87.7 928.57 107.76 664.74 111.44 711.39
上端 D5D4 5 上端 E5E4 下端 下端
上端 F5F4 下端
层次
杆件
C5C4
下端
Mmax N 166.59 909.63 120.87 956.29 197.59 907.42 140.53 954.08 197.59 907.42 140.53 954.08 166.59 909.63 111.44 711.39
M Nmax 35.49 919.04 120.87 956.29 31.69 1055.26 31.65 1107.75 31.69 1055.26 31.69 1107.75 35.49 919.04 20.1 971.53
上端 D3D2 3 上端 E3E2 下端 下端
上端 F3F2 下端
层次
杆件
截面 上端
B4C3
下端
最不利内力组合 Mmax M M N Nmax Nmin 189.27 189.27 35.7 1261.04 1261.04 1140.87 160.27 160.27 101.36 1307.69 1307.69 901.36 225.9 1254.58 189.63 1301.24 225.9 1254.58 189.63 1301.24 189.27 1261.06 160.2 1307.7 225.9 1254.58 31.69 1500.91 225.9 1254.58 31.64 1500.91 189.27 1261.06 160.2 1307.7 31.59 1402.98 136.8 1248.64 35.49 1234.73 101.36 901.37
上端 D3D2 3 上端 E3E2 下端 下端
上端 F3F2 下端
层次
杆件
截面 上端
内力种类 M N M N V M N M N V M N M N V M N M N V 内力种类 M N M N V M N M N V M N M N V M N M N V 内力种类
C3C2
下端
最不利内力组合 Mmax M M N Nmax Nmin 215.37 215.37 156.53 1633.46 1633.46 1023.66 181.33 181.33 35.59 1680.12 1680.12 1521.48 258.49 1605.26 216.59 1651.92 258.49 1605.26 216.59 1651.92 215.37 1633.47 181.33 1680.13 31.69 1841.58 32.17 1894.06 31.69 1841.58 32.17 1894.06 215.37 1633.47 181.33 1680.13 205.66 1518.53 163.17 1565.18 205.66 1518.53 163.17 1565.18 35.7 1474.82 122.95 1070.32
上端 C4D3 4 上端 E4E3 下端 下端
上端 F4F3 下端
最不利内力组合 层次 杆件 截面
层次
杆件
截面 上端
内力种类 M N M N V M N M N V M N M N V M N M N V 内力种类 M N M N V M N M N V M N M N V M N M N V 内力种类
框架柱内力组合最不利内力组合
层次
杆件
截面 上端
内力种类 M N M N V M N M N V M N M N V M N M N V 内力种类 M N M N V M N M N V M N M N V M N M N V
B1B0
下端
最不利内力组合 Mmax M M N Nmax Nmin 179.74 179.74 27.55 2333.32 2333.32 2117.18 376.64 376.64 11.57 2392.28 2392.28 2185.52 191.43 2162.52 414.89 2221.5 20.8 2460.73 414.89 2221.5 179.74 2333.32 376.64 2392.28 20.8 2460.72 10.39 2527.07 191.43 2162.53 10.39 2527.07 179.74 2333.32 376.64 2392.28 20.73 2395.63 10.36 2454.59 20.73 2395.63 10.36 2354.59 27.55 2117.18 11.57 2183.52
截面 上端
C6C5
下端
最不利内力组合 Mmax M M N Nmax Nmin 122.67 28.97 29.5 577.79 603.36 575 82.63 35.49 23.79 624.45 655.85 501.86 146.08 571.33 92.84 617.71 146.08 571.33 92.84 617.71 122.67 577.79 82.63 624.45 146.08 571.33 31.69 714.27 27.53 662.09 31.69 714.27 28.97 603.36 35.49 655.85 100.64 550.76 40 597.14 100.64 550.76 40 597.14 75.01 455.2 23.79 501.86
上端 C1C0 1 上端 D1D0 下端 下端
上端 E1E0 下端
层次
杆件
截面 上端
C3C2
下端
最不利内力组合 Mmax M M N Nmax Nmin 215.37 215.37 156.53 1633.46 1633.46 1023.66 181.33 181.33 35.59 1680.12 1680.12 1521.48 258.49 1605.26 216.59 1651.92 258.49 1605.26 216.59 1651.92 215.37 1633.47 181.33 1680.13 31.69 1841.58 32.17 1894.06 31.69 1841.58 32.17 1894.06 215.37 1633.47 181.33 1680.13 205.66 1518.53 163.17 1565.18 205.66 1518.53 163.17 1565.18 35.7 1474.82 122.95 1070.32
相关文档
最新文档