2021年中考数学必会专题系列10:直角三角形的存在性问题探究(有讲解答案)

合集下载

直角三角形的存在性问题解题策略

直角三角形的存在性问题解题策略

03
CATALOGUE
直角三角形的存在性问题分类
直角在三角形内部
总结词
当直角位于三角形内部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直 角三角形的斜边长度。接着,根据三角形的性质和已知条件,判断是否能够构成 三角形。如果可以,则存在满足条件的直角三角形;否则,不存在。
在题目中,有时候会隐含一些关于三角形或 角度的条件,需要仔细审题并挖掘。
举例说明
在求解三角形边长的问题时,需要注意隐含 的等腰或等边条件,这些条件可能会影响三 角形的形状和存在性。
掌握常见题型和解题方法
01
02
03
常见题型
直角三角形存在性问题的 常见题型包括角度问题、 边长问题、高的长度问题 等。
直角在三角形外部
总结词
当直角位于三角形外部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直角三角形的斜边长度。接着,根 据三角形的性质和已知条件,判断是否能够构成三角形。如果可以,则存在满足条件的直角三角形;否则,不存 在。
建立方程
根据题目条件,可以建立关于未知数 (如角度、边长等)的方程,然后求 解该方程。
解方程
解方程的方法有很多种,如代数法、 三角函数法等,选择合适的方法求解 方程。
利用数形结合思想
数形结合
将题目中的条件和图形结合起来,通过 观察图形和计算数据,找到解决问题的 线索。
VS
综合分析
综合运用数学知识和图形分析,逐步推导 和验证,最终得出结论。
解题方法
针对不同的问题类型,需 要掌握相应的解题方法, 如利用三角函数、勾股定 理、相似三角形等。

直角三角形存在性问题解决方法汇总

直角三角形存在性问题解决方法汇总

【问题描述】如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标.【几何法】两线一圆得坐标(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ;(2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ;(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角)重点还是如何求得点坐标,C1、C2求法相同,以C2为例:【构造三垂直】01问题与方法C3、C4求法相同,以C3为例:构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.【代数法】表示线段构勾股还剩下C1待求,不妨来求下C1:【解析法】还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1.考虑到直线AC1与AB互相垂直,k1k2=-1,可得:kAC=-2,又直线AC1过点A(1,1),可得解析式为:y=-2x+3,所以与x轴交点坐标为(1.5,0),即C1坐标为(1.5,0).确实很简便,但问题是这个公式出现在高中的教材上方法小结几何法:(1)两线一圆作出点;(2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数.代数法:(1)表示点A、B、C坐标;(2)表示线段AB、AC、BC;(3)分类讨论①AB²+AC²=BC²、②AB²+BC²=AC²、③AC²+BC²=AB²;(4)代入列方程,求解.02从等腰直角说起再特殊一些,如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不是相似,而是全等.2019兰州中考删减【等腰直角存在性——三垂直构造全等】通过对下面数学模型的研究学习,解决问题.【模型呈现】如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型成为“K型”.推理过程如下:【模型迁移】二次函数y=ax²+bx+2的图像交x轴于点A(-1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax²+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.2017本溪中考【直角顶点已知or未知】如图,在平面直角坐标系中,抛物线y=1/2x²+bx+c与x轴交于A、B两点,点B (3,0),经过点A的直线AC与抛物线的另一交点为C(4,5/2),与y轴交点为D,点P是直线AC下方的抛物线上的一个动点(不与点A、C重合).(1)求该抛物线的解析式.(2)点Q在抛物线的对称轴上运动,当△OPQ是以OP为直角边的等腰直角三角形时,请直接写出符合条件的点P的坐标.【小结】对于构造三垂直来说,直角顶点已知的和直角顶点的未知的完全就是两个题目!也许能画出大概位置,但如何能画出所有情况,才是问题的关键.其实只要再明确一点,构造出三垂直后,表示出一组对应边,根据相等关系列方程求解即可.2019阜新中考【对未知直角顶点的分析】如图,抛物线y=ax²+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.【小结】无论直角顶点确定与否,事实上,所有的情况都可以归结为同一个方程:NE=FM.故只需在用点坐标表示线段时加上绝对值,便可计算出可能存在的其他情况.03一般直角三角形的处理一般直角三角形存在性,同样构造三垂直,区别于等腰直角构造的三垂直全等,没了等腰的条件只能得到三垂直相似.而题型的变化在于动点或许在某条直线上,也可能在抛物线上等.2018安顺中考【对称轴上寻动点】如图,已知抛物线y=ax²+bx+c(a≠0)的对称轴为直线x=-1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.2018怀化中考【抛物线上寻动点】如图,在平面直角坐标系中,抛物线y=ax²+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2019鄂尔多斯中考【动点还可能在……】如图,抛物线y=ax²+bx-2(a≠0)与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C,直线y=-x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,圆C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.。

