数学建模国赛B题优秀获奖论文

合集下载

2017数学建模b题优秀论文

2017数学建模b题优秀论文

2017数学建模b题优秀论文利用数学知识解决现实生活的具体问题了成为当今数学界普遍关注的内容,利用建立数学模型解决实际问题的数学建模活动也应运而生了。

下文是店铺为大家搜集整理的关于2017数学建模b题优秀论文的内容,欢迎大家阅读参考!2017数学建模b题优秀论文篇1浅谈数学建模实验教学改革摘要:阐述了数学建模课程在大学生知识面的拓宽、全方位能力的培养以及人文素质的提高三方面的重要作用,提出了数学建模课程有助于提高学生的综合素质。

从数学建模理论课程和实验教学两者之间的区别与联系的角度提出了实验教学改革的必要性,最后针对数学建模实验教学的具体情况提出了实验教学改革的措施。

关键词:数学建模;实验教学;教学改革一、数学建模课程有助于提高学生的综合素质随着教育改革的不断深入,我国目前正在开展以“素质和素质教育”为核心的教育思想与教育观念大讨论。

在1983年召开的世界大学校长会议中,对理想的大学生综合素质提出了三条标准:专业知识要掌握本学科的方法论、具有将本学科知识与实际生活与其他学科相结合的能力以及具有良好的人格素质。

[1]数学是一切科学和技术的基础,数学的思考方式对培养学生科学的思维方法具有重要意义,因而数学的重要性是毋庸置疑的。

数学和各学科的相互渗透及其在技术中的应用,推动了数学本身的发展和各个学科理论的发展。

戴维在1984年说过:“对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价。

显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。

”数学的广泛应用性主要取决于数学的思维方式。

数学对于学生的培养,不只是数学定理的证明,公式、定义的理解,重要的是培养学生具备正确的思想方法,而且可以依据自己所学到的知识不断创新、不断寻找新的途径。

21世纪以来,数学建模课程的开设在国内高校中稳步展开,并获得了广泛认同。

参加数学建模竞赛的学校和人数逐年上升,数学建模课程的重要性得到广泛认可,越来越多的高校开设了数学建模课程。

2017年数模国赛B题优秀论文(省一等奖)

2017年数模国赛B题优秀论文(省一等奖)

二、问题分析
2.1 问题的总分析 本文首先要求我们研究已完成项目的定价规律,分析部分任务未完成的原因,其次 针对部分任务未完成的原因,重新设计任务的定价方案,再次在问题二的基础上考虑任 务打包的情况,修改问题二的定价模型,并分析对最终的任务完成情况的影响,最后针 对新项目的任务位置信息设计任务定价方案,并评价此方案的实施效果。
基于任务吸引度的众包平台定价方案优化
摘要
本文对自助式劳务平台的运营模式及运营效果进行了分析, 建立多目标规划模型对 定价方案进行了优化,并加入任务打包情况对此方案进行了修改,最终应用在新项目的 任务定价中。 对问题一,该项目任务点分布于四个不同城市。在分析定价规律时,考虑数据的宏 观分布情况,分别以各任务点与市中心距离、各任务点处会员分布密度为回归变量,以 定价为响应变量,通过回归分析研究变量间的定量关系,确定回归系数后,以会员分布 密度与定价的回归方程作为定价规律判定。回归方程表明:定价在宏观上与会员分布密 度呈反比例函数关系。其次,在分析任务未完成原因时,分别定义任务的距离吸引度、 标价吸引度来量化距离、 标价对任务完成情况的影响, 将任务未完成原因归结为四方面: 标价吸引度低、距离吸引度低、会员分布密度低、其它因素。 对问题二,将设计定价方案的过程视为定价方与任务完成方进行博弈的过程,在博 弈论的视角下对众包任务定价方案进行了设计。首先定义了定价基准值的概念,来量化 任务本身的价值。根据问题一的分析结果,任务未完成原因主要是距离吸引度、标价吸 引度过低,因此在定价时,从权衡各任务点距离吸引度、标价吸引度入手,分析了任务 完成过程中个体的行为规律。针对任务完成方,分析了会员预定各任务的概率;针对定 价方,分析了任务被预定概率、任务被完成概率,其中任务被完成概率与由会员信誉值 决定的概率修正因子有关。以任务被完成概率、定价为目标,建立了无约束多目标规划 模型,利用遗传算法确定了每个任务的最优定价。最后,比较了所设计方案与原方案下 任务完成比例和任务标价,很好地表现出了新方案优化效果。其中新方案的任务完成率 为:0.7122,标价总额为:34112.7356。 对问题三, 要求修改问题二中定价模型, 从而导出适用于含任务包的任务定价方案。 任务打包后,对定价方案造成的影响主要是:任务包中任务个数与会员预定限额之间的 矛盾。首先,在考虑会员预定限额的基础上,确定了任务包的基准价、标价吸引度及距 离吸引度。受到物流配送区域划分方法的启发,建立了基于点密度的任务聚类模型对任 务进行打包处理。进而类比问题二,建立了含任务包的目标规划模型,确定最优定价, 并得出此定价下的任务完成概率。与问题二中任务完成率、标价总额进行对比,结果表 明,将任务打包后任务完成率提高。其中打包后的任务完成率为:0.8059,标价总额为: 36371.4592。 对问题四,针对新项目任务分布高度集中的特点,需要结合实际,对任务包内任务 个数进行限制。基于任务个数上限,对问题三打包方案进行了改进,运用改进后的打包 方案对任务打包后,通过建立含任务包的目标规划定价模型,确定了每项任务的定价。 结果分析表明,在此方案下任务完成率为:0.5042。最后,加入任务开始预定时间指标, 对众包任务的下发、预定、完成过程进行仿真分析,作为模型的改进。

