牡丹江数学分式填空选择单元测试卷(解析版)
黑龙江省牡丹江市2023-2024学年八年级上学期期末考试数学试卷(含解析)
2023-2024学年黑龙江省牡丹江市八年级(上)期末数学试卷一、单项选择题(本题12个小题,每小题3分,共36分)1.(3分)习近平总书记强调,“垃圾分类工作就是新时尚”.下列垃圾分类标识的图形中,轴对称图形个数是( )A.1个B.2个C.3个D.4个2.(3分)下列运算正确的是( )A.a3•a4=a12B.2b+5a=7abC.(a+b)2=a2+b2D.(a2b3)2=a4b63.(3分)2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为( )A.2.8×10﹣10B.2.8×10﹣8C.2.8×10﹣6D.2.8×10﹣94.(3分)下列各式,,,,,中,最简分式的个数是( )A.4B.3C.2D.15.(3分)将一把直角三角尺和一把直尺按如图所示的位置放置.若∠1=65°,则∠2等于( )A.145°B.150°C.155°D.160°6.(3分)若分式的值是整数,则满足条件的所有正整数m的和等于( )A.9B.8C.7D.57.(3分)如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ABC外角平分线交CA延长线于点D,DE⊥BC,垂足是E,若△ABC周长是8,则线段CD的长为( )A.B.9C.8D.78.(3分)如果x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,则满足条件的整数m的个数是( )A.1B.2C.3D.49.(3分)有两个正方形A,B,现将B放在A的内部,得到图①,将A,B并列放置后构成新的正方形,得到图②.若图①和图②中的阴影面积分别是3和8,则正方形A,B的面积之和是( )A.9B.11C.12D.1510.(3分)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划多植树20棵,实际植树800棵所需时间与原计划植树600棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( )A.B.C.D.11.(3分)一组按规律排列的式子:,,,,…,第n个式子是(n为正整数)( )A.B.C.D.12.(3分)在以“长方形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:在长方形纸片ABCD的BC边上取一点E,将△ABE沿AE翻折,使点B落在点B'处,边EB'交AD于点F,第二步:将△ECD沿DE翻折,点C的对应点C′恰好落在线段EB'上.根据以上的操作,若BC=6,C'是EB'的中点,则线段AF的长为( )A.B.3C.D.4二、填空题(本题8个小题,每小题3分,共24分)13.(3分)如图,∠CAB=∠DBA,只需补充一个条件 ,就可以根据“ASA”得到△ABC≌△BAD.14.(3分)若分式的值为0,则m的值为 .15.(3分)如图,在△ABC中,AB=AC=8,∠BAC=150°,点P,Q分别在边AB,BC上,则AQ+PQ的最小值为 .16.(3分)若x m=4,x n=6,则x3m﹣n的值为 .17.(3分)如图,网格内每个小正方形的边长都是1个单位长度,A,B,C,D都是格点,AB与CD相交于点P,则∠A+∠D= .18.(3分)关于x的分式方程的解是非负数,则m的取值范围是 .19.(3分)等腰三角形ABC中,高BD与一腰所夹的锐角是40°,则等腰三角形ABC底角的度数为 .20.(3分)如图,在△ABC中,AB=AC,点D在AC边上,点F在AB边上,过点D作DE⊥BC,垂足是E,∠FED=∠B,4∠FDE﹣∠A=180°.下列结论:①2∠CDE=∠A;②BC=BF+CD;③△DEF是等边三角形;④过点D作DM⊥DE,交AB边于点M,若M是AF的中点,DM=3,则BC=9.其中正确的是 .三、解答题(60分)21.(18分)(1)计算:(﹣1)2024+()﹣2﹣(π﹣3)0;(2)计算:(m﹣n)2﹣2m(m﹣n);(3)因式分解:a2(x﹣y)+4(y﹣x);(4)解分式方程:﹣3=.22.(6分)先化简:,再从﹣2,﹣1,﹣6,中选择一个适合的数x代入求值.23.(7分)如图,在平面直角坐标系中,△ABC的顶点A,B,C在格点上.(1)请在图中作出△ABC关于y轴对称的△A′B′C';(2)写出点B',点C'的坐标,以A',B,C′为顶点的三角是 三角形;(3)点P在图中格点上,若△PBC是等腰三角形,则点P的个数是 .24.(9分)在△ABC中,∠BAC=∠BCA,D是平面内一点,∠DAB=∠ABC=90°,点E在AB边所在直线上,CE⊥BD,垂足是F.(1)当点E在线段AB上时,如图①,求证:AE+AD=BC;(2)当点E在线段BA延长线上时,如图②;当点E在线段AB延长线上时,如图③,请猜想并直接写出线段AE,AD,BC的数量关系;(3)如图③,若BF+CF=6,则S四边形ADFC﹣S△BEF= .25.(10分)2024年是中国农历甲辰龙年.元旦前,某商场进货员预测一种“吉祥龙”挂件能畅销市场,就用6000元购进一批这种“吉祥龙”挂件,面市后果然供不应求,商场又用12800元购进了第二批这种“吉祥龙”挂件,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批“吉祥龙”挂件每件的进价分别是多少元?(2)若两批“吉祥龙”挂件按相同的标价销售,要使两批“吉祥龙”挂件全部售完后获利不低于7300(不考虑其他因素),且最后的50件“吉祥龙”挂件按八折优惠售出,那么每件“吉祥龙”挂件的标价至少是多少元?26.(10分)如图,△ABC在平面直角坐标系中,顶点B(m,0),C(n,0)在x轴上,顶点A在y轴的正半轴上,BD⊥AC,垂足是D,BD交AO于点E,∠AED﹣∠BAO=45°,(m+4)2+(n﹣6)2=0.请解答下列问题:(1)求点B、点C的坐标;(2)求线段AE的长;(3)连接CE.若OE=2,在坐标轴上是否存在点F,使S△ACF=S△ACE?若存在,请直接写出点F的个数和其中一个点F的坐标;若不存在,请说明理由.参考答案与解析一、单项选择题(本题12个小题,每小题3分,共36分)1.(3分)习近平总书记强调,“垃圾分类工作就是新时尚”.下列垃圾分类标识的图形中,轴对称图形个数是( )A.1个B.2个C.3个D.4个【解答】解:左起第一、第四个图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.第二、第三这两个图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:B.2.(3分)下列运算正确的是( )A.a3•a4=a12B.2b+5a=7abC.(a+b)2=a2+b2D.(a2b3)2=a4b6【解答】解:A、原式=a7,不符合题意;B、原式不能合并,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=(a2)2•(b3)2=a4b6,符合题意.故选:D.3.(3分)2023年9月9日,上海微电子研发的28nm浸没式光刻机的成功问世,标志着我国在光刻机领域迈出了坚实的一步.已知28nm为0.000000028米,数据0.000000028用科学记数法表示为( )A.2.8×10﹣10B.2.8×10﹣8C.2.8×10﹣6D.2.8×10﹣9【解答】解:0.000000028=2.8×10﹣8.故选:B.4.(3分)下列各式,,,,,中,最简分式的个数是( )A.4B.3C.2D.1【解答】解:==﹣,=5a,=,都不是最简分式,,,是最简分式,故选:B.5.(3分)将一把直角三角尺和一把直尺按如图所示的位置放置.若∠1=65°,则∠2等于( )A.145°B.150°C.155°D.160°【解答】解:∵直尺的两边互相平行,∠1=65°,∴∠3=∠1=65°,∴∠4=∠3=65°,∴∠2=∠4+90°=65°+90°=155°.故选:C.6.(3分)若分式的值是整数,则满足条件的所有正整数m的和等于( )A.9B.8C.7D.5【解答】解:∵分式的值是整数,∴m+1是6的约数,即m+1=1或2或3或6,解得:m=0(舍去)或1或2或5,则满足条件的所有正整数m的和为1+2+5=8.故选:B.7.(3分)如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,∠ABC外角平分线交CA延长线于点D,DE⊥BC,垂足是E,若△ABC周长是8,则线段CD的长为( )A.B.9C.8D.7【解答】解:在等腰直角三角形ABC中,AB=AC,∠BAC=90°,设AB=AC=x,则BC=x,∵△ABC周长是8,∴x+x+x=8,∴x=8﹣4,∴AB=AC=8﹣4,BC=(8﹣4)×=8﹣8,∵BD是∠ADE的角平分线,DE⊥BE,AB⊥AD,∴BE=AB=8﹣4,又∵BD=BD,∴Rt△BDE≌Rt△BDA(HL),∴DE=DA,设CD=m,则AD=DE=m﹣8+4,∵S,∴(m﹣8+4)×=(8﹣4)(2m﹣8+4),解得m=8,即CD=8,故选:C.8.(3分)如果x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,则满足条件的整数m的个数是( )A.1B.2C.3D.4【解答】解:∵x2﹣2(m﹣1)x+5﹣2m是一个完全平方式,∴(m﹣1)2=5﹣2m,解得m=±2.故选:B.9.(3分)有两个正方形A,B,现将B放在A的内部,得到图①,将A,B并列放置后构成新的正方形,得到图②.若图①和图②中的阴影面积分别是3和8,则正方形A,B的面积之和是( )A.9B.11C.12D.15【解答】解:设正方形A、B的边长分别是a、b,则正方形A,B的面积之和是a2+b2.根据题意,图①中阴影部分的图形是正方形,边长为(a﹣b),图②中新正方形的边长为(a+b),根据图①和图②中的阴影面积分别是3和8,得,经整理,得,∴a2+b2=11,∴正方形A,B的面积之和是11.故选:B.10.(3分)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划多植树20棵,实际植树800棵所需时间与原计划植树600棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( )A.B.C.D.【解答】解:由题意可得:=,故选:B.11.(3分)一组按规律排列的式子:,,,,…,第n个式子是(n为正整数)( )A.B.C.D.【解答】解:∵第奇数个式子的符号为“负”,∴第n个式子的符号可用(﹣1)n表示.∵分母中单项式的系数分别为1,2,3...n,字母a的指数分别是1,2,3...n,∴第n个式子的分母可表示为:na n.∵分子分别是2,5,8,11...(3n﹣1),∴第n个式子的分母是3n﹣1.∴第n个式子为:(﹣1)n.故选:D.12.(3分)在以“长方形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:在长方形纸片ABCD的BC边上取一点E,将△ABE沿AE翻折,使点B落在点B'处,边EB'交AD于点F,第二步:将△ECD沿DE翻折,点C的对应点C′恰好落在线段EB'上.根据以上的操作,若BC=6,C'是EB'的中点,则线段AF的长为( )A.B.3C.D.4【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC=6,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∴CE=2,BE=4,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴AB2+16+8+DC2+4=36,∴AB=CD=2,∵∠B'=∠DC'F=90°,∠AFB'=∠DFC',AB'=C'D=CD=2,∴△AB'F≌△DC'F(AAS),∴AF=DF=AD=3,故选:B.二、填空题(本题8个小题,每小题3分,共24分)13.(3分)如图,∠CAB=∠DBA,只需补充一个条件 AC=BD ,就可以根据“ASA”得到△ABC≌△BAD.【解答】解:补充条件AC=BD.理由:在△ABC和△BAD中,,△ABC≌△BAD(SAS).故答案为:AC=BD.14.(3分)若分式的值为0,则m的值为 1 .【解答】解:由题意得,,解得m=1,故答案为:1.15.(3分)如图,在△ABC中,AB=AC=8,∠BAC=150°,点P,Q分别在边AB,BC上,则AQ+PQ的最小值为 4 .【解答】解:作点A关于直线BC的对称点E,连接EB、AE、PE,作EF⊥AB于点F,∵AB=AC=8,∠BAC=150°,∴∠ABC=∠C=×(180°﹣150°)=15°,∵BC垂直平分AE,∴EB=AB=8,∴∠EBC=∠ABC=15°,∴∠ABE=2∠ABC=30°,∵∠BFE=90°,∴EF=EB=4,∵EQ+PQ≥PE,PE≥EF,且EQ=AQ,∴AQ+PQ≥EF,∴AQ+PQ≥4,∴AQ+PQ的最小值为4,故答案为:4.16.(3分)若x m=4,x n=6,则x3m﹣n的值为 .【解答】解:x3m﹣n=x3m÷x n=43÷6==.故答案为:.17.(3分)如图,网格内每个小正方形的边长都是1个单位长度,A,B,C,D都是格点,AB与CD相交于点P,则∠A+∠D= 135° .【解答】解:如图,过点B作BF∥CD,连接EF,由勾股定理得:BE==,EF=,BF=,∴BE=EF,∵BE2+EF2=BF2,∴∠BEF=90°,∴∠EBF=45°,∴∠APD=∠EBF=45°,∴∠A+∠D=180°﹣45°=135°,故答案为:135°.18.(3分)关于x的分式方程的解是非负数,则m的取值范围是 m≥1且m≠4 .【解答】解:原方程去分母得:m﹣4=x﹣3,解得:x=m﹣1,∵x﹣3≠0,∴x≠3,∴m﹣1≠3,∴m≠4,∵关于x的分式方程的解是非负数,∴x≥0,即m﹣1≥0,解得:m≥1,又∵m≠4,∴m的取值范围是m≥1且m≠4.故答案为:m≥1且m≠4.19.(3分)等腰三角形ABC中,高BD与一腰所夹的锐角是40°,则等腰三角形ABC底角的度数为 50°或65°或25° .【解答】解:依题意有以下两种情况:(1)△ABC为锐角三角形时,此时又有两种情况:①当BD是等腰△ABC底边上的高时,如图1所示:∵BD为等腰三角形底边AC上的高,∴∠ADB=90°,∴∠ABD+∠A=90°,∵高BD与一腰所夹的锐角是40°,∴∠BAD=40°,∴∠A=90°﹣∠BAD=50°;②当BD是等腰△ABC腰上的高时,如图2所示:∵BD为等腰三角形腰AC上的高,∴∠ADB=90°,∴∠A+∠ABD=90°,∵高BD与一腰所夹的锐角是40°,∴∠ABD=40°,∴∠A=90°﹣∠ABD=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣50°)=65°.(2)当等腰△ABC为钝角三角形时,则顶角为钝角,此时高BD只能是腰上的高,如图3所示:∵BD为等腰三角形腰AC上的高,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵高BD与一腰所夹的锐角是40°,∴∠ABD=40°,∴∠DAB=90°﹣∠ABD=50°,∴∠BAC=180°﹣∠DAB=130°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠BAC)=(180°﹣130°)=25°.综上所述:等腰三角形ABC底角的度数为50°或65°或25°.故答案为:50°或65°或25°.20.(3分)如图,在△ABC中,AB=AC,点D在AC边上,点F在AB边上,过点D作DE⊥BC,垂足是E,∠FED=∠B,4∠FDE﹣∠A=180°.下列结论:①2∠CDE=∠A;②BC=BF+CD;③△DEF是等边三角形;④过点D作DM⊥DE,交AB边于点M,若M是AF的中点,DM=3,则BC=9.其中正确的是 ①②④ .【解答】解:①在△ABC中,AB=AC,∴∠B=∠C,∴∠A=180°﹣2∠C,∵DE⊥BC,∠CDE=90°﹣∠C,∴∠CDE=2∠A,故结论①正确;②设∠B=∠C=α,则∠FED=∠B=∠C=α,∴∠A=180°﹣2α,∵4∠FDE﹣∠A=180°,∴4∠FDE﹣(180°﹣2α)=180°,∴∠FDE=90°﹣α,∴∠DFE=180°﹣(FED+∠FDE)=180°﹣(α+90°﹣α)=90°﹣α,∴∠FDE=∠DFE,∴DE=EF,∵DE⊥BC,∴∠CDE+∠C=90°,∠BEF+∠FED=90°,∵∠C=∠FED=α,∴∠CDE=∠BEF,在△CDE和△BEF中,,∴△CDE≌△BEF(AAS),∴CD=BE,CE=BF,∴BC=CE+BE=BF+CD,故结论②正确;③不妨假设△DEF是等边三角形,∴∠FED=60°,∴∠B=∠FED=60°,∴△ABC是等边三角形,根据已知条件,无法判定△ABC是等边三角形,∴假设是错误的.故结论③不正确.④∵DM⊥DE,DE⊥BC,∴DM∥BC,∠MDE=90°,∴∠AMD=∠B,∠ADM=∠C,∠MDF+∠FDE=90°,∵∠B=∠C,∴∠AMD=∠ADM,∴△AMD为等腰三角形,∵△CDE≌△BEF,∴∠DEC=∠EFB=90°,∴∠EFM=90°,即∠MFD+∠EFD=90°,∵∠FDE=∠DFE,∴∠MDF=∠MFD,∴DM=FM=3,∵点M是AF的中点,∴AM=FM=DM=3,∴△AMD为等边三角形,∴∠ADM=∠AMD=∠A=60°,AM=DM=AD=3,∴∠FMD=120°,∴∠MDF=∠MFD=(180°﹣∠FMD)=(180°﹣120°)=30°,∴∠ADF=∠ADM+∠MDF=60°+30°=90°,在Rt△ADF中,AF=AM+FM=6,AD=3,由勾股定理得:FD==,∵∠AMD=∠B=60°,∠ADM=∠C=60°,∴△ABC为等边三角形,∴BC=AB,∵∠FED=∠B=60°,DE=EF,∴△DEF为等边三角形,∴EF=FD=,∵∠EFB=90°,∠B=90°,∴∠BEF=30°,在Rt△BEF中,∠BEF=30°,∴BE=2BF,由勾股定理得:BE2﹣BF2=EF2,即(2BF)2﹣BF2=,∴BF=3,∴AB=AF+BF=6+3=9,∴BC=AB=9.故结论④正确.综上所述:正确的结论是①②④.故答案为:①②④.三、解答题(60分)21.(18分)(1)计算:(﹣1)2024+()﹣2﹣(π﹣3)0;(2)计算:(m﹣n)2﹣2m(m﹣n);(3)因式分解:a2(x﹣y)+4(y﹣x);(4)解分式方程:﹣3=.【解答】解:(1)(﹣1)2024+()﹣2﹣(π﹣3)0=1+9﹣1=9;(2)(m﹣n)2﹣2m(m﹣n)=m2﹣2mn+n2﹣2m2+2mn=n2﹣m2;(3)a2(x﹣y)+4(y﹣x)=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2);(4)﹣3=,方程两边都乘x﹣2,得3﹣3(x﹣2)=1﹣x,3﹣3x+6=1﹣x,﹣3x+x=1﹣6﹣3,﹣2x=﹣8,x=4,检验:当x=4时,x﹣2≠0,所以分式方程的解是x=4.22.(6分)先化简:,再从﹣2,﹣1,﹣6,中选择一个适合的数x代入求值.【解答】解:=•===,∵x=﹣1,﹣2时,原分式无意义,∴x可以为﹣6或,当x=﹣6时,原式==2.23.(7分)如图,在平面直角坐标系中,△ABC的顶点A,B,C在格点上.(1)请在图中作出△ABC关于y轴对称的△A′B′C';(2)写出点B',点C'的坐标,以A',B,C′为顶点的三角是 等腰直角 三角形;(3)点P在图中格点上,若△PBC是等腰三角形,则点P的个数是 10个 .【解答】解:(1)如图,△A′B′C'即为所求.(2)由图可得,B'(﹣3,2),C'(﹣2,﹣1).由勾股定理得,A'B==,A'C'==,BC'==,∴A'B=A'C',A'B2+A'C'2=BC'2,∴∠BA'C'=90°,∴△A'BC'为等腰直角三角形.故答案为:等腰直角.(3)如图,点P1,P2,P3,P4,P5,P6,P7,P8,P9,P10均满足题意,∴点P的个数是10个.故答案为:10个.24.(9分)在△ABC中,∠BAC=∠BCA,D是平面内一点,∠DAB=∠ABC=90°,点E在AB边所在直线上,CE⊥BD,垂足是F.(1)当点E在线段AB上时,如图①,求证:AE+AD=BC;(2)当点E在线段BA延长线上时,如图②;当点E在线段AB延长线上时,如图③,请猜想并直接写出线段AE,AD,BC的数量关系;(3)如图③,若BF+CF=6,则S四边形ADFC﹣S△BEF= 18 .【解答】(1)证明:由题意得,△ABC为等腰直角三角形,则AB=BC,∵∠ABD+∠CBF=90°,∠CBF+∠FCB=90°,∴∠ABD=∠BCF,∵∠EBC=∠DBA=90°,AB=BC,∴△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=AE+BE=AE+DA;(2)解:当点E在线段BA延长线上时,BC=AD﹣AE,理由:由(1)同理可得:△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=BE﹣AE=AD﹣AE;当点E在线段AB延长线上时,BC=AE﹣AD,理由:由(1)同理可得:△EBC≌△DAB(ASA),∴BE=AD,则BC=AB=AE﹣BE=AE﹣AD;(3)解:如图③,设EF=a,BF=x,则FC=6﹣x,则BC2=x2+(6﹣x)2,由(1)同理可得:△EBC≌△DAB(ASA),则S△EBC=S△DAB,则S四边形ADFC﹣S△BEF=S△EBC+S△DAB+S△ABC﹣2S△BEF=2S△EBC+S△ABC﹣2S△BEF=(a+6﹣x)x﹣[(6﹣x)2+x2]﹣ax=ax+6x﹣x2+18﹣6x+x2﹣ax=18,故答案为:18.25.(10分)2024年是中国农历甲辰龙年.元旦前,某商场进货员预测一种“吉祥龙”挂件能畅销市场,就用6000元购进一批这种“吉祥龙”挂件,面市后果然供不应求,商场又用12800元购进了第二批这种“吉祥龙”挂件,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批“吉祥龙”挂件每件的进价分别是多少元?(2)若两批“吉祥龙”挂件按相同的标价销售,要使两批“吉祥龙”挂件全部售完后获利不低于7300(不考虑其他因素),且最后的50件“吉祥龙”挂件按八折优惠售出,那么每件“吉祥龙”挂件的标价至少是多少元?【解答】解:(1)设该商场购进第一批“吉祥龙”挂件的进价是x元/件,则第二批“吉祥龙”挂件的进价是(x+4)元,根据题意得:=×2,解得:x=60,经检验,x=60是所列方程的解,且符合题意,∴x+4=60+4=64(元/件).答:该商场购进第一批“吉祥龙”挂件的进价是60元/件,第二批“吉祥龙”挂件的进价是64元;(2)该商场购进第一批“吉祥龙”挂件的数量是6000÷60=100(件),该商场购进第二批“吉祥龙”挂件的数量是12800÷64=200(件).设每件“吉祥龙”挂件的标价是y元,根据题意得:(100+200﹣50)y+50×0.8y﹣6000﹣12800≥7300,解得:y≥90,∴y的最小值为90.答:每件“吉祥龙”挂件的标价至少是90元.26.(10分)如图,△ABC在平面直角坐标系中,顶点B(m,0),C(n,0)在x轴上,顶点A在y轴的正半轴上,BD⊥AC,垂足是D,BD交AO于点E,∠AED﹣∠BAO=45°,(m+4)2+(n﹣6)2=0.请解答下列问题:(1)求点B、点C的坐标;(2)求线段AE的长;(3)连接CE.若OE=2,在坐标轴上是否存在点F,使S△ACF=S△ACE?若存在,请直接写出点F的个数和其中一个点F的坐标;若不存在,请说明理由.【解答】解:(1)∵(m+4)2+(n﹣6)2=0,则m+4=0且n﹣6=0,解得:m=﹣4且n=6,故点B、C的坐标分别为:(﹣4,0)、(6,0);(2)∵BD是△ABC的高,∴BD⊥AC,∴∠BDC=∠BDA=90°,∴∠DAE+∠DEA=90°.∵x轴⊥y轴,∴∠AOB=∠AOC=90°,∴∠DAE+∠ACB=90°,∴∠ACB=∠DEA.∵∠ACB﹣∠BAO=45°,∴∠DEA﹣∠BAO=45°.∵∠DEA﹣∠BAO=∠ABD,∴∠ABD=45°.∵∠BDA=90°,∴∠BAD=90°﹣∠ABD=45°,∴BD=AD.在△DBC和△DAE中,,∴△DBC≌△DAE(AAS),∴AE=BC=6+4=10;(3)由(2)知,AE=10,则点A、E的坐标分别为:(0,12)、(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣2x+12,∵S△ACF=S△ACE,故取AE的中点N(0,7),过点N作直线n∥AC,取AM=AN,过点M(0,17)作直线m∥AC,则直线m、n和x坐标轴的交点即为点F,故共有4个,为点M、N以及m、n和x轴的交点,∵n∥AC,则直线n的表达式为:y=﹣2x+7,则直线n和坐标轴的交点坐标为:(0,7)、(3.5,0);同理可得直线m和坐标轴的交点坐标为:(0,17)、(8.5,0);综上,符合条件的点F有4个,坐标为:(0,7)或(3.5,0)或(0,17)或(8.5,0).。
