线代相似矩阵与二次型

合集下载

大学线性代数课件相似矩阵及二次型5.2

大学线性代数课件相似矩阵及二次型5.2
把 P 用 其 列 向 量 表 示 为P p1, p2 ,, pn .
由P 1 AP , 得AP P,
1
即 A p1, p2,, pn p1, p2,, pn
2
n
1 p1, 2 p2 ,, n pn .
A p1, p2 ,, pn Ap1, Ap2 ,, Apn
于是有
2 1 2
(1) A 2 2 4 (2)A 5 3 3
2 4 2
1 0 2

1 2
2
(1)由 A E 2 2
4
2
4 2
22 7 0
得 1 2 2, 3 7.
将 1 2 2代入A 1E 0, 得方程组
2xx1124xx2224xx33
这与至少有一个ai0 j0 0(i0 j0)矛盾, 故A不可 对 角 化.
思考题
判断下列两矩阵A, B是否相似.
1
A
1
1 1
1 1 ,
n
B
1
0 0
0 0 .
1 1 1
1 0 0
思考题解答
解 因 det( A E) (n )( )n1, A的特征值为
1 n, 2 n 0.又A是实对称矩阵, 存在可逆 矩阵P1,使得
2
1 1 ,
0
0
2 0.
1
将3 2代 入A E x 0, 得 方 程 组 的
基 础 解 系 3 1,1,1T .
由 于1 ,2 ,3 线 性 无 关. 所以 A 可对角化.
2 0 1

P
1
,
2
,
3
1
0
1
0 1 1
1 0 0

考研线性代数第四讲相似矩阵及二次型

考研线性代数第四讲相似矩阵及二次型

a为何值时,A可对角化?
有一个2重特征值,
⑴求a;⑵讨论A可否对角化? .
第四讲 相似矩阵及二次型
相似与对角化
3. 实对称矩阵的相似对角化 实对称矩阵的性质 ① 实对称矩阵的特征值均为实数,每个 特征值l的重数=n-r(lE-A); ② 属于不同特征值的特征向量正交. 结论 对于任意n阶实对称矩阵A, 存在正 交矩阵Q, 使得 Q –1AQ = = diag(l1, l2, …, ln), 其中l1, l2, …, ln为A的全部特征值, Q = (q1, q2, …, qn)的列向量组是A 的对应于l1, l2, …, ln的标准正交特 征向量.
相似与对角化
三、相似与对角化 1. 相似的定义与性质
设A与B 均为n阶方阵,若存在可逆矩阵P, 使得 P 1AP =B 成立,则称A与B相似,P为把A变成B的相 似变换矩阵.
第四讲 相似矩阵及二次型
相似与对角化
性质 若A与B相似,则 ①对于多项式f(x), f(A)与f(B)相似. ②方阵A与B的特征值相同. ③|A|=|B|. ④tr(A)= tr(B). ⑤r(A)= r(B). ⑥当P 1AP =B时,是A的特征向量,则P -1 是B的特征向量. ⑦若P 1AP = ,则 =diag[l1, l2, …, ln],其 中l1, l2, …, ln为A的特征值.
第四讲 相似矩阵及二次型
特征值与特征向量
例10.设 =(1,-1,1)T是3阶矩阵A的特征向量,对应的特 征值为1, A5 4 A3 E ,验证是B的特征向量. B 例11.设1, 2是A的特征向量,特征值l1≠l2,则1, A(1+ 2)线性无关的充要条件是什么.
第四讲 相似矩阵及二次型

线性代数 第五章 相似矩阵与二次型 第1节

线性代数 第五章  相似矩阵与二次型 第1节

就正交。
显然,零向量与任何向量正交。
定义 一组两两正交的非零向量,称为正交向量组。
定理 如果 n 维向量 1, 2 ,..., m 为正交向量组, 则1, 2 ,..., m 线性无关。
证明 设有1,2,m 使11 2 2 ... m m 0