数学建模优秀论文

数学建模优秀论文

(数学建模B题)北京水资源短缺风险综合评价参赛队员:甘霖(20093133,数学科学学院)李爽(20093123,数学科学学院)崔骁鹏(20091292,计算机科学学院)参赛时间:2011年4月30 - 5月13日承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D 中选择一项填写):B所属学校(请填写完整的全名):黑龙江大学参赛队员:1.甘霖2、李爽3、崔骁鹏日期:2011 年5月12日目录1.摘要 -----------------------------------------42.关键词 ---------------------------------------43.问题重述 ---------------------------------------54.模型的条件和假设 ------------------------------55.符号说明 --------------------------------------56.问题的分析及模型的建立 ------------------------66.1问题一的分析与求解 -----------------------66.2问题二的分析与求解 -----------------------106.3问题三的分析与求解 -----------------------186.4问题死的求解 -----------------------------217.模型的评价 ------------------------------------238.参考文献 --------------------------------------239.附录 ------------------------------------------23北京水资源短缺风险综合评价甘霖﹑李爽﹑崔骁鹏【摘要】本文针对水资源短缺风险问题求出主要风险因子,并建立了水资源短缺风险评价模型,以北京为实例,做出了北京1979年到2009年的水资源短缺风险的综合风险评价,划分出了风险等级,以评价水资源短缺风险的程度。

全国大学生数学建模竞赛b题全国优秀论文

全国大学生数学建模竞赛b题全国优秀论文

基于打车软件的出租车供求匹配度模型研究与分析摘要目前城市“出行难”、“打车难”的社会难题导致越来越多的线上打车软件出现在市场上。

“打车难”已成为社会热点。

以此为背景,本文将要解决分析的三个问题应运而生。

本文运用主成分分析、定性分析等分析方法以及部分经济学理论成功解决了这三个问题,得到了不同时空下衡量出租车资源供求匹配程度的指标与模型以及一个合适的补贴方案政策,并对现有的各公司出租车补贴政策进行了分析。

针对问题一,根据各大城市的宏观出租车数据,绘制柱形图进行重点数据的对比分析,首先确定适合进行分析研究的城市。

之后,根据该市不同地区、时间段的不同特点选择多个数据样本区,以数据样本区作为研究对象,进行多种数据(包括出租车分布、出租车需求量等)的采集整理。

接着,通过主成分分析法确定模型的目标函数、约束条件等。

最后运用spss软件工具对数据进行计算,求出匹配程度函数F与指标的关系式,并对结果进行分析。

针对问题二,在各公司出租车补贴政策部分已知的情况下,综合考虑出租车司机以及顾客两个方面的利益,分别就理想情况与实际情况进行全方位的分析。

在问题一的模型与数据结果基础上,首先分别从给司机和乘客补贴两个角度定性分析了补贴的效果。

重点就给司机进行补贴的方式进行讨论,定量分析了目前补贴方案的效果,得出了如果统一给每次成功的打车给予相同的补贴无法改善打车难易程度的结论,并对第三问模型的设计提供了启示,即需要对具有不同打车难易程度和需求量的区域采取分级的补贴政策。

针对问题三,在问题二的基础上我们设计了一种根据不同区域打车难易程度和需求量来确定补贴等级的方法。

设计了相应的量化指标,以极大化各区域打车难易程度降低的幅度之和作为目标,建立该问题的规划模型。

目的是通过优化求解该模型,使得通过求得的优化补贴方案,能够优化调度出租车资源,使得打车难区域得到缓解。

通过设计启发式原则和计算机模拟的方法进行求解,并以具体案例分析得到,本文方法相对统一的补贴方案而言的确可以一定程度缓解打车难的程度。

大学生数学建模竞赛B题优秀论文

大学生数学建模竞赛B题优秀论文

关于高等教育学费标准的评价及建议摘要本文通过对近几年来学费变化的研究,综合分析影响学费变化的五个要素,引入了三个变因:学校属性、专业类型、地域差异对学费的影响,对其合理性进行了定量的分析和评价。

首先,我们基于层次分析法建立了模型一。

模型一以五个要素,即教育市场供求关系、全国家庭支付承受力、国家财政及相关社会捐助、个人收益率、教育成本为方案层。

对于教育市场的供求关系我们用灰色预测GM(1,1)模型预测出未来几年的招生人数,用蛛网模型求解稳定的价格点为3225.51 元;对于国家财政及相关社会捐助,我们用回归分析得出其效应关系。

模型一以效率和公平两个标准作为准则层,应用极差归一化思想,构造指标函数,综合建立成对比较矩阵。

我们定义学费合理化指数为目标层,经准则层,得出五个要素对学费合理化指数的组合权重向量。

考虑到成对比较矩阵仍有一定主观因素,我们用熵值取权法修正组合权重向量。

最后,拟合出最佳学费曲线及其波动区间,其中 2007 年的结论值为 3370.75 元。

模型一的突出优点是客观可信,美中不足的是结论为一个平均最优值,没有考虑其他变因的影响,使用的局限性较大。

然后,我们基于学校属性、专业类型、地域差异三个变因对结论的影响建立了模型二。

评价了这三个变因对五个要素的综合影响,修正了五个要素对学费合理化指数的影响,使得结论更趋于合理,应用范围更加广泛。

修正后通过若干数据的检验,得出平均最佳学费约为 3000 元。

基于这两个模型,以及对高校学费现状的了解,我们提出三点主要建议: 1.鼓励高校开拓资金来源渠道,学习国外筹款方式,如发行教育彩票等; 2.建议国家增加助学贷款发放力度,并能够分类别基于不同金额的贷款,并出台一些补贴政策弥补不同地区的差异; 3.大力扶持民办高等院校发展,实现高等教育大众化,这样不仅缓解高等院校招生压力,并且能够促进高校教育健康发展。

本文的特色在于基于翔实丰富的资料,根据五个要素及三个变因的分析,建立了一种合理的高校学费评价体系,其拥有适用性广,稳定性好,灵敏度高等特点,对三个变因,即学校属性、专业类型、地域差异进行了深入定量的分析,并根据模型结论给提出了我们的一些可行性建议。