分式单元测试卷1(谢)含答案
《分式》单 元 测试题1班次 姓名一、选择题(每题3分,共30分)1、代数式家中来了四位客人①x 2 ②5y x + ③a -21 ④1-πx ,其中属于分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、 若分式1-x x无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1± 3、小冲把分式xyyx -中的x 、y 的值都扩大2倍,却不知分式的值有无变化,请 帮他选出正确的答案( )A 不变B 扩大2倍C 扩大4倍D 缩小一半 4、下列式子变形不正确的是( )A .2122x x x x =-- B. 223362x xy x y x x ++= C.22222a b ab b a a b --= D. 22a b a abab a b++= 5、计算:322222()()()x y yy x x⋅÷-的结果是( ) A. 368x y - B. 368x y C. 2516x y - D . 2516x y6、如果分式242x x -+的值为零,那么x 值的为( )A . 2 B. -2 C . 2± D . 07、当13x -与13x +的和为2109x -时,x 的值为( )A. -5B. 5C. 5±D. 无解 8、若关于x 的方程x a cb x d-=- 有解,则必须满足条件( )A.c ≠dB.c ≠-dC.bc ≠-adD. c ≠-d 且a ≠b9、 甲乙两火车站相距1280千米,采用“辽宁”号动车组提速后,列车行驶的速度是原来的3.2倍,从甲站到乙站的时间缩短了11小时,设列车提速前的速度 为x 千米/时,则所列方程为( )A .12801280 3.211x x -= B.12801280113.2x x -=C.12801280113.2x x -=D. 12801280 3.211x x-=10、 若mn n m =-, 则nm 11-的值是( )A.mn1 B.0 C.1 D.1- 二. 填空(每题3分,共24分) 11、(-2)-2= ; 12、当x 时,分式3213+-x x 有意义; 13、在冬春季节是“埃博拉出血热” 的高发时期,埃博拉病毒为丝状,直径大约为0.000000286米,用科学记数法表示: 0.000000286= ; 14、当x 时,分式21x x -的值为正数; 15、已知31=b a ,分式b a b a 52-+的值为 ; 16、当k 时,关于x 的方程3423--=+-x xx k 不会产生增根; 17、已知:0≠xyz ,且1=++z y x ,1222=++z y x ,则111=x y z++ ;18、我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为 提高水资源的利用率,某住宅小区安装了循环用水装置。
(完整版)分式章节测试(附答案)
分式章节测试
一、选择题(每题3分, 共30分)
1.若分式/的值为零, 则/的值为()
A. /
B. /
C. /
D. /
2.要使分式/有意义, 则x的取/值范围是()
A. x≠1
B.x>1
C. x<1
D.x≠-1
3.已知//, 则//的值为()
A. //
B. //
C. //
D. //
4、若分式/的值为0, 则/等于()
A.-1
B.1
C.-1或1
D.1或2
5.分式/可变形为()
A. /
B. /
C. /
D. /
二、填空题(每空5分, 共30分)
6.下列各式: /其中分式共有_______ 个。
7、若分式/的值为0, 则x的值为 .
8、当分式/的值为零时, x的值为 .
9、若分式/的值为负数, 则x的取值范围是__________。
10、如果分式/的值为零, 则a的值为____________
三、计算题(17题、18题各8分, 19题、20题各10分, 21题、22题各12分, 共计60分)
11.约分: /.
12.先化简, 再求值: /, 其中/.
13.先化简, 再求值;
14.请你先将分式/化简, 再求出当a=9999时, 该代数式的值.。
分式单元测试题(附参考答案)
分式测试题一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.下列运算正确的是( )A.x10÷x5=x2B.x-4·x=x-3C.x3·x2=x6D.(2x-2)-3=-8x62. 一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时.A.11a b+ B.1abC.1a b+D.aba b+3.化简a ba b a b--+等于( )A.2222a ba b+-B.222()a ba b+-C.2222a ba b-+D.222()a ba b+-4.若分式2242xx x---的值为零,则x的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y-+的值,把分子、分母中各项系数化为整数,结果是( )A.2154x yx y-+B.4523x yx y-+C.61542x yx y-+D.121546x yx y-+6.分式:①22 3a a ++,②22a ba b--,③412()aa b-,④12x-中,最简分式有( )A.1个B.2个C.3个D.4个7.计算4222x x xx x x⎛⎫-÷⎪-+-⎝⎭的结果是( )A. -12x+B.12x+C.-1D.18.若关于x的方程x a cb x d-=-有解,则必须满足条件( )A. a≠b ,c≠dB. a≠b ,c≠-dC.a≠-b , c≠d C.a≠-b , c≠-d9.若关于x的方程ax=3x-5有负数解,则a的取值范围是( )A.a<3B.a>3C.a≥3D.a≤3 10.解分式方程2236111x x x+=+--,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上.(1)-3x;(2)yx;(3)22732xyyx-;(4)-x81;(5)35+y;(6)112--xx;(7)-π-12m;(8)5.023+m.12.当a时,分式321+-aa有意义. 13.若则x+x-1=__________.14.某农场原计划用m天完成A公顷的播种任务,如果要提前a天结束,那么平均每天比原计划要多播种_________公顷.15.计算1201(1)5(2004)2π-⎛⎫-+-÷-⎪⎝⎭的结果是_________.16.已知u=121s st--(u≠0),则t=___________.17.当m=______时,方程233x mx x=---会产生增根. 18.用科学记数法表示:12.5毫克=________吨.19.当x时,分式xx--23的值为负数. 20.计算(x+y)·2222x yx y y x+--=____________.三、计算题:(每小题6分,共12分)21.23651xx x x x+----; 22.2424422x y x y xx y x y x y x y⋅-÷-+-+.四、解方程:(6分)23.21212339x x x-=+--。
2021年中考数学试题及解析:黑龙江牡丹江-解析版
黑龙江省牡丹江市2021年中考数学试卷一、填空题1、(2021•牡丹江)今年参加牡丹江市初中毕业学业考试的考生约有l7 000人,请将数17 000用科学记数法表示为 1.7×104.考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将l7 000用科学记数法表示为1.7×104.故答案为:1.7×104.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2、(2010•楚雄州)函数y=的自变量x取值范围是x≤3.考点:函数自变量的取值范围。
分析:根据二次根式的性质,被开方数大于等于0可知:3﹣x≥0,解得x的范围.解答:解:根据题意得:3﹣x≥0,解得:x≤3.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3、(2021•牡丹江)如图,△ABC的高BD、CE相交于点0.请你添加一对相等的线段或一对相等的角的条件,使BD=CE.你所添加的条件是∠DBC=∠ECB或∠EBC=∠DCB 或AB=AC或AE=AD等.考点:全等三角形的判定与性质。
专题:开放型。
分析:由△ABC的高BD、CE相交于点0,可得∠BEC=∠CDB=90°,又由要使BD=CE,只需△BCE≌△CBD,根据全等三角形的判定定理与性质,即可求得答案.解答:解:此题答案不唯一,如∠DBC=∠ECB或∠EBC=∠DCB 或AB=AC或AE=AD等.∵△ABC的高BD、CE相交于点0.∴∠BEC=∠CDB=90°,∵BC=CB,要使BD=CE,只需△BCE≌△CBD,当BE=CD时,利用HL即可证得△BCE≌△CBD;当∠ABC=∠ACB时,利用AAS即可证得△BCE≌△CBD;同理:当∠DBC=∠ECB也可证得△BCE≌△CBD;当AB=AC时,∠ABC=∠ACB,∴当AB=AC时,也可证得△BCE≌△CBD等.故答案为:∠DBC=∠ECB或∠EBC=∠DCB 或AB=AC或AE=AD等.点评:此题考查了全等三角形的判定与性质,此题属于开放题.解题的关键是理解题意,掌握全等三角形的判定定理.4、(2021•牡丹江)一组数据1,2,a的平均数为2,另一组数据﹣l,a,1,2,b的唯一众数为﹣l,则数据﹣1,a,1,2,b的中位数为1.考点:中位数;算术平均数;众数。
分式填空选择单元测试与练习(word解析版)
分式填空选择单元测试与练习(word 解析版)一、八年级数学分式填空题(难)1.对实数a 、b ,定义运算☆如下:a ☆b=(,0){(,0)b b a a b a a a b a ->≠≤≠,例如:2☆3=2﹣3=18,则计算:[2☆(﹣4)]☆1=_____.【答案】16【解析】【分析】判断算式a ☆b 中,a 与b 的大小,转化为对应的幂运算即可求得答案.【详解】由题意可得:[2☆(﹣4)]☆1=2﹣4☆1 =116☆1 =(116)﹣1 =16,故答案为:16.【点睛】本题考查了新定义运算、负整数指数幂,弄清题意,理解新定义运算的规则是解决此类题目的关键.2.若以x 为未知数的方程()22111232a a x x x x +-=---+无解,则a =______. 【答案】1-或32-或2-. 【解析】【分析】首先解方程求得x 的值,方程无解,即所截方程的解是方程的增根,应等于1或2,据此即可求解a 的值.【详解】去分母得()()()2121x a x a -+-=+,整理得()134a x a +=+,①当1a =-时,方程①无解,此时原分式方程无解;当1a ≠-时,原方程有增根为1x =或2x =.当增根为1x =时,3411a a +=+,解得32a =-; 当增根为2x =时,3421a a +=+,解得2a =-. 综上所述,1a =-或32a =-或2a =-. 【点睛】本题主要考查了方程增根产生的条件,如果方程有增根,则增根一定是能使方程的分母等于0的值.3.已知关于x 的方程12x a x +=--有解且大于0,则a 的取值范围是_____. 【答案】a <2 且 a ≠-2【解析】【分析】 分式方程去分母转化为整式方程,求出整式方程的解,令其解大于0,列出关于a 的不等式,求出不等式的解集,即可得到a 的范围.【详解】解:原分式方程去分母得:x+a=-x+2, 解得:22a x -=, 根据题意得:22a ->0且22a -≠2, 解得:a<2,a ≠-2.故答案为:a<2,a ≠-2.【点睛】 本题考查了分式方程的解,弄清题意和理解分式有意义的条件是解本题的关键.4.方程146x x =+的解是_____. 【答案】x =2. 【解析】【分析】本题考查解分式方程的能力,观察可得最简公分母是x (x+6),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【详解】方程两边同乘以x (x+6),得x+6=4x ,解得x=2.经检验:x=2是原方程的解.【点睛】此题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程解.(2)解分式方程一定注意要验根.5.若分式的值为零,则x的值为________.【答案】1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.6.若关于x的方程x1mx5102x-=--无解,则m=.【答案】﹣8【解析】【分析】试题分析:∵关于x的方程x1mx5102x-=--无解,∴x=5将分式方程x1mx5102x-=--去分母得:()2x1m-=-,将x=5代入得:m=﹣8【详解】请在此输入详解!7.已知关于x的方程232x mx+=-的解是正数,则m的取值范围是__________.【答案】m>-6且m≠-4【解析】试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.试题解析:分式方程去分母得:2x+m=3(x-2),解得:x=m+6,根据题意得:x=m+6>0,且m+6≠2,解得:m>-6,且m≠-4.考点: 分式方程的解.8.如果关于x 的不等式组0{243(2)x m x x ->-<-的解集为,且关于的分式方程有非负整数解,则符合条件的所有m 的取值之积为( )A .B .C .D .15-【答案】C【解析】试题解析:()-0{2-43-2x m x x ⋯⋯>①<②, 解①得x >m ,解②得x >1.不等式组的解集是x >1,则m ≤1.解方程1322x m x x -+=--, 去分母,得1-x -m =3(2-x ),去括号,得1-x -m =6-3x ,移项,得-x +3x =6-1+m ,合并同类项,得2x =5+m ,系数化成1得x =5+m 2. ∵分式方程1322x m x x -+=--有非负整数解, ∴5+m ≥0,∴m >-5,∴-5≤m ≤1,∴m =-5,-3,1,∴符合条件的m 的所有值的积是15,故选C .9.若关于x 的方程233x m x x =+--无解.则m =________. 【答案】3【解析】【分析】先去分母得到整式方程x=2(x-3)+m ,整理得x+m=6,由于关于x 的方程233x m x x =+--无解,则x-3=0,即x=3,然后把x=3代入x+m=6即可求出m 的值.【详解】去分母得x=2(x−3)+m ,整理得x+m=6,∵关于x 的方程233x m x x =+--无解. ∴x−3=0,即x=3,∴3+m=6,∴m=3.故答案为:3.【点睛】此题考查分式方程的解,解题关键在于利用方程无解进行解答.10.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,若设甲商品的单价为x 元,则购买240元甲商品的数量比购买300元乙商品的数量多____件. 【答案】90x【解析】设甲商品的单价为x 元,乙商品的单价为2x 元,根据购买240元甲商品的数量比购买300元乙商品的数量多2403004803009022x x x x --==. 故答案为:90x.二、八年级数学分式解答题压轴题(难)11.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购进方案?(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台【解析】【分析】(1)可设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可; (2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n 的范围,即可确定出购买方案;(3)找到(2)中3种购进方案符合条件的即为所求.【详解】解:(1)设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,依题意有20x =400.3x ×2, 解得x =0.1,x+0.3=0.1+0.3=0.4.答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元;(2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有0.10.4(50)1031sn n n +-⎧⎨⎩, 解得31≤n≤3313, ∵n 为整数,∴n 取31,32,33,∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)①购买甲种空调31台,购买乙种空调19台,(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3000﹣120+5400﹣560﹣2520=7720﹣2520=5200(元),不符合题意,舍去;②购买甲种空调32台,购买乙种空调18台,(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3100﹣120+5100﹣560﹣2520=7520﹣2520=5000(元),符合题意;③购买甲种空调33台,购买乙种空调17台,(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3200﹣120+4800﹣560﹣2520=7320﹣2520=4800(元),不符合题意,舍去.综上所述,购买甲种空调32台,购买乙种空调18台.【点睛】此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.12.已知11x a b c ⎛⎫=+ ⎪⎝⎭,11y b a c ⎛⎫=+ ⎪⎝⎭,11z c a b ⎛⎫=+ ⎪⎝⎭. (1)当1a =,1b =,2c =时,求1111x y +--的值; (2)当0ab bc ac ++≠时,求111111x y z +++++的值. 【答案】(1)4;(2)1【解析】【分析】(1)分别对x 、y 进行化简,然后求值即可;(2)分别求出1x +、1y +、和z 1+值,然后代入化简即可.【详解】(1),,ac ab bc ab bc ac x y z bc ac ab+++===, 当1,1,2a b c ===时, 1211111=;122x ⨯+⨯∴-=-⨯ 1211111=122y ⨯+⨯∴-=-⨯ 1111=4111122x y ∴+=+-- (2)11ac ab ac ab bc x bc bc ++++=+=, 11bc ab bc ab ac y ac ac ++++=+=, 11bc ac bc ac ab z ab ab++++=+=, ∵+0ab bc ac +≠,∴111111;+++x y z bc ac ab ab bc ac ab bc ac ab bc ac+++++=+++++ ++ab bc ac ab bc ac+=+ =1.【点睛】 本题考查了整式的化简求值问题,解题的关键是仔细认真的进行整式的化简.13.小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.【答案】从节约开支角度考虑,应选乙公司单独完成【解析】试题分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8.试题解析:解:设甲公司单独完成需x 周,需要工钱a 万元,乙公司单独完成需y 周,需要工钱b 万元.依题意得:661491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:1015x y =⎧⎨=⎩. 经检验:1015x y =⎧⎨=⎩是方程组的根,且符合题意. 又6() 5.2101549 4.81015a b a b ⎧+=⎪⎪⎨⎪⨯+⨯=⎪⎩,解得:64a b =⎧⎨=⎩. 即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元.答:从节约开支角度考虑,应选乙公司单独完成.点睛:本题主要考查分式的方程的应用,根据题干所给的等量关系求出两公司单独完成所需时间和工钱,然后比较应选择哪个公司.14.阅读后解决问题:在“15.3分式方程”一课的学习中,老师提出这样的一个问题:如果关于x 的分式方程3111a x x+=--的解为正数,那么a 的取值范围是什么? 经过交流后,形成下面两种不同的答案:小明说:解这个关于x 的分式方程,得到方程的解为x=a ﹣2.因为解是正数,可得a ﹣2>0,所以a >2.小强说:本题还要必须a≠3,所以a 取值范围是a >2且a≠3.(1)小明与小强谁说的对,为什么?(2)关于x 的方程11222mx x x-+=--有整数解,求整数m 的值. 【答案】(1)小强的说法对,理由见解析;(2)m=3,4,0.【解析】【分析】 (1)先根据解分式方程的步骤和解法解分式方程可得x =a ﹣2,根据分式方程有解和解是正数可得:x >0且x ≠1, 即a ﹣2>0, a ﹣2≠1,即可求解,(2) 先根据解分式方程的步骤和解法解分式方程可得(m ﹣2)x =﹣2, 当m ≠2时,解得:x =﹣22m -,根据分式方程有整数解可得: m ﹣2=±1,m ﹣2=±2,继而求m 的值. 【详解】解:(1)小强的说法对,理由如下:解这个关于x 的分式方程,得到方程的解为x =a ﹣2,因为解是正数,可得a ﹣2>0,即a >2,同时a ﹣2≠1,即a ≠3,则a 的范围是a >2且a≠3,(2)去分母得:mx ﹣1﹣1=2x ﹣4,整理得:(m ﹣2)x =﹣2,当m ≠2时,解得: x =﹣22m -,由方程有整数解,得到m ﹣2=±1,m ﹣2=±2,解得:m =3,4,0.【点睛】本题主要考查分式方程解是正数和解是整数问题,解决本题的关键是要熟练掌握解分式方程的解法.15.在计算23224x x x x +-++-的过程中,三位同学给出了不同的方法: 甲同学的解法:原式=222222(3)(2)26284444x x x x x x x x x x x +--+-----==----;乙同学的解法:原式=3231312(2)(2)222x x x x x x x x x x +-++--=-=++-+++=1; 丙同学的解法:原式=(x+3)(x ﹣2)+2﹣x=x 2+x ﹣6+2﹣x=x 2﹣4.(1)请你判断一下, 同学的解法从第一步开始就是错误的, 同学的解法是完全正确的.(2)乙同学说:“我发现无论x 取何值,计算的结果都是1”.请你评价一下乙同学的话是否合理,并简要说明理由.【答案】(1)丙,乙;(2)不合理,理由见解析.【解析】试题分析:(1)根据分式的加减法,由分解因式和同分母的分式加减,可知甲第2步去括号时没变号;乙正确;丙第一步的计算漏掉了分母,由此可知答案;(2)根据乙的正确化简结果可知最终结果与x 值无关,但是要注意所选取的x 不能使分式无意义.试题解析:(1)丙同学的解法从第一步开始就是错误的,乙同学的解法是完全正确的; 故答案为:丙,乙;(2)不合理,理由:∵当x≠±2时,22232(3)(2)22444x x x x x x x x x +-+--+=-+---=222262444x x x x x x +--+-=--=1, ∴乙同学的话不合理,。