T 1
左乘上式两端,得
1
T 1
1
0
因1 0, 故1T1 1 2 0,从而1 0。
1 3 1
4 6
1 2 1
5 3
1 1 ; 1
3
3
[ 3, 1] [1, 1]
1
[ 3, 2] [2, 2 ]
2
4 1 0
1
3
1 2 1
5
3
1 1 1
2 0
2
再把它们单位化,取
e1
1
1
1 6
1 2 , 1
e3
3
3
r1,n , 把1,r ,r1,n 正交规范化
就得到 Rn 的一个正交规范基。
五、正交矩阵与正交变换
定义 若 n 阶方阵A 满足 AT A E (即A1 AT )
则称 A 是正交矩阵。
若记 A 1 2 n ,则 AT A可表示为:
12TT
1
2
n E
T n

iT j
1 0
当i 当i
四、施密特正交化方法
把基 1, 2 ,..., n 化成标准正交基的具体步骤:
先正交化:

1

1
2
2
[ 2 , [1,
1] 1]
1
3
3
2 i 1
[ 3 [i

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

|[, ] | [, ][ , ]
长为 1 的向量称为单位向量.
例1
01,
1
0
2

0
1
2
若向量
1
3
x ≠0 ,

1 x
x
1 都是3 维单位向量.
3
1
是 单 位 向 量.
3
例 已知
1
2
2
,
3
,
1
1
0
0
计算两个向量单位化后的内积.
解:
12 22 (1)2 02
1 0 2
所以A的特征值为 1 2,2 3 1
当 1 2解齐次线性方程组 (2E A)x 0 即
3x1 x2 0 4x1 x2 0 x1 0
3 1 0 1 0 0

2E
A
4 1
1 0
00
0 0
1 0
0 0
0
得基础解系
p1
10
故对应于 1 2的全体特征向量为 k1 p1(k1 0)
y yT y xT PT Px xT x x
说明经正交变换向量长度保持不变,这是正交变换的优 良特性.
2 方阵的特征值 特征向量
内容分布 一、特征值与特征向量 二、特征值与特征向量的性质
基本要求 会求特征值与特征向量
2.1 特征值与特征向量
定义8 设A是n阶方阵,如果数 和n维非零向量x使
量为
k11 k22 kss (k1, ···,ks不同时为0)
例1 求矩阵
A
2 1
解: A的特征方程为
1 2
的特征值和特征向量
2 1
| E A |

线性代数第五章相似矩阵及二次型

线性代数第五章相似矩阵及二次型

1.2正交向量组与施密特正交化方法
b1 ,b2 , ,br1 ,br 是正交向量组.由
b1
,br
b1
,ar
b1 ,ar b1 ,b1
b1
b2 b2
br 1 ,ar br 1 ,br 1
br 1
,ar ,b2
b2
由归纳假设知b1 分别与 b2 ,b3 , ,br 1 正交,故
a1 b1,
a2
b2
b1, a2 b1, b1
b1
,
1.2正交向量组与施密特正交化方法
ar
br
b1 ,ar b1 ,b1
b1
b2 b2
,ar ,b2
b2
br 1 ,ar br 1 ,br 1
br 1 .
于是得 a1 ,a2 , ,ar b1 ,b2 , ,br 与等价.
若再将 b1 ,b2 , ,br 单位化,并记为
a,b a1b1 a2b2 anbn aTb
1.1向量的内积
例2 设向量 1
a
0
,
2
3
3
b
2
1
,
求a,
b
1
解 a,b 13 0 2 2(1) 31 4
3
1
练习设向量
a
1 0
,
b
1 2
,

a,
b
2
3
解 a,b 3111 0 (2) 2 (3) 2
1 2 3
6 3
1 1 1
1 0 1
1.2正交向量组与施密特正交化方法
b3
a3
b1, a3 b1, b1
b1
b2 , b2 ,
a3 b2

线性代数及其应用 第4章 相似矩阵及二次型

线性代数及其应用 第4章 相似矩阵及二次型
即 A1 B1.
2 0 0
2
例1
已知A
0 0
0 1
13
x
1
,
求 x 和R( A) .
解 由于A ,有 A ,可得2 2x ,
即 x 1.
因为 R( A) R(),故R( A) 3 .
二、特征值与特征向量
例子:

A
3 1
2
0
,a
1
1
,b
2 1
ห้องสมุดไป่ตู้

Aa
3
令 Q P 1
A PBP 1 Q1BQ
所以 B A;
性质1 (3) 传递性:如果 A B, B C ,则 A C.
证明 (3) 若A B, B C,则存在可逆矩阵P、Q
使得 P 1AP B, Q1BQ C.