中考数学专题讲解:直角三角形的存在性问题

中考数学专题讲解:直角三角形的存在性问题

中考专题讲解:直角三角形的存在性问题 一、学习目标1.经历探索直角三角形存在性问题的过程,熟练掌握解题技巧2.体会分类讨论的数学思想,体验解决问题方法的多样性二、课前准备1.已知直角三角形的两边长分别为3和4,则第三边的长为2.如图,A(0,4),C (4,0),点P 是线段OC 的中点,AP ⊥BP ,BC ⊥PC ,则BC 的长度为三、探究理解如图,A(0,1),C(4,3)是直线121+=x y 上的两点,点P 是x 轴上的一个动点,问:是否存在这样的点P ,使得△ABP 为直角三角形?如果存在,请求出满足条件的点P 的坐标.问题:(1)这样的问题,你怎么思考的? 针对直角顶点进行分类(2)一般会有几种情况? 3种(3)分类时候需要做什么? 画图(4)解题有那些方法?(5)当直角顶点在点P 的时候,如何精确地找到点P ? 以AB 为直径的圆与x 轴的交点总结:直角三角形的存在性问题的解题策略:四、反馈练习1.如图,点O (0,0),A(1,2),若存在格点P ,使△APO 为直角三角形, 则点P 的个数有 个2.在△ABC 中,∠C=900,AC=8 cm,BC=6 cm ,动点P 、Q 分别同时从点A 、B 出发,其中点P 在线段AB 上向点B 移动,速度是2 cm/s,点Q 在线段BC上向点C 运动,速度为1cm/s ,设运动时间为t s,当t= 时,△BPQ 是直角三角形.3.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB>1,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设AB=x.若△ABC 为直角三角形,(1)求x 的值.(2)x 的取值是多少.五、链接中考如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线834942++-=x x y 经过A 、C 两点,与AB 边交于点D ,Q 是AC 上一点,且AQ=5.请问在抛物线对称轴l 上是否存在点F ,使得△FDQ 为直角三角形?若存在,请直接写出所有符合条件的点F 的坐标,若不存在,请说明理由六、课堂小结直角三角形的存在性问题解题策略分类画图(1)角:构造相似三角形解题 (2) 边:勾股定理(3)函数:k 1·k 2=-1六、课后练习在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0),如图所示,B 点在抛物线221212-+=x x y 图像上,过点B 作BD ⊥X 轴,垂足为D ,且B 点的横坐标为-3.(1)求证:△BDC ≌△COA(2)求BC 所在直线的函数关系式(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由。

直角三角形存在性问题及真题典例分析(含解析)

直角三角形存在性问题及真题典例分析(含解析)

