分子荧光光谱法
分子发光光谱法
内转换
内转换:同多重度电子能级中,等能级间的无辐 射能级交换。 通过内转换和振动弛豫,高激发单重态的电子 跃回第一激发单重态的最低振动能级。
外转换 外转换:激发分子与溶剂或其他 分子之间产生相互作用而转移能 量的非辐射跃迁; 外转换使荧光或磷光减弱或“ 猝灭”。
系间跨越 系间跨越:不同多重态,有重叠的转动能级间的非 辐射跃迁。 改变电子自旋,禁阻跃迁,通过自旋—轨道 耦合进行。
荧光强度对温度变化敏感。
一般地,随温度降低,溶液中荧光物质的量子效率和荧光强
度将增大,并伴随光谱的蓝移。温度增加,碰撞频率增加, 使外转换的去激发几率增加。
(3) pH的影响
对酸碱化合物,溶液pH的影响较大,需要严格控制; 如苯胺:在pH 5-12溶液中,以分子形式存在,有荧光。
pH< 5时以苯胺阳离子形式存在,无荧光
ex em
(3)可变波长同步扫描荧光法:使两单色器在扫描过程中以 不同的速率同时进行扫描,即波长可变。
同步扫描荧光法的特点:
优点:
(1)使光谱简化; (2)使谱带窄化;
(3)减小光谱的重叠现象;
(4)减小散射光的影响。
例如:采用同步扫描技 术检测如图萘、蒽、菲 、芘混合物,可简化光 谱,减少光谱重叠,提 高分辨率。 缺点: 因为同步扫描荧光损失了 其它光谱带所含的信息, 对光谱学的研究不利。
比较法:
在线性范围内,测定标样和试样的荧光强度,直接
比较。
三、荧光分析法的应用
可采用直接测定法或间接测定(荧光猝灭)法
1、无机化合物的分析
与有机试剂配合物后测量;可测量约60多种元素。 铍、铝、硼、镓、硒、镁、稀土常采用荧光分析法; 氟、硫、铁、银、钴、镍采用荧光熄灭法测定; 铜、铍、铁、钴、锇及过氧化氢采用催化荧光法测定; 铬、铌、铀、碲采用低温荧光法测定; 铈、铕、锑、钒、铀采用固体荧光法测定
分子荧光光谱法
磷光是分子吸光成为激发态分子,在返回基态时 的发光现象.
荧光:受光激发的分子从第一激发单重态的最低 振动能级回到基态所发出的辐射。
磷光: 从第一激发三重态的最低振动能级回到基 态所发出的辐射。
1~3 ;
荧光分析法的特点
★★★
因应能试
为用提样
有范供用
态.当吸收一定频率的电磁辐射发生能级跃迁时,可上升到不同激发态
的各振动能级,其中多数分子上升至第一激发单重态这一过程约需10-
15秒.
激发
2 去活化过程
激发态分子的失活: 激发态分子不稳定,它要以辐射 或无辐射跃迁的方式回到基态
☆振动驰豫 (Vibrational relaxation)
☆荧光发射(Fluorescence)
荧光分析法的应用
无机物分析 无机离子中除少数例外一般不发荧光.但很多 无机离子能怀一些有机试剂形成荧光络合物,而进行定量 测定.
生物化学及生理医学方面的应用 荧光法对于生物中许多 重要的化合物具有很多的灵敏度和较好的物效性,故广用 于生物化学分析,生理医学和临床分析.
药物分析
目前还采用荧光分光光度计作为高效液相色谱,薄层色谱 和高效毛细管电泳等的检测器,使有效的分离手段与高灵 敏度,高选择性的测定方法结合起来,可用于测定复杂的混 合物.
荧光与环境因素的关系
★温度降低会使荧光强度增大; ★PH 带有酸性或碱性取代基的芳 香化合物的荧光与pH有关; ★溶剂 溶剂极性增加有时 会使荧光强度增加,荧光波长红移; 若溶剂和荧光物质形成氢键或使荧 光物质电离状态改变,会使荧光强度 、荧光波长改变;含重原子的溶剂 (碘乙烷、四溴化碳)使荧光减弱。 ★溶解氧的存在往往使荧光强度 降低。 ★激发光的照射
第九章分子荧光光谱法Molecular-fluorescence-spectroscopy
特殊点:有两个单色器,光源与检测器通常成直角。 基本流程如图: 单色器:选择激发光波长 的第一单色器和选择发射 光(测量)波长的第二单色 器; 光源:灯和高压汞灯,染 料激光器(可见与紫外区) 检测器:光电倍增管。
仪器框图
该型仪器可进 行荧光、磷光 的发光分析;
同步扫描技术
根据激发和发射单色器在扫描过程中彼此间所保持的 关系,同步扫描可分为固定波长差(Δλ)和固定能量差及可 变波长三种;
辐射复合发光过程:
1. 自由激子复合(X); 2. 导带电子—中性受主复合
(e,A0); 3. 施主—受主对复合
(D0,A0); 4. 束缚于中性施主上的——
激子复合 (D0,X); 5. 中性施主——价带空穴的复合(D0,h);
中性受主、电离施主或受主上的和等电子杂质上的束缚激子复合而发 光。
3.激发光谱与发射光谱的关系
(4)取代基效应:芳环 上有供电基,使荧光增 强。
3.内滤光作用和自吸现象
内滤光作用:溶液中含有能吸收激发光或荧光物质发射 的荧光,如色胺酸中的重铬酸钾;
自吸现象:化合物的荧光发射光谱的短波长端与其吸收 光谱的长波长端重叠,产生自吸收;如蒽化合物。
4、溶液荧光的猝灭
碰撞猝灭: 氧的熄灭作用等。
四、仪器结构流程