Q1 P1AP Q C,

(PQ)1 A(PQ) C
令R PQ , 从而 R1AR C ,故 A C .
求齐次线性方程组( A E)x 0的非零解
1 1 2
例2
求矩阵
A
0 1
2 1
2 0
的特征值和特征
向量.
解 矩阵 A 的特征多项式为
AE 0
1 1 2 A E 0 2 2 ( 1)( 2)
1 1 故 A 的特征值为 1 0,2 1,3 2.
当 1 0 时,求解方程组 Ax 0.由
(4) 若A和 B都是可逆矩阵且 A B ,则 A1 B1 .
性质1 (1) 自反性:A A ; (2) 对称性:如果 A B,则B A;
(3) 传递性:如果 A B, B C ,则 A C.
证明 (1) 由于 E 1AE A ,故 A A; (2) 若A B,那么存在可逆矩阵 P ,使得 P 1AP B,则A PBP 1 ,

线性代数 第五章 相似矩阵及二次型

线性代数  第五章  相似矩阵及二次型

1 2
也是 R4 的一个规范正交基.
1 1 1 1
e1
0 0
,
e2
1 0
,
e3
1 1
,
e4
1
1
0
0
0
1
是 R4 的一个基,但不是规范正交基.
§1 向量的内积、长度及正交性
设 e1, e2, …, er 是向量空间 V 中的一个正交基,则V 中任意一
个向量可唯一表示为 x = l1e1 + l2e2 + …+ lrer
[x + y, z] = [x, z] + [y, z] 当 x = 0(零向量) 时, [x, x] = 0;
当[xl x≠,0y(] 零(l向x量)T )y 时l,xT[xy, x]l>( x0T.y) l[x, y] 施瓦兹(Schwarz)不等式 [ x y, z] ( x y)T z[x, (yx]2T ≤[yxT, )x]z[y,(yx]T.z) ( yT z) [ x, z] [ y, z]
y
x
§1 向量的内积、长度及正交性
定义:两两正交的非零向量组成的向量组成为正交向量组.
定理:若 n 维向量a1, a2, …, ar 是一组两两正交的非零向量, 则 a1, a2, …, ar 线性无关. 证明:设 k1a1 + k2a2 + … + kr ar = 0(零向量),那么 0 = [a1, 0] = [a1, k1a1 + k2a2 + … + kr ar]
当 x ≠ 0 且 y ≠ 0 时,
[x, y] 1≠ 0 且 y ≠ 0 时,把
arccos [ x, y]

线性代数课件5-2相似矩阵与二次型

线性代数课件5-2相似矩阵与二次型
23
解得x2 2 x1 ,
所以,对应的特征向量可取为p2
1 2 .
2
3对应的全部特征向量为k2
p2
k2
1
2
,
(k2
0).
9
2 1 1
例2
求矩阵A
0
2 0 的特征值和特征向量。
4 1 3
解 特征多项式为 f ( ) A E
2 1 1
2 1
0
2
0
(2 )
4
3
4 1 3
20
于是,得到关于 x1, x2 , , xm 的m个方程 从而,满足下面的方程组:
x1 p1 x2 p2 xm pm 0
1 x1 p1 2 x2 p2 m xm pm 0
1m1
x1
p1
m1 2
x2
p2
m1 m
xm
pm
0
下求该齐次方程组的解
1 1
1
2
1 x1 p1 0
2xx21
x3 x3
,
令x3 1,
基础解系为p1
1 2
1
.
故对应于1 1的全体特征向量为 1
k1 p1
(k1 0).
当2 3 2时, 齐次方程为
1
2
1 2
2 2
1
A
2
2
1 2 2
1 2 2
r3
r1 (1) r2 , r2
2r1
1 0 0
1 x1 0
则有
(1) 1 2 n a11 a22 ann; (2) 12 n A .
5.对应特征向量 i的特征值即是 齐次方程( A i E)x 0的解pi .

