数学建模-模糊综合评判

合集下载

数学建模优秀论文基于层次分析法的模糊综合评价模型

数学建模优秀论文基于层次分析法的模糊综合评价模型

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):广东金融学院参赛队员(打印并签名) :1. 曾彬2. 曾庆达3. 陈佳玲指导教师或指导教师组负责人(打印并签名):日期: 2013 年8 月 22日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):高校学生评教系统改进的研究摘要本文是研究关于高等学校学生评价教师的评价系统问题,用层次分析法确定了十项指标的权值,并给出了一个新的评教分数的计分模型-模糊综合评价模型。

本文亮点在于采用基于层次分析法的模糊数学模型。

首先,建立层次分析模型,充分考虑每个指标对综合评价的贡献,并把贡献按权值进行分配;通过层次分析法中的归一化处理,得到两两指标间的相对重要性的定量描述,从而解决不同指标间的差异。

其次建立模糊综合评教模型,输入一组专家(同学)的模糊评价,通过最大隶属度原则把模糊评价输出为综合评价。

最后本文在难易程度不同的课程下(在专业必修课,专业选修课,公共选修课下进行评价),得出同一教师的综合评价,发现其在不同课程下的综合评价均相同。

于是得出结论,该模型的确能解决不同课程难易程度带来的对总体评教的影响。

因为一个教师的综合教学质量并不应该在不同的课程下得到变化较大的评教。

模糊综合评价法讲解

模糊综合评价法讲解
B1=(0.5,0.2,0.14,0.14,0.14) B2=(0.2,0.2,0.5,0.14,0.14) 归一化(即将每分量初一分量总和),得
B1=(0.46,0.18,0.12,0.12,0.12) B2=(0.17,0.17,0.42,0.12,0.12) 若规定评价“好”“较好”要占50%以上才可晋升, 则此教师晋升为教学型教授,不可晋升为科研型教
是由一个指标实际值来刻画,因此从这个角度讲,
模糊综合评价要求更多的信息),ri 称为单因素评
价矩阵,可以看作是因素集U和评价集V之间的一种 模糊关系,即影响因素与评价对象之间的“合理关
系”。
在确定隶属关系时,通常是由专家或与评价问题 相关的专业人员依据评判等级对评价对象进行打分
,然后统计打分结果,然后可以根据绝对值减数法
1.80 1.93 0.87 1.12 1.21 0.87 0.89 2.52 0.81 0.82 1.01
A=(0.2,0.3,0.5)
专家评价结果表
由上表,可得甲、乙、丙三个项目各自 的评价矩阵P、Q、R:
0.7 0.2 0.1 P 0.1 0.2 0.7
0.3 0.6 0.1
0.3 0.6 0.1 Q 1 0 0
0.7 0.3 0
0.1 0.4 0.5 R 1 0 0
0.1 0.3 0.6
例3:“晋升”的数学模型,以高校教师晋 升教授为例
因素集:
U={政治表现及工作态度,教学水平,科 研水平,外语水平};
评判集:
V={好,较好,一般,较差,差};
(1)建立模糊综合评判矩阵
当学科评审组的每个成员对评判的对象进 行评价,假定学科评审组由7人组成,用打分 或投票的方法表明各自的评价

数学建模模糊综合评判

数学建模模糊综合评判
下面以电脑评判为例来说明如何评价。
某同学想购买一台电脑,他关心电脑的以下几个指标: “运算功能(数值、图形等)”;“存储容量(内、外 存)”;“运行速度(CPU、主板等)”;“外设配置(网 卡、多媒体部件等)”;”价格”。
于是请同宿舍几个同学一起去买电脑。
为了数学处理简单,先令
u1 =“运算功能(数值、图形等)”;
0.1 0.3 0.5 0.1
(0.1
0.1
0.3
0.15
0.35)
0.0
0.4
0.5
0.1
0.0 0.1 0.6 0.3
0.5
0.3
0.2
0.0
((0.1 0.2) (0.1 0.1) (0.3 0.0) (0.15 0.0) (0.35 0.5),
(0.1 0.5) (0.1 0.3) (0.3 0.4) (0.15 0.1) (0.35 0.3),
u2 =“存储容量(内、外存)”; u3 =“运行速度(CPU、主板等)”; u4 =“外设配置(网卡、调制调解器、多媒体部件等)”; u5 =“价格”。
称 U {u1, u2 , u3, u4 , u5} 因素集。
评语集 V {v1, v2 , v3, v4} 其中
v1 =“很受欢迎”; v2 =“较受欢迎”;v3 =“不太受欢迎”; v4 =“不受欢迎”;
0.0 0.1 0.6 0.3
0.5
0.3
0.2
0.0
运算功能 存储容量 运行速度 外设配置 价格
对微机的要求是:工作速度快,外设配置较齐全,价格便 宜,而பைடு நூலகம்运算和存储量则要求不高。于是得各因素的权重 分配向量:A (0.1,0.1,0.3,0.15,0.35)

数学建模模糊综合评价法

数学建模模糊综合评价法

数学建模模糊综合评价法哎呀,今天小智就来给大家聊聊一个有趣的话题——数学建模模糊综合评价法。

这个方法可是在解决各种实际问题时,给我们提供了很多便利哦!那我们就一起来看看吧,这个方法到底是怎么工作的呢?我们要明白,模糊综合评价法是一种处理不确定性信息的方法。