分式填空选择单元测试卷(解析版)
分式填空选择单元测试卷(解析版)一、八年级数学分式填空题(难)1.已知x 2﹣4x ﹣5=0,则分式265x x x --的值是_____. 【答案】2【解析】 试题分析:根据分式的特点,可变形为22665453xx x x x x x =----+,然后整体代入可得623x x=. 故答案为2.2.已知a 1=1t t+,a 2=111a -,a 3=211a -,…,a n +1=11n a - (n 为正整数,且t≠0,1),则a 2018=______(用含有t 的式子表示).【答案】1+t【解析】分析:把a 1代入确定出a 2,把a 2代入确定出a 3,依此类推,得到一般性规律,即可确定出a 2018的值.详解:根据题意得:a 1=1t t +,a 2=1111t t t=+-+,a 3=411111111t a t t t t=-==--++,…,2018÷3=672…2,∴a 2018的值为1+t . 故答案为:1+t .点睛:本题考查了分式的混合运算,弄清题中的规律是解答本题的关键.3.已知210a a --=,且423223215211a xa a xa a -+=-+-,则x =______. 【答案】27【解析】【分析】 先根据a 2-a-1=0,得出a 2,a 3,a 4的值,然后将等式化简求解.【详解】解:由题意可得a 2−a−1=0∴a 2=a+1∴a 4=(a 2)2=(a+1)2=a 2+2a+1=a+1+2a+1=3a+2,a 3=a ⋅a 2=a(a+1)=a 2+a=a+1+a=2a+1,∵423223215211a xa a xa a -+=-+- ∴2264321521211a a a a x x a +-+=-++- 22663151211a a x x a a +-∴=-++ ()()22116631512a a x a a x ⨯+-=-⨯++整理得()2-38110ax a +⨯+=∴381x = 27x ∴=故答案为:27.【点睛】本题主要考查了分解分式方程,通知所学知识对a 2,a 3,a 4进行变形是解题的关键.4.若关于x 的分式方程25x -=1-5m x -有增根,则m 的值为________ 【答案】-2【解析】 2155m x x =--- 方程两侧同时乘以最简公分母(x -5),得 ()25x m =--,整理,得 7x m =+,即7m x =-.令最简公分母x -5=0,得x =5,∵x =5应该是整式方程7x m =+的解,∴m =5-7=-2.故本题应填写:-2.点睛:本题考查了分式方程增根的相关知识. 一方面,增根使原分式方程去分母时所使用的最简公分母为零. 另一方面,增根还应该是原分式方程所转化成的整式方程的解. 因此,在解决这类问题时,可以通过令最简公分母为零得到增根的候选值,再利用原分式方程所转化成的整式方程检验这些候选值是否为该整式方程的解,从而确定增根. 在本题中,参数m 的值正是利用x =5满足整式方程这一结论求得的.5.若解分式方程144x m x m -=++产生增根,则m =_____. 【答案】-5【解析】【分析】【详解】试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x =-4,然后把分式方程化为整式方程x-1=m ,解得m =-5故答案为-5.6.若方程81877--=--x x x有增根,则增根是____________. 【答案】7【解析】 ∵分式方程81877x x x--=--有增根, ∴x-7=0,∴原方程增根为x=7,因此,本题正确答案是7.7.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.8.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 【答案】n <2且3n 2≠【解析】【分析】【详解】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2.又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠. ∴n 的取值范围为n <2且3n 2≠.9.当x 取_____时,分式1111x x x+--有意义. 【答案】x≠0且x≠±1【解析】分析:要想使分式有意义,那么分式的分母就不能为0,据此列出关于x 的不等式组,解不等式组即可求得x 的取值范围. 详解:由题意可知,只有当:0101101x x x x x x ⎧⎪⎪≠⎪⎪-≠⎨⎪+⎪-≠⎪-⎪⎩时,原分式才有意义,解得:011x x x ≠⎧⎪≠±⎨⎪≠-⎩,即当x ≠0且x ≠±1时,原分式有意义.故答案为:x ≠0且x ≠±1.点睛:本题主要考查了分式有意义的条件,要求掌握.对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得字母的取值即可. 本题的难点在于,题中是一个繁分式,需一层一层分析,x 是1x的分母,所以x ≠0; x ﹣1x 是11x x x +-的分母,所以x ﹣1x ≠0;1﹣11x x x+-又是整个分式的分母,因此1﹣11xx x+-≠0.繁分式的有关知识超出初中教材大纲要求,只在竞赛中出现.10.关于x 的分式方程111x k k x x +-=+-的解为非负数,则k 的取值范围为_____. 【答案】k ≤12且k ≠0 【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为非负数求出k 的范围即可.【详解】解:去分母得:(x +k )(x ﹣1)﹣k (x +1)=(x +1)(x ﹣1),整理得:x 2﹣x +kx ﹣k ﹣kx ﹣k =x 2﹣1,解得:x =1﹣2k ,∵分式方程的解为非负数,得到1﹣2k ≥0,且1﹣2k ≠1,解得:k ≤12且k ≠0, 故答案为:k ≤12且k ≠0 【点睛】此题考查了分式方程的解的定义,方程的解即为能使方程左右两边相等的未知数的值.此题方程的解为非负数,即为x ≥0且x ≠1.其中x ≠1容易漏掉,为易错点.二、八年级数学分式解答题压轴题(难)11.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】规定期限20天;方案(3)最节省【解析】【分析】设这项工程的工期是x 天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x 天完成,则有:415x x x +=+, 解得x=20.经检验得出x=20是原方程的解;答:规定期限20天.方案(1):20×1.5=30(万元)方案(2):25×1.1=27.5(万元 ),方案(3):4×1.5+1.1×20=28(万元). 所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.12.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】 【分析】(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,112x x x x +≥⋅= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭∵12x x --≥= ∴12x x ⎛⎫---≤- ⎪⎝⎭∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0,∴163311y x x =++≥= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.13.阅读下面的材料,并解答后面的问题材料:将分式23411x x x +-+拆分成一个整式与一个分式(分子为整数)的和(差)的形式. 解:由分母为1x +,可设2341(1)(3)x x x x a b +-=+++.因为223(1)(3)333(3)x x a b x ax x a b x a x a b +++=++++=++++,所以223413(3)x x x a x a b +-=++++. 所以341a a b +=⎧⎨+=-⎩,解之,得12a b =⎧⎨=-⎩. 所以2341(1)(31)211x x x x x x +-++-=++ (1)(31)2231111x x x x x x ++=-=+-+++这样,分式23411x x x +-+就被拆分成了一个整式31x +与一个分式21x +的差的形式. 问题:(1)请将分式22361x x x ++-拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)请将分式4225932x x x +-+拆分成一个整式与一个分式(分子为整数)的和(差)的形式.【答案】(1)2236112511x x x x x ++=++--;(2)4222259315122x x x x x +-=--++. 【解析】【分析】(1)仿照例题将2236x x ++分解为(1)(2)x x a b -++,求出a 、b 的值即可得到答案;(2)将42593x x +-分解为22(2)(5)x x m n +++,得到10923m m n +=⎧⎨+=-⎩,求出m 、n ,整理后即可得到答案.【详解】(1)由分母为x-1,可设2236x x ++=(1)(2)x x a b -++,∵(1)(2)x x a b -++=22222(2)()x ax x a b x a x b a +--+=+-+-,∴2236x x ++22(2)()x a x b a =+-+- ∴236a b a -=⎧⎨-=⎩,得511a b =⎧⎨=⎩, ∴22361x x x ++-=(1)(25)111x x x -++-=(1)(25)1111x x x x -++--=11251x x ++-; (2)由分母为22x +,可设42593x x +-=22(2)(5)x x m n +++,∵22(2)(5)x x m n +++=4224251025(10)(2)m x mx x m x m n n x +++++=+++ ∴42593x x +-=42(10)(2)5x m n x m ++++,∴10923m m n +=⎧⎨+=-⎩,得11m n =-⎧⎨=-⎩, ∴4225932x x x +-+=222(2)(51)12x x x +--+=221512x x --+. 【点睛】此题是仿照例题解题的形式解题,正确理解题意,明确例题中的计算的方法是解题的关键.14.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购进方案?(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台【解析】【分析】(1)可设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可; (2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n 的范围,即可确定出购买方案;(3)找到(2)中3种购进方案符合条件的即为所求.【详解】解:(1)设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,依题意有20x =400.3x ×2, 解得x =0.1,x+0.3=0.1+0.3=0.4.答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元;(2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有0.10.4(50)1031sn n n +-⎧⎨⎩, 解得31≤n≤3313, ∵n 为整数, ∴n 取31,32,33,∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)①购买甲种空调31台,购买乙种空调19台,(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3000﹣120+5400﹣560﹣2520=5200(元),不符合题意,舍去;②购买甲种空调32台,购买乙种空调18台,(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3100﹣120+5100﹣560﹣2520=7520﹣2520=5000(元),符合题意;③购买甲种空调33台,购买乙种空调17台,(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3200﹣120+4800﹣560﹣2520=7320﹣2520=4800(元),不符合题意,舍去.综上所述,购买甲种空调32台,购买乙种空调18台.【点睛】此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.15.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:48728x x=+,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
牡丹江市最新初中数学—分式的经典测试题含答案
一、选择题1.化简:32322012220122010201220122013-⨯-+-,结果是( ) A .20102013B .20102012C .20122013D .201120132.下列分式是最简分式的是( )A .22a a ab+B .63xy aC .211x x -+D .211x x ++3.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=- B .x 6=C .x 5≠D .x 5=4.分式:22x 4- ,x42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+- D .()()2x 2?x 2+-5.下列运算正确的是( ) A .2-3=-6 B .(-2)3=-6C .(23)-2=49D .2-3=186.在式子:2x、5x y + 、12a - 、1x π-、21xx +中,分式的个数是( ) A .2B .3C .4D .57.若a = (-0.4)2,b = -4-2,c =214-⎛⎫- ⎪⎝⎭,d =014⎛⎫- ⎪⎝⎭, 则 a 、b 、c 、d 的大小关系为( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b 8.下列变形正确的是( ). A .11a ab b+=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 9.下列等式成立的是( )A .|﹣2|=2B ﹣1)0=0C .(﹣12)﹣1=2 D .﹣(﹣2)=﹣210.下列变形正确的是( ).A .1x yx y-+=-- B .x m mx n n+=+ C .22x y x y x y +=++ D .632x x x= 11.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <bC .b <a <cD .c <b <a12.若代数式32x x +-在实数范围内有意义,则x 的取值范围为( ) A .x<-3 B .x ≥-3C .x>2D .x ≥-3,且x ≠213.已知分式32x x +-有意义,则x 的取值范围是( ) A .x ≠-3B .x≠0C .x≠2D .x=214.下列各式变形正确的是()A .x y x yx y x y-++=---B .22a b a bc d c d --=++ C .0.20.03230.40.0545a b a bc d c d--=++D .a b b ab c c b--=-- 15.(下列化简错误的是( ) A .(2)﹣1=2 B .2(2)- =2 C .25542=± D .(﹣2)0=116.若0x y y z z xabc a b c---===<,则点P(ab ,bc)不可能在第( )象限 A .一 B .二 C .三 D .四17.已知12x y-=3,分式4322x xy yx xy y +-+-的值为( )A .32B .0C .23D .9418.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .19.氢原子的半径约为0.000 000 000 05m ,用科学记数法表示为( ) A .5×10﹣10m B .5×10﹣11m C .0.5×10﹣10m D .﹣5×10﹣11m 20.若(1-x )1-3x =1,则x 的取值有( )个. A .1个 B .2个C .3个D .4个21.如果把分式2+mm n中的m 和n 都扩大2倍,那么分式的值 ( ) A .扩大4倍 B .缩小2倍C .不变D .扩大2倍22.分式212xy 和214x y的最简公分母是( ) A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 323.如果2310a a ++=,那么代数式229263a aa a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1B .1-C .2D .2-24.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个25.如果把分式2xx y-中的x 与y 都扩大2倍,那么分式的值( ) A .不变B .扩大2倍C .缩小2倍D .扩大4倍【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将所求式子的分子分母前两项提取20122,整理后分子提取2010,分母提取2013,约分后即可得到结果,选出答案. 【详解】原式=32322012220122010201220122013-⨯-+-=2220122012220102012201212013--⨯+-()()=22201220102010201220132013⨯-⨯-=22201020121201320121--()()=20102013,故答案选A. 【点睛】本题主要考查了因式分解的应用,是一道技巧性较强的题,熟练掌握因式分解的方法是解本题的关键.2.D解析:D 【解析】A 选项中,分式的分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确. 故选:D .点睛:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.3.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.4.D解析:D 【解析】 ∵2224(2)(2)x x x =-+-,422(2)x xx x =---, ∴分式22 442xx x --、的最简公分母是:2(2)(2)x x +-. 故选D.5.D解析:D 【解析】选项A. 2-3=18,A 错. 选项B. (-2)3=-8,B 错.选项C. (23)-2=94 ,C 错误. 选项D. 2-3=18,正确 .所以选D. 6.B解析:B 【解析】 解:分式有2x 、12a -、21x x +共3个.故选B . 点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.7.B【解析】∵a=0.16;b=-214=-116;c =(211()4-)=16;d =1;故:b<a<d<c8.