2000年全国数学建模竞赛B题优秀论文

2000年全国数学建模竞赛B题优秀论文

管道订购与运输问题1 问题重述2 基本假设(1)只考虑订购费用和运输费用,不考虑装卸等其它费用. (2)钢管单价与订购量、订购次数、订购日期无关.(3)订购汁划是指对每个厂商的定货数量;运输方案是指具有如下属性的一批记录:管道区间,供应厂商,具体运输路线.(4)将每一单位的管道所在地看成一个需求点,向一单位管道的所在地运输钢管即为向一个点运输钢管.3 符号说明M :钢厂总数. n :单位管道总数.:i S 第i 个钢厂 :i S 第i 个钢厂的产量上限。

:i p 第i 个钢厂单位钢管的销售价 i A 管道线上第i 个站点。

i d 管道线上第i 个单位管道的位置。

F :总费用。

:ij C 从钢厂(1,2,,)i S i m =到点(1,2,,)j d j n =的最低单位费用。

4 问题的简化求 S AP 矩阵的基本思路是图的最短路算法 . 由于铁路的运输费用与线路的长度不是线性关系 ,必须对铁路网做一些预处理才能套用图的标准最短路算法 . 下面叙述求 S AP 矩阵的过程:1.利用图的标准最短路算法 ,从铁路网络得出图中任两个点之间的最短路径表 T (如果两个点之间不连通 ,认为它们之间的最短路长度为+ ∞ ) .2.利用题中的铁路运价表将 T 中的每个元素 (即最短距离 )转化为运输费用 ,将运输费用表记为 C.3.将公路的长度换算为运输费用 ,由公路路程图 (包括要沿线铺设管道的公路 )得出公路费用图 G,若 i, j 不连通 ,则令 Gij = + ∞ .4.对于任一组 ( i , j)∈ { 1,… n }× { 1,… m } 如果 Cij <+ ∞ ,且小于 Gij ,那么就在公路费用图中加一条边. 即令 Gij = min{Cij , Gij } .5.利用图的标准最短路算法 ,求公路费用图中任一个 S 点到任一个 A 点的最小费用路径 ,得出 S AP 矩阵. 如表 1所示:SAP 矩阵A123 4 5 6 7 8 9 10 11 12 13 14 15 S1 170716031402986 380 205 31 212 642 920 960 1060 1212 1280 14202 215720531902 1716 1110 955 860 712 1142 1420 1460 1560 1712 1780 19203 230722032002 1816 1210 1055 960 862 482 820 860 960 1112 1180 13204 260725032352 2166 1560 1405 1310 1162 842 620 510 610 762 830 9705 255724532252 2066 1460 1305 1210 1112 792 570 330 510 712 730 8706 265725532352 2166 1560 1405 1310 1212 842 620 510 450 262 110 2807 275726532452 2266 1660 1505 1410 1312 992 760 660 560 382 260 205问题分析运输费用等价转换法则:按单位运费相等原则将任意两点间的最短铁路线转换为公路 线.对于铁路线上的任意两点,i j V V ,用F1oyd 算法找出两点间最短铁路路线的长度ij L 查铁路运价表求得ij L ,对应的铁路单位运费ij f ;又设与该段铁路等费用的公路长度为ij l ,则:0.1ij ij f l =⨯由此,我们就在,i j V V 之间用一条等价的公路线来代替,i j V V 间的最短铁路线.如果,i j V V 之间原来就有公路,就选择新旧公路中较短的一条.这样,我们就把铁路运输网络转换成了公路运输网络.销价等价转换法则:按单位费用相等将任意钢厂的单位销价转换为公路单位运价.对于钢厂S i 的销售单价P i ,我们可以虚设一条公路线,连接钢厂S i 及另一虚拟钢厂'i s ,其长度为i l ,并且满足0.1i i l p =⨯;从而将钢厂的销售单价转换成公路运输单价,而新钢厂'i s 的销售价为0.将铁路和销价转换为公路的过程可以由计算机编程实现. 通过上述的分析,我们可以将原问题化为一个相对简单的产量未定的运输问题,利用115A A 到之间的管道距离和钢厂和站点之间的公路距离建立一个产量未定的运输问题的模型.但是由于1215,A A A ,并不能代表所有的实际需求点(实际需求点是n 个单位管道),因此,我们可以用F1oyd 算法进一步算出7个钢厂到所有实际的n 个需求点(对于问题一,n =5171;对于问题三,n =5903)的最短路径,并由此得出一个具有7个供应点、n 个需求点的产址未定的运输模型.6 模型的建立产量未定的运输模型根据假设4,我们可以将每一单位的管道看成一个需求点,向一单位管道的所在地运输钢管即为向一个点运输钢管.对每个点,我们可以根据该点的位置和最短等价公路距离,求出各钢厂与该点之间最小单位运输费用ij C (销价已经归人运输费用之中了).设总共有m 个供应点(钢厂),n 个需求点,我们就可以得到一个产量未定的运输模型:有m 个供应点、n 个需求点,每个供应点的供应量{0}{500,}i i u s ∈;每个需求点需要1单位,运输单价矩阵为C ,求使得总运输费用最小的运输方案.其数学规划模型: 11minmnij ij i j F C x ===∑∑11{0}{500,}1,2,,..11,2,01nij i j mij i ij x S i ms tx j n x ==⎧∈=⎪⎪⎪==⎨⎪⎪=⎪⎪⎩∑∑或其中: 1112112n m m mn C C C C CC C ⎛⎫⎪=⎪ ⎪⎝⎭为单位费用矩阵 1112112n m m mn x x x X x x x ⎛⎫⎪=⎪ ⎪⎝⎭为决策矩阵,也为0-1矩阵 代码如下7 模型的求解对于本题,上述0-1规划规模宏大,现有的一些算法不能胜任,我们必须具体问题具体分析,结合本题实际情况,寻找行之有效的算法.(1)初始方案的改进的最小元素法和改进的伏格尔法 *改进的最小元素法改进的最小元素法又称为贪婪法或瞎子爬山法,它的宗旨是每一步都取当前的最优值算法步骤为,对费用矩阵C 作n 次下列循环:①C 中找一个最小值ij C ; ②令1;ij x =③C 的第j 的所有数据改为+∞;④如果1nij i j x s ==∑,第i 个供应点的供应量已达上限,将C 的第i 行数据全改为+∞。