《线性代数》第五章相似矩阵及二次型精选习题及解答

《线性代数》第五章相似矩阵及二次型精选习题及解答

故, β 3 = ( −
1 3
1 3
1 3
1) T ⇒ γ 3 =
β3 3 = (− 6 β3
3 6
3 3
3 T ) 2
⎛ 3 2 4⎞ ⎜ ⎟ 例 5.3 计算 3 阶矩阵 A= 2 0 2 的全部特征值和特征向量. ⎜ ⎟ ⎜ 4 2 3⎟ ⎝ ⎠
n n
f ( x) = xT Ax ,其中 A T = A .
6.熟悉矩阵 A 合同(或相合)于 B 的定义,理解合同关系是等价关系. 7.熟练掌握化二次型 xT Ax 为平方和(标准形)或求实对称矩阵 A 的相合标准形的 3 种方法:正交变换法;配方法;和同型初等行、列变换法. 8.了解惯性定理,会求矩阵 A 的正、负惯性指数和符号差,会求二次型的规范形. 9.熟练掌握正定二次型(正定矩阵)的定义和判别方法. 10.熟悉实对称矩阵 A 正定(二次型正定)的各种等价命题(正定的充要条件). 11.理解 A 正定的必要条件: a ii > 0( i = 1, 2, L , n ); det( A ) > 0 . 12. 会利用正交变换化二次型为标准型和极坐标平移方法判别一般二次曲线和曲面的类 型.
故 A 是正交矩阵. 例 5.2 已知向量 α 1 = (1,1, 0, 0 ) , α 2 = (1, 01, 0 ) , α 3 = ( − 1, 0, 0,1) 是线性无关向
T T T
量组,求与之等价的正交单位向量组. 解法一 先正交化,再单位化 (1) 取 β 1 =
α1
(2) 令 β 2 = k β 1 + α 2 ,使得 β2 与 β 1 正交
T −1 ∗
5.3 例题分析
例 5.1 设 a 是 n 阶列向量, E 是 n 阶单位矩阵,证明 A = E −

同济大学线性代数课件__第五章相似矩阵及二次型

同济大学线性代数课件__第五章相似矩阵及二次型

p3
0 4
30

1 0 1
P ( p1, p2 , p3 ) 0 1 0
1 1 4

1
P 1AP 2
2
31
性质:若l 是 A 的特征值, 即 Ax = lx (x≠0),则
(1) kl 是 kA 的特征值(k是常数),且 kAx = klx (2) lm 是 Am 的特征值(m是正整数),且 Amx = lmx (3) 若 A可逆,则l-1是 A-1的特征值, 且 A-1x = l-1x
16
定义4 若 n 阶矩阵 A 满足 A A E 则称 A 为正交矩阵, 且 A1 A
令 A (1,2 , ,n )
A
A
1
2
(1
,
2
,
n
,n
)
11
21
n1

[i , j ] i j
ij
1, 0,
i i
j j
1 2 2 2
n 2
1 n 2 n
nn
17
特征值及二次型问题是线性代数的重要问题。
[ x ty, x ty] 0, t [ x, x] 2[ x, y]t [ y, y]t 2 0
(1) [ x, y ] = [ y, x ]; [ x, y]2 [x, x][ y, y]
(2) [lx, y] = l[ x, y ];
(3) [ x + y, z ] = [ x, z ] + [ y, z ];
解: (1) A2 2A 3E 有特征值 l 2 2l 3
(2) 3阶阵 A有特征值 1, -1, 2,故 | A | 2,A可逆。 A 3A 2E 有特征值 -1,-3,3

《线性代数》第五章相似矩阵与二次型第6节

《线性代数》第五章相似矩阵与二次型第6节

正交变换在相似矩阵中应用
正交变换在相似矩阵中的应用主要体 现在通过正交变换将一个矩阵对角化, 从而简化矩阵的运算和分析。
具体应用包括:利用正交变换化二次 型为标准型、利用正交变换求矩阵的 特征值和特征向量等。
典型例题分析与解答
例题1
设A是n阶实对称矩阵,证明存在正交矩阵P,使得 P^(-1)AP为对角矩阵。
二次型标准形求解步骤
配方法
通过配方将二次型化为标准形,即平方和的形 式。
正交变换法
通过正交变换将二次型化为标准形,其中变换 矩阵是正交矩阵。
特征值法
通过求解对称矩阵的特征值和特征向量,将二次型化为标准形。
二次型与对称矩阵关系
二次型与对称矩阵一一对应
每个二次型都唯一对应一个对称矩阵,反之亦然。
二次型的性质与对称矩阵的性质密切相关
《线性代数》第五章相似矩阵与二 次型第6节
目录
• 相似矩阵基本概念与性质 • 二次型及其标准形 • 惯性定理与规范形 • 正交变换与正交矩阵 • 相似矩阵对角化与实对称矩阵对角化 • 课程总结与拓展延伸
01 相似矩阵基本概念与性质
相似矩阵定义及表示方法
定义
设A、B都是n阶矩阵,若有可逆矩阵P,使$P^{-1}AP=B$,则称B是A的相似 矩阵,或说A和B相似。
正定性。
解答
通过配方或正交变换法,可以求得该二次 型的标准形为 $y_1^2 + y_2^2 + 5y_3^2$。
解答
通过求解对应的对称矩阵的特征值,可以 判断该二次型不是正定的,因为存在负特 征值。
03 惯性定理与规范形
惯性定理内容及其证明
惯性定理内容
设A,B为n阶实对称矩阵,若A与B合同, 则A与B的正惯性指数相等,负惯性指 数也相等。

