双曲型方程的差分方法(精)
双曲守恒律方程及其差分方法
双曲守恒律方程及其差分方法嘿,朋友们!今天咱来聊聊双曲守恒律方程及其差分方法。
你说这双曲守恒律方程啊,就像是个调皮的小精灵,总是在数学的世界里蹦来蹦去,让人又爱又恨。
它描述的那些物理现象,就好像是一场奇妙的冒险,充满了未知和惊喜。
想象一下,各种物质的流动、变化,都能被这双曲守恒律方程给捕捉到。
它就像一个超级敏锐的观察者,不放过任何一个细微的动态。
而这差分方法呢,就像是给这个小精灵套上了缰绳,让我们能够更好地驾驭它,去探索那些神秘的领域。
你看啊,差分方法就像是一把神奇的钥匙,能打开双曲守恒律方程背后隐藏的秘密。
它通过巧妙的计算和分割,把复杂的问题变得简单易懂。
这就好比我们走路,一步一步稳稳当当,把长长的路给走完。
比如说,在研究流体流动的时候,双曲守恒律方程就发挥着重要作用。
差分方法能让我们更准确地预测流体的行为,就像是能提前知道水流会往哪里拐,风会往哪里吹。
这多厉害呀!要是没有这差分方法,那我们对这些自然现象的理解可就要大打折扣了。
而且啊,这双曲守恒律方程和差分方法可不是孤立存在的。
它们就像一对好搭档,相互配合,共同攻克一个又一个难题。
就好像篮球场上的队友,互相传球,一起为了胜利而努力。
咱再想想,要是没有对双曲守恒律方程及其差分方法的深入研究,那很多现代科技还能发展得这么快吗?那些酷炫的特效、精确的模拟,不都得靠它们嘛!这可不是随便说说的,这是实实在在的贡献啊!双曲守恒律方程及其差分方法,它们不仅仅是数学中的概念,更是打开科学大门的重要工具。
它们让我们能够更深入地理解这个世界,让我们的生活变得更加丰富多彩。
所以说啊,别小看了这双曲守恒律方程及其差分方法。
它们就像是隐藏在数学世界里的宝藏,等待着我们去发掘,去探索。
它们的价值和意义,远远超出了我们的想象。
总之,双曲守恒律方程及其差分方法,那可是相当重要啊!我们可得好好研究,好好利用,让它们为我们的生活带来更多的惊喜和进步!这就是我对它们的看法,你们觉得呢?。
双曲型方程的一类高精度带参数差分格式
湖南理丁学院学报( 然科学版) 自
J un l f u a s tt o i c dT c n lg N trl c n e ) o ra o H nnI tue f ce e n h oo y( a a S i c s ni S n a e u e
1差 分格 式 的构 造
设 局部节点 集 为
{ lf ,X- i I - t - ( f , , , t , jlnI (jl , + f ). ( , ) j ' - , - n) ,川) ) , ( + t ) X+ f j ) - ( l n) ,+, ( ) x , + , , ) ,
了格式的稳定性.并 用数值例子验证 了理论分析的结果.