2. 激发态分子的失活: 激发态分子不稳定,它要以辐射
或无辐射跃迁的方式回到基态。
λ1
λ2
λ2/
λ3
λ4
无辐射跃迁:
(1) 振动弛豫:激发态分子由同一电子能级中的较高振动能 级转至较低振动能级的过程,其效率较高。 (2) 内转换:相同多重态的两个电子能级间,电子由高能级 回到低能级的分子内过程。 (3) 系间窜越: 激发态分子的电子自旋发生倒转而使分子的 多重态发生变化的过程。 (3) 外转换:激发态分子与溶剂或其它溶质相互作用、能量 转换而使荧光 (或磷光)减弱甚至消失的过程。荧光强度的
分子荧光光谱法
分子荧光光谱法分子荧光光谱法是一种非常有用的分析技术,它可用于测定溶液中分子结构、组成、组分和吸收特性,以及提供关于反应机理的许多信息。
它被广泛应用于化学研究、生物研究、环境研究和制药技术等多个领域。
荧光光谱反应的本质是,一些物质能够从激发态吸收来自外部光源的一定能量,并从激发态到低能量的稳定态跃迁,从而释放出某种光,而这些释放出来的光就是荧光光谱。
基本原理在分子荧光光谱中,激发态是将能量投射到分子上,使其进入一种不稳定的、能量较高的激发态,然后分子会自动以一定的速率从这种高能态向低能态跃迁,跃迁过程中会释放出一定能量的荧光光谱。
具体而言,当激发态的分子能量超过一定的最低能量时,它将进入具有较低能量的稳定态,从而释放出光子。
通常说,这些释放出的光子的频率与激发态的能量有关。
应用分子荧光光谱法可以用于识别、测定和分离不同物质,它可以用于研究有机物、无机物、金属离子和药物,也可用于检测有毒物质。
分子荧光光谱法还可以用于研究分子间相互作用、分子构型变化和反应机理等问题,可以用来研究复杂有机化合物中的加合反应,也可以用来研究金属离子与有机物之间的相互作用。
优缺点分子荧光光谱法具有灵敏度高、分析结果准确、操作简单、检测范围广等优点,可用于大量的物质的有效分析。
此外,它还具有自动控制设备、能测出大量小浓度物质等优点。
然而,分子荧光光谱法也有一些缺点,比如它只能测量没有涂料、沉淀物和色素的物质,而且只有在激发态跃迁释放出荧光时,它才能完成光谱测量。
结论分子荧光光谱法是一种广泛应用的分析技术,它具有敏锐的测量特性,可以快速、准确地测量多种物质,因此被广泛应用于诸多研究领域。
不仅如此,它的测量过程还简单易行,使它可以成为一个非常有用的分析工具。
分子荧光光谱法
菲
线状环结构比非线状 结构的荧光波长长
• 芳香族化合物因具有共轭的不饱和体系, 芳香族化合物因具有共轭的不饱和体系, 多数能发生荧光 • 多环芳烃是重要的环境污染物,可用荧光 多环芳烃是重要的环境污染物, 法测定 • 3,4 - 苯并芘是强致癌物 , 苯并芘是强致癌物
λ ex = 386 nm λem = 430 nm
(二)荧光与有机化合物结构的关系
物质只有吸收了紫外可见光,产生π 物质只有吸收了紫外可见光,产生π → π*,n → π* 跃迁, 跃迁,产生荧光 跃迁相比,摩尔吸收系数大10 π → π*与n → π*跃迁相比,摩尔吸收系数大102~103, 寿命短 跃迁常产生较强的荧光, π → π*跃迁常产生较强的荧光, n → π*跃迁产生的 荧光弱
1. 电子自旋状态的多重性
大多数分子含有偶数电子,基态分子每一个轨道 大多数分子含有偶数电子, 中两个电子自旋方向总是相反的↑↓ 中两个电子自旋方向总是相反的↑↓ ,处于基态单 重态。 当物质受光照射时, 重态。用 “S0” 表示 ;当物质受光照射时,基态 分子吸收光能产生电子能级跃迁, 分子吸收光能产生电子能级跃迁,由基态跃迁至 更高的单重态,电子自旋方向没有改变, 更高的单重态,电子自旋方向没有改变,净自旋 = 0 .这种跃迁是符合光谱选律的 第一激发单重态 S1
VR S2 IC VR S1 ISC
VR:振动驰豫 : IC:内部转换 : ISC:系间窜跃 :
T1
S0 吸光 吸光
S0
3. 荧光光谱的产生—辐射去激 荧光光谱的产生—
处于S 处于S1或T1态的电子返回S0态时,伴随有发光现 态的电子返回S 态时, 象,这种过程叫辐射去激 发光 S0 S1或T1 荧光: (1)荧光: 当电子从第一激发单重态S 当电子从第一激发单重态S1的最低振动能级回到基 态S0各振动能级所产生的光辐射叫荧光 荧光是相同多重态间的允许跃迁,产生速度快, 荧光是相同多重态间的允许跃迁,产生速度快, 10-9~10-6s,又叫快速荧光或瞬时荧光,外部光源停 又叫快速荧光或瞬时荧光, 止照射, 止照射,荧光马上熄灭 无论开始电子被激发至什么高能级,它都经过无辐 无论开始电子被激发至什么高能级, 射去激消耗能量后到S 的最低振动能级,发射荧光, 射去激消耗能量后到S1的最低振动能级,发射荧光, 荧光波长比激发光波长长。 荧光波长比激发光波长长。 λ 荧>λ激
分子荧光光谱法剖析
达第一激发三重态,再通过振动驰豫转至该激发的
最低振动能级,然后以辐射的形式回到基态,发出