2016年全国数学建模竞赛B题一等奖论文1

2016年全国数学建模竞赛B题一等奖论文1
流量又称交通量,是指单位时间内通过道路指定地点或断面的车辆数。流量 不是一个静止不变的量,随着时间和空间变化而变化。当流量过大时,则认为道 路发生拥挤。
5.1.4 评价指标体系的建立 综上所述,道路通行状态评价指标体系如图所示:
7
图 1 道路通行状态评价指标体系
5.2 问题二的分析与建模
5.2.1 基于 MSA 算法下的平衡分配模型
针对问题三,通过网络搜集和交通仿真软件得到小区开放前后的模型参数, 并基于模型一对各类型小区进行定量分析,判断小区开放对周边道路通行能力的 影响;其次基于模型二,对小区开放前后的车速进行作图分析,直观地反映出小 区开放前后道路通行能力的变化。
针对问题四,结合了问题一的指标和问题二的模型以及问题三中的研究结果, 从交通通行的角度向城市规划和交通管理部门提出了关于小区开放的合理化建 议。如向城市规划提出(1)在小区内适当建设公交站点;(2)不同类型的小区 应用不同的开放程度等,向交通管理部门提出(1)限制车辆在小区内的行驶速 度;(2)多处设置交通信号和交警等建议。
1
一. 问题重述
1.1 问题背景 改革开放以来,我国经济快速发展,城市化进程加速,人均汽车拥有量不断
增长,但是由于道路资源和格局的制约,城市交通问题日益严峻。而交通对于国 家的经济发展具有重要的意义。传统的封闭式小区因其用地性质的特殊性,将城 市土地分割成不规则的块状格局,降低了支路网密度,形成稀疏的道路网络,使 城市道路的通行能力下降。在交通问题备受关注的背景下,小区的开放问题引起 了广泛的讨论。
3
xij
路段 i 至路段 j 的流量
l
流量
密度
v
速度
sn'
车距
un'

全国大学生数学建模竞赛B题优秀论文

全国大学生数学建模竞赛B题优秀论文
2.2 模型的符号说明
(1) 表示客流量随时间的变化值,R、RW、RG分别表示上海国际旅游入境人数本底值、外国游客入境人数本底值、港澳台游客入境人数本底值;
(2)R1表示2010年1、2、3、4、11、12月上海国际旅游入境实际人数,R2表示世博会期间上海国际旅游入境实际人数,RZ表示2010年上海国际旅游总入境实际人数;
最后,通过对模型结果的分析,量化评估上海世博会的影响力。从世博会对以上各个指标的贡献率可以看出:世博会极大地促进了旅游业的发展,并且对上海的财政收入做出了巨大的贡献。在分析所得结果的基础上,客观评价此模型,并指出其优点和缺点。
关键词:上海 世博会 影响力 本底趋势线 内插值
1.问题重述
2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。
2.模型的假设与符号说明
2.1模型的假设
2010年上海世博会作为一场世界级的盛宴,要对其影响力进行定量评估,尚存在一些不确定因素。故为了研究方便,我们给出以下假设:
(1)假设世博会不受偶然事件严重冲击和干扰;
(2)假设旅游人数只受主要因素影响,其他一些因素可以忽略,比如天气等因素;
(3)假设世博会期间每月游览总人数波动不大,非世博会期间每月游览总人数波动也不大。
第二步,用Excel的指数模型、乘幂模型和SPSS的指数-三角函数复合模型 、直线-逻辑线增长复合模型 、直线-三角函数复合模型 对各个指标进行拟合,确定有关参数,获得各个指标的趋势线模型和方程,并计算各年的本底值;

2004年全国大学生数学建模大赛B题全国一等奖论文

2004年全国大学生数学建模大赛B题全国一等奖论文

电力市场的输电阻塞管理摘要电网公司在组织交易、调度和配送时,要制订一个电力市场交易规则,按照购电费用最小的经济目标来运作。

我们采用多元线性回归的方法建立线路潮流值与各机组出力之间的近似方程,单目标规划确定机组分配预案,公平对待序内外容量建立阻塞费用计算规则,双目标规划确定机组调整分配方案,进行电力市场的输电阻塞管理。

问题一:首先,我们建立多元线性回归方程,采用SPSS软件求出线路上的潮流值与各个机组处理预案之间的近似方程,再根据求解出的复相关系数得出自变量与因变量之间的线性关系明显,用F检验与均方差检验判断近似方程回归较为精确,进一步提高了模型的严谨性。

问题二:为设计合理的阻塞费用计算规则,我们考虑了两种方法,方法一是直接将调整后的机组总出力与对应清算价之积与调整前的总费用相减差值作为阻塞费用,但根据题目要求需公平地对待序内容量不能出力的部分和报价高于清算价的序外容量出力的部分,这两部分我们用清算价与对应报价之差来结算。

问题三:我们首先根据电力市场交易规则费用最小的交易要旨确定目标函数,根据清算价、系统负荷、爬坡速率的限制条件确定约束条件,建立单目标规划模型。

然后用MATLAB求解对应的系数分配矩阵与段容分配矩阵,得出分配预案如下:一、问题重述我国电力系统的市场化改革正在积极、稳步地进行。

2003年3月国家电力监管委员会成立,2003年6月该委员会发文列出了组建东北区域电力市场和进行华东区域电力市场试点的时间表,标志着电力市场化改革已经进入实质性阶段。