关 键 词 :一 维双 曲型 方 程 ;组合 差 商解 法 ;隐 式 差分 格 式 ;高精 度
中图分类号: 2 1 O4. 8
文献标识码: A
文章编号 :6 259 (0 00 .0 40 17-2 82 1)20 1.3
Hi h- e ieS h m e t r m ee r g - Pr cs c e swih Pa a t rf o
VO. 3 No2 I . 2 J n 2 1 u . 00
双 曲型方程的一类高精度带参数差分格式
方春华 ,董应珍 2
(.湖南理工学院 数学学院, 1 湖南 岳 阳 44 0 ; . 阳县黄沙中学,湖南 岳 阳 4 4 0 ) 10 6 2 岳 1 10
摘
要:用组合差 商解法对一阶一维双 曲型方程构造 出一类截断误差为 D ^ 的带参数的三层隐式差分格式, ( + ) 分析
l erh p roi q ainwi o iain dfee c eou in a di o a rn ainer ri fod r t 4 . h uh r i a y eb l e u t t c mbn t i rn ers lt , n t lc l u ct r so r e r +h) T e a to n c o h o o s t o o o
5-双曲型方程的差分方法(2)
(2) 迎 风 格 式 :
u n +1 − u n j j
τ
u
n +1 j
+ an j +a
n j
u n − u n−1 j j h u
n j +1
=0 =0
an ≥ 0 j an < 0 j
−u
n j
−u h
n j
τ
u n+1Байду номын сангаас− u n j j
写成统一的形式, 写成统一的形式,有:
τ
+a
n j
(1) Lax − Friedrichs 格式: 格式:
u
n +1 j
1 n n − u j + 1 + u j −1 u n+ 1 − u n−1 j j n 2 +aj =0 τ 2h
(
)
冻 系 ” 分 稳 性 不 格 : “ 结 数 法 析 定 ( 严 ) 先 a看 与 , j无 的 数 用 把 作 n 关 常 , Fourier 方 得 稳 定 件 再 指 变 。 法 到 定 条 后 使 标 化
对第l个方程,构成迎风格式,有: w
n +1 lj
=w −
n lj
λ
2
λl ( w
n lj +1
−w
n lj −1
) + 2 λ (w
l
λ
n lj +1
− 2w + w
n lj
n lj −1
)
写成矩阵形式: w
n+1 j n j
= w − Λ ( w − w ) + Λ ( w − 2w + w 2 2
2-双曲型方程的差分方法
其截断误差是
n 1 n 1 n n u u u u a j 1 j 1 j 1 j 1 0 2 2 h 2 h
T O( h )
2 2
其增长因子是
1 1 2 ia sin kh G 1 1 2 ia sin kh
2 2 2 1 1 a sin kh 4 G 1 2 1 2 2 1 4 a sin kh 2
),
a0 a0
1 n n n un u a ( u u j j j 1 j ),
也可写成统一形式
1 n n n n n n 1 1 un u a ( u u ) a ( u 2 u u j j j 1 j 1 j 1 j j 1 ) 2 2
u ( P) u (Q) u (C ) a u (C ) u ( B) 1 a (1 a ) u ( B) 2u (C ) u ( D) 2
对应差分格式即为Lax-Wendroff格式
2 2 a a n 1 n n n n n n uj uj u j 1 u j 1 u j 1 2u j u j 1 2 2
代入前面的表达式有
u
n 1 j
u
n j
a
u
n j 1
u
n j 1
2h
u u a x t j
n
2h 2
n n n 2 2 2 a2 u 2 u u O ( h h ) j j 1 j 1
得到二阶精度的显式格式,即Lax-Wendroff格式
隐式格式
u u
n j
n 1 j
求解双曲型守恒律的半离散中心差分格式_陈建忠
和左边的中 间值 。 C (v 曼扇连接 v
1 j+
2
1 j+
2
,v
+ 1 j+
2
) 是相空间 中通过黎
[ 4]
= 1 (Δ++Δ - ), 则 2 bj =θ vj , j Δ +Δ - – cj =[ θ vj - (1 - θ jΔ 0– j )(v ′ 1 )j ] , d j =(– vj - bj /2 4) 选取 (v′ MM { α (v – – 1 )j = j+ 1 - v j ), α (– vj - v – j- 1 )}