在现实生活中,我们经常会遇到一些难以量化的因素,比如一个人的品质、一个产品的性能等等。

这些因素都是相互关联、相互影响的,很难用一个简单的分数或者数值来表示。

而模糊综合评价法则是通过对这些因素进行模糊化处理,然后通过一定的计算方法,得出一个综合评价结果。

那么,这个方法是怎么实现的呢?其实,我们可以把它分成两个部分来看:一是模糊化处理,二是综合评价。

1. 模糊化处理我们需要对那些难以量化的因素进行模糊化处理。

这就像是把一张照片变成一幅水墨画一样,让我们能够看到事物的本质,而不是仅仅看到表面现象。

模糊化处理的方法有很多,比如德尔菲法、层次分析法等等。

这些方法都是通过对因素进行分类、划分等级,然后根据一定的权重来进行模糊化处理。

2. 综合评价接下来,我们要对模糊化处理后的结果进行综合评价。

这个过程就像是我们在选美比赛中,要根据选手的外貌、才艺、气质等多方面因素来评选出最终的冠军。

综合评价的方法也有很多,比如加权平均法、主成分分析法等等。

这些方法都是通过对模糊化处理后的结果进行加权求和或者提取主要成分,从而得到一个综合评价结果。

好了,现在我们已经知道了模糊综合评价法的基本原理。

那么,它在实际生活中有哪些应用呢?其实,这个方法在各个领域都有广泛的应用。

比如在企业管理中,我们可以通过模糊综合评价法来评估员工的工作绩效;在城市规划中,我们可以通过模糊综合评价法来评估一个区域的发展潜力;在教育评价中,我们可以通过模糊综合评价法来评估一个学生的能力等等。

当然啦,这个方法也有它的局限性。

比如在某些情况下,模糊综合评价法可能会受到数据量的影响;另外,这个方法也不能完全消除不确定性信息的干扰。

数学建模模糊综合评价法

数学建模模糊综合评价法

数学建模模糊综合评价法1. 什么是模糊综合评价法?好啦,今天咱们聊聊一个听起来复杂,但其实挺有意思的话题——模糊综合评价法。

别担心,不会让你脑袋里冒烟的。

其实,模糊综合评价法就像一个超级聪明的评委,专门用来评判那些不那么明确的事情。

比如,假设你想评估一个产品的质量,单靠“好”或“不好”这两个词,太简单了吧?这时候,模糊综合评价法就能派上用场了!想象一下,如果你要评价一部电影,除了“好看”和“难看”,你可能会考虑“剧情”、“演技”、“音乐”、“特效”等等。

而每一项评价可能还有不同的分数,像是“非常好”、“一般”、“差不多”等等。

模糊综合评价法就像给你一张多维度的评分表,让你全面而又细致地评估一件事情,省得你像那种一口气就咽下去的面条,吞得太快,咽不下去还得拉肚子。

2. 模糊综合评价法的基本步骤2.1 确定评价指标首先,我们得确定评价指标。

就像你要做一道美味的菜,必须先想好要用哪些食材。

比如说,如果你在评价一款手机,可能会考虑“屏幕清晰度”、“电池续航”、“拍照效果”等等。

每个指标就像是你挑选的食材,每个食材的好坏都会影响到最后的菜肴。

2.2 建立评价模型接下来,就是建立评价模型。

这里的模型有点像是咱们的食谱,得把所有的指标按照一定的规则组合在一起。

你可以根据每个指标的重要性来加权,也就是说,有些食材比其他的更重要。

比如,电池续航对一个经常出门的人来说,肯定比音质重要。

然后,你把每个指标的评分汇总,算出一个总分。

简单说,就是给每个食材加点调料,让整道菜更有味道。

3. 实际应用案例3.1 选学校说到这里,咱们不妨举个例子,比如说你想给孩子选个学校。

光看排名可不够,你还得考虑学校的师资力量、校园环境、课外活动、家长评价等等。

这时候,模糊综合评价法就像是你的一个小助手,帮你把这些看似杂乱无章的信息整理成一张清晰的图。

你可以给每个学校的这些指标打分,最终找出一个最适合你孩子的学校。

3.2 企业评估再比如,在企业管理中,模糊综合评价法也大显身手。

旅游业中模糊综合评判的数学模型(1)

旅游业中模糊综合评判的数学模型(1)

旅游业中模糊综合评判的数学模型随着旅游业的发展,对旅游目的地的综合评价变得越来越重要。

为了能够对旅游目的地进行综合评估,需要使用数学模型来量化和比较不同目的地的综合性能。

本文将介绍旅游业中常用的模糊综合评判的数学模型。

一、模糊综合评判模糊综合评判是一种把多个指标进行组合并综合评估的方法。

该方法可以将各种不同的指标进行汇总,形成一个总体分数来对不同的目的地进行综合评估。

在模糊综合评判中,有两个步骤:模糊化和综合评判。

模糊化是将各种不同的指标以模糊数的方式进行表达,即将指标的值从一个确定的数值转化为一个模糊的语言值。

接下来,使用模糊综合评判方法对这些模糊语言值进行评估和组合。

在评估和组合过程中,需要考虑每个指标的重要性、尺度级别以及指标间的相关性。

最终,得出的综合分数将决定目的地的综合性能。

二、数学模型在模糊综合评判中,需要使用数学模型来处理和计算指标的模糊语言值。

常用的数学模型包括层次分析法、模糊数学和灰色关联理论等。

以下是其中两个常用的数学模型:1. 层次分析法层次分析法 (AHP) 是一种决策分析方法,广泛用于多目标决策问题的评价。

在旅游业中,该方法被用于评价旅游目的地。

AHP 方法可以将多个指标划分为不同的层次,并分别分配不同的权重,从而得出一个综合分数。

采用 AHP 方法时,需要进行以下步骤:(1) 确定指标首先需要确定用于评估旅游目的地的所有指标,并将其组织成结构层次。

(2) 设计问卷设计问卷,让每个评估者对每个指标进行打分,并且计算每个指标对每个层次的权重。

(3) 构建判断矩阵将问卷结果用判断矩阵的形式展现出来,用矩阵来比较各个指标间的相对权重。

(4) 计算权重通过层次分析法的计算公式,计算每个指标对总体分数的权重。

(5) 综合评估按照权重计算出每个目的地的综合得分。

2. 模糊数学模糊数学是一种处理模糊信息和不确定性的数学方法。

在旅游业中,该方法被用于评价旅游目的地。

模糊数学可以将每个指标的数值表示为模糊数,即一个数不是精确的,而是在一个数值集合内波动。

数学建模-模糊数学

数学建模-模糊数学

取论域U={全岛刮胡子的人},
集合A={不给自己刮胡子的人},用特征函数刻画为

A
(某人 )