直角三角形存在性问题【问题描述】如图,在平面直角坐标系中,点轴上找一点C 使得△ ABC 是直角三角形,求点A 坐标为(1,1 ),点B 坐标为(5,3),在x C坐标.几何法】两线一圆得坐标1)若∠ A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ;2)若∠ B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C;3)若∠C 为直角,以AB为直径作圆,与x轴的交点即为所求点C.(直径所对的圆周角为直角)构造三垂直】BN NC2由A、B坐标得AM=2 ,BM=4 ,NC2=33代入得:BN=213故C2坐标为(,0)2重点还是如何求得点坐标,C1、C2 求法相同,以C2为例:易证△AMB ∽△BNC 2AM MBAM MC3易证△AMC3∽△C3NB,C3N= NB由A、B坐标得AM=1,BN=3,设MC3=a,C3N=b1a代入得:= ,即ab=3 ,又a+b=4,故a=1 或3 b3故C3坐标为(2,0),C4坐标为(4,0)构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.【代数法】表示线段构勾股还剩下C1待求,不妨来求下C1 :1)表示点:设C1坐标为(2)表示线段:AB 2 5,AC13)分类讨论:当BAC1 为直角时,24)代入得方程:20 m 1 122222m11,BC1m 532AB2AC12BC12;m5222 32,解得: 3 m.2C3、C4 求法相同,以C3为例:m,0),又A(1,1)、B(5,3);还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1.考虑到直线AC1与AB 互相垂直,k AC1 k AB 1,可得:k AC1 2,又直线AC1过点A(1,1),可得解析式为:y=-2x+3,33所以与x 轴交点坐标为3,0 ,即C1坐标为3,0 .22 确实很简便,但问题是这个公式出现在高中的教材上~【小结】几何法:(1)“两线一圆”作出点;(2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数.代数法:(1)表示点A、B、C 坐标;(2)表示线段AB、AC、BC;(3)分类讨论① AB2+AC2=BC2、② AB2+BC2=AC2、③ AC2+BC2=AB2;(4)代入列方程,求解.如果问题变为等腰直角三角形存在性, 则同样可采取上述方法, 只不过三垂直得到的不是相 似,而是全等.三垂直构造等腰直角三角形】 中考真题(删减)】通过对下面数学模型的研究学习,解决问题. 模型呈现】如图,在 Rt △ABC ,∠ACB=90°,将斜边 AB 绕点 A 顺时针旋转 90 得到 AD ,过点 D 作DE ⊥AC 于点 E ,可以推理得到△ ABC ≌△ DAE ,进而得到 AC=DE ,BC=AE . 我们把这个数学模型成为 “K 型 ”. 推理过程如下:【模型迁移】二次函数 y ax 2 bx 2的图像交 x 轴于点 A ( -1,0), B ( 4,0)两点,交 y 轴于点 C .动点 M 从点 A 出发,以每秒 2 个单位长度的速度沿 AB 方向运动,过点 M 作MN x 轴交直线 BC 于点 N ,交抛物线于点 D ,连接 AC ,设运动的时间为 t 秒. (1)求二次函数 y ax 2 bx 2 的表达式;(2)在直线 MN 上存在一点 P ,当 PBC 是以 BPC 为直角的等腰直角三角形时,求此时 点 D 的坐标.E A C分析】1 2 3 1)yx x 2 ; 222)本题直角顶点 P 并不确定,以 BC 为斜边作等腰直角三角形,直角顶点即为 P 点,再 过点P 作水平线,得三垂直全等.设 HP=a ,PQ=b ,则 BQ=a , CH=b ,故 D 点坐标为( 1,3 )思路 2:等腰直角的一半还是等腰直角.如图,取BC 中点 M 点,以BM 为一直角边作等腰直角三角形, 则第三个顶点即为 P 点.根 据 B 点和 M 点坐标,此处全等的两三角形两直角边分别为 1 和 2 ,故 P 点坐标易求.由图可知:b aa b 42 ,解得:a1 b3同理可求此时解得: m 1 12 , m 2 1 2 , m3 1 6 , m4 1 6 (舍)如下图,对应 P 点坐标分别为 1 2, 11 2, 1 、 1 6,1中考真题】12如图,在平面直角坐标系中,抛物线 y x 2bx c 与 x 轴交于 A 、B 两点,点 B (3,0),25经过点 A 的直线 AC 与抛物线的另一交点为 C (4, ),与 y 轴交点为 D ,点 P 是直线 AC 下2 方的抛物线上的一个动点(不与点A 、C 重合).(1)求该抛物线的解析式.(2)点Q 在抛物线的对称轴上运动, 当 OPQ 是以OP 为直角边的等腰直角三角形时, 请直接写出符合条件的点 P 的坐标.分析】2)①当∠ POQ 为直角时,考虑 Q 点在对称轴上,故过点 Q 向 y 轴作垂线,垂线段长为 垂线,长度必为 1,故 P 的纵坐标为 ±1.如下图,不难求出 P 点坐标.13设 P 点坐标为 m,1 m 2 m 3 ,22可得: 1 m 2 m 3 1.2212 3; xx2 21) y1,可知过点 P 向 x 轴作②当∠ OPQ 为直角时,如图构造△ OMP ≌△ PNQ ,可得: PM=QN . 设 P 点坐标为 m,21m 2 m 32 ,1,若 1m 2 m 3 m 1 ,解得: m 1 5 , m 25 (舍).22若 1m 2 m 3 m 1,解得: m 1 2 5, m 2 2 5(舍) 22对于构造三垂直来说,直角顶点已知的和直角顶点的未知的完全就是两个题目!也许能画出大概位置,但如何能画出所有情况,才是问题的关键.其实只要再明确一点, 构造出三垂直后, 表示出一组对应边, 根据相等关系列方程求解即可.