∫
(10)
1 1 1 式中 Δxj +1 = xj +1 t, Δx j =x j+1 x - Δt( a j- 1 +a j+1 )。 , r - xj + , l = 2aj + Δ , l - xj- , r =Δ 2 2 2 2 2 2 2 2
n
n
n
n
n
n
n
运用辛甫生公式近似式 (9)、 式 (10)右端的通量积分 ,
n+ 1 1 j+
n+ 1 1 j+ 2
n+ 1 j
λ a j+1 (λ aj +1 ) 1- λ a j+1 dj +dj +1 1 2 2 2 =[ + ] (bj +bj +1 ) + (cj - cj+1 ) + 16 8 12 4 2 1 Δx j+1 2 [ f(v(x ∫
tn
1 tn +
推荐-双曲型方程的差分法 精品
双曲型方程的有限差分法§0 预备知识0.1双曲型方程的常见类型: (1)、一阶线性双曲型方程()0u ua x t x∂∂+=∂∂ (2)、一阶常系数线性双曲型方程组0u u A tx∂∂+=∂∂其中u 为未知函数向量,A 为p 阶常数方阵。
(3)、二阶线性双曲型方程(波动方程)一维 22(())0u ua x x x t∂∂∂-=∂∂∂ a (x )为正值函数二维 222222()0u u ut x y∂∂∂-+=∂∂∂三维 22222222()0u u u ut x y z∂∂∂∂-++=∂∂∂∂(4)、对流扩散方程()()(())(,)u u u c x b x a x f x t t x x x∂∂∂∂+-=∂∂∂∂ 等等。
这些方程的定解条件,可以是仅有初始条件,也可以是初始条件与边界条件的混合。
如对波动方程(一维),有 (1)、初值问题2222201,0(,0)()(,0)()u u a x t Tt xu x x x u x x x tϕϕ⎧⎪⎪⎪⎨⎪⎪⎪⎩∂∂=-∞<<∞<≤∂∂=-∞<<∞∂=-∞<<∞∂(2)、混合问题第一类:222220101,0(,0)()01(,0)()01(0,)(1,)00t u u a x t Tt x u x x x u x x x u t u t t Tϕϕ⎧⎪⎪⎪⎨⎪⎪⎪⎩∂∂=<<<≤∂∂=≤≤=≤≤==<≤第二类:边界条件改为:(0,)0,(1,)0,0u u t t t T x∂==<≤∂第三类:边界条件改为:(1,)(0,)0,(1,)00u t u t u t t T xα∂=+=<≤∂0.2 波动方程及其特征线性双曲型方程的最简模型:波动方程初值问题22222,0,.u u a a x t x∂∂=>-∞<<∞∂∂ (1) 0(,0)()u x x ϕ= 1(,0)()t u x x ϕ=下面讨论它的特征和解析解。
【计算流体力学】第3讲-差分方法1
a2u j
a3u j1+a4u j+2
扰动波传播方向
… j-2 j-1 j j+1 …
更多地使用上游信息
一般双曲守恒律方程
u f (u) 0 t x
f (u) f (u) f (u)
u f + f 0 t x x
df (u) 0 du
df (u) 0 du
例:
f 1 f u
u x j
时间积分,计算 出下一时刻的值
u lim u(x x) u(x) u j1 u j
x j x0
x
x
沿各自方向一维离散
➢多维方程的差分法: 维数分裂
u f1(u) f2 (u) 0 t x y
u
1. 构建差分格式
x j
已知均匀网格点上物理量的分布为uj ,
f1
x
f1
x
f2
y
f2
y
RAE2822翼型周 围的网格
问题: 原先需要计算2次导数,变换后需要计算4次,计算量增加 ✓利用坐标变换的性质,可以合并
14
坐标变换Jocabian系数的计算
已知 x x( ,)
y
y(
,)
需计算: x ,y ,x ,y
Step 1: 利用差分(或其他方法)计算出
网格间距变化要缓慢,否则会带 来较大误差
12
方法2) 在非等距网格上直接构造差分格式 (不易推广到高维)
原理: 直接进行Taylor展开,构造格式 格式系数是坐标(或网格间距)的函数
u x
j
a1u j2
a2u j1 a3u j
a4u j1 O(3 )
… j-2 j-1 j
41-波动方程的差分逼近知识讲解
41-波动方程的差分逼近第五章 双曲型方程的有限差分法 4.1 波动方程的差分逼近 1. 特征针对波动方程22222u u a t x ∂∂=∂∂ (1) 其初值条件为 01(,0)(),(,0)(),t u x x u x x x ϕϕ==-∞<<∞其中0a >是常数。