的光线称为磷光。
由于激发三重态能量较激发单重态低,所以
磷光的波长比荧光的波长稍长。
磷光仅在很低的温度或黏性介质中才能观测
到。因此磷光很少应用于分析。
内转换
振动弛豫 内转换 系间跨越
S2 T2
S1
能 量
T1
发
发
射
7
275~345
5
290~380
0
平面刚性构造效应
可降低分子振动,削减与溶剂的相互
作用,故具有很强的荧光。如荧光素和酚酞有相像
构造,荧光素有很强的荧光,酚酞却没有。
〔2〕 荧光量子产率Φ
物质分子放射荧光的力量用荧光量子产率〔Φ〕 表示:
发射荧光的分 发子 射数 的光子数 Φ= 激发态的分=吸 子收 数的光子数
单重态: 一个分子中全部电子自旋都配对的电 子状态。
三重态: 有两个电子的自旋不配对而平行的状 态。激发三重态能量较激发单重态低。
大多数有机物分子含有偶数电子,这些电子成对且 自旋方向相反地存在于各个原子或分子轨道上。所 以大多数分子在基态时处于单重态。
当分子受光照射时,假设光子能量恰好等于分子的 某两个能级的能量之差,则分子吸取光子并从基态 跃迁到第一激发态或更高的激发态中的某个振动能 级。但其自旋方向不会马上转变,分子仍处于单重 态。持续一段时间后,激发态电子的自旋可能倒转, 生成三重态。
分子荧光光谱法
Molecular Fluorescence Spectroscopy
荧光是指一种光致发光 的冷发光现象。当某种 常温物质经某种波长的 入射光〔通常是紫外线〕 照射,吸取光能后进入 激发态,并且马上退激 发并发出比入射光的的 波长长的出射光〔通常
分子荧光光谱法原理和仪器
分子荧光光谱法是一种分析化学方法,通过观察和测量分子在激发光作用下 发出的荧光来研究分子结构和性质。
了解分子荧光光谱法的原理和仪器有助于我们更好地理解其应用领域和实验 操作。
荧光分子和激发过程
荧光分子是能够吸能量并将其转化为发射荧光的分子。激发过程包括吸收光、激发态、发光和退激态。
通过深入了解荧光光谱法的原理和仪器,我们可以更好地理解其在实验中的 应用和限制。
吸收光
荧光分子通过吸收光子的能量,使得电子从基 态跃迁到高能级的激发态。
激发态
激发态是荧光分子处于高能级的状态,此时分 子能够进行振动或旋转。
发光
当激发态的荧光分子退回到基态时,它们会通 过发射光子的方式释放掉多余的能量。
退激态
退激态是荧光分子回到基态的过程,荧光的强 度和寿命取决于其退激速率。
荧光光谱仪的主要结构
荧光光谱仪由光源系统、内部光路、检测系统和计算机控制组成。
光源系统
提供激发光源,常见的光源包括氙灯、氙气甚至激 光。
内部光路
引导激发光、荧光光和散射光以及其他传感器的光 线。
检测系统
用于测量发出的荧光光的光子数量,并将其转化为
计算机控制
用于采集和处理光谱数据,并进行分析和解释。
荧光光谱法的应用领域
材料科学
用于研究材料的荧光性质,如半导体材料的能 带结构。
环境监测
检测水质、大气污染物和土壤污染物。
生物医学
用于分析生物分子、蛋白质和细胞的结构、功 能和相互作用。
食品安全
用于检测食品中的污染物、添加剂和营养成分。
总结与展望
分子荧光光谱法是一种强大的研究工具,能够提供丰富的信息和数据。随着 技术的发展,我们可以期待其在更广泛的领域得到应用。
分子荧光光谱法
(1)荧光与结构的关系
电子跃迁类型 * → 的荧光效率高,系间窜跃至三重态的 的速率常数较小,有利于荧光的产生。 共轭效应 含有* → 跃迁能级的芳香族化合物的荧光最 常见且最强。具有较大共轭体系或脂环羰基结构的 脂肪族化合物也可能产生荧光 取代基效应: 苯环上有吸电子基常常会妨碍荧光的产生;而 给电子基会使荧光增强。
(2)环境因素 ①温度 温度对荧光的影响很大。 温度降低会减少碰撞和非辐射失活的概率, 因此会增加荧光强度。例如:荧光素的乙醇溶 液在0℃以下每降低10℃,荧光产率增加3%, 当温度降低至-80 ℃时,荧光产率为100%。 ②pH值 含有酸性或碱性取代基的芳香化合物的荧 光与pH有关。pH的变化影响了荧光基团的电荷 状态,从而使其荧光发生变化。
7.影响荧光强度的因素
(1)内部因素 自猝灭——发光物质分子间碰撞而发生的能量无辐射 转移。自猝灭随溶液浓度的增加而增加。
自吸收——荧光化合物的发射光谱的波长与其吸收光 谱的波长重叠,溶液内部激发态分子所发射的荧光在 通过外部溶液时被同类分子吸收,从而使荧光被减弱。 荧光强度F与光源的辐射强度I0有关,因此增大光源辐 射功率I0可提高荧光测定的灵敏度。紫外-可见分光光 度法无法通过改变入射光强度来提高灵敏度。
6. 荧光强度与浓度的关系
荧光是物质吸收光子之后发出的辐射,荧光强度 (F)与
①荧光物质的吸光程度及其②发射荧光的能力有关:
F = K′(I0—I) I0 —入射光辐射强度; I —透射光辐射强度; K′—取决于荧光量子产率(Ф)。
Lambert-Beer 定律:
I I0 e