线性代数第五章相似矩阵与二次型第3节

线性代数第五章相似矩阵与二次型第3节

k 1
k
k 2
(1 )
,则
()
0
k n
0
0
(2 )
0
0 0
(n )
利用上述结论可以很方便计算矩阵A 的多项式 ( A)
定理 若n 阶矩阵 A 与 B 相似,则 A与 B 有 相同的特征多项式,从而有相同的特征值。 证明: 因 A 与 B 相似,所以有可逆矩阵P,使
P 1 AP B 故 E B P1(E)P P1AP P1(E A)P
1
1
1
则有
5
P 1 AP 1
1
(3)直接计算 A100 比较麻烦,但由
5 P 1 AP
1
可得
1
5 A P
1
P 1 1
5 则 A100 P 1
100P 1 易求11 1 1P 1
1
2
1 1
3
1
2
1
于是
5 A100 P
1
100
P 1
特征向量,
故存在可逆矩阵
P
2
, 使得
P
1 2
B
P
2
,
从而
P
1 1
A P1
P
1 2
B
P2,

P2
P
1
1
A
P1
P
2
1
B,
故A与B相似.
于是有 Api i pi i 1,2,, n.
可见 i 是A的特征值,而P的列向量 pi 就是 A的对应于特征值i的特征向量.
反之, 如果 n 阶方阵 A 有n 个线性无关的特征向量,
P1, P2 ,, Pn 满足 APi iPi ,

线性代数PPT课件:相似矩阵与二次型 第3节 相似矩阵

线性代数PPT课件:相似矩阵与二次型 第3节  相似矩阵

的矩阵又是对角矩阵,所以下面要讨论的主要问
题是: 对 n 阶矩阵 A ,寻求相似变换矩阵 P,使
P–1AP = 为对角矩阵. 如果 n 阶矩阵 A 能相似
于对角矩阵,则称矩阵 A 可对角化.
4.3.2 矩阵可对角化的条件
定理 4.3.2 n 阶矩阵 A 相似于对角矩阵
的充要条件是 A 有 n 个线性无关的特征向量.
第 4.3 节
相似矩阵
相似矩阵的概念
相似矩阵的性质
可对角化的条件
4.3.1 相似矩阵的概念
定义4.3.1 设 A , B 为 n 阶矩阵, P 为 n 阶可
逆矩阵, 且 P-1AP = B , 则称矩阵 A 相似于矩阵 B. 对 A 进行运算
P-1AP 称为对 A 进行相似变换,可逆矩阵 P 称 为把 A 变成 B 的相似变换矩阵.
例3 设
0 1 1 A 1 0 1 , 1 1 0
求正交矩阵 P , 使 P-1AP 为对角矩阵.
相似矩阵具有下列的性质:下设A,B 是同
阶矩阵.
性质4.3.1 若矩阵 A 与矩阵 B 相似, 则
detA = detB .
性质4.3.2 若矩阵 A 与 矩阵 B 相似, 且矩阵
A可逆, 则矩阵 B 也可逆, 且 A-1 与 B-1 相似.
性质4.3.3 若矩阵 A 与矩阵 B 相似, 则
|A - E| = |B - E| ,
(1) 问矩阵 A 是否可对角化, 若能, 试求可逆 矩阵 P 和对角矩阵 , 使 P-1AP = . (2) 使 P-1AP = 成立的 P 、 是否唯一, 举例说明.
例 2 设
0 0 1 A 1 1 x , 1 0 0