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.9.A解析:A 【解析】根据绝对值、零指数幂及负整数指数幂的运算法则,可得: A 、|﹣2|=2,计算正确,故本选项正确;B﹣1)0=1,原式计算错误,故本选项错误;C 、(﹣12)﹣1=﹣2,原式计算错误,故本选项错误; D 、﹣(﹣2)=2,原式计算错误,故本选项错误; 故选:A .点睛:此题主要考查了绝对值、零指数幂及负整数指数幂的运算法则,灵活运用绝对值、零指数幂及负整数指数幂的运算法则进行计算是解决此类题目的关键.10.A解析:A 【解析】 试题解析:()1x y x y x y x y-+--==---. 故选A.11.C解析:C【详解】解:a=20170=1,b=2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c=(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b<a<c.故选C.点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.12.D解析:D【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可.【详解】根据题意得x+3≥0且x−2≠0,所以x的取值范围为x≥−3且x≠2.故答案选D.【点睛】本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.C解析:C【解析】分析:根据分式有意义的条件:分母不等于0即可求解.详解:根据题意得:x-2≠0,解得:x≠2.故选C..点睛:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 14.D解析:D【解析】【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变,可得答案.【详解】A、原式x yx y-=+,所以A选项错误;B、原式=2a bc d-+(),所以B选项错误;C、原式=203405a bc d-+,所以C选项错误;D、a b b ab c c b--=--,所以D选项正确.故选D.【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变.15.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A﹣1,正确,不合题意;B,正确,不合题意;C52=,故此选项错误,符合题意;D0=1,正确,不合题意;故选:C.【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.16.A解析:A【解析】【分析】根据有理数的乘法判断出a,b,c中至少有一个是负数,另两个同号,然后求出三个数都是负数时x、y、z的大小关系,得出矛盾,从而判断出a、b、c不能同时是负数,确定出点P不可能在第一象限.【详解】解:∵abc<0,∴a,b,c中至少有一个是负数,另两个同号,可知三个都是负数或两正数,一个是负数,当三个都是负数时:若x yabc a-=,则20x y a bc -=>,即x >y ,同理可得:y >z ,z >x 这三个式子不能同时成立, 即a ,b ,c 不能同时是负数, 所以,P (ab ,bc )不可能在第一象限. 故选:A. 【点睛】本题主要考查分式的基本性质和点的坐标的知识,熟悉点的坐标的基本知识是本题的解题关键,确定一个点所在象限,就是确定点的坐标的符号.17.A解析:A 【解析】 【分析】先根据题意得出2x-y=-3xy ,再代入原式进行计算即可. 【详解】解:∵12x y-=3,∴2x-y=-3xy , ∴原式=()()2232x y xyx y xy-+-+,=633xy xyxy xy -+-+,=32xyxy --, =32, 故选A . 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.B解析:B 【解析】 【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f 即可. 【详解】,变形得:f=.【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.19.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000005=5×10﹣11.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.B解析:B【分析】利用零指数幂,乘方的意义判断即可.【详解】解:∵(1-x)1-3x=1,∴1-x≠0,1-3x=0或1-x=1,解得:x=13或x=0,则x的取值有2个,故选B【点睛】本题考查了零指数幂,以及有理数的乘方,熟练掌握运算法则是解题的关键.21.C解析:C【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变,可得答案.【详解】分式2+mm n中的m和n都扩大2倍,得4222m mm n m n=++,∴分式的值不变,【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变.22.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】 分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.23.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.C解析:C【解析】【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可.【详解】①()011-=,正确; ②2113333--⨯==,正确; ③当m 为偶数时,()()33m m x x -≠-,错误; ④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误.故选C .【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键. 25.A解析:A【解析】分析:解答此题时,可将分式中的x ,y 用2x ,2y 代替,然后计算即可得出结论. 详解:依题意得:2222x x y ⨯-=222x x y ⋅⋅-()=原式.故选A . 点睛:本题考查的是对分式的性质的理解和运用,扩大或缩小n 倍,就将原来的数乘以n 或除以n .。
牡丹江数学三角形填空选择单元测试卷(解析版)
牡丹江数学三角形填空选择单元测试卷(解析版)一、八年级数学三角形填空题(难)1.在ABC 中,BAC α∠=,边AB 的垂直平分线交边BC 于点D ,边AC 的垂直平分线交边BC 于点E ,连结AD ,AE ,则DAE ∠的度数为______.(用含α的代数式表示)【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B =∠BAD ,∠C =∠CAE ,进而得到∠BAD +∠CAE =∠B +∠C =180°-a ,再根据角的和差关系进行计算即可. 解:有两种情况:①如图所示,当∠BAC ⩾90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAC −(∠BAD +∠CAE )=α−(180°−α)=2α−180°;②如图所示,当∠BAC <90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAD +∠CAE −∠BAC =180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.3.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.【答案】15【解析】【分析】作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度【详解】作EH AB ⊥∵AE 平分∠BACBAE CAE ∴∠=∠EC EH ∴=∵P 为CE 中点4EC EH ==∴∵D 为AC 中点,P 为CE 中点=x =y PEF PCF CDF ADF S S S S ==△△△△∴设,15x BEF S =-△∴15+x+y BCD BDA S S ==△△∴y=15+x+y-y=15+x BFA BDA S S =-△△∴15x+15+x=30BEA BEF BFA S S S =+=-△△△∴1=302BEA S AB EH ⨯=△∵ =15AB ∴【点睛】本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用△BFP的面积来表示△BEA的面积4.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.5.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.6.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.【答案】5【解析】【分析】根据多边形的内角和公式(n ﹣2)•180°与外角和定理列式求解即可【详解】解:设这个多边形的边数是n ,则(n ﹣2)•180°﹣360°=180°,解得n =5.故答案为5.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.7.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB的度数,再根据角平分线的定义,求出∠ABC+∠ACB,最后利用三角形内角和定理解答即可.【详解】解:在△PBC中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB、PC分别是∠ABC和∠ACB的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB)=2×50°=100°,在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.8.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC外,若∠2=20º,则∠1的度数为 _______.【答案】100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.9.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.【答案】100°【解析】【分析】根据线段垂直平分线的性质,得BE BA =,根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD 垂直平分AE ,∴BE BA =,∴50E A ∠=∠=︒, ∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.10.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】【分析】根据外角的概念求出∠ADC 的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.二、八年级数学三角形选择题(难)11.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条【答案】C【解析】【分析】n边形的内角和是(2)180n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求出多边形的边数,在根据多边形的对角线总条数公式()32n n-计算即可.【详解】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形对角线总条数公式()32n n-.12.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.1320【答案】B【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得y=43x,再根据△ABC的面积是3即可求得x、y的值,从而求解.【详解】连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1∴△ABD的面积是4x+2y∴△ABP的面积是4x.∴4x+x=2y+x+y,解得y=43x.又∵△ABC的面积为3∴4x+x=32,x=310.则四边形PDCE的面积为x+y=710.故选B.【点睛】此题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.13.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【答案】C【解析】【分析】根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠1)=90°-12∠1,∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1,∵∠ACD=∠ABC+∠1,CE平分∠ACD,∴∠ECD=12∠ACD=12(∠ABC+∠1),∵∠ECD=∠OBC+∠2,∴∠2=12∠1,即∠1=2∠2,∴∠BOC=90°+12∠1=90°+∠2,∴①④正确,②③错误,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.14.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111A B C.再分A B C.…… 按此规律,倍长2018次后得到的别倍长A1B1,B1C1,C1A1得到222A B C的面积为()201820182018A.20177D.201886C.20186B.2018【答案】C【解析】分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC 的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.故选C.点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.15.如图,△ABC 中,E 是 AC 的中点,延长BC 至D,使BC :CD=3:2,以CE,CD 为邻边做▱CDFE,连接 AF,BE,BF,若△ABC 的面积为 9,则阴影部分面积是()A.6 B.4 C.3 D.2【答案】A【解析】【分析】根据三角形中位线性质结合三角形面积去解答.【详解】解:在ABC 中,E 是 AC 的中点,S ABC 9=, BC :CD =3:2▱CDFE 中,CD=EF 1S BCE 4.52S ABC ∴== 设BCE 的高为1h , ABC 的高为2.h11S BCE 4.52BC h ∴=⨯⨯= 13h =12:1:2h h =26h ∴=S AEF S EFB s ∴=+阴()2111122EF h h EF h =⨯⨯-+⨯⨯ 212EF h =⨯⨯ 1262=⨯⨯ 6.=【点睛】此题重点考察学生对三角形中位线和面积的理解,熟练掌握三角形面积计算方法是解题的关键.16.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm【答案】D【解析】试题分析:①当A ,B ,C 三点在一条直线上时,分点B 在A 、C 之间和点C 在A 、B 之间两种情况讨论;②当A ,B ,C 三点不在一条直线上时,根据三角形三边关系讨论.解:当点A 、B 、C 在同一条直线上时,①点B 在A 、C 之间时:AC =AB +BC =3+1=4;②点C 在A 、B 之间时:AC =AB -BC =3-1=2,当点A 、B 、C 不在同一条直线上时,A 、B 、C 三点组成三角形,根据三角形的三边关系AB -BC <AC <AB +BC ,即2<AC <4,综上所述,选D.故选D.点睛:本题主要考查点与线段的位置关系..利用分类思想得出所有情况的图形是解题的关键,17.已知如图,△ABC 中,∠ABC=50°,∠BAC=60°,BO 、AO 分别平分∠ABC 和∠BAC ,求∠BCO 的大小()A .35°B .40°C .55°D .60°【答案】A【解析】 分析:先根据三角内角和可求出∠ACB =180°-50°-60°=70°,根据角平分线的性质:角平分线上的点到角两边的距离相等可得:点O 到AB 和BC 的距离相等,同理可得:点O 到AC 和BC 的距离相等,然后可得: 点O 到AC 和BC 的距离相等,再根据角平分线的判定可得:OC 平分∠ACB ,所以∠BCO =12∠ACB=35°. 详解: 因为∠ABC =50°,∠BAC =60°,所以∠ACB =180°-50°-60°=70°,,因为BO ,AO 分别平分∠ABC 和∠BAC ,所以点O 到AB 和BC 的距离相等,同理可得:点O 到AC 和BC 的距离相等,所以点O 到AC 和BC 的距离相等,所以OC 平分∠ACB ,所以∠BCO =12∠ACB=35°. 点睛:本题主要考查三角形内角和和角平分线的性质和判定,解决本题的关键是要熟练掌握三角形内角和性质和角平分线的性质和判定.18.如图P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠=( )A .085B .090C .095D .0100【答案】C【解析】∵070,BAC ∠= 0120,BPC ∠=∴∠ABC+∠ACB=110°,∠PBC+∠PCB=60°,∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=110°-60°=50°,∵BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,∴∠FBP+∠FCP=12 (∠ABP+∠ACP)=00150252⨯=; ∴∠FBC+∠FCB=∠FBP+∠FCP+∠PBC+∠PCB=25°+60°=85°,∴BFC ∠=180°-(∠FBC+∠FCB )=180°-85°=95°.故选C.点睛:本题主要考查了三角形的内角和定理和角平分线的定义,根据图形正确找出角与角之间的数量关系是解题的关键.19.如图所示,小华从A 点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A 点时,一共走的路程是( )A .140米B .150米C .160米D .240米【答案】B【解析】【分析】 由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【详解】已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B .【点睛】本题考查多边形内角与外角,熟记公式是关键.20.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A=90°,EG ∥BC,且CG⊥EG 于G ,下列结论:①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA 平分∠BCG;其中正确的个数是( )A.1B.2C.3D.4【答案】C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB.又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°.∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.故选C.点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.。
牡丹江市八年级数学上册第五单元《分式》测试(有答案解析)