2.303bc
(3)跃迁的方式:
①无辐射跃迁: 振动弛豫、内转换、系间窜越、外转换 ②辐射跃迁: 荧光、磷光
分子荧光与分子磷光光谱法
(二)激发光谱曲线和荧光、磷光光谱曲线 荧光和磷光均为光致发光,因此必须选择合适的激发光波长,可根 据它们的激发光谱曲线来确定。绘制激发光谱曲线时,固定测量波 长为荧光(或磷光)最大发射波长,然后改变激发波长,根据所测 得的荧光(磷光)强度与激发光波长的关系,即可绘制 激发光谱 曲线。
激发三重态:分子吸收能 量,电子自旋不再配对, 为三重态,称为激发三 重态,以T1,T2….表示。
基态:电子自旋配对, 多重度=2s+1=1,为单 重态,以S0表示。
三重态能级低于单重态 (Hund规则)
3
在单重激发态中,两个电子平行自旋,单重态分子具有抗磁 性,其激发态的平均寿命大约为10-8s,而三重态分子具有顺磁性, 其激发态的平均寿命为10-4 ~ 1s以上(通常用S和T分别表示单重 态和三重态)。
当两个电子能级非常靠近以至其振
动能级有重叠时,常发生电子由高
S2
能级以无辐射跃迁方式转移至低能
级。右图中指出,处于高激发单重
态的电子,通过内转移及振动弛豫,
均跃回到第一激发单重态的最低振
动能级。
S0
内转移
S1 T1
吸光1 吸光2
荧光、磷光 能级图
6
荧光发射
处于第一激发单重态中的电子跃回至
基态各振动能级时,将得到最大波长
指不同多重态间的无辐射跃迁,例如
S1→T1就是一种系间窜跃。通常,发
生系间窜跃时,电子由S1的较低振动
能级转移至T1的较高振动能级处。有
S2
时,通过热激发,有可能发生T1→S1,
然后由S1发生荧光。这是产生延迟荧
光的机理。
系间窜跃
S1 T1
S0 吸光1
吸光2 荧光3
分子荧光光谱法实验报告范文实验报告
分子荧光光谱法实验报告实验目的1.掌握分子荧光光谱法的基本原理及实验方法;2.学会使用分子荧光光谱法测定荧光物质的荧光光谱特性;3.理解荧光强度与浓度、溶剂极性等因素的关系。
实验原理分子荧光光谱法是一种常见的光谱分析方法,它通过激发荧光物质产生荧光,再测量荧光的强度与波长,利用荧光光谱图判断荧光分子的特性与类型。
分子荧光光谱法的原理是:在分子受到激发光的能量刺激后,分子内部的电子从基态跃迁到激发态,并在激发态停留一段时间,最终回到基态时会发射出荧光光子。
荧光强度与溶液中荧光物质的浓度成正比关系,与溶剂极性、抗坐标和温度等因素有关。
实验步骤1.使用量筒测量所需溶液A的体积,加入荧光物质,并用石英量筒加入一定体积的乙腈稀释,制成荧光物质的溶液,并用紫外灯照射激发。
2.开启荧光测量仪器,调整光谱扫描参数和荧光强度测量参数,使荧光物质的荧光光谱特性能够充分体现,同时保证荧光强度不过大或过小,影响实验结果。
3.使用荧光测量仪器进行光谱扫描和荧光强度测量,获得荧光光谱图,并使用荧光稳定性方法对荧光测量仪器进行校正。
4.将荧光光谱图与标准曲线进行比对,测量出荧光物质的浓度,并计算荧光量子产率等参数。
5.通过改变溶剂极性、浓度等因素,探讨这些因素对荧光强度与荧光光谱特性的影响。
实验结果以苯并咪唑(BMD)为荧光物质,在乙腈溶液中测定荧光光谱如下:根据测定值,在BMD浓度和荧光量子产率之间绘制标准曲线如下:通过该曲线可以获得不同浓度下的BMD的荧光量子产率,进而找到最优稀释倍数。
荧光强度与溶剂极性的影响实验结果如下:对于苯并咪唑(BMD)、苯基苯酚(PNP)和芘的荧光强度测定,分别在乙腈、乙醇和水三种溶剂中进行,最终得到的结果如下:荧光物质/溶剂乙腈乙醇水BMD 6.308 3.822 2.511PNP 3.566 1.045 0.766芘 3.842 1.764 0.311由表可知,荧光强度随着溶剂极性的升高而降低。
分子荧光光谱法的定量依据
分子荧光光谱法的定量依据
分子荧光光谱法是一种常用的分析方法,其定量依据主要是基于荧光强度与物质浓度之间的线性关系。
在实际应用中,我们可以通过测量样品的荧光强度,来推算出样品中所含物质的浓度。
在分子荧光光谱法中,我们通常会使用荧光素(Fluorescein)等荧光染料作为指示剂。
这些染料在受到激发后,会发出特定的荧光信号。
而这些信号的强度与染料所处环境中的物理化学性质以及染料自身的性质均有关系。
当我们将染料加入待测样品中时,染料的荧光信号会受到样品中其他分子的影响而发生变化。
通过测量这些变化,我们就可以推算出样品中其他分子的浓度。
这种方法通常被称为“内标法”或“标准曲线法”。
在使用分子荧光光谱法进行定量分析时,我们需要先制备一系列不同浓度的标准溶液。
然后,我们可以分别将这些标准溶液与染料混合,并测量它们的荧光强度。
通过将荧光强度与溶液浓度绘制成一条标准曲线,我们就可以得到一个浓度与荧光强度之间的线性关系。
当我们需要分析未知样品时,我们可以将该样品与染料混合,并测量它们的荧光强度。
然后,我们可以利用标准曲线来推算出该样品中所含物质的浓度。