线性代数相似矩阵与二次型二次型化为标准型的方法PPT课件

线性代数相似矩阵与二次型二次型化为标准型的方法PPT课件
0 0 1 0 0 1
1 1 3 1 1 1.
0 0 1
C 2 0.
第22页/共34页
小结
第五章 二次型
§5.5 化二次型为标准形
将一个二次型化为标准形,可以用正交变换 法,也可以用拉格朗日配方法,或者其它方法, 这取决于问题的要求.如果要求找出一个正交矩 阵,无疑应使用正交变换法;如果只需要找出一 个可逆的线性变换,那么各种方法都可以使用. 正交变换法的好处是有固定的步骤,可以按部就 班一步一步地求解,但计算量通常较大;如果二 次型中变量个数较少,使用拉格朗日配方法反而 比较简单.需要注意的是,使用不同的方法,所 得到的标准形可能不相同,但标准形中含有的项 数必定相同,项数等于所给二次型的秩.
第25页/共34页
§5.5 化二次型为标准形
= y12 y22
1 = (1, 0, 1)T, 2 = (0, 1, 0)T, 3 = (1, 0, –1)T. 它们是两两正交的.
第11页/共34页
第五章 二次型
所以A的特征值为1= 0, 2= 1, 3= 2. 代入(E–A)x = 0求得对应的特征向量 1 = (1, 0, 1)T, 2 = (0, 1, 0)T, 3 = (1, 0, –1)T. 它们是两两正交的.
第15页/共34页
二. 用配方法化实二次型为标准形
配方法的步骤 1. 若二次型含有xi 的平方项,则先把含有
xi 的乘积项集中,然后配方,再对其余的变量同
样进行,直到都配成平方项为止,经过非退化线
性变换,就得到标准形; 2. 若二次型中不含有平方项,但是 aij 0
(i j), 则先作可逆线性变换
§5.5 化二次型为标准形
11
1
1

线性代数第4章相似矩阵及二次型课件

线性代数第4章相似矩阵及二次型课件

则1,2 ,3 两两正交.
四、正交矩阵
定义 6 如果 n 阶矩阵 满足 T E 即1 T , 那么称 为正交矩阵,简称正交阵.
定理 2 设矩阵 是 n 阶方阵,则下列结论等价:
1 是 n 阶正交阵; 2 的列向量组是 n 的一个规范正交基; 3 的行向量组是 n 的一个规范正交基.
0 0 3
一、方阵的特征值与特征向量的概念及其求法
解 矩阵 A 的特征多项式为
1 0 0
A E 0 2 0 1 2 3 ,
0 0 3
所以 A 的全部特征值为 1 1 , 2 2 , 3 3.
由此例可知,对角矩阵的全部特征值就是它的对角线上的元素.
一、方阵的特征值与特征向量的概念及其求法
1 1
1 2
11,
3 应满足齐次线性方程组 Ax 0, 即
1 1
1 2
1 1
x1 x2 x3
0 0

对系数矩阵 A 实施初等行变换,有
A
1 1
1 2
1 1
1 0
1 3
1
0
1 0
0 1
01,

x1 x2
x3 0

从而有基础解系
1 0 1
.
1
取3
0
1
,则3 为所求.
正交矩阵具有如下性质:
(i) 若 A 为正交阵,则 A1 AT 也是正交阵,且 A 1或 1;
(ii) 若 A 和 B 都是正交阵,则 AB 也是正交阵.
定义 7 若 P 为正交矩阵,则线性变换 y Px 称为正交变换. 设 y Px 为正交变换, 则有 y yT y xTPTPx xT x x . 因此正交变换保持向量的长度不变.