可以预计,随着我国用电紧张的缓解,电力市场化将进入新一轮的发展,这给有关产业和研究部门带来了可预期的机遇和挑战。

电力从生产到使用的四大环节——发电、输电、配电和用电是瞬间完成的。

我国电力市场初期是发电侧电力市场,采取交易与调度一体化的模式。

电网公司在组织交易、调度和配送时,必须遵循电网“安全第一”的原则,同时要制订一个电力市场交易规则,按照购电费用最小的经济目标来运作。

2012数学建模国赛B题国家一等奖论文

2012数学建模国赛B题国家一等奖论文
U 'i Ii p
单位面积光伏电池受到的辐射量 第 m 种光伏电池的组件功率 第 i 种逆变器的额定电压 第 i 种逆变器的允许输入电压 第 i 种逆变器的额定电流 民用电价
五、问题一的解答
5.1.总体思路 太阳能电池布局最佳方案非常难解,为了能更好地解决问题,我们在建立详细的数 学模型表示出目标函数和约束条件的基础上将问题 1 分解为两个步骤。 首先,我们根据逆变器求出最优电池阵列,再利用计算机结合人工的方式对各个面 进行最优铺设。 5.2 最优铺设模型 5.2.0 模型的准备 一个方案设计 F 用三元组 ( X , Y , Z ) 表示: X ( x1 , x2 x24 ) 是 24 维向量, xi 表示第 i 种电池使用的个数
三、模型假设
1、一个逆变器只能串并联一种类型的光伏电池,且阵列为矩形 2、光伏电池阵列布局原则为四邻域延伸 3、外墙及屋顶受到的太阳辐射由直射和天空散射两部分组成,忽略地面反射辐射 4、将天空散射部分简化成水平太阳散射的二分之一 5、架空方式只可在屋顶实现 6、贴现率为 5%
四、符号说明
n xi yj
t=1 Y N SN=18 Y 踢出劣解 依据评价 函数排序
N
算法说明 1、 剔除劣解的标准:面积约束 2、 评价函数:单位发电量的费用与经过指数加权后的单位面积年总发电量的比值。 计算结果 对 18 个型号逆变器进行计算,可得出每种逆变器的经过评价函数排序后的最优阵 列矩阵,对于大屋顶,下面给出一个最优阵列: 逆变器 型号 SN15 电池 型号 A3 串联 电池 数 8 并联 电池 组数 5 电池总 面积 单位面积发 电量 单位发电量 费用 逆变器 使用率 96% 所在 墙面 大屋 顶
3、目标整合:利润最大
24 18 y j h j xi gi year 1 1 r i 1 j 1 p 表示民用电价, eyear 表示年发电量的衰减系数(1-10 年 100%,10 年-25 年 90%,25

第三届“ScienceWord杯”数学中国数学建模网络挑战赛第二阶段B题一等奖论文

第三届“ScienceWord杯”数学中国数学建模网络挑战赛第二阶段B题一等奖论文

目录(CONTENTS)一、问题重述 (2)二、问题分析 (2)2.1方案理论可行性 (2)2.2波士顿路网实例 (2)三、条件假设 (2)四、符号约定 (2)五、模型的建立与求解 (3)5.1模型建立 (3)5.1.1波士顿城市路网抽象图 (3)5.1.2交通网连通性 (4)5.1.3非线性规划模型 (4)5.1.4拥堵评价指标体系 (4)5.2路网属性参数估计 (5)5.2.1路网属性参数约束方程 (5)5.2.2参数曲线拟合求解 (5)5.3交通流量之NASH均衡求解 (8)5.3.1非线性规划求解NASH均衡解的可行性分析 (8)5.3.2 LINGO求解NASH均衡解 (9)5.4方案优劣性的量化分析 (10)5.4.1路网流量均衡下的道路拥堵状况 (10)5.4.2关闭已拥堵路段后的道路拥堵状况 (13)5.4.3关闭未拥堵路段后的道路拥堵状况 (13)5.5方案适用范围的数据分析 (14)5.5.1路网总流量变化对道路拥堵状况的影响 (14)5.5.2波士顿路网规划方案适用范围 (15)六、模型的评价 (15)七、参考文献 (16)八、附录 (17)8.1 LINGO求解均衡解程序 (17)8.2插值多项式曲线的MATLAB程序 (17)一 问题重述Braess悖论宣称:提高某一路段的通行能力,反倒可能使整体路网的通行能力下降。

那么,在发生交通拥堵的时候,如果暂时关闭其中的某条道路,是否可以缓解交通堵塞的现象? 请建立合理的模型,研究临时关闭道路以缓解交通堵塞的可行性。

如果可行,请给出具体的关闭方案。

城区道路网可以使用北京市二环路的地图,也可以使用美国波士顿的部分城区图。

二 问题分析2.1方案理论可行性从规划的角度看,理想情况下,司机可以牺牲个人利益成全大局,使得城市路网无时无刻都能达到最优效益,此时关闭其中任何一条道路都有可能使全局最优解降为局部最优解,即在这种情况下关闭道路的方案是不可行的。

09数学建模B题获奖论文

09数学建模B题获奖论文
在问题(2)中,统计并分析书籍数据,根据由统计得到的各类病人康复的天数,按正态分布原理可得到9月12号到9月23号每天这部分人拟出院人数,在此基础上,具体到某一天,当某种病人达到了康复时期的最小值时我们把它们选取出来,再根据当天拟出院的病人数,在这选取出来的数据中利用计算机编程按照随机选取的方法再将它们逐个选取出来,直到达到拟出院的病人数为止,最后选取出来的患者为该天拟出院的患者。采用递归的方式,能得出做了手术而没出院的那部分病人的拟出院情况。根据这个拟出院情况,我们可以安排病人住院,我们可让该天安排进医院的各类病人的所有准备时间最小作为目标函数建立病床安排模型。对于约束条件的限制,由于考虑到医生的安排问题,即白内障患者安排到周一和周三做手术,具体到某天时,我们首先确定该天的日期和该天是星期几,根据这些信息可以确定出该日期医院拟出院的病人数和住进去的各类病人的准备时间即确定约束条件。
5.2
由已知数据可得2008-07-13到2008-09-11这段时间每天白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的病人到医院就诊的人数,这段时间白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的病人的总数分别为:100、133、170、63、64。
5.3
由附录可得2008-07-13到2008-09-11这段时间白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的康复时间可得白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的康复时间分别为[2,4]、[4,6]、[5,15]、[4,12]、[3,10],且它们各自占到的比例分别如表5-1,5-2,5-3,5-4所示。
视网膜
康复天数
5
6
7
8
9
10
11
12
13
14
15
康复人数

第二届研究生数学建模竞赛B题优秀论文(1).