需要注意的是,在使用分子荧光光谱法进行定量分析时,我们需要保证样品中其他分子对染料荧光信号的影响尽可能小。
因此,在实际应用中,我们通常会对样品进行预处理,以去除对荧光信号产生干扰的因素。
总之,分子荧光光谱法是一种简单、快速、灵敏的定量分析方法。
通过建立标准曲线和内标法等手段,我们可以在实际应用中对各种样品进行定量分析。
荧光光谱法
荧光又可分为分子荧光和原子荧光。
由于不同的物质其组成与结构不
同,所吸收光的波长和发射光的波长 也不同,利用这个特性可以进行物质
的定性鉴别。如果该物质的浓度不同,
它所发射的荧光强度就不同,测量物 质的荧光强度可对其进行定量测定。
荧光分析法(fluorescence analysis)
就是利用物质的荧光特征和强度,对 物质进行定性和定量分析的方法。
(fluorescence efficiency)。荧光效率
也称荧光量子产率,用f 表示。
kF 发射的荧光量子数 Φf 吸收的光量子数 k F kVR k IC k ISC k EC k P
可见,凡是使 kF 增加,使其它去活化
常数降低的因素均可增加荧光量子产
率。通常,kF 由分子结构决定(内
生荧光。而在 pH6 ~ 7 的溶液中,则形
成12的配合物,不产生荧光。
总之,溶液pH值对荧光物质的荧光
光谱、荧光效率及荧光强度均有影响。 需通过条件实验找出 pH 与荧光强度的
关系,确定最适宜的pH范围,以提高分
析的灵敏度和准确度。
荧光熄灭
由于荧光物质分子间或与其它物质相互 作用,引起荧光强度显著下降的现象叫
C=O、—F、—Cl等吸电子取代基,可减弱分子
π电子共轭性,使荧光减弱甚至熄灭。还有一类
取代基则对荧光的影响不明显,如—R、—
温度 温度对被测溶液的荧光强度有明 显的影响。当温度升高时,介质粘度
减小,分子运动加快,分子间碰撞几
率增加,从而使分子无辐射跃迁增加, 荧光效率降低。故降低温度有利于提
高荧光效率及荧光强度。
波长扫描)。然后以激发光波长为横坐
标,以荧光强度F为纵坐标作图,就可得
现代生物仪器分析第三章 分子荧光光谱法
第二节 荧光分析的原理
(一)荧光发生机理 物质的基态分子受一激发光源的照射, 被激发至激发态,在返回基态时,产生 波长与入射光相同或较长的荧光。 通过测定物质分子产生的荧光强度进行
分 析 的 方 法 称 为 荧 光 分 析 (fluorescence analysis)。
1、分子的激发态
荧光和磷光这两种光致发光过程的机理不同, 可从实验观察激发态分子寿命的长短来加以区 别: 对于荧光来说,当激发光停止照射后,发光 过程几乎立即停止(在10-9~10-6秒,荧光寿 命fluorescence life time )。 磷光则将持续一段时间(在10-3~10秒)。
荧光分析法发展简史
2、分子荧光和磷光的产生
分子在室温时基本上处于电子能级的基态。当吸 收了紫外—可见光后,基态分子中的电子只能跃 迁到激发单线态的各个不同振动—转动能级,根 据自旋禁阻规律,不能直接跃迁到激发三重态的 各个振--转能级。 处于激发态的分子是不稳定的,它可能通过辐射 跃迁和无辐射跃迁等分子内的去活化过程释放多 余的能量而返回至基态,发射荧光是其中的一条 途径。
世界上第一次记录荧光现象是16世纪 西班牙的内科医生和植物学家 N.Monardes。 1575年他提出在含有一种木头切片的 水溶液中,可观察到极可爱的天蓝色。
1852年,stokes在考察奎宁和叶绿素的 荧光时,用分光光度计观察到其荧光的 波长比入射光的波长稍微长些,从而导 入了荧光是光发射的概念。 18工作。应用铝—桑色素配 合物的荧光进行铝的测定。 19世纪以前,荧光的观察是靠肉眼进行 的,直到1928年,才由Jette和West完成 了第一台荧光计。
激发单重态与激发三重态的性质不同
分子荧光光谱法
单色器: 第一单色器——选择激发光波长λ1 (>250nm的紫外 光),称为激发单色器。 第二单色器——选择(测量)发射光(荧光)波长λ2 , 与激发光入射方向垂直,称为荧光单色器。
样品池: 采用低荧光材料,通常为石英池。 检测器: 光电倍增管。
Ⅳ、荧光法的应用
荧光法灵敏度高、选择性好,可用于痕量 分析,但是能产生荧光的物质较少,使其 应用范围较小。
(2)Stokes位移 Stokes位移是指激发光谱与荧光光谱之间的波长 差值。 荧光的波长总是大于激发光的波长。这是由于发 射荧光之前的振动驰豫和内转换过程损失了一定的能 量。
(3)荧光光谱的形状与激发光波长无关 电子跃迁到不同激发态,吸收不同波长的能 量,产生不同的吸收带,但荧光均是激发态电子 回到第一激发单重态的最低振动能级再跃迁回到 基态而产生的,这与荧光物质分子被激发至哪一 能级无关。因此,荧光光谱的形状和激发光的波 长λ1无关。
溶液浓度较低时:
F K I 0 2.303bc