其相应的特征方程为characteristic equation 2220dx a dt -= 即 221()0dt a dx-= 得到两个特征方向:characteristic direction1dt dx a=± (3) 解(3),得到两族直线: 12,x at c x at c -=+= 2. 显格式取空间步长h 及时间步长τ,用两族平行直线two family of parallel lines,0,1,2,j x x jh j ===±±L,0,1,2,n t t n n τ===L作矩形网格rectangle 。
在(,)j n x t 对方程(1)离散,得到111122222,0,1,2,,,1,2,n n n n n nj j jj j j u u u u u u aj n h τ+-+--+-+==±±L L (5.1)初始条件为00()j j u x ϕ= (5.2)101()j jj u u x ϕτ-= (5.3)(5.1)式逼近的截断误差为22()h τO +。
由于(5.3)式逼近截断误差为()τO ,因此对(5.3)的逼近可作适当改进。
(5)可显示算出各网点的值。
(5.1)简化后可以写成122111()2n n n n n j j j j ju r u u r u u +--+=++-(1-) (6) 针对混合问题:2222201,0,0,(,0)(),(,0)(),(0,)(),(,)().t u ua x l t T t x u x x u x x u t t u l t t ϕϕαβ⎧∂∂=<<<<⎪∂∂⎪⎪==⎨⎪==⎪⎪⎩此时取空间步长l h J =及时间步长TNτ=,同样建立离散格式(5),针对边值条件,可给出离散的边值条件(),().nn l u n u n ατβτ==3. 稳定性分析为了利用Fourier 方法,令uv t∂=∂,将(1)化成一阶偏微分方程组: 222uv tv u a tx ∂⎧=⎪⎪∂⎨∂∂⎪=⎪∂∂⎩ (7) 再令uw ax∂=∂,则(7)变为 v w a t x w v a tx ∂∂⎧=⎪⎪∂∂⎨∂∂⎪=⎪∂∂⎩ (8)令(,)T U v w =及0a A a ⎛⎫=⎪⎝⎭则(8)变为0U UA t x∂∂-=∂∂ 因此,差分方程(5)可写成1112211111122n n n n j j j j n nn n j j j j w w v v a h w w v v ah ττ++-+++---⎧--⎪=⎪⎪⎨-⎪-⎪=⎪⎩(10) 按照Fourier 方法,设12exp(),exp()n n n nj j j j v v i x w v i x αα==,2p lπα=代入(10),消去公因子common factor exp()j i x α和12exp()j i x α-,得到1121111222(sin ),2(sin)n n n n n nphv ir v v lphir v v v lππ+++-=-+=即111122()n nn n v v ph G l v v π++⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭其中 21()(2sin )1ic phph G c r l l ic c ππ⎛⎫== ⎪-⎝⎭为增长矩阵,其特征方程为22(2)10c λλ--+= (14) 其根按模小于1的充要条件是absolute value of root 2|2|2c -≤ (15) 即1r ≤,此为必要条件。
6-双曲型方程的差分方法(3)
差分求解格式为
n1 n 1 n 1 n 1 n 1 n 1 u 2u u (u j 1 2u j u j 1 u j 1 2u j u j 1) 0 2
相应的特征方程为: d 2 x a 2 d 2t 0,利用特征方向可以 得到两族特征线: x at ,x at
如果u沿特征线的偏导数分别 表示为:
2 2 2 2u u u u u u 2 ( ) a( 2 2 2) 2 t t t t
x j , t n 的 两 条 特 征 值 经过点 x at x j atn 与x轴 的 交 点
落入依赖区间 x j m , x j l 是 格 式 稳 定 的 必 要 条 。 件
那么,
即: [x j -atn,x j +atn ] x , x j m j l
n 1 j n j n 1 j 2
矩阵表示形式
其中
AU
n 1
BU
1 2 2 1 2 2