一、选择题1.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±12.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( )A .1个B .2个C .3个D .4个3.若关于x 的方程1044m xx x--=--无解,则m 的值是( ) A .2- B .2C .3-D .34.下列运算正确的是( )A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠5.若a =1,则2933a a a -++的值为( ) A .2 B .2-C .12D .12-6.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .147.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a ,三条直线两两相交最多将平面分得的区域数记为2a ,四条直线两两相交最多将平面分得的区域数记为()3,,1a n ⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为n a ,若121111011111n a a a ++⋅⋅⋅+=---,则n =( ) A .10B .11C .20D .218.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2B .23x - C .41x x -- D .21x - 9.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x 的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( ) A .4-B .0C .3D .610.下列计算正确的是( )A .1112a a a+=B .2211()()a b b a +--=0C .m n a -﹣m na +=0 D .11a b b a+--=011.020*******)(0.125)8+⨯的结果是( )A B 2C .2D .012.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<<B .b a c d <<<C .b a d c <<<D .a b d c <<<二、填空题13.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.14.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 15.已知实数a 、b 满足32a b =,则a b a b +-_________.16.若关于x 的方程1322m xx x-+=--的解是正数,则m =____________. 17.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg . 18.计算:()222333a b a b --⋅=_______________.19.已知1112a b -=,则aba b-的值是________. 20.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题21.(1)解方程.22510111x x x -+=+--. (2)先化简分式(2241442a a a a ---+-)÷212a a a +-,然后在0,1,2中选一个你认为合适的a 值,代入求值.22.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等 (1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 23.某小区购买了A 型和B 型两种垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(要求列分式方程求解)24.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: (方案一)甲队单独完成这项工程,刚好按规定工期完成; (方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲、乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完工.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由. 25.解方程: (1)3311xx x +=-- (2)23425525x x x +=-+- 26.阅读理解材料1:小学时常常会遇到将一个假分数写成带分数的问题,在这个计算的过程中,先计算分子中有几个分母求出整数部分,再把剩余的部分写成一个真分数,例如:52211333=+=. 类似的,我们可以将下列的分式写成一个整数与一个新分式的和. 例如:111x x x+=+. 1(1)221111x x x x x +-+==+---.材料2:为了研究字母x 和分式1x值的变化关系,小明制作了表格,并得到数据如下:请根据上述材料完成下列问题:(1)把下面的分式写成一个整数与一个新分式的和的形式:2x x +=__________________;12x x +=-___________________; (2)当0x >时,随着x 的增大,分式2x x+的值___________(增大或减小); (3)当1x >-时,随着x 的增大,分式231x x ++的值无限趋近一个数,请写出这个数,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案. 【详解】解:∵分式2121x x -+值为0,∴2x+1≠0,210x -=, 解得:x=±1. 故选:D . 【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.2.C解析:C 【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a <5;综合以上两点得出整数a 的值,从而得出答案.【详解】 解:分式方程122x a x -=-, 去分母,得:2(x-a )=x-2, 解得:x=2a-2,∵分式方程的解为非负数, ∴2a-2≥0,且2a-2≠2, 解得a≥1且a≠2, ∵不等式组5x x a≥⎧⎨>⎩的解集是x≥5, ∴1≤a <5,且a≠2,则整数a 的值为1、3、4共3个, 故选:C . 【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a 的取值范围.3.D解析:D 【分析】根据方程1044m xx x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值. 【详解】解:去分母得:m +1−x =0,∵方程1044m xx x --=--无解, ∴x =4是方程的增根, ∴m =3. 故选:D . 【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.4.D解析:D 【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可. 【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221aa-=,故B 选项不符合题意;C. 572a a a -÷=,故C 选项不符合题意;D. 0(2)1(0)a a =≠,故D 选项符合题意. 故填:D . 【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.5.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.6.B解析:B 【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可. 【详解】去分母得:()()22421x k x --+=,整理得:22290x kx k ---=, ∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =- 故选:B 【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.7.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题. 【详解】 根据题意得,2条直线最多将平面分成4个区域1=4a , 3条直线最多将平面分成7个区域2=7a , 4条直线最多将平面分成11个区域3=11a , 5条直线最多将平面分成16个区域4=16a则11=3=1+2a -,21=6=1+2+3a -, 31=10=1+2+3+4a -, 41=15=1+2+3+4+5a -1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+--- 111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦11222n ⎡⎤=-⎢⎥+⎣⎦2nn =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+222n ∴+=20n ∴=经检验n=20是原方程的根 故选:C . 【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.8.D解析:D 【分析】利用乘法分配律计算即可 【详解】 解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D . 【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.9.C解析:C 【分析】先对分式方程进行求解,即用含k 的代数式表示分式方程的解,然后根据题意可进行求解. 【详解】 解:由3211k x x +=--可得:52x k =+, ∵分式方程的解为非负数,且1x ≠,∴502k +≥且512k +≠,解得:5k ≥-且3k ≠- ∴满足条件的有5-、1-、3、6, ∴它们的和为51363--++=; 故选C . 【点睛】本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.10.D解析:D 【分析】直接根据分母不变,分子相加运算出结果即可.【详解】 解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误;C 、原式=m n m n a ---=﹣2na,故错误;D 、原式=11a b a b---=0,故正确. 故选D . 【点睛】本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单.11.C解析:C 【分析】根据零次幂定义,积的乘方的逆运算进行计算. 【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=.故选:C 【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.12.D解析:D 【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案. 【详解】解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭,∵10011999-<-<<, ∴a b d c <<<,故选D . 【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.二、填空题13.【分析】设甲乙丙三种口罩的进价分别为xyz 根据题意可分别求出甲乙丙三种口罩的利润再根据当销售出的甲乙丙口罩件数之比为1:3:2时的总利润为20和当销售出的甲乙丙口罩件数之比为3:2:2时的总利润为2解析:83【分析】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,根据题意可分别求出甲、乙、丙三种口罩的利润.再根据当销售出的甲、乙、丙口罩件数之比为1:3:2时的总利润为20%和当销售出的甲、乙、丙口罩件数之比为3:2:2时的总利润为24%,列出等式,求出x 、y 、z 之间的关系.最后即可求出只购进甲、乙两种口罩,使总利润为28%时的甲、乙两种口罩的数量比. 【详解】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,则销售甲口罩的利润为30%x ,乙口罩的利润为20%y ,丙口罩的利润为5%z .当销售出的甲、乙、丙口罩件数之比为1:3:2时,设甲口罩售出a 件,则乙口罩售出3a 件,丙口罩售出2a 件.根据题意可列等式:30%320%25%20%32a x a y a za x a y a z++=++, 整理得:x =3z .当销售出的甲、乙、丙口罩件数之比为3:2:2时,设甲口罩售出3b 件,则乙口罩售出2b 件,丙口罩售出2b 件. 根据题意可列等式:330%220%25%24%322b x b y b zb x b y b z++=++,整理得:9x-4y =19z . ∴y =2z .现只购进甲、乙两种口罩,使总利润为28%,设甲口罩售出A 件,乙口罩售出B 件. 则30%20%28%A x B y A x B y +=+,即30%320%228%32A z B zA zB z⨯⨯+⨯⨯=⨯+⨯.∴83A B =. 故答案为:83. 【点睛】本题考查分式方程的实际应用.根据题意列出每一步的分式方程是解答本题的关键.14.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4 【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 15.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b = ∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键. 16.m <5且m≠1【分析】将分式方程去分母转化为整式方程表示出x 根据x 为正数列出关于m 的不等式求出不等式的解集即可确定出m 的范围【详解】解:关于的方程的解是正数且解得m <5且m≠1故答案为:m <5且m≠ 解析:m <5且m≠1【分析】将分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.【详解】解:1322m x x x-+=-- ()m+32=-1-x x5-m x=2关于x 的方程1322m x x x-+=--的解是正数, 5-m 02>且5-m 22≠ 解得m <5且m≠1,故答案为:m <5且m≠1【点睛】此题考查了分式方程的解,得出关于m 的不等式是解题的关键,注意任何时候考虑分母不为0.17.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x=+80060010y y =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.18.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.19.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b-的值. 【详解】 解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 20.4【分析】方程的右边是1有三种可能需要分类讨论第1种可能:指数为0底数不为0;第2种可能:底数为1;第3种可能:底数为-1指数为偶数【详解】解:(1)当x+2020=0x2+x -1≠0时解得x=﹣2解析:4【分析】方程的右边是1,有三种可能,需要分类讨论.第1种可能:指数为0,底数不为0;第2种可能:底数为1;第3种可能:底数为-1,指数为偶数.【详解】解:(1)当x+2020=0,x 2+x -1≠0时,解得x=﹣2020;(2)当x 2+x -1=1时,解得x=﹣2或1.(3)当x 2+x -1=﹣1,x+2020为偶数时,解得x=0因而原方程所有整数解是﹣2020,-2,1,0共4个.故答案为:4.【点睛】本题考查了:a 0=1(a 是不为0的任意数)以及1的任何次方都等于1.容易遗漏第3种可能情况,需特别注意.三、解答题21.(1)无解;(2)a ,1.【分析】(1)根据解分式方程的一般步骤解分式方程即可;(2)先根据分式的化简步骤将分式化为最简分式,再代入恰当的数值即可.【详解】解:(1)方程的两边都乘以(x +1)(x ﹣1)得,2(1)5(1)10x x --+=-∴2x-2-5x-5=-10解得1x =检验,当x =1时,(x +1)(x ﹣1)=0∴x =1是原方程的增根.∴原分式方程无解.(2)原式=2(2)(2)1(2)(2)21a a a a a a a ⎡⎤-+--⋅⎢⎥--+⎣⎦ =1(2)21a a a a a +-⋅-+ =a ,当a =0,2分式无意义,故当a =1时,原式=1.【点睛】本题主要考察了解分式方程及分式的化简求值,解题的关键是熟练掌握解分式方程的一般步骤及分式化简的一般步骤,注意分式有意义的条件.22.(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.23.购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设购买一个A 型垃圾桶需x 元,购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,一个B 型垃圾桶需()30x +元,根据购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,构造分式方程25002000230x x =⨯+,解方程并检验即可. 【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元, 由题意得:25002000230x x =⨯+, 解得50x =,经检验,50x =是原方程的解,且符合题意,30503080x +=+=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法,抓住购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元设未知数,购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍构造方程,注意分式方程要验根.24.(1)完成这项工程的规定时间是20天;(2)选择方案三,理由见解析.【分析】(1)设完成这项工程的规定时间为x 天,则甲工程队需x 天完成这项工程,乙工程队需(x+5)天完成这项工程,根据由甲、乙两队合作做4天,剩下的工程由乙队单独做,即可得出关于x 的分式方程,解之并检验后即可得出结论.(2)根据总费用=每天需付费用×工作天数,分别求出方案一、三需付的工程款,比较后即可得出结论.【详解】(1)设完成这项工程的规定时间为x 天, 由题意得1144155x x x x -⎛⎫++=⎪++⎝⎭. 解得:20x .经检验,20x 是原方程的解,且符合题意.答:完成这项工程的规定时间是20天.(2)选择方案三,理由如下:方案一:所需工程款为20 2.142⨯=(万元);方案二:超过了规定时间,不符合题意;方案三:所需工程款为4 2.120 1.538.4⨯+⨯=(万元).∵42>38.4,∴ 选择方案三.【点睛】本题考查了分式方程的应用,解题的关键是:(1)由甲、乙两队合作做4天,剩下的工程由乙队单独做,列出关于x 的分式方程;(2)根据数量关系列式计算.25.(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.26.(1)21x +,312x +-;(2)减小;(3)2,理由见解析 【分析】(1)把分子写成分母的倍数与另一个整式的和,再逆用分式的加减法则即可得到解答; (2)把2x x +变成21x +,再根据 1x 随x 的变化趋势可以得解; (3)先得231211x x x +=+++,然后根据随着x 的值的增大, 11x +的值逐渐减小并趋于0可以得到解答.【详解】解:(1)∵2221x x x x x x +=+=+,123233122222x x x x x x x x +-+-==+=+-----, 故答案为23112x x ++-,; (2)∵221x x x +=+,且由材料2可得: x>0时, 1x随x 的增大而减小, ∴当 x>0 时,随着x 的增大,分式2x x +的值减小; (3)2理由如下:231211x x x +=+++, 随着x 的值的增大,11x +的值逐渐减小并趋于0, ∴随着x 的值的增大,231x x ++的值无限趋近于2. 【点睛】 本题考查分式运算的规律探索,根据材料得到一定规律并灵活运用于所给问题的解决是解题关键.。
2023年黑龙江省牡丹江市中考数学真题(解析版)
2023年牡丹江市初中毕业学业考试数学试卷考生注意:1.考试时间120分钟;2.全卷共三道大题,总分120分;3.所有试题请在答题卡上作答,在试卷上答题无效.一、单项选择题(本题12个小题,每小题3分,共36分)1. 下列图形中,既是中心对称图形,又是轴对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,也是中心对称图形,故选项符合题意;B 、不是轴对称图形,是中心对称图形,故选项不符合题意;C 、是轴对称图形,不是中心对称图形,故选项不符合题意;D 、不是轴对称图形,是中心对称图形,故选项不符合题意;故选:A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2. 函数y =x 的取值范围是( )A. 1x £ B. 1x ³- C. 1x <- D. 1x >【答案】B【解析】【分析】根据二次根式有意义的条件,被开方数大于等于0知:10x +³,可求出x 的范围.【详解】解:根据题意得:10x +³,解得:1x ³-,故选:B .【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3. 下列计算正确的是( )A. 248a a a ⋅= B. 3332a a a -= C. ()3236ab a b = D. ()222a b a b +=+【答案】C【解析】【分析】分别根据同底数幂的乘法,合并同类项,积的乘方,完全平方公式逐一分析判断即可.【详解】解:246a a a ⋅=,故A 不符合题意,33332a a a -=,故B 不符合题意;()3236ab a b =,故C 符合题意;()2222a b a ab b +=++,故D 不符合题意;故选C 【点睛】本题考查的是同底数幂的乘法,合并同类项,积的乘方运算,完全平方公式的应用,熟记运算法则是解本题的关键.4. 如图,A ,B ,C 为O e 上的三个点,4AOB BOC Ð=Ð,若60ACB Ð=°,则BAC Ð的度数是( )A. 20°B. 18°C. 15°D. 12°【答案】C【解析】【分析】由60ACB Ð=°,可得2120AOB ACB Ð=Ð=°,结合4AOB BOC Ð=Ð,可得1120304BOC Ð=´°=°,再利用圆周角定理可得答案.【详解】解:∵60ACB Ð=°,∴2120AOB ACB Ð=Ð=°,∵4AOB BOC Ð=Ð,∴1120304BOC Ð=´°=°,∴1152BAC BOC Ð=Ð=°,故选C .【点睛】本题考查的是圆周角定理的应用,熟记圆周角定理的含义是解本题的关键.5. 一组数据1,x ,5,7有唯一众数,且中位数是6,则平均数是( )A. 6B. 5C. 4D. 3【答案】B【解析】【分析】由一组数据1,x ,5,7有唯一众数, 可得x 的值只能是1,5,7,结合中位数是6,可得7x =,从而可得答案.【详解】解:∵一组数据1,x ,5,7有唯一众数,∴x 的值只能是1,5,7,∵中位数是6,∴7x =,∴平均数为()1157754+++=,故选B【点睛】本题考查的是众数,中位数,平均数的含义,理解概念并灵活应用是解本题的关键.6. 由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是( )A. 6B. 7C. 8D. 9【答案】B【解析】【分析】根据主视图和左视图判断该几何体的层数及每层的最多个数,即可得到答案.【详解】解:根据主视图和左视图判断该几何体共有两层,下面一层最多有4个小正方体,上面的一层最多有3个小正方体,故该几何体所用的小正方体的个数最多是7个,故选:B .【点睛】此题考查了几何体的三视图,由三视图判断小正方体的个数,正确理解三视图是解题的关键.7. 观察下面两行数:15111929¼,,,,,1361015¼,,,,,取每行数的第7个数,计算这两个数的和是( )A. 92B. 87C. 83D. 78【答案】C【解析】【分析】先分别找出每行数字的规律,求出每行第7个数,将这两个数相加即可.