当入射光的λ1 和 I0一定时 : F=Kc 即: 在低浓度时,溶液的荧光强度与荧光物质 的浓度成正比。 ————这是荧光法定量的基础。
7.影响荧光强度的因素
(1)内部因素
自猝灭——发光物质分子间碰撞而发生的能量无辐射 转移。自猝灭随溶液浓度的增加而增加。
分子荧光产生机理
1.光谱类型
荧光光谱是物质分子 吸收紫外光后产生的分子 发射光谱。 2.跃迁类型
分子中原子的电子能 级跃迁,伴随振动能级的 跃迁。
3.分子的激发与失活
(1)分子的激发
基态→激发态(S1、S2、激发态振动能级):吸收特定 频率的辐射,跃迁一次到位。 激发态→基态:多种途径和方式,速度最快、激发态 寿命最短的占优势。
分子荧光光谱法
实验二分子荧光光谱法一实验目的1.理解并掌握荧光产生的机理。
2.学会测定不同浓度物质溶液的荧光激发光谱和发荧光射光谱。
3.了解影响荧光产生的几个主要因素。
二实验原理原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。
对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。
1.产生过程(如图1)光吸收:荧光物质从基态跃迁到激发态。
此时,荧光分子处于激发态。
内转换:处于电子激发态的分子由于内部的作用,以无辐射跃迁过渡到低的能级。
外转换:处于电子激发态的分子由于和溶剂以及其他分子的作用,以及能量转移,过渡到低的能级荧光发射:如果不以内转换的方式回到基态,处于第一电子激发态最低振动能级的分子将以辐射的方式回到基态,平均寿命约为10ns左右。
系间转换:不同多重态,有重叠的转动能级间的非辐射跃迁。
振动驰豫:高振动能级至低相邻振动能级间的跃迁。
发生振动弛豫的时间。
图12.光谱特性激发谱:固定测量波长(选最大发射波长),化合物发射的荧光强度与激发光波长的关系曲线。
激发光谱曲线的最高处,处于激发态的分子最多,荧光强度最大。
发射谱:固定激发波长,发射强度与发射波长的关系。
1) Stokes位移:激发光谱与发射光谱之间的波长差值。
发射光谱的波长比激发光谱的长,振动弛豫消耗了能量。
2) 发射光谱的形状与激发波长无关:电子跃迁到不同激发态能级,吸收不同波长的能量,产生不同吸收带,但均回到第一激发单重态的最低振动能级再跃迁回到基态,产生波长一定的荧光。
3) 镜像规则:通常荧光发射光谱与它的吸收光谱(与激发光谱形状一样)成镜像对称关系。
4) 荧光寿命和荧光量子产率。
去掉激发光以后,荧光强度并不是立即消失,而是以指数形式衰减。
定义荧光强度降低到激发状态最大荧光强度的1/e所需要的时间称为荧光寿命。
荧光寿命是个很重要的参数,可以不再对荧光的绝对强度进行测量。
三实验内容1 获得罗丹明B和2-萘酚的激发光谱和荧光光谱。
分子荧光光谱法测定食品中亚硝酸盐含量
分子荧光光谱法测定食品中亚硝酸盐含量1前言:食品质量安全越来越受到人们的关注。
亚硝酸盐具有致癌性,食用过量亚硝酸盐会发生中毒事件,因此,亚硝酸盐也是广大消费者关注的食品质量安全因素之一。
亚硝酸盐主要指亚硝酸钠,亚硝酸钠为白色至淡黄色粉末或颗粒状,味微咸,易溶于水.外观及滋味都与食盐相似,并在工业,建筑业中广为使用,肉类制品中有时候也被人作为发色剂使用.亚硝酸盐中毒是指由于食用硝酸盐或亚硝酸盐含量较高的腌制肉制品,泡菜及变质的蔬菜可引起中毒,或者误将工业用亚硝酸钠作为食盐食用而引起,也可见于饮用含有硝酸盐或亚硝酸盐苦井水,蒸锅水。
亚硝酸盐除了用于染料生产和某些有机合成、金属表面处理等工业外,其最主要用途是在食品生产中用作食品着色剂和防腐剂。
添加亚硝酸盐可以抑制肉毒芽孢杆菌,并使肉制品呈现鲜红色,同时亚硝酸盐对保持腌肉香味的稳定性有显著作用。
同时食品中亚硝酸盐也存在一定的危害,亚硝酸盐为强氧化剂,进入人体后,可使血中低铁血红蛋白氧化成高铁血红蛋白,使血红蛋白失去携氧能力,致使组织缺氧,并对周围血管有扩张作用。
亚硝酸盐的危害还不只是使人中毒,它还有致癌作用。
亚硝酸盐可以与食物或胃中的仲胺类物质作用转化为亚硝胺。
亚硝胺具有强烈的致癌作用,主要引起食管癌、胃癌、肝癌和大肠癌等。
1.1训练目的和意义1.1.1训练目的(1)掌握分子荧光光谱仪的基本原理和使用方法;(2)掌握分子荧光光谱法测定食品中亚硝酸盐含量的各项操作技能;(3)掌握食品产品质量转化,结合食品标准判定食品安全的方法。
1.1.2训练意义亚硝酸盐对人体健康有众多的危害,例如:引起食物中毒,对人体有致癌作用等,这引起了食品安全的问题,因此我们通过此次训练掌握亚硝酸盐对人体的危害同时,掌握亚硝酸盐测定方法对我们的生活有重大意义。
1.2国内外近况测亚硝酸盐含量的方法有很多种,如紫外可见分光光度法(比色法)、催化发光光度法(镉还原分光光度法)、示波极谱法、气相色语法和高效液相色谱(HPLC)法等,国际方法为Griess试剂比色法(N-l-萘基乙二胺比色法),此方法(1992年颁布实施)基本是食品中GB5009.33-85(1985)方法的翻版,而现行食品中亚硝酸盐测定方法己被改进后的1996年饭代替。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氟、硫、铁、银、钴、镍采用荧光熄灭法测定;