第二届研究生数学建模竞赛B题优秀论文(1).

全国第二届部分高校研究生数模竞赛题 目 B 题 空中加油问题摘 要:空中加油问题是在油料,时间和地点约束下的寻优问题。

论文将作战方案建模成二叉树结构,给出了计算二叉树各结点坐标的公式。

对问题1,2,论文给出二叉树穷举搜索和叶子结点生长两种搜索方法,能够计算任意n 架辅机的最优作战方案和最大作战半径。

证明了时,给出了上界n r n →∞n r →∞()211log 263n ++⎡⎤⎢⎥和下界()311lo +g 123n +⎢⎥⎣⎦。

对问题3,论文用试凑法得到的n=1~3的最大作战半径n R ,并给出一种加进松弛条件的次优搜索法,能够计算满足松弛条件的次优作战半径ˆnR 。

问题4,给出了任意一个基地辅机数量为n 时最优作战方案搜索方法,进而确定辅机在各基地的分配方案,并计算出此时的作战半径n R *。

下面给出n=1~5时各最大作战半径表。

n 1 2 3 4 5 n r 0.66667 0.83333 0.91667 1.000001.05556n R0.83333 1.00000 1.15694 ˆnR 0.83333 1.00000 1.15556 1.23889 1.26667 n R *1.500002.500002.944443.388893.72222参赛队号 1415空中加油问题的讨论一. 问题重述空中加油技术可以大大提高飞机的直航能力。

作战飞机称为主机,加油机称为辅机。

已知:(1)主机和辅机载油量、速度、单位时间的耗油量完全一样,且为常数;(2)飞机载油量可供飞行L 公里;(3)辅机可以给主机或其他辅机加油;(4)执行完任务后,所有飞机必须返回基地;(5)飞机的起飞、降落、转向、加油的耗时和主机执行任务的时间忽略不计。

A 空军基地有一架主机和n 架辅机,主机最大作战半径指主机在辅机加油协助下能飞到(并安全返回)离基地A 的最远距离。

有如下问题:问题1:每架飞机只能上天一次,求n=1,2,3,4时的最大作战半径。

2021数学建模国家一等奖论文(B)

2021数学建模国家一等奖论文(B)

2021数学建模国家一等奖论文(B)上海世博会影响力的定量评估摘要本文是一个对上海世博会影响力的定量评估问题,首先我们收集了与世博会有关的数据,如国内来沪旅游人数,国外来沪旅游人数等。

并用灰色预测对相应的数据进行了预处理,然后我们从横向(本届世博对上海的影响)和纵向(本届世博和历届世博的影响比较)两个角度对世博影响力进行了研究,最后还应用了多目标优化模型求出在不同投资增长系数下上海世博对当地旅游经济最大影响力系数。

第一步,我们横向考虑世博会对本地旅游业的影响力,并将该影响分为对旅游经济的影响和对旅游文化的影响两方面。

首先应用本底趋势线模型得出相应数据的本底值,再分别建立对旅游经济和旅游文化的影响力系数模型,然后利用本底值和统计值得出相应的影响力系数,结果表示如下:举办世博影不举办世博影增加的影旅游业时间响力系数响力系数响力系数世博前期 1.18 1 0.18 世博期间 1.58 1 0.58 旅游经济世博后期1.15 1 0.15 世博影响年均值 1.30 1 0.30 旅游文化 1.29 1 0.29 可得出世博期间的世博会对旅游经济影响力系数最大,为1.58。

相比旅游收入的本底值增加了579.39亿元的旅游收入。

而世博对旅游文化的影响力系数为1.29。

第二步,我们纵向考虑上海世博会与历届世博会相比的影响力。

根据收集的历届世博会相关的规模数据,将世博会影响力等级从低到高分为1-5等,从而建立了世博会综合影响力的模糊评价模型。

对历届世博会的影响力做出综合评价并得出了相应的综合影响力系数。

得出的前三名的排名情况如下:举办年份世博会名称综合影响力系数影响力排名2021 上海世博会 4.094134 1 1970 日本万国博览会 3.789834 2 1939 纽约世界博览会3.465383 3 第三步,我们从环保,旅游收入以及后世博效应三个角度对上海世博的影响重新进行了思考。

综合权衡这三个方面因素,我们建立了一个多目标优化的模型。

2023年高教社杯全国数学建模竞赛B题省级二等奖论文

2023年高教社杯全国数学建模竞赛B题省级二等奖论文

2023年高教社杯全国数学建模竞赛B题省级二等奖论文一、引言2023年高教社杯全国数学建模竞赛是一项重要的学术竞赛活动,旨在激发青年学生对数学建模的兴趣,提高他们的数学建模能力。

本文主要介绍我们参与竞赛中的B题的省级二等奖论文。

二、问题描述本次竞赛的B题要求我们通过分析某地区近几年的降雨数据和水库蓄水量数据,预测未来一段时间内的降雨情况以及水库的蓄水量变化情况。

三、数据分析与处理为了分析和处理题目所给的数据,我们采用了以下的方法:1.数据的清洗:对于给定的降雨数据和水库蓄水量数据,我们首先对其进行清洗,去除异常值和缺失值,确保数据的准确性和完整性。

2.数据的可视化:通过使用Python的Matplotlib库,我们将清洗后的数据进行可视化展示,以便更好地理解数据的分布情况和趋势变化。

3.数据的分析与建模:根据题目的要求,我们运用统计学和数学建模的方法对数据进行分析。

首先对降雨数据进行时间序列分析,探究其周期性和趋势性;然后,利用回归分析的方法建立降雨量与水库蓄水量之间的数学模型,以预测未来的蓄水量变化情况。

四、结果与讨论经过上述的分析和处理,我们得到了以下的结果:1.降雨数据的分析结果显示,该地区的降雨量呈现出明显的季节性变化,并且存在一定的趋势性。

通过对降雨数据进行拟合,我们成功建立了一个能够预测未来降雨量的数学模型。

2.利用回归分析的方法,我们建立了一个能够预测水库蓄水量的数学模型。

通过对模型的检验和验证,我们发现该模型对未来水库蓄水量的预测具有较高的准确性。

基于上述结果,我们得出了以下的结论:1.未来一段时间内,该地区的降雨量将继续呈现出季节性的变化,并且可能会有一定的增加趋势。

2.水库的蓄水量将会随着降雨量的变化而变化,预测的数据显示蓄水量将保持在一个相对稳定的水平。

五、结论本文以2023年高教社杯全国数学建模竞赛B题省级二等奖论文标题为中心,描述了我们在竞赛中的研究过程和结果。

我们通过对降雨数据和水库蓄水量数据的分析和处理,成功建立了能够预测未来降雨量和水库蓄水量变化情况的数学模型。

全国大学生数学建模竞赛B题全国一等奖论文

全国大学生数学建模竞赛B题全国一等奖论文

全国大学生数学建模竞赛B题全国一等奖论文IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】碎纸片的拼接复原【摘要】破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