【详解】解:第一行的数字规律为:21n n +-,第二行的数字规律为:22n n +,\第一行第7个数字为:277155+-=,第二行的第7个数字为:277282+=,552883\+=,故选:C .【点睛】本题考查规律探究,发现每行数字的排布规律是解题的关键.8. 如图,正方形ABCD 的顶点A ,B 在y 轴上,反比例函数k y x=的图象经过点C 和AD 的中点E ,若2AB =,则k 的值是( )A. 3B. 4C. 5D. 6【答案】B【解析】的【分析】由正方形的性质得2BC AB ==,可设2,2k C æöç÷èø,1,22k E æö+ç÷èø,根据21222k k æö´=´+ç÷èø可求出k 的值.【详解】解:∵四边形ABCD 是正方形,∵2,AB BC CD AD ====∵点E 为AD 的中点,∴11,2AE AD ==设点C 的坐标为2,2k æöç÷èø,则,222k k BO AO AB BO ==+=+,∴1,22k E æö+ç÷èø,∵点C ,E 在反比例函数k y x=的图象上,∴21222k k æö´=´+ç÷èø,解得,4k =,故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x =(k 为常数,0k ¹)的图象是双曲线,图象上的点()x y ,的横纵坐标的积是定值k ,即xy k =.9. 若分式方程3122a x x =-++的解为负数,则a 的取值范围是( )A. 1a <-且2a ¹- B. 0a <且2a ¹-C. 2a <-且3a ¹- D. 1a <-且3a ¹-【答案】D【解析】【分析】直接解分式方程,进而得出a 的取值范围,注意分母不能为零.【详解】解:去分母得:23a x =+-,解得:1x a =+,∵分式方程3122a x x =-++解是负数,的∴10a +<,20x +¹,即120a ++¹,解得:1a <-且3a ¹-,故选:D .【点睛】此题主要考查了分式方程的解,正确解分式方程是解题关键.10. 用一个圆心角为90°,半径为8的扇形作一个圆锥的侧面,则这个圆锥的底面直径是( )A. 6B. 5C. 4D. 3【答案】C【解析】【分析】先利用弧长公式求出扇形的弧长即圆锥的底面周长,再根据圆的周长公式求出直径即可.【详解】解:扇形的弧长:8904180p p ´´°=°,则圆锥的底面直径:44p p ¸=.故选:C .【点睛】本题考查圆锥侧面积公式,熟记公式的灵活应用是解题的关键.11. 在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图①的方法折出一个正方形ABEF ,然后把纸片展平;第二步:将图①中的矩形纸片折叠,使点C 恰好落在点F 处,得到折痕MN ,如图②.根据以上的操作,若8AB =,12AD =,则线段BM 的长是( )A. 3B.C. 2D. 1【答案】C【解析】【分析】根据折叠的性质得:8AB AF BE ===,4FD EC ==,=FN CN ,设DN x =,则8CN FN x ==-,利用勾股定理求出,DN FN ,再证明MFH FND V :V ,得MF MC =,求解即可.【详解】解:如图,过点M 作MH AD ^,交AD 于点H ,Q 90DFN DNF Ð+Ð=°90MFH DFN Ð+Ð=°MFH DNF\Ð=Ð90D MHD Ð=Ð=°Q 在MFH V 和FND V 中,90D MHD MFH DNFFMH DFN Ð=Ð=°ìïÐ=ÐíïÐ=Ðî\MFH FNDV :V MF MH FH FN DF DN\==4,8DF MH ==Q 824MF FH FN DN \===设DN x =,则8CN FN x ==-,222FN DN DF \=+,即:()22284x x -=+,解得:3x =,\3DN =,5CN FN ==,\25MF MF FN ==,10MF \=,10MC MF \==,Q 12AD BC ==12102BM BC MC \=-=-=,故选:C .【点睛】本题考查折叠问题及矩形的性质、正方形的性质,相似三角形的判定与性质,掌握折叠的性质并能熟练运用勾股定理方程思想是解题的关键.12. 如图,抛物线2y ax bx c =++经过点()2,0-,()3,0.下列结论:①0ab c>;②2c b =;③若抛物线上有点15,2y æöç÷èø,()23,y -,31,2y æö-ç÷èø,则213y y y <<;④方程20cx bx a ++=的解为112x =,213x =-,其中正确的个数是( )A. 4B. 3C. 2D. 1【答案】D【解析】【分析】本题考查二次函数,掌握二次函数的性质是解题的关键.根据二次函数图象可知:0a <,02b a ->,0c >,得出0ab c<,故①不正确;将点()2,0-,()3,0代入,得出:0a b +=,再求出6c b =-,故②不正确;根据函数图象可得213y y y <<,故③正确;把a b =-,6c b =代入方程20cx bx a ++=,得260bx bx b +-=,解得112x =-,213x =,故④不正确.【详解】解:根据二次函数图象可知:0a <,02b a ->,0c >,∴0b >,∴0ab c<,故①不正确;将点()2,0-,()3,0代入得出:420930a b c a b c -+=ìí++=î①②,②-①得出:0a b +=,∴a b =-,再代入①得出:6c b =,故②不正确;由图象可知:抛物线开口向下,与x 轴交点为()2,0-, ()3,0,∵15320322-<-<-<<<,∴20y <,30y >,10y >,∵抛物线对称轴为直线1222b b x a b =-=-=-,∵15322<<,11512222--<-,∴310y y >>,∴213y y y <<,故③正确;把a b =-,6c b =代入方程20cx bx a ++=,得260bx bx b +-=()()21310b x x +-=∴112x =-,213x =,故④不正确;正确的个数是1个,故选:D .二、填空题(本题8个小题,每小题3分,共24分)13. 目前,中国国家版本馆中央总馆入藏版本量共16000000余册.数据16000000用科学记数法表示为________.【答案】71.610´【解析】【分析】根据题意用科学记数法()10110na a ´£<表示即可.【详解】解:716000000 1.610=´,故答案为:71.610´.【点睛】本题考查科学记数法,掌握科学记数法的形式()10110na a ´£<是解题的关键.14. 如图,AB CD P ,AD 与BC 交于点O ,请添加一个条件________,使AOB DOC △≌△.(只填一种情况即可)【答案】AB CD =或AO DO =或BO CO=【解析】【分析】根据三角形全等的判定方法处理.【详解】∵AB CDP ∴A D Ð=Ð,B CÐ=Ð若AB CD =,则AOB DOC △≌△(ASA);若AO DO =,则AOB DOC △≌△(AAS);若BO CO =,则AOB DOC △≌△(AAS);故答案为:AB CD =或AO DO =或BO CO =.【点睛】本题考查平行线的性质,全等三角形的判定;掌握全等三角形的判定方法是解题的关键.15. 如图,将45°的AOB Ð按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数恰为2cm ,若按相同的方式将22.5°的AOC Ð放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数为________cm .【答案】()2+【解析】【分析】根据平行线的性质得到45DBO AOB Ð==°∠,解直角三角形求出OB =,再推出BOC BCO Ð=Ð,进而得到BC BO ==,再求出CD 的长即可得到答案.【详解】解:由题意得,BC OA ∥,90BDO Ð=°,2cm OB =,∴45DBO AOB Ð==°∠,∴cos BD OB DBO ==∠∵22.5AOC Ð=°,∴22.5BOC AOB AOC =-=°∠∠∠,22.5BCO AOC ==°∠∠,∴BOC BCO Ð=Ð,∴BC BO ==,∴()2cm CD BD BC =+=,∴OC 与尺上沿的交点C 在尺上的读数为()2cm +,故答案为:()2.【点睛】本题主要考查了解直角三角形,平行线的性质,等腰三角形的判定,正确求出BC 的长是解题的关键.16. 甲,乙两名同学玩“石头、剪子、布”的游戏,随机出手一次,甲获胜的概率是________.【答案】13【解析】【分析】画树状图得出所有等可能的结果数,再从中找到符合条件的结果数,然后再用概率公式求解即可.【详解】解:根据题意画出树状图如图所示:,共有9种等可能的结果,甲获胜的情况有3种,\甲获胜的概率是:3193=,故答案为:13.【点睛】本题主要考查的是用列表法或树状图法求概率,列表法可以重复不遗漏的列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,用到的知识点为:概率等于所求情况数与总情况数之比.17. 张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是________.【答案】20%【解析】【分析】设该超市的月平均增长率为x ,根据等量关系:三月份盈利额()21x ´+=五月份的盈利额列出方程求解即可.【详解】解:设每月盈利平均增长率为x ,根据题意得:()2500017200x +=.解得:120%x =,2220%x =-(不符合题意,舍去),故答案为:20%.【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量()21x ´±=后来的量,其中增长用+,减少用−,难度一般.18. 将抛物线()23y x =+向下平移1个单位长度,再向右平移________个单位长度后,得到的新抛物线经过原点.【答案】2或4##4或2【解析】【分析】先求出抛物线()23y x =+向下平移1个单位长度后与x 的交点坐标,然后再求出新抛物线经过原点时平移的长度.【详解】解:抛物线()23y x =+向下平移1个单位长度后的解析式为()231y x =+-,令0y =,则()2310x +-=,解得,122,4x x =-=-,∴抛物线()231y x =+-与x 的交点坐标为()2,0-和()4,0-,∴将抛物线()231y x =+-向右平移2个单位或4个单位后,新抛物线经过原点.故答案为:2或4.【点睛】此题考查了二次函数图象的平移与几何变换,利用抛物线解析式的变化规律:左加右减,上加下减是解题关键.19. 如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在x 轴上,2AB =,()1,0A ,60DAB Ð=°,将菱形ABCD 绕点A 旋转90°后,得到菱形111AB C D ,则点1C 的坐标是________.【答案】()1或()13+-【解析】【分析】分两种情况:当绕点A 顺时针旋转90°后,当绕点A 逆时针旋转90°后,利用菱形的性质及直角三角形30度角的性质求解即可.【详解】解:当绕点A 顺时针旋转90°后,如图,∵60DAB Ð=°,190D AD Ð=°∴130D AB Ð=°,∵菱形ABCD 中AB CD ∥,2CD AD AB ===,∴11120AD C ADC Ð=Ð=°,延长11C D 交x 轴于点E ,∴160AD E Ð=°,190AED Ð=°,∴11112ED AD ==,∴AE =∴()113C +-;当绕点A 逆时针旋转90°后,如图,延长22C D 交x 轴于点F ,∵60DAB Ð=°,290B AB Ð=°, ∴230D AF Ð=°,∵菱形ABCD 中AB CD ∥,2CD AD AB ===,∴22120AD C ADC Ð=Ð=°,∴260AD F Ð=°,290AFD Ð=°,∴22112FD AD ==,∴AF =,∴()21C ;故答案为:()1或()13+-.【点睛】此题考查了菱形的性质,直角三角形30度角所对的直角边等于斜边的一半,旋转的性质,正确理解菱形的性质及旋转的性质是解题的关键.20. 如图,在正方形ABCD 中,E 在边CD 上,BE 交对角线AC 于点F ,CM BE ^于M ,CME Ð的平分线所在直线分别交CD ,AC 于点N ,P ,连接FN .下列结论:①::N P F N P CS S FM M C =△△;②CM PN =;③EN CD EC CF ⋅=⋅;④若1EM =,4MB =,则PM =,其中正确的是________.【答案】①④【解析】【分析】如图,记N 到PC 的距离为h ,可得1212NPF NPC PF hS PFS PCPC h ´==´V V ,证明PMF PCN V V ∽,可得MF PF CN PN =,PFM PNC Ð=Ð,证明NCM NPC V V ∽,可得PN PC CN CM =,可得PF FMPC CM=,NPF NPC S PF FMS PC CM==V V ,故①正确;证明,,,M F C N 四点共圆,可得FN BC ∥,证明EFN EBC V V ∽,EN FN FNEC BC CD==,故③不正确;求解24CM BM EM =⋅=,可得2CM =,(负根舍去),CE =,BC AB===,证明CEF ABF △∽△,53EF =,103BF =,52133FM =-=,证明PMF BCF V V ∽,PM MF BC CF =,求解CF ==可得PM =,故④正确;证明EMN ECF V V ∽,可得EN MN EF CF =,求解MN =PN PM MN CM =+==¹,故②不正确.【详解】解:如图,记N 到PC 的距离为h ,∴1212NPFNPCPF hS PF S PC PC h ´==´V V ,∵CM BE ^,正方形ABCD ,∴90C M E Ð=°,45PCN Ð=°,∵MN 平分CME Ð,∴45CMN EMN PMF PCN Ð=Ð=Ð=°=Ð,∵MPF NPC Ð=Ð,∴PMF PCN V V ∽,∴MF PFCN PN =,PFM PNC Ð=Ð,∴PF PNMF CN=,同理可得:NCM NPC V V ∽,∴PN PCCN CM =,∴PC PFCM MF=,∴PF FMPC CM=,NPF NPC S PF FMS PC CM==V V ,故①符合题意;∵45PMF PCE Ð=°=Ð,∴180PCE FMN Ð+Ð=°,∴,,,M F C N 四点共圆,∴90FNC FMC Ð=Ð=°,∴FN BC ∥,∴EFN EBC V V ∽,∴EN FN FNEC BC CD==,∴EN CD EC FN ⋅=⋅,故③不正确;∵1EM =,4BM =,则5BE =,∵正方形ABCD ,CM BE ^,∴90BCD BMC EMC Ð=Ð=Ð=°,∴90MEC MCE MCE BCM Ð+Ð=°=Ð+Ð,∴MEC BCM Ð=Ð,∴CME BMC V V ∽,∴CM MEBM CM=,∴24CM BM EM =⋅=,∴2CM =,(负根舍去),∴CE =,BC AB ===,同理可得:CEF ABF △∽△,∴12EF CE BF AB ===,∴53EF =,103BF =,52133FM =-=,∵45PMF ACB Ð=Ð=°,PFM BFC Ð=Ð,∴PMF BCF V V ∽,∴PM MF BC CF=,∵EFN EBC V V ∽,∴13EN EF EC BE ==,∴EN =,CN =∴CF ==,=∴PM =,故④正确;同理可得:EMN ECF V V ∽,MNCF=,,∴MN =PN PM MN CM =+==¹,故②不正确.综上:正确的有①④;故答案为:①④【点睛】本题考查的是正方形的性质,角平分线的定义,相似三角形的判定与性质,四点共圆,熟练的利用相似三角形的性质解决问题是关键,本题的难度大,是填空压轴题.三、解答题(共60分)21. 先化简,再求值:223111x x x -æö-¸ç÷--èø,其中sin 30x =°.【答案】1x +,32【解析】【分析】先计算括号内分式减法,再计算除法,然后代入求值,即可得到答案.【详解】解:223111x x x -æö-¸ç÷--èø2121113x x x x x --æö=-⋅ç÷---èø ()()111213x x x x x +---=⋅--1x =+,当sin 3120x =°=时,原式13122=+=.【点睛】本题考查了分式的混合运算,平方差公式,代数式求值,特殊角的三角函数值,熟练掌握分式的混合运算法则是解题关键.22. 如图,抛物线2y x bx c =++与x 轴交于点()1,0A -,()4,0B ,与y 轴交于点C .(1)求抛物线对应的函数解析式,并直接写出顶点P 的坐标;(2)求BCP V 的面积.注:抛物线()20y ax bx c a =++¹的对称轴是直线2b x a =-,顶点坐标是24,24b ac b a a æö--ç÷èø.【答案】(1)抛物线对应的解析式234y x x =--,325,24P æö-ç÷èø (2)152BCP S =△【解析】【分析】(1)利用待定系数法求出抛物线的表达式,再根据解析式求点P 的坐标即可;(2)求出点()0,4C -和抛物线顶点325,24P æö-ç÷èø,()1,0A -,()4,0B 利用BCP OCP OBP BOC S S S S =+-△△△△即可得到答案.【小问1详解】Q 抛物线2yx bx c =++经过点()1,0A -,()4,0B ,101640b c b c -+=ì\í++=î,解这个方程组,得34b c =-ìí=-î.\抛物线对应的解析式234y x x =--.P Q 点是抛物线的顶点坐标,24,24b ac b P a a æö-\-ç÷èø,即:332212b a --=-=´,()()2241434254414ac b a ´´----==-´,325,24P æ\ö-ç÷èø.【小问2详解】如图,连接OP .()1,0A -Q ,()4,0B ,()0,4C -,325,24P æö-ç÷èø,134322OCP S =´´\=△,125254242OBPS =´´=△,14482BOC S =´´=V . BCP O CP O BP BO C S S S S =+-Q △△△△,25153822BCP S \=+-=△.【点睛】此题考查待定系数法求二次函数解析式、二次函数的图象和性质等知识,掌握数形结合的思想和割补法求三角形面积是解题的关键.23. 在ABC V 中,90C Ð=°,=60B а,2BC =,D 为AB 的中点,以CD 为直角边作含30°角的Rt CDE △,90DCE Ð=°,且点E 与点A 在CD 的同侧,请用尺规或三角板作出符合条件的图形,并直接写出线段AE 的长.【答案】作图见解析,线段AE 的长为AE =或AE =【解析】【分析】先根据含30度角的直角三角形的性质得到24AB BC ==,AC ==角形斜边上的中线性质和等边三角形的判定证明BCD △为等边三角形,可得60BCD BDC Ð=Ð=°,30ACD Ð=°,分30CED Ð=°和30Ð=°CDE 两种情况,利用等边三角形的性质,结合锐角三角形和勾股定理求解即可.【详解】解:如图,当30CED Ð=°时,∵在ABC V 中,90C Ð=°,=60B а,∴9030BAC B Ð=°-Ð=°,又2BC =,∴24AB BC ==,AC ==,∵D 为AB 的中点,∴122CD BD AD AB ====,∴BCD △为等边三角形,∴60BCD BDC Ð=Ð=°,30ACD Ð=°,∵90DCE Ð=°,2DC =,∴9060ACE ACD Ð=°-Ð=°,CE AC ===,∴ACE △是等边三角形,∴AE AC ==;如图,当30Ð=°CDE 时,∵60BDC Ð=°,∴90ADE BDC CDE Ð=Ð+Ð=°在Rt DCE V 中,2DC =,则cos30DC DE ==°在Rt ADE △中,2AD =,则AE ==,综上,满足条件的线段AE 的长为AE =AE =【点睛】本题考查含30度角的直角三角形的性质、直角三角形斜边上的中线性质、等边三角形的判定与性质、锐角三角函数以及勾股定理等知识,熟练掌握等边三角形和直角三角形的相关性质是解答的关键.24. 第二十二届中国绿色食品博览会上,我省采用多种形式,全方位展示“寒地黑土”“绿色有机”金字招牌,大力推介以下绿色优质农产品:A .“龙江奶”;B .“龙江肉”;C .“龙江米”;D .“龙江杂粮”;E .“龙江菜”;F .“龙江山珍”等,为了更好地了解某社区对以上六类绿色优质农产品的关注程度,某校学生对社区居民进行了抽样调查(每位居民只选最关注的一项),根据调查统计结果,绘制了如图所示的不完整统计图.请根据两幅统计图中的信息,解答下列问题:(1)本次参与调查的居民有多少人?(2)补全条形统计图,在扇形统计图中C 类的百分比是______;(3)如果该社区有4000人,估计关注“龙江杂粮”的居民有多少人?【答案】(1)本次参与调查的居民有200人;(2)补全条形统计图见解析,30%;(3)关注“龙江杂粮”的居民有920人;【解析】【分析】(1)根据E 项关注的人数为34人,E 项关注占总人数的百分数为17%即可解答;(2)根据条形统计图和扇形统计图可知A B C D E F 、、、、、各项的关注人数,再根据总人数为200即可解答;(3)抽样调查中D 项关注人数为46人,抽样调查中的总人数为200人即可解答.【小问1详解】解:∵E 项关注的人数为34人,E 项关注占总人数的百分数为17%,∴本次参与调查的总人数有3417%200¸=(人),【小问2详解】解:∵本次参与调查的总人数是200人,B 项关注人数所占百分数为15%,∴B 项关注的人数为20015%30´=(人),∴C 项关注的人数为200301846341260-----=(人),∴C 项所占百分数为60100%30%200´=;∴如图所示,故答案为30%;【小问3详解】解:∵D 项关注人数为46人,本次调查的总人数为200人,∴该社区关注关注“龙江杂粮”的居民有464000920200´=(人);【点睛】本题考查了条形统计图和扇形统计图,样本估计整体,读懂条形统计图和扇形统计图的信息是解题的关键.25. 在一条高速公路上依次有A ,B ,C 三地,甲车从A 地出发匀速驶向C 地,到达C 地休息1h 后调头(调头时间忽略不计)按原路原速驶向B 地,甲车从A 地出发1.5h 后,乙车从C 地出发匀速驶向A 地,两车同时到达目的地.两车距A 地路程km y 与甲车行驶时间h x 之间的函数关系如图所示.请结合图象信息,解答下列问题:(1)甲车行驶的速度是_____km /h ,乙车行驶的速度是_____km /h .(2)求图中线段MN 所表示的y 与x 之间的函数解析式,并直接写出自变量x 的取值范围;(3)乙车出发多少小时,两车距各自出发地路程的差是160km ?请直接写出答案.