铜、铍、铁、钴、锇及过氧化氢采用催化荧光法测定; 铬、铌、铀、碲采用低温荧光法测定;
铈、铕、锑、钒、铀采用固体荧光法测定
(2)生物与有机化合物的分析
荧光法在有机化合物中应用较广。芳香化合物多能
发生荧光。脂肪族化合物往往与荧光试剂作用后才可产生
荧光。 名 称 结 构 式
CH2N2
应
用
9-蒽基重氮甲烷
某些羧酸
丹磺酰氯
N(CH3)2
伯胺、仲胺、酚或 氨基酸
SO2Cl
三。实验方法
1.氧氟沙星荧光光谱绘制 取氧氟沙星对照品约0.100克,精密称定,置 于100ml量瓶中,用0.01mol/L HCl溶解后加水 至刻度,摇匀,作为储备液。精密量取储备液 0.4ml置于50ml量瓶中,加0.5mol/L HAc溶液 至刻度,摇匀,在荧光光度计上扫描氧氟沙星 的激发光谱和发射光谱。激发波长367nm,发 射波长505nm
(2)定量方法
标准曲线法:
配制一系列标准浓度试样测定荧光强度,绘制标准曲
线,再在相同条件下测量未知试样的荧光强度,在标准曲线 上求出浓度; 比较法: 在线性范围内,测定标样和试样的荧光强度,比较;
5.荧光分析法的应用
(1)无机化合物的分析
与有机试剂配合物后测量;可测量约60多种元素。 铍、铝、硼、镓、硒、镁、稀土常采用荧光分析法;
取左旋氧氟沙星片一片,精密称定后置于100ml 量瓶中,加0.05mol/L HCl溶液10ml充分振摇溶 解后,加水稀释至刻度,摇匀。静置后干过滤。 精密量取滤液3.00ml置于100ml量瓶中,用 0.5mol/L HAc定容至刻度,摇匀。在 Ex=367,Em=505nm处测定荧光强度,根据标准 曲线计算氧氟沙星片的含量
氧氟沙星片含量 = (Cx3.30/ms) x 100%
思考题
1.干扰荧光分光光度法测定的因素有哪些? 2.应如何确定被测物的激发和发射波长? 3.
CRT型荧光光谱仪操作规程 一、标准曲线的测定和绘制
1.点击标准曲线,进入标准曲线界面 2.在石英比色皿中,装入第一个标准溶液 (10mg/L),放入样品室内 3.输入浓度值10mg/L,点击测试 4.电脑上提示对话框波长是否到确定,点击确定 5.待电脑上显示荧光值后,点击添加 按照上述步骤,再分别测试 20mg/L,30mg/L,40mg/L,50mg/L的荧光值, 记录不同浓度的荧光值
二、荧光光谱法基本原理
分子的激发与失活
1. 分子的多重态 单重态 一个所有电子自旋都配对 的分子的电子状态。大多数有机 物分子的基态是单重态。当基态 一对电子中的一个被激发到较高 能级,其自旋方向不会立刻改变, 分子仍处于单重态。
三重态 有两个电子的自旋不配对 而平行的状态。激发三重态能量 较激发单重态低。
2.标准曲线制作
精密量取储备液1.0,2.0,3.0,4.0,5.0ml 分别置于 50ml 量瓶中,加0.5mol/L HAc 溶液至刻度,摇匀。其浓 度相当于10,20,30,40,50 mg/L. 在Ex=367nm,Em=505nm处测定荧光强度,并建立 标准曲线。
3.氧氟沙星片含量测定
辐射跃迁: 荧光:受光激发的分子从第一激发单重态的最低振 动能级回到基态所发出的辐射。寿命为10-8 ~ 10 -11s。 由于是相同多重态之间的跃迁,几率较大,速度大,
速率常数kf为106~109s-1。
辐射能量传递过程
荧光发射:电子由第一激发单重态的最低振动能级→基态 ( 多为 S1→ S0跃迁),发射波长为 ‘2的荧光; 107~10 -9 s 。 由图可见,发射荧光的能量比分子吸收的能量小,波 长长; ‘2 > 2 > 1 ;
2、激发光谱和荧光光谱
任何荧光化合物都具有两种特征 光谱: •荧光激发光谱(吸收光谱) —固定某一发射波长,测定该波 长下的荧光发射强度随激发波长 变化所得的光谱。 •荧光发射光谱(荧光光谱)—
—固定某一激发波长,测定荧光
发射强度随发射波长变化得到的 光谱。
3、荧光与结构的关系
(1)电子跃迁类型 发射 π*→π跃迁比π*→n跃迁更常见 (2)共轭效应 芳香族化合物的荧光最常见且最强,大多
3.内滤光作用和自吸现象
内滤光作用:溶液中含有能吸收激发光或荧光物质发射
的荧光,如色胺酸中的重铬酸钾;
自吸现象:化合物的荧光发射光谱的短波长端与其吸收 光谱的长波长端重叠,产生自吸收;如蒽化合物。
4、溶液荧光的猝灭
碰撞猝灭; 氧的熄灭作用等。
四、仪器结构流程
测量荧光的仪器主要由四个部分组成:激发光源、样品 池、双单色器系统、检测器。 特殊点:有两个单色器,光源与检测器通常成直角。 基本流程如图: 单色器:选择激发光波长 的第一单色器和选择发射 光 ( 测量 ) 波长的第二单色 器; 光源:灯和高压汞灯,染 料激光器(可见与紫外区) 检测器:光电倍增管。