1, 0,
某人不给自己刮胡子 某人给自己刮胡子
问题:显然理发师 U ,那么理发师是否属于A?
模糊集合及其运算
二、模糊集合及其运算 美国控制论专家Zadeh教授正视了经典集合描述的
“非此即彼”的清晰现象,提示了现实生活中的绝大多数 概念并非都是“非此即彼”那么简单,而概念的差异常以 中介过渡的形式出现,表现为“亦此亦彼”的模糊现象。 基于此,1965年, Zadeh教授在《Information and Control》杂志上发表了一篇开创性论文“Fuzzy Sets”, 标志着模糊数学的诞生。
1 0.4 0.8 0.5 0.5 0.4 1 0.4 0.4 0.4
R 0.8 0.4 1 0.5 0.5


0.5 0.4 0.5 1 0.6
0.5 0.4 0.5 0.6 1
当 1时,分类为{ x1},{ x2 },{ x3 },{ x4 },{ x5 };
模糊聚类分析
例:设有模糊相似矩阵
1 0.1 0.2 R 0.1 1 0.3
0.2 0.3 1
1 0.2 0.2
R

R


0.2
1
0.3

R2
0.2 0.3 1
R2

R2

1 0.2
0.2 1
0.2 0.3

R2

t ( R).
在实际问题中,不同的数据一般有不同 的量纲,为了使有不同量纲的量能进行比较, 需要将数据规格化,常用的方法有:

模糊综合评判与模糊决策

模糊综合评判与模糊决策

华中农业大学建模基地
数学建模之模糊篇
因素集
评 判 集
华中农业大学建模基地
数学建模之模糊篇
华中农业大学建模基地
数学建模之模糊篇
华中农业大学建模基地
数学建模之模糊篇
三、多级模糊综合评判(以二级为例) 对高等学校的评估可以考虑如下方面
校风 师资队伍 教学 教学设施 学生质量 高等学校 科研 图书馆 后勤
单因素评判矩阵为 0.36 0.24 0.13 0.27 R1 0.20 0.32 0.25 0.23 0.40 0.22 0.26 0.12 作一级模糊综合评判,得
B1 A1 R1 (0.3,0.32,0.26,0.27)
其中 取模型M ( , )计算,下同。
教师评价等级若为1,2,3,4级,
1 0.2 2 0.5 3 0.3 4 0.1 v 2.27 可评价较好 0.2 0.5 0.3 0.1
华中农业大学建模基地
数学建模之模糊篇
广义合成运算的综合评价模型
B A R
以上计算称为综合评价的正问题。 根据运算 的不同定义,可得到以下不同模型。
模型Ⅳ
M ( , )-取小上界和型
b j min{1, (ai rij )} ( j 1,2,, m );
i 1
n
在使用此模型时, 需要注意的是: 各个 ai 不能取得偏大, 否则可能出现 b j 均等于 1 的情形; 各个 ai 也不能取得太 小,否则可能出现 b j 均等于各个 ai 之和的情形,这将使 单因素评判的有关信息丢失。
u1 , u2 ,, u9 确定,产品的级别分为一级、二级、等外、

模糊综合评价法数学建模

模糊综合评价法数学建模

模糊综合评价法数学建模在这篇文章里,我们将聊聊“模糊综合评价法”这种听起来挺高大上的数学建模方法。

别担心,我们会用最简单的语言,让它变得像聊天一样轻松。

准备好了吗?那就一起往下看吧!1. 什么是模糊综合评价法?好,首先咱们得明白模糊综合评价法到底是个啥。

简单来说,它是一种处理那些不太确定、模糊不清的数据的工具。

打个比方吧,就像你在选择一部新手机时,可能会考虑多个方面:价格、性能、外观、品牌等。

可是这些方面有时候很难量化,模糊综合评价法就是用来帮你把这些“模糊”的因素综合起来,从而做出一个比较合理的决策。

1.1 基本概念模糊综合评价法的核心在于“模糊”。

什么是模糊?就是那些不完全确定的东西。

比如,今天你觉得这个手机的外观“很不错”,但并没有具体到说“好到什么程度”。

这种感觉就属于模糊的范围。

模糊综合评价法通过一些数学技巧,把这些模糊的感觉变成一个可以分析的结果。

1.2 应用场景这种方法在许多地方都能用上,比如在评估公司员工的绩效、选择投资项目、甚至在一些医学领域的决策中。

它特别适合那些信息不完全、评价标准多样化的情况。

可以说,模糊综合评价法就像一个能把复杂情况简化的超级工具。

2. 模糊综合评价法的步骤接下来,我们来看一下使用模糊综合评价法的具体步骤。

虽然步骤听起来有点复杂,但其实也没那么难搞。

2.1 确定评价指标首先,你得列出所有需要考虑的评价指标。

以选手机为例,可能包括价格、性能、外观、品牌等。

这里的每一个指标都是用来帮助你做出决策的关键因素。

2.2 建立模糊评价矩阵接下来,咱们就要建立一个模糊评价矩阵。

这个矩阵就是把每个指标的“模糊感”转化为一个可以处理的数据形式。

例如,你可以把“外观好”转化为一个模糊数值,像“7分”,然后在评价矩阵中填上这些数值。

2.3 综合评价最后一步就是综合这些模糊数据。

你需要把所有的模糊数值综合在一起,得出一个总的评价结果。

这一步有点像拼图,把各个小部分都拼在一起,最终你会得到一个清晰的总体评价。

数学建模——模糊评价

数学建模——模糊评价

运算功能 存储容量 运行速度 外设配置 价格
(6)做合成运算,并做归一处理。
B A R
表示矩阵的合成运算,一般做法
有两种,一种是按照矩阵乘法来做; 一种是“取小再取大”法。