【答案】(1)120,80(2)()804801.56y x x =-+££ (3)2.5h 或4.1h【解析】【分析】(1)结合函数图象中点的坐标的实际意义求速度;(2)利用待定系数法求函数解析式;(3)先求得点E 、F 坐标,然后分情况列方程求解.【小问1详解】解:由图可得()3,360D ,即甲出发3时后与A 地相距360km ,∴甲车行驶速度为360120km /h 3=;由题意可得()1.5,360M ,()3,240G ,即乙车出发3 1.5 1.5h -=行驶360240120km -=,∴乙车行驶速度12080km /h 1.5=,故答案为:120,80;【小问2详解】解:设线段MN 所在直线的解析式为()0y kx b k =+¹.将()1.5,360,()3,240代入y kx b =+,得 1.53603240k b k b +=ìí+=î.解得80480k b =-ìí=î.为\线段MN 所在直线的解析式为()804801.56y x x =-+££.【小问3详解】解:在()804801.56y x x =-+££中,当0y =时,6x =,∴()6,0N ,由(1)可得乙车行驶速度为80km /h ,甲车行驶速度为120km /h 且两车同时到达目的地,则乙到达目的地时,甲距离A 地的距离为()()360120631120km -´--=,∴()6,120F ,()4,360E ,设乙车出发t 时,两车距各自出发地路程的差是160km ,当0 1.5t <£时,此时甲在到达C 地前,由()80120 1.5160t t -+=,解得10.5t =-,28.5t =-(不合题意,舍去);当1.5 2.5t <£时,此时甲在C 地休息,则80360160t -=,解得1 2.5t =,2 6.5t =(不合题意,舍去);当2.5 4.5t <£时,此时甲在返回B 地中,则()802360120 1.51160t t -´-´+-=éùëû解得1 4.1t =,2 2.5t =(不合题意,舍去)综上,乙车出发2.5h 或4.1h ,两车距各自出发地路程的差是160km .【点睛】本题考查了一次函数的实际应用-行程问题、一元一次方程的应用,解题的关键是结合函数图象分析运动过程,理解各个节点的实际意义.26. ABCD Y 中,AE BC ^,垂足为E ,连接DE ,将ED 绕点E 逆时针旋转90°,得到EF ,连接BF .(1)当点E 在线段BC 上,=45ABC а时,如图①,求证:AE EC BF +=;(2)当点E 在线段BC 延长线上,=45ABC а时,如图②:当点E 在线段CB 延长线上,135ABC Ð=°时,如图③,请猜想并直接写出线段AE ,EC ,BF 的数量关系;(3)在(1)、(2)的条件下,若3BE =,5DE =,则CE =_______.【答案】(1)见解析(2)图②:AE EC BF -=,图③:EC AE BF -= (3)1或7【解析】【分析】(1)求证BEF AED Ð=Ð,AE BE =,得()BEF AED SAS △≌△,所以BF AD =,进而AD BC BF ==,所以AE CE BE CE BC BF +=+==;(2)如图②,当点E 在线段BC 延长线上,=45ABC а时,同(1),()BEF AED SAS △≌△,得AD BF =,结合平行四边形性质,得AD BC BF ==,所以AE EC BF -=;如图③,当点E 在线段CB 延长线上,135ABC Ð=°时,求证BAE ABE Ð=Ð,得AE BE =,同(1)可证()BEF AED SAS △≌△,BF AD =,结合平行四边形性质,得AD BC BF ==,所以EC AE BF -=;(3)如图①,Rt EBF △中,勾股定理,得 4BF ==,求得1EC BF AE =-=;如图②,3BE =,则3AE =,Rt ADE △中,4AD =,可得图②中,不存在3BE =,5DE =的情况;如图③,Rt AED △中,勾股定理,得 4AD =,求得7EC AE BF =+=.【小问1详解】证明:AE BC ^Q ,90AEB \Ð=°.90FED Ð=°Q ,∴AEB FEDÐ=Ð∴AEB AEF FED AEFÐ-Ð=Ð-ÐBEF AED Ð=Ð\.45ABC Ð=°Q ,45ABC BAE \Ð=Ð=°.AE BE \=.EF ED =Q ,()BEF AED SAS \△≌△.BF AD \=.Q 四边形ABCD 是平行四边形,AD BC BF \==.AE CE BE CE BC BF +=+==\;【小问2详解】如图②,当点E 在线段BC 延长线上,=45ABC а时,同(1),AE BE =,()BEF AED SAS △≌△∴AD BF=Q 四边形ABCD 是平行四边形,AD BC BF \==.∴AE EC BE EC BC BF-=-==即AE EC BF -=;如图③,当点E 在线段CB 延长线上,135ABC Ð=°时,∵135ABC Ð=°∴18045ABE ABC Ð=°-Ð=°∵AE BC^∴90AEB Ð=°∴18045BAE AEB ABE Ð=°-Ð-Ð=°∴BAE ABEÐ=Ð∴AE BE=同(1)可证,()BEF AED SAS △≌△∴BF AD=Q 四边形ABCD 是平行四边形,AD BC BF \==.∴EC AE EC EB BC BF-=-==即EC AE BF-=【小问3详解】如图①,∵四边形ABCD 是平行四边形,∴AD BC ∥,∴90EAD AEB Ð=Ð=°∵BEF AED≌△△∴90EAD EBF Ð=Ð=°Rt EBF △中,5EF DE ==,3BE AE ==,4BF ===由AE EC BF +=,得431EC BF AE =-=-=;如图②,3BE =,则3AE =,Rt ADE △中,4AD =,∴4BC AD ==,与3BE =矛盾,故图②中,不存在3BE =,5DE =的情况;如图③,∵四边形ABCD 是平行四边形∴AD BC∥∴180EAD AEB Ð+Ð=°∵90AEB Ð=°∴90EAD Ð=°Rt AED △中,3AE BE ==,4AD ==∴4BF AD ==由EC AE BF -=知,347EC AE BF =+=+=.综上,1CE =或7.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,根据条件选用恰当的方法作全等的判定是解题的关键.27. 某商场欲购进A 和B 两种家电,已知B 种家电的进价比A 种家电的进价每件多100元,经计算,用1万元购进A 种家电的件数与用1.2万元购进B 种家电的件数相同.请解答下列问题:(1)这两种家电每件的进价分别是多少元?(2)若该商场欲购进两种家电共100件,总金额不超过53500元,且A 种家电不超过67件,则该商场有哪几种购买方案?(3)在(2)的条件下,若A 和B 两种家电的售价分别是每件600元和750元,该商场从这100件中拿出两种家电共10件奖励优秀员工,其余家电全部售出后仍获利5050元,请直接写出这10件家电中B 种家电的件数.【答案】(1)A 种家电每件的进价为500元,B 种家电每件的进价为600元(2)共有三种购买方案,方案一:购进A 种家电65件,B 种家电35件,方案二:购进A 种家电66件,B 种家电34件,方案三:购进A 种家电67件,B 种家电33件(3)这10件家电中B 种家电的件数4件【解析】【分析】(1)根据题意设A 种家电每件进价为x 元,B 种家电每件进价为()100x +元,建立分式方程求解即可;(2)设购进A 种家电a 件,购进B 种家电()100a -件,建立不等式,求解不等式,选择符合实际的解即可;(3)设A 种家电拿出b 件,则B 种家电拿出()10b -件,根据题意,建立一元一次方程求解即可.【小问1详解】设A 种家电每件进价为x 元,B 种家电每件进价为()100x +元.根据题意,得1000012000100x x =+. 解得500x =.经检验500x =是原分式方程解.100600x +\=.答:A 种家电每件的进价为500元,B 种家电每件的进价为600元;【小问2详解】设购进A 种家电a 件,购进B 种家电()100a -件.的根据题意,得()50060010053500a a +-£.解得65a ³.67a £Q ,6567a \££.a Q 为正整数,65,66,67a \=,则10035,34,33a -=,\共有三种购买方案,方案一:购进A 种家电65件,B 种家电35件,方案二:购进A 种家电66件,B 种家电34件,方案三:购进A 种家电67件,B 种家电33件;【小问3详解】解:设A 种家电拿出b 件,则B 种家电拿出()10b -件,根据(1)和(2)及题意,当购进A 种家电65件,B 种家电35件时,得:()()()()()600500657506003510500600105050b b b b --+----+-=éùéùëûëû,整理得:42501505050b +=,解得:163b =,不符合实际;当购进A 种家电66件,B 种家电34件时,得:()()()()()600500667506003410500600105050b b b b --+----+-=éùéùëûëû,整理得:42001505050b +=,解得:173b =,不符合实际;当购进A 种家电67件,B 种家电33件时,得:()()()()()600500677506003310500600105050b b b b --+----+-=éùéùëûëû,整理得:41501505050b +=,解得:6b =,符合实际;则B 种家电拿出4件.【点睛】本题考查分式方程的实际问题,一元一次方程的实际问题与一元一次不等的实际问题,正确理解题意,建立正确的等量关系与不等式是解题的关键,注意结果要符合实际及分式方程的检验.28. 如图,在平面直角坐标系中,ABCD Y 的顶点B ,C 在x 轴上,D 在y 轴上,OB ,OC 的长是方程2680x x -+=的两个根(OB OC >).请解答下列问题:(1)求点B 的坐标;(2)若:2:1OD OC =,直线y x b =-+分别交x 轴、y 轴、AD 于点E ,F ,M ,且M 是AD 的中点,直线EF 交DC 延长线于点N ,求tan MND Ð的值;(3)在(2)的条件下,点P 在y 轴上,在直线EF 上是否存在点Q ,使NPQ △是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q 的坐标;若不存在,请说明理由.【答案】(1)()4,0B -(2)1tan 3MND Ð= (3)存在,等腰三角形个数是8个,1Q,2Q ,()34,3Q - , ()44,3Q -【解析】【分析】(1)解方程得到OB ,OC 的长,从而得到点B 的坐标;(2)由:2:1OD OC =,2OC =,得4OD =.由6AD BC ==,M 是AD 中点,得到点M 的坐标,代入直线y x b =-+中,求得b 的值,从而得到直线的解析式,进而求得点E ,点F 的坐标,由坐标特点可得45FEO Ð=°.过点C 作CH EN ^于H ,过点N 作NK BC ^于K .从而DOC NKC △∽△,::2:1DO OC NK CK ==,进而得到2NK CK =,易证45KEN KNE Ð=Ð=°,可得2EK NK CK ==,因此EC CK =,由211EC OC OE =-=-=可得1CK =,2NK =,2EK =,从而通过解直角三角形在Rt ENK V中,得到cos EK EN KEN==ÐRt ECH △中,cos CH EH EC CEH ==⋅Ð=NH EN EH =-=,最终可得结果1tan 3CH MND NH Ð==;的(3)分PN PQ =,PN NQ =,PQ NQ =三大类求解,共有8种情况.【小问1详解】解方程2680x x -+=,得14x =,22x =.OB OC >Q ,4OB \=,2OC =.()4,0B \-;【小问2详解】:2:1OD OC =Q ,2OC =4OD \=.Q 四边形ABCD 是平行四边形,AD BC \∥,6AD BC ==.M Q 是AD 中点,3MD \=.()3,4M \-.将()3,4M -代入y x b =-+,得34b +=.1b \=.()1,0E \,()0,1F .45FEO \Ð=°.过点C 作CH EN ^于H ,过点N 作NK BC ^于K .DOC NKC Q △∽△,::2:1DO OC NK CK ==.∴2NK CK=∵45KEN FEO Ð=Ð=°∴9045KNE KEN Ð=°-Ð=°∴KEN KNEÐ=Ð∴2EK NK CK==∴EC CK=∵211EC OC OE =-=-=∴1CK =,2NK =,2EK =∴在Rt ENK V中,2cos cos 45EK EN KEN ===а在Rt ECH △中,cos 1cos 45CH EH EC CEH ==⋅Ð=⋅°=∴NH EN EH =-==∴1tan 3CH MND NH Ð===【小问3详解】解:由(2)知:直线EF 解析式为1y x =-+,()3,2N -,设()0,P p ,(),1Q q q -+,①当5PN QN ==时,()()2223025p -+--=,()()2223215q q -+-+-=,解得6p =-或2p =,q =q =,∴1Q ,2Q ,()10,6P -,()20,2P ,如图,11PQ N V 、12PQ N V 、21P Q N V 、22P Q N V 都是以5为腰的等腰三角形,;②当5PQ QN ==时,由①知:1Q ,2Q ,5>,∴2PQ 不可能等于5,如图,31PQ N V ,41P Q N V 都是以5为腰的等腰三角形,;③当5PN PQ ==时,由①知:()10,6P -,()20,2P ,当()10,6P -时,()()220615q q -+-+-=,解得13q =(舍去),24q =,∴()34,3Q -,如图,当()20,2P 时,()()220215q q -++-=,解得13q =(舍去),24q =-,∴()44,3Q -,如图,符合题意的Q 坐标为1Q ,2Q ,()34,3Q - , ()44,3Q -。
分式填空选择达标检测(Word版 含解析)
分式填空选择达标检测(Word 版 含解析)一、八年级数学分式填空题(难)1.已知x 2﹣4x ﹣5=0,则分式265x x x --的值是_____. 【答案】2【解析】 试题分析:根据分式的特点,可变形为22665453xx x x x x x =----+,然后整体代入可得623x x=. 故答案为2.2.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +. 【答案】1【解析】解:原式=222()xy x y x y x y ++⋅++=xy +2x +2y ,方程组:30233x y x y +=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.3.若关于x 的分式方程12x -﹣3a x -=2256x x -+无解,求a=______. 【答案】-1或2【解析】 ∵12x -﹣3a x -=2256x x -+, ∴12x -+3a x -=()223x x --()∵方程无解,∴(x -2)(x -3)=0, ∴x =2由x =3.4.若32a b =,则a b a -的值为____________ 【答案】12-【解析】【分析】利用32a b =,在a b a-中,将b 用a 表示,约掉a 得到结果. 【详解】∵32a b =,∴3=2a b 代入a b a-得: 3122aa a -=- 故答案为:12-【点睛】本题考查分式的运算,解题关键是运用已知字母间的关系,将分式中的字母简化,以至可约分求得.5.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=_____. 【答案】1【解析】 【分析】先计算出()()()()21212A B x A B A B x x x x +-++=----,再根据已知等式得出A 、B 的方程组,解之可得. 【详解】()()()()()()()()()()21212121212A x B x A B x A B A B x x x x x x x x --+-++=+=--------, ∵()()3x 4x 1x 2---=A x 1-+B x 2-,∴324A B A B +=⎧⎨+=⎩, 解得:12A B =⎧⎨=⎩, 故答案为1.【点睛】本题考查了分式的加减法运算,熟练掌握分式加减运算的法则、得出关于A 、B 的方程组是解本题的关键.6.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠3,故答案为m >2且m≠3.7.已知114a b +=,则3227a ab b a b ab-++-=______. 【答案】1 【解析】 ∵11a b+=4, ∴4b a ab+=, ∴a+b=4ab, ∴-322-7a ab b a b ab ++=()32()7a b ab a b ab +-+-=4387ab ab ab ab --=ab ab=1 故答案为:1.8.(内蒙古包头市2018届九年级中考全真模拟试卷一数学试题)化简2x 4x 1-+÷(1−3x 1+)的结果为_________. 【答案】2【解析】 原式2x 4x 13x 1x 1x 1-+⎛⎫=÷- ⎪+++⎝⎭ ()2x 22x 4x 2x 1 2.x 1x 1x 1x 2---+=÷=⋅=+++- 故答案为2.9.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程方程为________. 【答案】1209020x x =+ 【解析】【分析】设小江每小时分拣x 个物件,分别表示出小李和小江分拣所用的时间,最后再根据“小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同”体现的等量关系即可列出方程.【详解】解:设小江每小时分拣x 个物件,根据题意得:1209020x x =+. 故答案为1209020x x=+. 【点睛】本题考查了分式方程的应用,明确题意、确定等量关系是解答本题的关键.10.满足222210105,4b a a b a b a b+=+=++的整数对(),a b 的组数为 _________________ ; 【答案】2【解析】【分析】将两式联立组成方程组,先将两式相减,再根据题意a 、b 均为整数,得出新的方程组求出满足条件的解,再数出满足条件的个数即可.【详解】 解:2222105104b a a b a b a b ⎧+=⎪⎪+⎨⎪+=⎪+⎩①② 由①-②得()22101b a a b a b--+=+ ()221010a b a b a b ----=+ 去分母,并整理得()()()()()()()()222222110011011011010a b a b a b a b a b a b a b a b --+--=--+---=--+-=因为,a b 为整数,所以有22111010a b a b --=⎧⎨+-=⎩①②221-110-10a b a b --=⎧⎨+-=⎩③22110101a b a b --=⎧⎨+-=⎩④221-1010-1a b a b --=⎧⎨+-=⎩⑤2212105a b a b --=⎧⎨+-=⎩⑥221-210-5a b a b --=⎧⎨+-=⎩⑦221-510-2a b a b --=⎧⎨+-=⎩⑧2215102a b a b --=⎧⎨+-=⎩解方程组①得,42a b =⎧⎨=⎩或24a b =-⎧⎨=-⎩; 解方程组②得,0a b ;解方程组③得,此方程组无解;解方程组④得,此方程组无解;解方程组⑤得,无整数解;解方程组⑥得,12ab=⎧⎨=⎩或21ab=-⎧⎨=-⎩解方程组⑦得,22 ab=-⎧⎨=⎩解方程组⑧得,无整数解;将求出的解代入原方程,42ab=⎧⎨=⎩或12ab=⎧⎨=⎩是原方程的解所以满足题意的数对有(1,2)或(4,2)故答案为:2.【点睛】本题考查了分式方程的整数解的特殊解法,认真审题,弄清题意是解决本题的关键.二、八年级数学分式解答题压轴题(难)11.某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?【答案】(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【解析】【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x 件产品,则乙工厂每天加工(x+8)件产品, 根据题意得:48728x x =+, 解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24, 答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y 元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y 的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.12.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.甲工程队施工一天,需付工程款1万元;乙工程队施工一天,需付工程款0.6万元.根据甲、乙工程队的投标书测算,可有三种施工方案:(A )甲队单独完成这项工程,刚好如期完成;(B )乙队单独完成这项工程要比规定工期多用4天;(C )若甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工.为了节省工程款,同时又能如期完工,你认为应选择哪一种方案?并说明理由.【答案】为了节省工程款,同时又能如期完工,应选C 方案.【解析】试题分析:设完成工程规定工期为x 天,根据等量关系:甲、乙两队合做3天后,剩下的工程由乙队单独做,也正好如期完工,列方程,求解即可得到甲、乙工程队单独完成所需的天数,然后求出每种方案所需的工程款,比较即可得出结论.试题解析:解:设完成工程规定工期为x 天,依题意得: 1133()144x xx x -++=++ 解得:x =12. 经检验,x =12符合原方程和题意,∴x +4=16.∴甲工程队单独完成需12天,乙工程队单独完成需16天.∵B 方案不能按时完成,∴要舍弃.A 方案的工程款为12×1=12(万元),C 方案的工程款为3×1+12×0.6=10.2(万元), ∴应选C 方案.答:为了节省工程款,同时又能如期完工,应选C 方案.13.