本文主要解决碎纸机切割后的碎纸片拼接复原问题。

针对第一问,附件1、2分别为沿纵向切割后的19张中英文碎纸片,本文在考虑破碎纸片携带信息量较大的基础上,利用MATLAB对附件1、2的碎纸片图像分别读入,以数字矩阵的方式进行存储。

利用数字矩阵中包含图像边缘灰度这一特征,本文采用贪心算法的思想,在首先确定原文件左右边界的基础上,以Manhattan 距离来度量两两碎纸片边界差异度,利用计算机搜索依次从左往右搜寻最匹配的碎纸片进行横向配对并达成排序目的。

最终,本文在没有进行人工干预,成功地将附件1、2碎纸片分别拼接复原,得到复原图片见附录、,纵切中文及英文结果表分别如下:心思想仍为贪心算法,整体思路为先对209张碎纸片进行聚类还原成11行,再对分好的每行进行横向排序,最后对排序好的各行进行纵向排序。

本文在充分考虑汉字与拉丁字母结构特征差异以及每块碎纸片携带信息减少的基础上,创新地提出一种特征线模型来分别描述汉字及拉丁文字母的特征用于行聚类。

对于行聚类后碎片的横向排序,本文综合了广义Jaccard系数、一阶差分法、二阶差分法、Spearman系数等来构建扩展的边界差异度模型,刻画碎片间的差异度。

对于计算机横向排序存在些许错误的情况,本文给出了人工干预的位置节点和方式。

对于横向排序后的各行,由于在一页纸上,文字的各行是均匀分布的,本文基于各行文字的特征线,在确定首行的位置后,估计出其他行的基准线位置,得到一页的基准线网格,并通过各行基准线在基准线网格上的适配实现纵向的排序。

最终,本文成功的将附件3、4碎纸片分别拼接复原得到复原图片及结果表见附录、、、,同时本文给出了横向排序中人工干预的位置节点和方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):西安电子科技大学参赛队员(打印并签名) :1. 欧阳照玮2. 李娟3. 王小磊指导教师或指导教师组负责人(打印并签名):日期: 2012 年 8 月 9日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):眼科病床的合理安排问题摘要本文针对医院眼科病床安排问题,讨论了五个相关问题,分别是给出合理评价指标体系并评价医院现行病床安排模型的优劣、给出较为优化的病床安排模型并做出评价、根据患者就诊时间估计其入院时间区间、讨论周六周日不安排手术情况对医院整体手术安排情况的影响、按病种分配床位时,给出最佳的病床比例分配模型。

针对问题一,从工作效率和工作质量两方面出发,选择了病床使用率,病床周转次数,入院、手术、出院等待满意度这影响病床安排效益的五大指标,构造了一个涵盖这五个主要指标的效益函数,并通过层次分析法确定各指标在效益函数中的影响权重,最终将此效益函数作为综合评价指标。

结合病床安排合理性的优劣等级表可得出结论,医院的病床安排模型属于差的等级。

针对问题二,建立动态控制排队模型来模拟病人住院的情况。

由于FSFC排队规则中效率过低的缺点,我们综合考虑了病人的排队等待时间、各病种患者在总病人数中所占比例和病症的手术时间等因素,给出了一个优先级函数,并根据每位患者优先级的高低来安排入院顺序。

利用Matlab模拟患者就医情况后,用问题一中的评价模型进行了评价,结果为良好。

针对问题三,根据病人门诊人数和等待入院的时间分别服从泊松分布和均匀分布的规律,利用概率论和统计学知识,我们通过给出置信区间的方式估计出了病人的住院时间区间。

针对问题四,在周六、周日不能进行手术的基础上修改问题二中的患者优先级函数,用同样的方法模拟患者就医情况,再利用问题一的评价体系进行了评价,发现此时医院的工作效率降低了,从而确定需要对原有的手术安排时间进行修改,可将白内障的手术时间改到周二和周四。

针对问题五,依据当各类病人构成的排队系统的服务强度相同时,总的系统服务效率达到最佳的排队论思想,建立了服务强度平衡模型,根据每种病情的平均到达率和平均服务率算出平均逗留时间最短的病床比例分配模型。

引入共享床位的概念解决在计算过程中因将病床数取整而可能造成某种病情的床位不足的情况。

关键词:效益函数动态控制置信区间优先级别服务强度一、问题的重述医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院等,往往需要排队等待接受某种服务。

我们考虑某医院眼科病床的合理安排的数学建模问题。

该医院眼科门诊每天开放,住院部共有病床79张。

该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。

附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。

白内障手术较简单,而且没有急症。

目前该院是每周一、三做白内障手术,此类病人的术前准备时间只需1、2天。

做两只眼的病人比做一只眼的要多一些,大约占到60%。

如果要做双眼是周一先做一只,周三再做另一只。

外伤疾病通常属于急症,病床有空时立即安排住院,住院后第二天便会安排手术。

其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3天内就可以接受手术,主要是术后的观察时间较长。

这类疾病手术时间可根据需要安排,一般不安排在周一、周三。

由于急症数量较少,建模时这些眼科疾病可不考虑急症。

该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急症除外)不安排在同一天做。

当前该住院部对全体非急症病人是按照FCFS(First come, First serve)规则安排住院,但等待住院病人队列却越来越长,医院方面希望你们能通过数学建模来帮助解决该住院部的病床合理安排问题,以提高对医院资源的有效利用。

