最新人教版七年级下册数学全册教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线和平行线
教材分析
本章包含相交线、平行线及其判定、平行线的性质、平移等4节内容,前三节主要讨论平面内两条直线的位置关系,重点是垂直和平行关系,第4节是有关平移的内容.
平面内两条直线的位置关系是“图形与几何”所要研究的基本问题,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究了相交的情形,探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角概念,得出了“对顶角相等”的结论;垂直作为两条直线相交的特殊情形,与它有关的概念和结论是学习“平面直角坐标系”的直接基础,本章对垂直的情形进行了专门的研究,探索得出了“过一点有且只有一条直线与已知直线垂直”“垂线段最短”等结论,并给出点到直线的距离的概念,为学习在平面直角坐标系中确定点的坐标打下基础.
对于平面内两条直线平行的位置关系,教科书首先引入一个基本事实(平行公理),即过直线外一点有且只有一条直线与已知直线平行,以此为出发点探讨了平行线的判定和平行线的性质,教科书接下来对命题、命题的构成、真假命题、定理作了简单介绍,使学生初步接触有关形式逻辑概念和术语.
本章在最后一节安排了有关平移的内容.从《课程标准(2011版)》看,图形的变化是“图形几何”领域中一块重要的内容,通过将图形的平移、旋转、折叠等活动,使图形动起来,有助于在运动变化的过程中发现图形不变的几何性质,因此图形的变换是研究几何问题、发现几何结论的有效工具.
教学重点
1.垂线的概念.
2.平行线的判定和性质.
教学难点
逐步深入地让学生学会说理,培养学生的推理能力.
课时安排
5.1相交线约4课时
5.2平行线及其判定约2课时
5.3平行线的性质约3课时
5.4平移约1课时
小结约2课时
机动约2课时
5.1 相交线
5.1.1 相交线
教学目标
1.理解对顶角的概念,会在图形中找出对顶角.
2.掌握对顶角的性质,了解它的推证过程,会用对顶角的性质进行有关的推理和计算.
3.了解邻补角的概念,会在图形中找出邻补角,并会用它进行有关的推理或计算.
4.经历探究对顶角、邻补角的位置关系的过程建立空间概念,发展学生的抽象概括能力.
5.使学生认识数学与现实生活的联系,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识.
教学重点
对顶角、邻补角的概念以及性质.
教学难点
性质的探究过程.
课时安排
1课时.
教学过程
一、创设情境,引入课题
先请同学观察本章的章前图,然后引导学生观察,并回答问题.
学生活动:口答哪些道路是交错的,哪些道路是平行的.
教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.
二、探究新知,讲授新课
1.对顶角和邻补角的概念
学生活动:观察右图,同桌讨论,教师统一学生观点并
板书.
板书:∠1与∠3是直线AB、CD相交得到的,它们有
一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.
学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?
学生口答:∠2和∠4也是对顶角.
紧扣对顶角定义强调以下两点:
(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.
(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.
2.对顶角的性质
提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?
学生活动:学生以小组为单位展开讨论,选代表发言,并口答为什么.
板书:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角相等).
注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.
或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),
∴∠1=∠3(等量代换).
学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演.
解:∠3=∠1=40°(对顶角相等).
∠2=180°-40°=140°(邻补角定义).
∠4=∠2=140°(对顶角相等).
三、范例学习
学生活动:让学生把例题中∠1=40°换成其他条件,而结论不变,自编几道题.名称特征性质相同点不同点
对顶角①两条直线相交面成的角
②有一个公共顶点
③没有公共边
对顶
角相
等
都是两直线
相交而成的
角,都有一个
公共顶点,它
们都是成对
出现
对顶角没有公共边而
邻补角有一条公共
边;两条直线相交时,
一个有的对顶角有一
个,而一个角的邻补
角有两个
邻补角①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补
角互
补
变式1:把∠l=40°变为∠2-∠1=40°
变式2:把∠1=40°变为∠2是∠l的3倍
变式3:把∠1=40°变为∠1∶∠2=2∶9
四、课堂小结
学生活动:表格中的结论均由学生自己口答填出.五、布置作业
教材P3练习.