表示“取小” 表示“取大”
0.2 0.1 0.0 (0.1 0.1 0.3 0.15 0.35) 0.0 0.5
0 0 .3 0 .1 0 0.2 0.6 0.1 0 . 2 0 .5 0 . 2 0 . 5 0 .1
清楚易懂 教材熟练 生动有趣 板书整洁
(5)做合成运算,并归一化处理:
B A R
~李 ~
~李
0.4 0.5 0.1 0 0.6 0.3 0.1 0 (0.5, 0.2, 0.2, 0.1) 0.1 0.2 0.6 0.1 0.1 0.2 0.5 0.2 [(0.5 0.4) (0.2 0.6) (0.2 0.1) (0.1 0.1), (0.5 0.5) (0.2 0.3) (0.2 0.2) (0.1 0.2), (0.5 0.1) (0.2 0.1) (0.2 0.6) (0.1 0.5), (0.5 0) (0.2 0) (0.2 0.1) (0.1 0.2)] (0.4, 0.5, 0.2, 0.1) 归一化:
模糊综合评价法


模糊数学是研究什么的?
模糊现象:“亦此亦彼”的不分明现象
模糊数学——研究和揭示模糊现 象的定量处理方法。
用数学的眼光看世界,可把我们身边的现象划分为: 1.确定性现象:如水加温到100oC就沸腾,这种现象的规律 性靠经典数学去刻画; 2.随机现象:如掷筛子,观看那一面向上,这种现象的规律 性靠概率统计去刻画; 3.模糊现象:如 “今天天气很热”,“小伙子很帅”,…等等。 此话准确吗?有多大的水分?靠模糊数学去刻画。模糊数学是

数学建模优秀讲座-模糊综合评价基础与入门

数学建模优秀讲座-模糊综合评价基础与入门

0.3,
0.3,
0.1
0.3, 0.4, 0.2, 0.1
为了更好地理解和解释评价的结果,我们一般会
把评价结果进行归一化:
B' b1' , b2' ,..., bm'
1
m
b1,b2 ,..., bm
bi
i 1
B’表示最终的评价结果,bi' 表示为评价对象属于第i个评语 的百分比。
将上述所得的式子进行归一化处理:
0.5 , 0.3 , 0.3 , 0.2 0.38,0.25,0.25,0.12
1.3 1.3 1.3 1.3
它表示持权重A的顾客对这种服装的评价为: “很喜欢”的程度是38%,“较喜欢”的程度是25%, “不太喜欢”的程度是25%,“不喜欢”的程度是12%。 所以,我们根据最大隶属度原则,得出结论顾客对某件 衣服应该是“很喜欢”。
0.06,
0.3,
0.4,
0.15,
0.09,
0
0.056,
0.251,
0.345,
0.227,
0.105,
0.016
0, 0.23, 0.37, 0.26, 0.12, 0.02
将结果归一化处理:
0.056 , 0.251 , 0.345 , 0.227 , 0.105 , 0.016 0.056,0.251,0.345,0.227 ,0.105,0.016
隶属度:表示在模糊集合中每一个元素u属于模糊集合 A 的隶
属程度,记作 uA (u)。U可在[0,1]区间连续取值
例:年龄20岁,30岁,40岁与“年轻”的模糊界限之间的隶
属度
可以分别是1,0.6,0.3;

数学建模——模糊数学方法

数学建模——模糊数学方法

• 模糊矩阵的λ-截矩阵
设A = (aij)m×n,对任意的∈[0, 1],称 A= (aij())m×n,为模糊矩阵A的 - 截矩阵, 其中
当aij≥ 时,aij() =1; 当aij< 时,aij() =0. 显然,A的 - 截矩阵为布尔矩阵.
1 0.5 0.2 0
1 1 0 0
A
0.5 0.2 0
还可用向量表示法 A=(0,0.2,0.4,0.6,0.8,1)
•模糊集的运算
相等:A = B A(x) = B(x); 包含:AB A(x)≤B(x); 并:A∪B的隶属函数为
(A∪B)(x)=A(x)∨B(x); 交:A∩B的隶属函数为
(A∩B)(x)=A(x)∧B(x); 余:Ac的隶属函数为
(0.3, 0.5, 0.2 , 0) 同样对声音有:0.4, 0.3, 0.2 , 0.1) 对价格为: (0.1, 0.1, 0.3 , 0.5) 所以有模糊评价矩阵:
0.3 0.5 0.2 0 P 0.4 0.3 0.2 0.1
0.1 0.1 0.3 0.5
设三个指标的权系数向量: A ={图像评价,声音评价,价格评价} =(0.5, 0.3, 0.2)
B=A⊙P(其中⊙为模糊乘法),根据运算⊙的 不同定义,可得到不同的模型
模型1 M(Λ,V)——主因素决定型
bj max{( ai pij ) |1 i n}( j 1,2,, n)
模型2 M(٠,ν)——主因素突出型
bj max{(ai pi j )1 i n}( j 1,2,, m)
例4: 利用模糊综合评判对20加制药厂经 济效益的好坏进行排序
因素集:
U={u1,u2,u3,u4}为反映企业经济效益的主 要指标