线性代数之相似矩阵及二次型

线性代数之相似矩阵及二次型

λ − a22 ⋯
⋯ λ − ann
= λn − c1λn − 1 + c 2 λn − 2 + ⋯ + ( −1) n − 1 c n − 1λ + ( −1) n c n
特征多项式, 特征方程。 称为 A 的特征多项式,而 f (λ ) = λE − A = 0 称为 A 的特征方程。
-18-
性质
对特征值 i , 解(λi E − A) X = 0, 得基础解系 1 ,⋯,αr λ α
λi所对应的特征向量为 k1α1 +⋯+ krαr , k1 ,⋯, kr不全为零
-20-
−1 1 0 例: 求矩阵 A = −4 3 0 的特征值和全部特征向量 的特征值和全部特征向量. 1 0 2
1 b3 1 1 = ξ3 = b3 6 − 2 0
-13-
六、正交矩阵 定义 若 n 阶方阵 A 满足 AT A = E , 则称 A 为正交矩阵 正交矩阵. 例4 验证(1)旋转矩阵是正交矩阵 验证 旋转矩阵是正交矩阵
cos ϕ A= sin ϕ − sin ϕ cos ϕ
T 0 ⇒ α1 α1
= α1
2
≠ 0, 从而有 λ1 = 0 .
同理可得 λ2 = ⋯ = λr = 0. 故α1 ,α 2 ,⋯,α r 线性无关 .
-8-
例1
(P115 例3)
1 1 α1 = 1 , α 2 = − 2 1 1
(2)镜像矩阵是正交矩阵 (P40 例8) 镜像矩阵是正交矩阵
H = E − 2αα (α ∈ R , α α = 1)
T n T

线代相似矩阵与二次型

线代相似矩阵与二次型

1 9 8
8 9 1
4
9 4
T
1 0
0 1
0 0
9 9
4 9
4 9
9 7 9
9 4
9
9 4
9
9 7
0
0
1
9
所以它是正交矩阵.
例6 验证矩阵
1
2 1
1 2
1
1
2 1
1 2 1
P
2 1
2
0
2 1 2
0
2 0 1
2 是正交矩阵. 0
1
2 2
解 P的每个列向量都是单位向量,且两两正交,
向量的长度具有下述性质: 1. 非负性当 x 0时, x 0;当 x 0时, x 0;
2. 齐次性 x x ;
3. 三角不等式 x y x y .
单位向量及n维向量间的夹角
1 当 x 1时,称 x为单位向量 .
2当 x 0, y 0时, arccos x, y
xy 称为n维向量x与y的夹角 .
x, y xT y.
内积的运算性质
其中x, y, z为n维向量,为实数: (1) x, y y, x; (2) x, y x, y; (3) x y, z x, z y, z;
(4)[ x, x] 0,且当x 0时有[x, x] 0.
二、向量的长度及性质
定义2 令
x x, x x12 x22 xn2 , 称 x 为n维向量x的长度 或范数 .
a1 b1
由于b1 b2 ,故c3等于a3分别在b1,b2上的投影
向量c31及 c32之和,即
c3
c31
c32
[a3 ,b1] b1 2
b1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范正交化.
若a1 ,a2 , ,ar为向量空间V的一个基,
(1)正交化,取 b1 a1 ,
b2
a2
b1 , a2 b1 , b1
b1
,
b3
a3
[b1 ,a3 [b1 ,b1
] ]
b1
[b2 [b2
, ,
a3 b2
] ]
b2
br
ar
[b1 [b1
,ar , b1
] ]
b1
[b2 [b2
, ,
ar b2
本章目 录
向量的内积、长度及正交性 方阵的特征值与特征向量 相似矩阵 对称矩阵的对角化 二次型及其标准型 用配方法化二次型成标准型 正定二次型
第一节 向量的内积、长度与正交性
教学目的:理解向量内积、正交性等概 念,掌握施密特正交化过程.
教学重点:内积、正交化过程、正交矩阵. 教学难点:施密特正交化方法、正交矩阵.
例2 用施密特正交化方法,将向量组
a1 (1,1,1,1),a2 (1,1,0,4),a3 (3,5,1,1) 正交规范化.
解 先正交化,取
b1 a1 1,1,1,1
b2
a2
b1,a2 b1 , b1
b1
] ]
b2
[br1 ,ar ] [br1 ,br1 ]
br
1
那么b1 , ,br两两正交,且b1 , ,br与a1 , ar等价.
(2)单位化,取
e1
b1 b1
,
e2
b2 b2
,
, er
br br
,
那么 e1 ,e2 , ,er为V的一个规范正交基 .
上述由线性无关向量组a1 , ,ar构造出正交 向量组b1 , ,br的过程,称为施密特正交化过程 .
x, y xT y.
内积的运算性质
其中 x, y, z为n维向量,为实数 : (1) x, y y, x; (2) x, y x, y; (3) x y, z x, z y, z;
(4)[ x, x] 0,且当x 0时有[ x, x] 0.
二、向量的长度及性质
定义2 令
x x, x x12 x22 xn2 , 称 x 为n维向量 x的长度或范数 .
定义3 设n维向量 e1, e2 , , er是向量空间 V (V Rn )的一个基,如果e1 , e2 , , er两两正交且都是单位 向量,则称e1, e2 , , er是V的一个规范正交基.
例如
1 2 1 2 0 0
e1
1
0 0
2 ,e2
1 0 0
2 ,e3
1
0 2 ,e4
定义1 设有n 维向量
x1
x
x2 ,
xn
y1
y
y2 ,
yn
令 x, y x1y为向量 x与 y的内积 .
说明
1 nn 4 维向量的内积是3维向量数量积
的推广,但是没有3维向量直观的几何意义.
2 内积是向量的一种运算,如果x, y都是列 向量,内积可用矩阵记号表示为 :
4 向量空间的正交基
若1, 2 , , r是向量空间V的一个基,且1, 2 , , r是两两正交的非零向量组,则称1, 2 , , r是
向量空间V的正交基.
例1 已知三维向量空间中两个向量
1
1 1,
1
1
2 2
1
正交,试求 3 使1 ,2 ,3构成三维空间的一个正交
基.
解 设3 x1, x2 , x3 T 0,且分别与1,2正交.
3 正交向量组的性质
定理1 若n维向量1,2, ,r是一组两两正交的 非零向量,则1, 2, , r线性无关.
证明 设有 1,2 , ,r 使 11 22 r 0
以a1T 左乘上式两端,得 11T1 0 由 1 0 1T1 1 2 0, 从而有1 0 . 同理可得2 r 0. 故1,2 , ,r线性无关.
例 求向量 1,2,2,3与 3,1,5,1的夹角.