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n 排序,第1所民办学校得奖金b n元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金; (2)设第k 所民办学校所得到的奖金为k a 元(1k n ≤≤),试用k 、n 和b 表示k a (不必证明);(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的实际意义.【答案】(1)211()(1)b b a b n n n n =-⨯=- ,23111()(1)(1)b b a b n n n n n =-⨯-=-; (2)11(1)k k b a n n-=- ; (3)1k k a a +> .奖金分配的实际意义:名次越靠后,奖金越少.【解析】【试题分析】(1)根据第1所民办学校得奖金b n 元,然后再将余额除以n 发给第2所民办学校,得:22311111()(1),()(1)(1).bb b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a n n -=- ; (3)11(1)k k b a n n -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b b a a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【试题解析】(1)根据题意得:22311111()(1),()(1)(1).bb b b a b a b n n n n n n n n n=-⨯=-=-⨯-=- (2)根据(1)中的两个式子,11(1)k k b a n n-=-(3)11(1)k k b a n n -=-,+11(1)k k b a n n=-,则1111+121111111(1)(1)(1)1(1)(1)(1)0k k k k k k k b b b b b a a n n n n n n n n n n n n----⎡⎤-=---=---=-⋅⋅=-⋅>⎢⎥⎣⎦,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【方法点睛】本题目是一道分式的实际应用问题,第一个问题有难度,依据奖金的分配规则,写出23a a 、 的表达式;第二问在第一问的基础上,找出规律,直接写出k a 的表达式即可;第三问用作差法比较两个分式的大小,若差为正数,则被减数大于减数;若差为0,则被减数等于减数;若差为负数,则被减数小于减数.14.为了践行“绿色低碳出行,减少雾霾”的使命,小红上班的交通方式由驾车改为骑自行车,小红家距单位的路程是20千米,在相同的路线上,小红驾车的速度是骑自行车速度的4倍,小红每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小红骑自行车的速度.【答案】小红骑自行车的速度是每小时20千米.【解析】【分析】设骑自行车的速度为x 千米/时,则驾车的速度为4x 千米/时.依据“小王每天骑自行车上班比驾车上班要早出发45分钟”列出方程并解答.【详解】解:设小红骑自行车的速度是每小时x 千米,则驾车的速度是每小时4x 千米.根据题意得:202045460x x =+ 解得x =20经检验x =20是分式方程的解,并符合实际意义答:小红骑自行车的速度是每小时20千米.【点睛】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.15.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【答案】(1)甲,乙两种玩具分别是15元/件,25元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.。
牡丹江市最新初中数学—分式的经典测试题含答案
一、选择题1.化简﹣的结果是( )m+3 B .m-3 C . D .2.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A . B . C . D .3.若xy y x =+,则yx 11+的值为 ( ) A 、0 B 、1 C 、-1 D 、2 4.下列分式约分正确的是( )A .236a a a =B .1-=-+y x y xC .316222=b a abD .m mn m n m 12=++5.下列运算正确的是( ) A .(2a 2)3=6a 6 B .-a 2b 2•3ab 3=-3a 2b 5 C . D .6.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯ 7.计算4-(-4)0的结果是( ) A .3 B .0C .8D .48.若分式的值为0,则x 的值为( )A .0B .2C .﹣2D .2或﹣29.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y2 B .11a - C .xD .13π10.在式子31x - 、2xy π 、2334a b c、2x x 中,分式的个数是( )A .1个B .2个C .3个D .4个11.计算222x yx y y x+--的结果是( ) A .1 B .﹣1C .2x y +D .x y +12.如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A.扩大5倍B.不变C.缩小5倍D.扩大10倍13.下列式子:22222213,,,,,x y a x x a b a xy yπ----其中是分式的个数( ). A .2B .3C .4D .514.下列变形正确的是( )A .x y y xx y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+=D .0.250.25a b a ba b a b++=++15.已知实数a ,b ,c均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c+++-+-+-的值是( ) A .为正 B .为负 C .为0 D .与a ,b ,c 的取值有关 16.(2015秋•郴州校级期中)下列计算正确的是( ) A .B .•C .x÷y•D .17.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x ≠C .x >﹣2D .x ≠﹣218.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9B .227C .πD .(3)019.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ).A .19或﹣1 B .19或1 C .﹣1 D .1 20.下列4个分式:①;②;③;④中最简分式有( )A .1个B .2个C .3个D .4个21.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5 C .2.1×10-6 D .21×10-622.若02(1)2(2)x x ----无意义,则x 的取值范围是( )A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x =23.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等; ④平行线间的距离处处相等. 说法错误的有( )A .1个B .2个C .3个D .4个24.已知:a=()﹣3,b=(﹣2)2,c=(π﹣2015)0,则a ,b ,c 大小关系是( ) A .b <a <c B .b <c <aC .c <b <aD .a <c <b25.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥B .2x >C .2x ≠D .2x ≤【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:因为2299(3)(3)33333m m m m m m m m m -+--===+----,所以选:A . 考点:分式的减法.2.A解析:A 【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程.3.B解析:B 【解析】试题分析:先被求的代数式通分,在根据已知整体带入即可. y x 11+=1==+xyxy xy y x 考点:分式的通分,整体带入.4.D解析:D 【解析】试题分析:A.约分的结果为a3;B.不能进行约分;C.约分的结果为ab3。
黑龙江省牡丹江市2022年中考数学试卷(解析版)
黑龙江省牡丹江市2022年中考数学试卷一、选择题(本题12小题,每小题3分,共36分)1.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.函数中,自变量x的取值范围是()A.B.C.D.4.由一些大小相同的小正方体搭成的几何体三视图如图所示,则搭成这个几何体的小正方体的个数是()A.3B.4C.5D.65.在一个不透明的袋子中装有1个红色小球,1个绿色小球,除颜色外无其他差别,随机摸出一个小球后放回并摇匀,再随机摸出一个,则两次都摸到红色小球的概率是()A.B.C.D.6.如图,BD是的直径,A,C在圆上,,的度数是()A.50°B.45°C.40°D.35°7.如图,等边三角形OAB,点B在x轴正半轴上,,若反比例函数图象的一支经过点A,则k的值是()A.B.C.D.8.若关于x的方程无解,则m的值为()A.1B.1或3C.1或2D.2或39.圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°10.观察下列数据:,,,,,…,则第12个数是()A.B.C.D.11.下列图形是黄金矩形的折叠过程:第一步,如图(1),在一张矩形纸片一端折出一个正方形,然后把纸片展平;第二步,如图(2),把正方形折成两个相等的矩形再把纸片展平;第三步,折出内侧矩形的对角线AB,并把AB折到图(3)中所示的AD处;第四步,如图(4),展平纸片,折出矩形BCDE就是黄金矩形.则下列线段的比中:①,②,③,④,比值为的是()A.①②B.①③C.②④D.②③12.如图,抛物线的对称轴是,并与x轴交于A,B两点,若,则下列结论中:①;②;③;④若m为任意实数,则,正确的个数是()A.1B.2C.3D.4二、填空题(本题8小题,每小题3分,共24分)13.在2022年3月13日北京冬残奥会闭幕当天,奥林匹克官方旗舰店再次发售1000000只“冰墩墩”,很快便售罄.数据1000000用科学记数法表示为______.14.如图,,,请添加一个条件______,使.15.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件______元.16.一列数据:1,2,3,x,5,5的平均数是4,则这组数据的中位数是______.17.的直径,AB是的弦,,垂足为M,,则AC的长为______.18.抛物线向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是______.19.如图,在平面直角坐标系中,点,,将平行四边形OABC绕点O旋转90°后,点B的对应点坐标是______.20.如图,在等腰直角三角形ABC和等腰直角三角形ADE中,,点D在BC边上,DE与AC相交于点F,,垂足是G,交BC于点H.下列结论中:①;②;③若,,则;④,正确的是______.三、解答题(共60分)21.(本题满分5分)先化简,再求值.,其中.22.(本题满分6分)已知抛物线与x轴交于,两点,与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接BC,CD,BD,P为BD的中点,连接CP,则线段CP的长是______.注:抛物线的对称轴是直线,顶点坐标是.23.(本题满分6分)在菱形ABCD中,对角线AC和BD的长分别是6和8,以AD为直角边向菱形外作等腰直角三角形ADE.连接CE.请用尺规或三角板作出图形,并直接写出线段CE的长.24.(本题满分7分)为推进“冰雪进校园”活动,我市某初级中学开展:A.速度滑冰,B.冰尜,C.雪地足球,D.冰壶,E.冰球等五种冰雪体育活动,并在全校范围内随机抽取了若干名学生,对他们最喜爱的冰雪体育活动的人数进行统计(要求:每名被抽查的学生必选且只能选择一种),绘制了如图所示的条形统计图和扇形统计图.请解答下列问题:(1)这次被抽查的学生有多少人?(2)请补全条形统计图,并写出扇形统计图中B类活动扇形圆心角的度数是______;(3)若该校共有1500人,请你估计全校最喜爱雪地足球的学生有多少人?25.(本题满分8分)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B 地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为______米/分钟,乙的速度为______米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.26.(本题满分8分)如图,和,点E,F在直线BC上,,,.如图①,易证:.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若,,,,则______,______.27.(本题满分10分)某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等.请解答下列问题:(1)求A,B两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)28.(本题满分10分)如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,,BD平分,交AO于点E,交AC于点F,.若OB,OC的长分别是一元二次方程的两个根,且.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.参考答案及评分标准一、选择题(本题12小题,每小题3分,共36分)二、填空题(本题8小题,每小题3分,共24分)13..14.∠A=∠D等(符合题意即可).15.15.16.4.17.或.18.(3,5).19.或.20.②③.说明:第13题可得分,不得分;第17题、第19题,只填一个正确答案得2分;第20题只填一个正确答案得2分,含有错误答案不得分.三、解答题(共60分)21.(本题满分5分)先化简,再求值.解:.当时,原式.22.(本题满分6分).(1)解:∵抛物线过,B(3,0)两点,∴解方程组得∴这个抛物线的解析式为.(2).23.(本题满分6分),.24.(本题满分7分)解:(1)(人).答:这次被抽查的学生有60人.(2)补全图形见图,B类活动扇形圆心角的度数是120°.(3)(人).答:全校最喜爱雪地足球的学生有200人.25.(本题满分8分)(1)甲的速度为300米/分钟,乙的速度为800米/分钟.(2)解:设直线FG的解析式为.∵过F(3,0),G(6,2 400)两点,∴解方程组得∴这个函数的解析式为.自变量x的取值范围是.(3)分钟,分钟,6分钟.26.(本题满分8分)解:(1)图②:.图③:.(2)图②:.证明:∵AB=DF,∠A=∠D,∠B=∠F,∴.∴BC=EF.∵,∴.或图③:.证明:∵AB=DF,∠A=∠D,∠ABC=∠DFE,∴.∴BC=EF.∵,∴.(3)BC=8,BF=14或18.27.(本题满分10分)解:(1)设B种防疫用品成本x元/箱,A种防疫用品成本元/箱.由题意,得.解得x=1 500.检验:当x=1 500时,,所以x=1500是原分式方程的解.(元/箱).答:A种防疫用品2000元/箱,B种防疫用品1500元/箱.(2)设B种防疫用品生产m箱,A种防疫用品生产箱.,解得.∵B种防疫用品不超过25箱,∴.∵m为正整数,∴m=20,21,22,23,24,25.共有6种方案(3)4种:33台.28.(本题满分10分)解:(1)由解得,.∵OB,OC的长分别是方程的两个根,且OB>OC,∴,.∴,C(2,0).(2)∵AO⊥BC,∴∠AOB=90°.∵∠CAO=∠DBC,,∴∠AFB=∠AOB=90°.∵BD平分∠ABC,∴∠ABD=∠DBC.∵∠AFB=90°,∴∠BAC=∠BCA.∴.∵,∴,∴.∴.∵在Rt△ABO中,.∴D(5,4).∴反比例函数解析式为.(3),,.说明:如果学生的解法与参考答案的解法不同,请阅卷教师参考评分标准按步骤的情给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时,关于
x
的分式方程
xm3 x2 x 6
x
1
2
0
没有实数解.
【答案】4 或-6
【解析】
【分析】
先将分式方程化为整式方程,根据方程
xm3 x2 x 6
x
1
2
0
没有实数解会产生增根判断
增根是 x=3 或 x=-2,再把增根 x=3 或 x=-2 代入整式方程即可求出 m 的值.
【详解】
解:方程
5.若 1 1 =3,则 a b 的值为_____.
ab
2a ab 2b
【答案】 3 5
【解析】
【分析】
由 1 1 3 ,可得 a b 3 ,即 b+a=3ab,整体代入 a b 即可求解.
ab
ab
2a ab 2b
【详解】
∵ 1 1 3, ab
∴ a b 3 ,即 b+a=3ab ab
=_________________.
x(x 3y) y(y x)
x y
【答案】
x y
【解析】 【分析】 先将分母展开,然后合并,再对分子、分母因式分解,最后约分即可. 【详解】
解:
x2 y2
x(x 3y) y(y x)
x2 y2 = x2 3xy y2 xy
x2 y2 = x2 2xy y2
得 m=-6 或 m=4.
【点睛】
分式方程无解问题或增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式
方程为整式方程;③把增根代入整式方程即可求得相关字母的值.但也要注意,有时分式
方程转化成的整式方程本身没有实数根,也是导致分式方程没有实数根的一种情况,所以
要考虑全面,免得漏解.
3.化简
x2 y2
∴
ab
3ab 3ab 3
=
= =.
2a ab 2b 6ab ab 5ab 5
【点睛】
本题考查了分式的化简求值,利用整体代入求值是解决本题的关键.
6.若分式
的值为零,则 x 的值为________.
【答案】1
【解析】
试题分析:根据题意,得|x|-1=0,且 x-1≠0,解得 x=-1.
考点:分式的值为零的条件.
7.关于 x 的方程 ax 1 =−1 的解是正数,则 a 的取值范围是________. x2
【答案】a>-1 且 a≠-0.5 【解析】
ax 1 1 x 2
方程两侧同时乘以最简公分母(x-2),得 ax 1 x 2 ,
整理,得 a 1 x 1,①
(1) 当 a=-1 时,方程①为 0 x 1,此方程无解. (2) 当 a≠-1 时,解方程①,得 x 1 .
x yx y = x y2
x y
=
x y
【点睛】 本题考查了多项式乘法和运用公式法进行因式分解,其中运用公式法进行因式分解是解答 本题的关键.
4.当 m ____________时,解分式方程 x 5 m 会出现增根. x3 3x
【答案】2 【解析】 分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为 0 的未知
化成的整式方程无解时原分式方程无解,根据这两种情形即可计算出 m 的值.
【详解】
解:方程两边都乘以(x+2)(x-2)去分母得,
2(x+2)+mx=3(x-2),
整理得(1-m)x=10,
∴当 m=1 时,此整式方程无解,所以原分式方程也无解.
又当原分式方程有增根时,分式方程也无解,
∴当 x=2 或-2 时原分式方程无解,
8.关于 x 的分式方程 m 3 1的解为正数,则 m 的取值范围是___________. x 1 1 x
【答案】 m 2?且 m 3.
【解析】 【分析】 方程两边同乘以 x-1,化为整数方程,求得 x,再列不等式得出 m 的取值范围. 【详解】 方程两边同乘以 x-1,得,m-3=x-1, 解得 x=m-2,
∵ 分式方程 m 3 1的解为正数, x 1 1 x
∴ x=m-2>0 且 x-1≠0, 即 m-2>0 且 m-2-1≠0, ∴ m>2 且 m≠3, 故答案为 m>2 且 m≠3.
牡丹江数学分式填空选择单元测试卷(解析版)
一、八年____时,关于
x
的分式方程
x
2
2
mx x2 4
x
3
2
无解
【答案】m=1、m=-4 或 m=6.
【解析】
【分析】
方程两边都乘以(x+2)(x-2)把分式方程化为整式方程,当分式方程有增根或分式方程
a 1
∵原分式方程有解,
∴ x 1 不为增根, a 1
∴当 x 1 时,最简公分母 x-2≠0, a 1
∴ 1 20, a 1
∴a 1. 2
∵原分式方程的解为正数,
∴x 1 0, a 1
∴ a 1. 综上所述,a 的取值范围应该为 a 1 且 a 1 ,即 a>-1 且 a≠-0.5.
2
故本题应填写:a>-1 且 a≠-0.5. 点睛: 本题考查了分式方程的解的相关知识. 本题的难点在于准确且全面地理解分式方程的解为正 数这一条件. 一方面,既然分式方程所转化成的整式方程只有一个解,那么这个解就不应该 是增根;另一方面,当分式方程的解为正数时该整式方程的解也应该为正数. 另外,在去分 母后,由于未知数 x 的系数中含有未知参数 a,所以不能直接进行“系数化为 1”的步骤, 应该对参数 a 的值进行讨论.
∴2(1-m)=10 或-2(1-m)=10,
解得:m=-4 或 m=6,
∴当
m=1、m=-4
或
m=6
时,关于
x
的方程
x
2
2
mx x2 4
x
3
2
无解.
【点睛】
本题考查了分式方程的无解条件.分式方程无解有两种情形:一是分式方程有增根;二是分
式方程化成的整式方程无解.
2.当
m=
__________
数的值. 详解:分式方程可化为:x-5=-m, 由分母可知,分式方程的增根是 3, 当 x=3 时,3-5=-m,解得 m=2, 故答案为:2. 点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行: ①让最简公分母为 0 确定增根; ②化分式方程为整式方程; ③把增根代入整式方程即可求得相关字母的值.
xm3 x2 x 6
x
1
2
0
变形为
xm3 (x 3)(x 2)
x
1
2
0
,
方程两边同时乘以 (x 3)(x 2) 去分母得:x+m+3+x-3=0;
整理得:2x+m=0
∵关于
x
的分式方程
xm3 x2 x 6
x
1
2
0 没有实数解.
∴分式方程有增根 x=3 或 x=-2.
把 x=3 和 x=-2 分别代入 2x+m=0 中