数学建模模糊综合评价法

数学建模模糊综合评价法

学科评价模型(模糊综合评价法)摘要:该模型研究的是某高校学科的评价的问题,基于所给的学科统计数据作出综合分析。

基于此对未来学科的发展提供理论上的依据。

对于问题1、采用层次分析法,通过建立对比矩阵,得出影响评价值各因素的所占的权重。

然后将各因素值进行标准化。

在可共度的基础上求出所对应学科的评价值,最后确定学科的综合排名。

(将问题1中的部分结果进行阐述)(或者是先对二级评价因素运用层次分析法得出其对应的各因素的权重(只选取一组代表性的即可),然后再次运用层次分析法或者是模糊层次分析法对每一学科进行计算,得出其权重系数)。

通过利用matlab确定的各二级评价因素的比较矩阵的特征根分别为:4.2433、2、4.1407、3.0858、10.7434、7.3738、3.0246、1对于问题2、基于问题一中已经获得的对学科的评价值,为了更加明了的展现各一级因素的作用,采用求解相关性系数的显著性,找出对学科评价有显著性作用的一级评价因素。

同时鉴于从文献中已经有的获得的已经有的权重分配,对比通过模型求得的数值,来验证所建模型和求解过程是否合理。

对于问题3、主成份分析法,由于在此种情况下考虑的是科研型或者教学型的高校,因此在评价因素中势必会有很大的差别和区分。

所以在求解评价值的时候不能够等同问题1中的方法和结果,需要重新建立模型,消除或者忽略某些因素的影响和作用(将问题三的部分结果进行阐述)。

一、问题重述学科的水平、地位是评价高等学校层次的一个重要指标,而学科间水平的评价对于学科本身的发展有着极其重要的作用。

而一个显著的方面就是在录取学生方面,通常情况下一个好的专业可以录取到相对起点较高的学生,而且它还可以使得各学科能更加深入的了解到本学科的地位和不足之处,可以更好的促进该学科的发展。

学科的评价是为了恰当的学科竞争,而学科间的竞争是高等教育发展的动力,所以合理评价学科的竞争力有着极其重要的作用。

鉴于学科评价的两种方法:因素分析法和内涵解析法。

数学建模评价类模型——模糊综合评价

数学建模评价类模型——模糊综合评价

数学建模评价类模型——模糊综合评价文章目录•o一级模糊综合评价应用o1)模糊集合o2)隶属度、隶属函数及其确定方法o3)因素集、评语集、权重集o1、模糊综合评价法的定义o2、应用模糊综合评价法需要的一些小知识oo3、模糊综合评价法的应用(实例)oo4、最后总结1、模糊综合评价法的定义先来看看官方标准定义:模糊综合评价法是一种基于模糊数学的综合评价方法。

该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。

它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

初次看,是不是觉得有点懵懵懂懂的?(偷笑)我来用非官方的语言解释一遍,或许你就明白了。

大家想想,生活中,是不是有很多模糊的概念。

比如班级要评三好学生,那评价的标准一般就是学习成绩好不好、思想品德好不好、身体好不好(我查了下百度才发现三好学生竟然要身体好!?感情身体不好还不行)。

学习成绩好或者不好、思想品德好或者不好、身体好或者不好听起来是不是就很模糊?怎么样就算学习成绩好了或者思想品德好了或者身体好了?对,其实这些指标就是模糊的概念。

模糊综合评价法是什么呢?其实就是对评价对象就评价指标进行综合评判,最后给每个评价对象对于每个指标一个隶属度。

(有点绕口,用三好学生的例子再来阐述一下)比如现在有个学生参与评判三好学生。

标准假如就是评上和评不上。

用模糊综合评价法得到的最终结果就是这名学生对于评上的隶属度和评不上的隶属度。

假如评上的隶属度高一些,那这名学生肯定是被评上咯。

(反之亦然)我这样介绍一下,是为了让大家知道我们这个模糊综合评价到底是干嘛的,不要嫌我啰嗦(吃手手)2、应用模糊综合评价法需要的一些小知识1)模糊集合① 定义:(我觉得这段话不错,来自360百科)这段话其实就举了模糊的一些概念,和经典集合(就是有明确数字的,高中学的那个集合)的区别及其历史。

数学建模之模糊评价与模糊聚类

数学建模之模糊评价与模糊聚类

一、模糊评价模糊评价法是应用模糊理论和模糊关系合成的原理,通过多个因素对被评价事物隶属等级状况进行综合性评价的一种方法。

运用模糊评价法,通过多因素 或多指标,既对被评价事物的变化区间作出某种划分,又对事物属于各评价等级 的程度作出分析,从而更深入和客观地对被评价事物进行描述。

特点:①模糊评价法的结果是一个向量,而不是一个数值,即被评价事物的状况是通过被评价事物的等级隶属度来表示。

②模糊评价法可以是一种多层的评价,即可以先对被评价事物的某一层面进行模糊评价,再将各层面的模糊评价结果进行模糊合成,得出总的模糊评价结果。

③模糊评价法具有指标或因素的自然可综合性。

由于模糊评价法只需确定各指标的等级隶属度,既可用于主观指标,又可用于客观指标,以此而无需专门对指标进行无量纲处理。

1.1模糊评价的应用①人事考核中的应用, ②单位员工的年终评定,③昆山公安信息化建设效绩的评估(下载文档), ④我国商业银行内部控制评价体系研究(下载文档), ⑤石化行业业绩评价(下载文档)等。

1.2一级模糊综合评判模型的建立步骤①确定因素集及评语集确定被评价对象的因素集U ,{}12=,,,n U u u u L ,评语集{}12,,,m V v v v =L ; ②构造模糊关系矩阵R ,进行单因素评判。