问题一:试分析确定合理的评价指标体系,用以评价该问题的病床安排模型的优劣。

问题二:试就该住院部当前的情况,建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排哪些病人住院。

并对你们的模型利用问题一中的指标体系作出评价。

问题三:作为病人,自然希望尽早知道自己大约何时能住院。

能否根据当时住院病人及等待住院病人的统计情况,在病人门诊时即告知其大致入住时间区间。

问题四:若该住院部周六、周日不安排手术,请你们重新回答问题二,医院的手术时间安排是否应作出相应调整?问题五:有人从便于管理的角度提出建议,在一般情形下,医院病床安排可采取使各类病人占用病床的比例大致固定的方案,试就此方案,建立使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型。

二、问题的分析医院是一个复杂的系统,患者从到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院等,由于医疗设备等条件的限制,往往需要排队等待接受服务。

若患者排队等待时间过长,不仅患者的满意度会下降,而且医务工作者的忙乱容易导致医疗事故从而引起医疗纠纷,这对患者和社会都带来了不良影响。

因此,如何合理科学的安排医护人员及其医疗设备,使患者排队等待时间尽可能减少,以保证服务质量,提高患者满意度,这是现代医院管理者必须面对的课题。

本文旨在通过分析某眼科各类患者的接受治疗情况,解决五个与病床安排相关的问题。

这些问题由浅及深,分别是确定合理的评价指标体系并评价该眼科现有的病床安排模型的优劣、建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排哪些病人住院并用所建指标体系对其评价、由病人门诊时间大致确定其住院时间区间、在周末不安排手术的情况下说明本文所建病床安排模型是否需做调整、在医院采用使各类病人占用病床的比例大致固定的方案时,建立使所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短的病床比例分配模型。

2.1问题一:分析确定合理的评价指标体系并评价该眼科的病床安排模型的优劣问题一要求分析确定合理的评价指标体系并评价该眼科的病床安排模型的优劣。

评价病床安排的合理性需要考虑许多因素,我们决定从工作效率(医院角度)和工作质量(病人角度)这两个大方面去评价。

查阅资料,最终我们选取了五个指标进行评价,分别是与工作效率有关的病床使用率、病床周转次数,以及和工作质量有关的入院满意度、手术准备满意度和出院满意度。

针对这五个指标我们建立效益函数来进行综合的考量,给出评价。

在确定效益函数中各指标值权重时,考虑到层次分析法是一种能有效解决比较、判断、评价和决策问题的实用方法,因此选用层次分析法确定各个指标在效益函数中权重。

将值带入效益函数,再参照优劣等级表,即可对模型进行评价。

2.2问题二:建立合理的病床安排模型并对模型做出评价问题二要求建立合理的病床安排模型,以根据已知的第二天拟出院病人数来确定第二天应该安排哪些病人住院,并对所建模型利用问题一中的指标体最终系作出评价。

考虑到FCFS病床安排规则使不同病种病人排队时的工作效率和工作质量过低,我们决定根据每一个病人的优先级来确认其入院时间,建立动态控制的排队模型来模拟病人排队入院的情况。

确定不同病种患者的入院优先级是建立动态控制排队模型的关键,考虑到病人的住院优先级由患者到达的先后顺序、病人所属类型的优先级别、医院的手术安排等因素综合确定,我们可给出每个采样日内各位患者的优先级的函数表达式。

在Matlab软件,设计算法,利用附表中的第一部分数据及各患者的优先级别,我们可对新模型下的系统床位安排过程进行仿真,对每一个前来就诊的患者,我们可以确定其在新模型下的出入院时间。

最后把数据带入一中效益函数,进行模型评价。

2.3问题三:由病人门诊时间确定住院时间区间问题三要求根据已有住院病人及等待住院病人的统计情况,建立模型,在病人门诊时即告知其大致入住时间区间。

从随机理论上来说,单位时间到达门诊人数符合Poisson分布,而不同病人入院以后,从统计数据来看,从门诊到住院的等待时间相对均匀,如果把时间看成随机变量,那么该随机变量概率分布近似可以认为是一种均匀分布。

对住院病人的住院时间进行估计时要分不同病种进行考虑,但各病种的病人等待时间的均值是服从正态分布的,因此,可以对其正态化以后的统计量进行给定置信度的置信区间估计。

这样每类病人都可以得到其等待时间的区间估计,再结合每位病人的具体门诊时间,即可给出与之对应的入院时间区间。

2.4问题四:在周末不安排手术情况下说明问题二中手术安排时间是否需做调整问题四要求在该住院部周六、周日不安排手术的情况下重新回答问题二。

由统计数据可以知道,在周六与周日安排手术的情况下,除外伤以外,其它四类病人的手术时间一般都安排在入院观察后的2-3天进行。

现在由于周六周日不能安排手术,则第二问中所确定的一周中的不同时期适宜入院的病种也要随之改变,以避免出现病人住院很长时间却没有接受手术的情况。

修改问题二的模型中在确定优先级时与之有关的参数,再运用与第二问中相同的基于优先级的排队模型来模拟当周六、周六不能进行手术时的,病人的住院出院相关情况。

根据效益函数,算出当前条件下的最终效益值。

与第二问中的情况进行比较,从而判断是否需要重新安排手术时间。

2.5问题五:建立使所有病人在系统内的平均逗留时间最短的病床比例分配模型问题五要求在医院病床安排采取使各类病人占用病床的比例大致固定的方案时,建立模型,使得所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短。

经过分析,病人在系统内的平均逗留时间最短就是要求医院的病床安排可以使医院的服务效率达到最优。

依据病种的不同将排队的病人分成多条队列,建立一个多服务台排队模型。

依据当各类病人构成的排队系统的服务强度相同时,总的系统服务效率达到最佳这个基本思想来确定病床分配比例。

所以计算各病种的排队服务强度,令其相等,这样便可给出床位的分配比例。

相关文档
最新文档