n 1
2EU F
n
1 2 2 2 1
2 1 1 2 2 A
u x , t 的 依赖区间
x0 , t 的影响区域
化为等价一阶齐次方程组:
2 2u u 2 对于原二阶波动方程: a 0 2 2 t x u u 引入:v ,w a t x
双曲型方程的差分方法
4、Courant-Friedrichs-Lewy条件
由差分方程解的依赖区域与微分方程解的依赖区域 的关系导出的差分方程收敛的必要条件
一般的,双曲 差型 分方 格程 式 unj, 的 中会 的 涉及到初 u0jl,值 u0jl: 1,u0j,u0jm
那 么 x轴 上x的 jl,xjm内 的 节 点 , 即程 是 差 分
程的特征线。
t
(x0 ,t0)
x –at=
0 (x0 -at0 ,0)
x
采用对流方程开始研究双曲型方程的数值解法的原因:
第一、对流方程非常简单,对它的研究是探讨更复杂 的双曲型方程(组)的基础。 第二、,尽管对流方程简单,但是通过它可以看到双 曲方程在数值计算中特有的性质和现象。 第三,利用它的特殊的、复杂的初值给定,完全可以 用来检验数值方法的效果和功能。 第四、它的差分格式可以推广到变系数双曲方程(组) 以及非线性双曲方程领域。
实际上| a | 1 也是稳定性的充分条件
5、 利用特征线构造差分格式
设ttn层上各网 A,B,格 C,D点 上得 un j已计算出 现 计t 算 tn1层 上 P点 的un j值 1:
设 a0,P 过 向 下 作 x特 a t x征 j a线 nt
交 ttn于 Q 点 ,U则 PU 有 Q。
AB CD Q
n
j-2 j-1 j j+1 j+2
a>0
a>0
若引入:
ama i,0 n 1 2aa 0 a
a0 a0
ama a ,0x 1 2aa 0 a
a0 a0
迎 风 格 式 可 统 一 成 : 适 用 于 变 系 数 的 情 形
unj1unj aunj unj1aunj1unj 0,
第三章 双曲型方程的差分方法
P
n+1
n
A j-2 B j-1 Q C jபைடு நூலகம்D j+1 j+2
设过P点的特征线与t = tn的交点为Q,则u ( P) = u (Q). 若Q不是网格点(当aλ < 1时),u (Q)未知,但Q周 围的网格点A, B, C , D等上的值已知,可用插值法 (沿x方向)给出u ( Q )的近似值,从而得到u ( P) = u (Q).
2 2 τ τ a a +1 n n n n n n = − − + − + ( ) ( 2 un u u u u u u j j j +1 j −1 j +1 j j −1 ) 2 2h 2 h 截断误差:O(τ h 2 ) + O(τ 2 h 2 ) + O(τ 3 ),
是二阶精度的差分格式.
增长因子为 kh 2 2 2 G (τ , k ) = 1-2a λ sin - iaλ sin kh 2 kh 2 2 2 2 2 4 G (τ , k ) = 1-4a λ 1 − a λ sin 2 如果满足条件 a λ ≤ 1,则有 G (τ , k ) ≤ 1.
区别: 当a > 0时,迎风格式可写为:
+1 n n n n n n un u u u u 2 u u − − − + ah j j j +1 j −1 j +1 j j −1 +a = 2h 2 τ h2 Lax − Friedrichs格式: +1 n n n n n n un u u u u 2 u u − − − + 1 ah j +1 j j j +1 j −1 j j −1 +a = aλ 2 h2 τ 2h 两式左边相同,都以O(τ + h 2 )逼近于对流方程,
双曲型方程的有限差分并行迭代算法
o e/ n /
,
A d l h首次 建立 求 解 抛 物 型 方 程 的交 替 分 组 显 b ul a
式方 法 ¨以来 , 微 分 方 程 有 限 差 分 并 行 算 法 的 偏 研究 越来 越 受 到重 视 . 于一 阶双 曲型 方程 , 合 对 适 于并行 计 算 的 差 分 法 已 有 文 献 可 查 L , 对 于 2 但 ]
随着 高性 能并 行 计 算 机 的 问世 与发 展 , 究 研 适 合 于并 行 机 上运 行 的高 效率 的计算 方 法 已经 成
为当务之急 . 自从 18 9 3年 D. . v s A. . J Ea 和 n B B.
法 . 值算 例 表 明 了本 方法 的实用 性 . 数
1 差 分 格 式 的 建 立
其 中 A, D, B, L均 为正 实数 .