用ij r 表示U 中的因素i u 对应于V 中等级j v 的隶属关系,则有111212122212=,01m m ij n n nm r r r r r r R r r r r ⎛⎫⎪ ⎪≤≤ ⎪⎪⎝⎭L LM M M M L③确定各因素的权重用i a 表示第i 个因素的权重,11ni i a ==∑,则评价因素权向量A 为()12,,,n A a a a =L 。

④综合评判由模糊关系矩阵R 得到一个模糊变换为:()(),R T F U F V →则评判的综合结果为()11121212221212,,,m m n n n nm r r r r rr B A R a a a r r r ⎛⎫⎪ ⎪== ⎪⎪⎝⎭L Lo L o M M M M L 。

数学建模-模糊综合评判(2017.8.20)

数学建模-模糊综合评判(2017.8.20)

并: A U B = (aij ∨ bij )m×n 交: A I B = (aij ∧ bij )m×n 余: Ac = (1 − aij )m×n
⎛ 1 0.1 ⎞ ⎛ 0.4 0 ⎞ 例:设A = ⎜ ⎟, B = ⎜ ⎟, 则 ⎝ 0.2 0.3 ⎠ ⎝ 0.3 0.2 ⎠ ⎛ 1 0.1 ⎞ AU B = ⎜ ⎟ ⎝ 0.3 0.3 ⎠ ⎛ 0 0.9 ⎞ A =⎜ ⎟ ⎝ 0.8 0.7 ⎠
模糊数学简介
• 最后,人们对模糊性的认识往往同随机性混淆起来, 其实它们之间有着根本的区别。随机性是其本身具 有明确的含义,只是由于发生的条件不充分,而使 得在条件与事件之间不能出现确定的因果关系,从 而事件的出现与否表现出一种不确定性。而事物的 模糊性是指我们要处理的事物的概念本身就是模糊 的,即一个对象是否符合这个概念难以确定,也就 是由于概念外延模糊而带来的不确定性。
A( xi ) 这里 表示 xi 对模糊集A的隶属度是A( xi ) 。 xi
(2)序偶表示法
A = {( x1 , A( x1 )), ( x2 , A( x2 )),L, ( xn , A( xn ))}
(3)向量表示法
A = ( A( x1 ), A( x2 ),L, A( xn ))
若论域U为无限集,其上的模糊集表示为:
第二讲 模糊集合及其运算
一、经典集合与特征函数 典集合与特征函数 集合:具有某种特定属性的对象集体。 通常用大写字母A、B、C等表示。 论域:对局限于一定范围内进行讨论的对象的全体。 通常用大写字母U、V、X、Y等表示。 论域U中的每个对象u称为U的元素。
在论域U中任意给定一个元素u及任意给定一个 经典集合A,则必有 u ∈ A 或者u ∉ A ,用函数表示为:

模糊综合评价 -徐梦迪-2016-4-11

模糊综合评价 -徐梦迪-2016-4-11

综合评价模型 U ,V , R
• 模糊综合评判的一般步骤如下:
• (1)确定因素集U={u1,u2,…,un}
• 确定影响的因素如:花色式样、耐穿程度、价格等。 用U表示这类的集合,即U={花色式样,耐穿程度, 价格}。
• (2)确定评语集V={v1,v2,…,vm} • 确定表示或者描述评判结果的评语如:很喜欢,较 喜欢,不太喜欢,不喜欢。用V表示这类的集合, 即V={很喜欢,较喜欢,不太喜欢,不喜欢}。
(2)专家经验法
• 专家经验法是根据专家的实际经验给出模糊信息的处理算式或相
应权系数值来确定隶属函数的一种方法。
• 在许多情况下,经常是初步确定粗略的隶属函数,然后再通过“学 习”和实践检验逐步修改和完善,而实际效果正是检验和调整隶属 函数的依据。
最大隶属原则
m • 设在论域 U x1, x 上有 2 ,...xn 个模糊子集
假设A1是对教学水平评价时各因素的权重,R1是评价教学水平时 得到的单因素评价矩阵,则对教学水平的评价结果为:
B1 A 1R 1
类似的可以对科研水平和管理水平的评价结果分别为
B2 A2 R2

B3 A3 R3
式中,A1、A2分别是影响科研水平各因素的权重和影响管 理水平各因素的权重;R1、R2分别是评价科研水平时单因素 评价矩阵和评价管理水平时单因素评价矩阵。那么,关于高 校整体水平的二级综合评价结果为:
注:在实际中,主因素在综合评价起主导作用时, 建议采用模型一,当模型1失效时,再用模型2.
(3) M(∧,⊕)算子 ——加权平均型
b j ai rij
i 1
n
例:
, 0.3 , 0.2, 0 0.5 0.3, 0.3 , 0.4。 , 0.4, 0.2, 0.1 0.8 , 0.8 , 0.7, 0.3 0.3 0.2, 0 . 2 , 0 . 3 , 0 . 2

模糊综合评价法的数学建模方法简介

模糊综合评价法的数学建模方法简介

模糊综合评价法的数学建模⽅法简介8《商场现代化》2006年7⽉(中旬刊)总第473期20世纪80年代初,汪培庄提出了对绿⾊供应链绩效进⾏评价的模糊综合评价模型,此模型以它简单实⽤的特点迅速波及到国民经济和⼯农业⽣产的⽅⽅⾯⾯,⼴⼤实际⼯作者运⽤此模型取得了⼀个⼜⼀个的成果。

本⽂简单介绍模糊综合评价法的数学模型⽅法。

⼀、构造评价指标体系模糊综合评价的第⼀步就是根据具体情况建⽴评价指标体系的层次结构图,如图所⽰:⼆、确定评价指标体系的权重确定各指标的权重是模糊综合评价法的步骤之⼀。