cos
18 2 3 26 2
.
4
三、正交向量组的概念及求法
1 正交的概念 当[ x, y] 0时, 称向量x与y 正交. 由定义知,若 x 0,则 x 与任何向量都正交.
2 正交向量组的概念
若一非零向量组中的向量两两正交,则称该向 量组为正交向量组.
向量的长度具有下述性质: 1. 非负性当 x 0时, x 0;当 x 0时, x 0;
2. 齐次性 x x ; 3. 三角不等式 x y x y .
单位向量及n维向量间的夹角
1 当 x 1时,称 x为单位向量 .
2当 x 0, y 0时, arccos x, y
xy 称为n维向量x与y的夹角 .
则有 [1 , 3 ] [ 2 , 3 ] 0

[[21,,33
] ]
x1 x1
x2 x3 0 2x2 x3 0
解之得 x1 x3 , x2 0.
若令 x3 1,则有
x1 1
3 x2 0
x3 1
由上可知1 ,2 ,3构成三维空间的一个正交基.
5 规范正交基
所以 e1 ,e2 ,e3 ,e4为R4的一个规范正交基.
同理可知
1 0 0 0
1
00,
2
10,
3
10,
4
0 0
.
0
0
0
1
也为R4的一个规范正交基.
6 求规范正交基的方法
设1 , 2 , , r是向量空间V的一个基,要求V
的一个规范正交基,就是要找一组两两正交的单
位向量e1 ,e2 , ,er ,使e1 ,e2 , ,er与1 , 2 , , r等 价,这样一个问题,称为 把1,2 , ,r 这个基规
第五章 相似矩阵及二次型
本章给出向量的内积、长度及正交性等概念, 然后主要讨论方阵的特征值与特征向量.再给出 两方阵相似的概念,利用特征值和特征向量给出 了方阵的相似对角化。对于对称矩阵研究其特征 值与特征向量的特性,并给出正交标准化方法, 这对二次型的化简起到关键作用。最后讨论了二 次型的标准化与正定性等问题.本章内容丰富, 涉及面较广,概念难度较大.
1
0 2
.
1 2
1 2
1 2 1 2 0 0
e1
1
0 0
2
, e2
1 0 0
2 ,e3
1
0 2 ,e4
1
0 2
.
1 2 1 2
由于
[ei ,e j ] 0, [ei ,e j ] 1,
i j且i, j 1,2,3,4. i j且i, j 1,2,3,4.
相关文档
最新文档