U- l  ̄
:
U  ̄ -l
dX
dt
+( C+V +G u R L) R
0t
取 时 间步 长 r 空 间 步 长 h:L J 1为 正 整 , / (,
数) 式 ( )一 ( 的 解 /( , ) 网 格 结 点 , 1 3)可 用 t) n ) 二则
为物 理 背景 , 造 出求 解 二 阶 双 曲 型 方 程 的 高 精 构 度无 条件 稳定 的 隐 式差 分 格 式 , 以 此 隐 格 式 为 并
J n . ,200 2 u
双 曲型 方 程 的 有 限差 分 并 行 迭 代 算 法
金 承 日,丁 效 华 ,张 少 太
(哈 尔滨工业 大学 威海分校 ,山东 威海 240 ) 62 9
摘
要: 为研究二 阶双曲型偏微 分方程适合 于并行机上运 行 的高效率 的计 算方 法 , 构造 出高精 度无 条件稳 先
双曲型方程的差分方法
第三章 双曲型方程的差分方法1 一阶线性常系数双曲型方程考虑常系数线性方程0,,0u u a x R t t x∂∂+=∈>∂∂ (1.1) 其中,a 是常数。
附以初始条件0(,0)(),u x u x x R =∈ (1.2)其解沿(1.1)的特征线x at ξ-= (1.3)是常数,并可表示为00(,)()()u x t u u x at ξ==-以下讨论双曲型方程的一些常用格式。
1.1 迎风格式迎风格式的基本思想是在双曲型方程中关于空间偏导数,用在特征线方向一侧单边差商来代替。
(1.1) 的迎风格式为110n n n nj jj j u u u u ahτ+---+=,0a > (1.4)110n n n n j jj ju u u u ahτ++--+=,0a < (1.5)其中,h τ分别为时间步长和空间步长。
根据上一章讨论,当1a λ≤(/h λτ=)时,差分格式(1.4)是稳定的。
同样的方法可知,当||1a λ≤差分格式(1.5)是稳定的。
类似地,用Fourier 方法讨论差分格式:110n n n nj jj ju u u u ahτ++--+=,0a > (1.6)110n n n n j jj j u u u u ahτ+---+=,0a < (1.7)其增长因子为(,)1ikh G k a a e τλλ=+-由此有22222|(,)|[1(1cos )]sin G k a kh a kh τλλ=+-+214(1)sin 2kh a a λλ=++ 取sin02kh≠,|(,)|1G k τ>,从而破坏了von Neumann 条件,因此差分格式(1.6)是绝对不稳定的。
同理,差分格式(1.7)也是绝对不稳定的。
差分格式(1.4)与(1.7)在形式上式一致的,但因为a 的符号,一个是条件稳定的,一个是绝对不稳定。
主要原因是与微分方程的特征线有关,有以下结论:如果差分格式(所用的网格点)与微分方程的特征线走向一致,那么网格比满足一定条件下是稳定的,否则差分格式是不稳定的。
计算流体力学 CFD13-第3讲-差分方法1
u
n j
a
u
n j
u
n j 1
0
t
x
等价于
修正方程
x
x 2
t t 2
ut aux 2 uxx 6 uxxx 2 utt 6 uttt ...... 0
u a u 0 t x
ut aux utt a2uxx uttt a3uxxx
x
u x
j
1 2!
((2)2
a1
(1)2
a2
)x
2
2u x2
j
1 3!