本⽂根据绿⾊供应链评价体系的层次结构特点,采⽤层次分析法确定其权重。

尽管层次分析法中也选⽤了专家调查法,具有⼀定的主观性,但是由于本⽂在使⽤该⽅法的过程中,对多位专家的调查进⾏了数学处理,并对处理后的结果进⾏了⼀致性检验,笔者认为,运⽤层次分析法能够从很⼤程度上消除主观因素带来的影响,使权重的确定更加具有客观性,也更加符合实际情况。

在此设各级指标的权重都⽤百分数表⽰,且第⼀级指标各指标的权重为Wi,i=1,2,…,n,n为⼀级指标个数。

⼀级指标权重向量为:W=(W1,…,Wi,…Wn)各⼀级指标所包含的⼆级指标权重向量为:W=(Wi1,…,Wis,…Wim),m为各⼀级指标所包含的⼆级指标个数,s=1,2,…,m。

各⼆级指标所包含的三级指标权重向量为:Wis=(Wis1,…Wis2,…Wimq),q为各⼆级指标所包含的三级指标个数。

三、确定评价指标体系的权重建⽴模糊综合评价因素集将因素集X作⼀种划分,即把X分为n个因素⼦集X1,X2,…Xn,并且必须满⾜:同时,对于任意的i≠j,i,j=1,2,…,均有即对因素X的划分既要把因素集的诸评价指标分完,⽽任⼀个评价指标⼜应只在⼀个⼦因素集Xi中。

再以Xi表⽰的第i个⼦因素指标集⼜有ki个评价指标即:Xi={Xi1,Xi2,…,XiKi},i=1,2,…,n这样,由于每个Xi含有Ki个评价指标,于是总因素指标集X其有个评价指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在综合评判中起主导作用时,建议采用模型1; 当模型1失效时可采用模型2,模型3.
模型4 M(●,+)----加权平均模型
n
bj ai • rij
j 1,2,, m
i 1
模型4对所有因素依权重大小均衡兼顾,
适用于考虑各因素起作用的情况
注:有关合成算子以及权值确定可以查阅相关 资料,根据实际情况选择。
值就是 x0对A 的隶属度值。这种方法较直观地反映了 模糊概念中的隶属程度,但其计算量相当大。
(2)专家经验法: 专家经验法是根据专家的实际经验给出模
糊信息的处理算式或相应权系数值来确定隶属 函数的一种方法。在许多情况下,经常是初步 确定粗略的隶属函数,然后再通过“学习”和 实践检验逐步修改和完善,而实际效果正是检 验和调整隶属函数的依据。