荧光发射光谱 荧光激发光谱
磷光光谱
200
260 320 380 440 500 560 室温下菲的乙醇溶液荧(磷)光光谱
620
3.激发光谱与发射光谱的关系 a.Stokes位移 激发光谱与发射光谱之间的波长差值。发射光谱的 波长比激发光谱的长,振动弛豫消耗了能量。 b.发射光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量 (如能级图 2 , 1),产生不同吸收带,但均回到第一 激发单重态的最低振动能级再跃迁回到基态,产生波 长一定的荧光(如 ‘2 )。 c. 镜像规则 通常荧光发射光谱与它的吸收光谱(与激发光谱 形状一样)成镜像对称关系。
6.点击拟合,电脑上会显示拟合曲线及相关参数, 记录相关参数
二、未知样品浓度的测定
1.点击样品浓度,进入未知样品浓度测试的界面 2.点击标准曲线,屏幕上会显示刚做过的标准曲 线 3.在石英比色皿中,装入未知样品浓度的溶液, 放入样品室内 4.点击测试 5.记录未知样品测试的荧光值及浓度
数未取代芳烃在溶液中发荧光,随着环的数目和稠合程 度增加,荧光峰红移,Φ↑。简单杂环化合物不发荧光, 但具有稠环结构的杂环化合物都发荧光。 (3)平面刚性结构效应 有刚性结构的分子容易发荧光, 刚性和共平面性的增加有利于荧光发射。
CH2
联苯 Φ=0.2
芴 Φ=1
(4)取代基的影响 芳环上有羧基、羰基或 亚硝基等吸电子基团取 代时,荧光减弱; 给电子取代基如-OH、NH2、-CN、-OCH3等会使 荧光强度增加。 重原子效应 含有重原 子的分子中,系间窜跃 的几率大,使荧光减弱, 磷光增强。
仪器框图
该型仪器可进 行荧光、磷光 和发光分析;
同步扫描技术
根据激发和发射单色器在扫描过程中彼此间所保持的 关系,同步扫描可分为固定波长差 () 和固定能量差及可 变波长三种; 同步扫描技术可简化光谱,谱 带变窄,减少光谱重叠,提高分辨 率; 如图。 合适的可减少光谱重叠; 酪氨酸和色氨酸的荧光激发光谱相 似,发射光谱严重重叠,但 <15nm 的同步光谱只显示酪氨酸 特征光谱; >60nm时,只显示色 氨酸的特征光谱,实现分别测定。
二、激发光谱与荧光(磷光)光谱
1.荧光(磷光)的激发光谱曲线 固定测量波长(选最大发射波长),化合物发射的荧光(磷 光)强度与照射光波长的关系曲线 (图中曲线I ) 。 激发光谱曲线的最高处,处于激发态的分子最多,荧 光强度最大; 2.荧光光谱(或磷光光谱) 固定激发光波长(选最大激发波长), 化合物发射的荧光 (或磷光强度)与发射光波长关系曲线(图中曲线II或III)。
2. 激发态分子的失活: 激发态分子不稳定,它要以辐射
或无辐射跃迁的方式回到基态。
无辐射跃迁 ☆振动弛豫:激发态分子由同一电子能级中的较高振动能级 转至较低振动能级的过程,其效率较高。
☆内转换:相同多重态的两个电子能级间,电子由高能级回
到低能级的分子内过程。 ☆系间窜越: 激发态分子的电子自旋发生倒转而使分子的多 重态发生变化的过程。 ☆外转换:激发态分子与溶剂与其他溶质相互作用、能量转 换而使荧光 (或磷光)减弱甚至消失的过程。荧光强度的 减弱或消失,称为荧光熄灭(或猝灭)。
荧光量子产率与激发态能量释放各过程的速率常数有关 ,如外转换过程速度快,不出现荧光发射;
2.化合物的结构与荧光
(1)跃迁类型:* → 的荧光效率高,系间跨越过程的速率 常数小,有利于荧光的产生; (2)共轭效应:提高共轭度有利于增加荧光效率并产生红移 (3)刚性平面结构:可降低分子振动,减少与溶剂的相互作 用,故具有很强的荧光。如荧光素和酚酞有相似结构,荧光 素有很强的荧光,酚酞却没有。 (4)取代基效应:芳环 上有供电基,使荧光增 强。
★选择性比吸收光谱法好。因为能产生紫外可见吸收的分子不
一定发射荧光或磷光; ★应用范围不如吸收光谱法广,因为有的分子不发荧光。 基于化合物的荧光测量而建立起来的分析方法称为分子荧光光 谱法。
一。目的和要求
学习荧光分光光度计的使用方法 掌握荧光分光光度法测定样品含量的基 本方法 荧光分光光度计 上海仪电CRT型
镜像规则的解释
基态上的各振动能级分布
与第一激发态上的各振动能级
分布类似;
基态上的
零振动能级与 第一激发态的
二振动能级之
间的跃迁几率 最大,相反跃
迁也然。
三、荧光的产生与分子结构的关系
1.分子产生荧光必须具备的条件
(1)具有合适的结构; (2)具有一定的荧光量子产率。
荧光量子产率():
发射的光量子数 吸收的光量子数
化合物 苯
C6H5COOH C6H5NO2 C6H5CH3 C6H5OH C6H5OCH3 C6H5NH2 C6H5CN
相对荧光强度 10
3 0 17 18 20 20 20
C6H5Cl C6H5Br C6H5I