((2)3
a1
(1)3
a2
)x3
3u x3
j
O(x4 )
a1 a2 a3 0
2a1
(1)a2
1 x
(2)2 a1 (1)2 a2 0
a1
1 2x
, a2
4 2x
, a3
3 2x
u x
j
1 2x
(u j2
复杂外形的工程 计算
多用于固体力学 等
简单外形的高精 度计算
复杂外形的工程 计算
Copyright by Li Xinliang
2
3.1 差分格式基本原理
1. 差分法基本概念
基本功能: 计算导数
… j-2 j-1 j j+1 …
uj
已知(一维均匀网格上的)函数分布,计算其导数值
u a u 0 t x
4u j1
3u j )
7 6
3u x3
j
x2
O(x3)差分格式基本概念:
a. 差分表达式(差分格式)、截断误差、精度
精度与分辨率的关系
u x
2.3 双曲型方程的差分方法
(1) 利用
B, C 两点线性插值
u( P) u(Q) u( B)
xQ xC xB xC
u(C )
xQ xB xC xB
a (h a ) u ( B) u (C ) h h a a (1 )u (C ) u ( B) h h h (1 a )u (C ) au ( B)
或者:
a n n 1 n n u u ( u u j j j 1 j) h u n 1 1 [u n u n 1 a (u n 1 u n 1 )] j j j j j 1 2 h
5)蛙跳格式
u
n 1 j
u
n 1 j
2
两点线性插值:
1
1
a
xb f ( x) a b
f (a)
b
a
b
xa f ( x) ba
f (b)
x b xa f ( x) f (a) f (b) a b ba
a
b
三点抛物线插值:
1
1
1
a
f ( x)
b
( x b)( x c) (a b)(a c)
u(C )
( xQ xB )( xQ xD ) ( xC xB )( xC xD )
u( D)
( xQ xC )( xQ xB ) ( xD xC )( xD xB )
a (h a ) ( h a )( h a ) ( h a ) a u (C ) u ( D) h 2h hh 2h h 1 u (C ) a[u (C ) u ( B )] a (1 a )[u ( B ) 2u (C ) u ( D)] 2 u ( B)
7_双曲型方程的差分方法(II)
a 如果 | | M,x R,t [0,T ] x
n 那么由中值定理有: | an a j 1 j 1 | 2 Mh
从而有 || u n 1 ||h ( 1 M) || u n ||h
2 2
重复使用上面的式子有 || u ||h e
n 2 MT
|| u ||h ,n T
u u u 1 u 1 A 0 S S A 0 t x t x w w 1 u 1 1 u S S ASS 0 0 t x t x
非耦合系统
w S 1 u
2
1 1 1 取S 2 1 1 w1 u1 u2 1 1 1 0 1 1 S AS u, 即 , w S u 0 1 w2 u1 u2 1 1
l (G ) 1 il sin kh |l |( cos kh 1)
kh 2 |l (G )| (1 2 |l |sin ) 2l2 sin 2 kh 2 2 kh 1 4 |l |(1 |l |)sin 2 (G ) 1 max|l | 1
1 l 0
(A) 1
即 (A) 1 时 满足Von Neumann条件
为格式稳定必要条件
(A) 1
为稳定充要条件
证明: G(k , ) cos kh I i sin kh A 由于 S 1 AS Λ
Λ diag(1 ,2 ,
1
a(x,t)<0 见下图
a(x,t)>0 见上图
可将常系数方程的差分 格式推至变系数方程:
(1) Lax Friedrichs格式:
u
双曲方程的差分方法
的左特征向量
16
记Sc c,则方程组为
•••••
j 1
sij
(
u t
j
i
u j x
)
ci •,••i
1, 2,
, .••••••••••(4.12)
引入
个方向:••dt dx
1
i
,或方向 i:•ddxt
i ••i
1,
, •••(4.13)
则沿
,有:
i
u •••
j
t
i
u j x
u j t
dx a(x, y) (4.3)称为原方程的特征关系(未知u(x, y)沿特征线方向满足的(4.3))
3
例4.•1••• 考虑定解问题
•y u u 2•••••••a (x, y) y,b(x, y) 1, c(x, y) 2 x y u | u0 (x)•, •• : 0 x 1•, y 0•(x轴上的一段)•••••
用(4.9),(4.10)求近似解 ••••x 0 1, y0 0,u0 1, xp 1.1••••• 由(4.9)
1(
y (1) p
0)
1
(11
1)•••••••b
1(u
(1) p
1)
1
(111)••••••c
(x0 , y0,u0 ) u0 1 (x0, y0,u0 ) u02 1
•••••••••• •••• du 2•• 2dy du
dy
4
两边积分得: u 2y B••••B 常数
•由初始条件知,当 x xR•,y 0时,u u0 (xR ) •可取•B u0 (xR ) •u 2 y u0 (xR )为沿着特征线 y2 2(x xR ) 的解.