设论域X=[0,100],模糊子集A表示“年老”,B 表示“年轻”。Zadeh给出的A、B的隶属度函数 分别为:
0
Ax
1
x
50 5
2
1
1
Bx
1
x
25 5
2
1
0 x 50; 50 x 100.
0 x 25; 25 x 100.
μ(x) 1
年轻
0
25
50
根据定义,我们不难算出 B(30)=0.5,
R=(rij)n×m∈F(X×Y)。
n
(4)确定各因素权重 A=(a1,a2,…,an), ai 1, ai 0 i 1
(5)做综合评判 B A R
注:
(1) 为了更好地理解、解释评判结果,可 以将评判结果归一化。令
B' (b1',b2 ',, bm ')
1
m
b1,b2 ,,bm
bi
隶属度函数的确立目前还没有一套成熟有效的 方法,大多数系统的确立方法还停留在经验和实验 的基础上。对于同一个模糊概念,不同的人会建立 不完全相同的隶属度函数,尽管形式不完全相同, 只要能反映同一模糊概念,在解决和处理实际模糊 信息的问题中仍然殊途同归。下面介绍几种常用 的方法。
(1)模糊统计法:
模糊统计法的基本思想是对论域U上的一个确定
i 1
可以将B’作为评判结果,bi’可以理解为评价对 象属于第i个评语的百分比。
(2)权值的取法。在多指标模糊综合评价中,不 乏与其它综合评判法相结合来确定权重的应用,总体 上可分为主观赋权法和客观赋权法两类。
主观赋权法主要是由专家根据经验主观判断而得, 如层次分析法、加权统计法等。但是,主观赋权带有 不可避免的模糊片面性,客观性较差,而且工作量较大。
(5)利用R确定的模糊变换做综合评判,则得评判结 果B为: B A R
0.7 0.2 0.1 0
0.5,0.3,0.2 0.2 0.3 0.4 0.1
0.3 0.4 0.2 0.1
0.5,0.3,0.3,0.1
评判结果是评语集合上的模糊集合。
归一化:
0.5 , 0.3 , 0.3 , 0.2 0.38,0.25,0.25,0.12
(3)进行单因素评判。通过实际调查或者试验等方法,对单 个因素进行评判。对每一个因素评判的结果都是Y上的模糊集 合。例如,我们调查结果如:
花色式样|→(0.7,0.2,0.1,0); 耐穿程度|→(0.2,0.3,0.4,0.1);
价格|→(0.3,0.4,0.2,0.1)。 这三个因素的评判结果都是Y上的模糊集合。单因素的评判实 际上是因素集合到评语集合的模糊映射。
模型(算子)分类:
模型1 M(∧,∨)----主因素决定型
n
bj
i1
ai
rij
j 1,2,, m
由于综合评判的结果仅由ai与rij(i=1,2,…,n) 中的某一确定(先取小,再取大运算),着
眼点是考虑主要因素,其他因素对结果影响
不大,这种运算有时候出现决策结果不易分
辨的情况。
模型2 M(●,∨)----主因素突出型
1.3 1.3 1.3 1.3
它表示持权重A的顾客对这种服装的评价是: “很喜欢”的程度是38%,“较喜欢”的程度 是25%,“不太喜欢”的程度是25%,“不喜 欢”的程度是12%。根据最大隶属原则,我们 得出的结论是“很喜欢。”
总结
通过服装评判的例子可以看出,模糊综合评判的一般 步骤如下:
(1)确定因素集X={x1,x2,…,xn}。 (2)确定评语集Y={y1,y2,…,ym}。 (3)做单因素评判,得评判矩阵
元素x0是否属于论域上的一个可变动的子集合A*作出 清晰的判断。对于不同的试验者,子集合 A*可以有不
同的边界,但它们都对应于同一个模糊集A。模糊统计
法的计算步骤是:在每次统计中, x0是固定的,A*的值 是可变的,作 n次试验,其模糊统计可按下式进行计算
x0对 A 的隶属频率 = x0∈A*的次数 / 试验总次数 n 随着 n的增大,隶属频率也会趋向稳定,这个稳定
将x=88带入隶属度函数中计算得:
A1(88)=0.8;A2(88)=0.7;A3(88)=0. 根据最大隶属度原则,该同学的数学成绩相 对于3个模型应属于A,可评为--优
按确定的标准,对某个或者某类对象中的 某个因素或某个部分进行评价,称为单一评判; 从众多的单一评判中获得对某个某类对象的整 体评价,称为综合评判。综合评判的目的是希 望能对若干对象按一定意义进行排序,从中挑 出最优和最劣对象,这也称为决策过程。下面 介绍一些实例说明它的应用:
多级模糊综合评判
在实际的综合评判问题中,影响评判结果的 因素一般很多。因此确定权重非常困难,另一方 面,因素过多,导致权重都比较小,以致评判结 果难以区分。在这样的问题中,众多因素常常可 以分类,可以先从大的方面考虑,再从小的方面 考虑。评判时先评判小的方面,再评判大的方面。 这样的评判方法就是多级综合评判模型。
年老
B(35)=0.2,
A(55)=0.5,
A(60)=0.80.这表明,30
岁的年龄属于“年轻”的
隶属度为50%,并称点x=30
x 是“年轻”的过渡点,60
75
100
岁的年龄属于“年老”的
隶属度80%等。
隶属度函数的几个确定方法
隶属度函数的确定过程,本质上说应该是客观的, 但每个人对于同一个模糊概念的认识理解又有差 异,因此,隶属度函数的确定又带有主观性。
------《模糊综合评价中权值确定和合成算子选择》
一级综合评判模型
例 顾客选择服装评判为例。
分析:(1)确定影响的因素如:花色式 样、耐穿程度、价格等。用X表示这类的 集合,即X={花色式样,耐穿程度,价 格}。
(2)确定表示或者描述评判结果的评语 如:很喜欢,较喜欢,不太喜欢,不喜 欢。用Y表示这类的集合,即Y={很喜欢, 较喜欢,不太喜欢,不喜欢}。
例 对高校的整体水平进行评估
分析 毫无疑问,影响高校的整体水平的因素众 多。假设从大的方面说,决定高校整体水平 的主要因素有:教学水平,科研水平以及管 理水平。即:因素集合为 X={教学水平,科 研水平,管理水平}。
对影响教学水平、科研水平和管理水平的因 素再进行细分,假设如下:
团Te队am 就是力量 … …
模糊综合评判
--序
模糊是什么?
------“说不清道不明”
模糊现象是什么?
------“亦此亦彼的现象”
模糊数学---是研究和揭示模糊现象定量处理的方法
内容安排
模糊综合评判的一些基本概念 模糊综合评判的应用
基本概念
普通集合
论域:被讨论对象的全体叫做论域,或 称全域、全集合,通常用大写字母U、E、 X、Y等来表示。
(3)二元对比排序法: 二元对比排序法是一种较实用的确定隶属度
函数的方法。它通过对多个事物之间的两两对比 来确定某种特征下的顺序,由此来决定这些事物 对该特征的隶属函数的大体形状。二元对比排序 法根据对比测度不同,可分为相对比较法、对比 平均法、优先关系定序法和相似优先对比法等。
最大隶属度原则
设A1,A2,…, ∈ F(U)构成了一个标准 Nhomakorabean
bj
i1
ai
• rij
j 1,2,, m
与模型1较接近,区别在于用ai●rij代替了M
(∧,∨)中的ai∧rij。在模型M(●,∨)
中,对rij乘以小于1的权重ai,表明ai是在考
虑多因素时rij的修正值与主要因素有关,忽
略了次要因素。
模型3 M(∧,⊕)----主因素突出型
n
0
A1
x
x 80
10 1
0 x 80 80 x 90 90 x 100
0
x 70
A2 ( x)
10 1
95 x
1
10
1
A3
x
80 x
10 0
0 x 70 70 x 80 80 x 85 85 x 95 95 x 100
0 x 70 70 x 80 80 x 100
元素:组成某一集合的单个对象就称为 该集合的一个元素,通常用小写字母表示。
根据集合论的要求,一个对象对应于一 个集合,要么属于,要么不属于,二者必 居其一,且仅居其一。
引:我们说“教室里的人”这个概念,我们认为, 在人这个论域里面,有的人在教室里面,有的人 在教室外面,那还有没有其他的情况呢?有,这 个人一只脚在教室里面,一只脚在教室外面,你 认为他是“教室里的人”还是“教室外面的人” 呢?显然,他不是“非此即彼”的,而是“亦此 亦彼”的。
又如:请将下图中的一组线段中的长线段给挑选出来。当然, 一开始,我们都自信满满地推断,自左边开始数起,第一根是 长线段,第二根呢?第三根呢?这都可以算是长线段,如此下 去到时候,我们的态度就会犹豫不决起来,这种变化反映了 “长线段集合”不是“非此即彼”的,在两者之间,似乎存在 着各种程度的似乎属于长线段但又不属于长线段的中介状态。
相关文档
最新文档