则PM 01 2 3 mm2212 m 23, QN= m 21, 如下图,对应 P 点坐标分别为 5,1 5中考真题】如图,抛物线y ax2 bx 2交x轴于点A( 3,0)和点B(1,0),交 y轴于点C. (1)求这个抛物线的函数表达式.(2)点 D的坐标为( 1,0) ,点 P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.( 3)点 M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使MNO 为等腰直角三角形,且MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.x备用图分析】2 2 41) y x x 2 ;332) 连接AC,将四边形面积拆为△ APC 和△ADC 面积,考虑△ ADC 面积为定值,故只需△APC 面积最大即可,铅垂法可解;过点N 作NE⊥x 轴交x 轴于E 点,如图1,过点M 向NE 作垂线交EN 延长线于易证△OEN≌△ NFM ,可得:NE=FM.22 m3当直角顶点不确定时,问题的一大难点是找出所有情况,而事实上,所有的情况都可以归结为同一个方程:NE=FM .故只需在用点坐标表示线段时加上绝对值,便可计算出可能存在的其他情况.3)F 点,设N 点坐标为m, 24 m3,则NE22m3 ,FM m 1 ,22m34m 2=m31,解得:m17 731) m27 737 73(图4)4对应N 点坐标分别为3 734734m 2=31,解得:m373(图2)、m41 73(图3)4 对应N 点坐标分别为7343 7343 734一般直角三角形存在性,同样构造三垂直,区别于等腰直角构造的三垂直全等,没了等腰的条件只能得到三垂直相似.而题型的变化在于动点或许在某条直线上,也可能在抛物线上等.对称轴上寻找点】(中考真题)如图,已知抛物线y ax2 bx c(a 0)的对称轴为直线x 1 ,且抛物线与x 轴交于 A、B两点,与 y轴交于C点,其中A(1,0),C (0,3).(1)若直线y mx n 经过 B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x 1上找一点 M ,使点 M 到点 A的距离与到点C 的距离之和最小,求出点 M 的坐标;(3)设点 P为抛物线的对称轴x 1上的一个动点,求使BPC 为直角三角形的点 P坐标.分析】1)直线BC:y x3抛物线:y x2 2x3;2)将军饮马问题,考虑到M 点在对称轴上,且点 A 关于对称轴的对称点为点B ,故MA+MC=MB+MC,∴当B、M、C 三点共线时,M到A和C的距离之后最小,此时M 点坐标为(-1,2);3)两圆一线作点P:yx以 P 1 为例,构造△ PNB ∽△ BMC ,考虑到 BM =MC =3,易求 P 2 坐标为( 1,4).P 3、 P 4求法类似,下求 P 3:已知 PN=1, PM=2,设 CN=a ,BM=b , 1a,即 ab=2,由图可知: b-a=3, b2∴BN=PN=2,故 P 1 点坐标为( -1, -2). xx舍),对应 x故可解: 类似可求P 3坐标为1,3217.2由相似得:2 抛物线 y ax 2 2x c 与 x 轴交于 A( 1,0) ,B (3,0)两点,与 y 轴交于点 C ,点 D 是该抛物线的顶点.1)求抛物线的解析式和直线 AC 的解析式;2)请在 y 轴上找一点 M ,使 BDM 的周长最小,求出点 M 的坐标;3)试探究:在拋物线上是否存在点 P ,使以点 A , P , C 为顶点, AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点 P 的坐标;若不存在,请说明理由.抛物线上寻找点】中考真题) 如图,在平面直角坐标系中,分析】1)抛物线:y x2 2x 3 ,直线AC:y=3x+3;2)看图,M 点坐标为(0,3)与C 点重合了.3)考虑到AC 为直角边,有如下两种情况,故分别过A、C 作AC 的垂线,与抛物线交点即为所求P 点,xP:x先求过A 点所作垂线得到的点设P 点坐标为 m, m22m3,则PM=m+1,AM= 0 m22m2m3,易证△ PMA∽△ ANC,且AN =3,m 1 m2 2m 3 ∴ ,解得:31CN=1,m110,3m21(舍),故第1个P点坐标为130, 193再求过点C 所作垂线得到的点PM 3m2m 2m故第2 个P 点坐标为综上所述,P 点坐标为3 2 m2m,CN=m,m17,m2(舍)37,203,910137, 20或3939P:3,解得:1m22m动点还可能在⋯⋯】中考真题)如图,抛物线y ax2 bx 2(a 0)与x轴交于A( 3,0) ,B(1,0)两点,与 y轴交于点C ,直线 y x 与该抛物线交于 E , F 两点.1)求抛物线的解析式.2) P 是直线 EF 下方抛物线上的一个动点,作 PH EF 于点 H ,求 PH 的最大值.3) 以点C 为圆心,1 为半径作圆,e C 上是否存在点 M ,使得BCM 是以CM 为直角边的直角三角形?若存在,直接写出 M 点坐标;若不存在,说明理由.分析】CM 为直角边,故点C 可能为直角顶点,点M 也可能为直角顶点.①当 BCM 为直角时,如图:1)22x32;2) 过点P 作x 轴的垂线交EF 于点Q,所谓PH 最大,即PQ 最大,易解.3)M 1 :不难求得 CF=1,BF=2,故 M 1 坐标为同理可求 M 2 坐标为【总结】 对于大部分直角三角形存在性问题, 构造三垂直全等或相似基本上可解决问题, 牢 记构造步骤:( 1)过直角顶点作水平或竖直线;( 2)过另外两端点向其作垂线.∴ EM 1 : EC 1: 2,又 CM 1 1, 可得: EM 155,EC525 5BOCM 44M 3 :不难发现 CM=1,BC= 5 ,∴ BM 2,即△ MEC ∽△ BFM ,且相似比为 1:2, 设 EC=a , EM=b ,则 FM=2a , BF=2b , 2a 由图可知: 2a2b22,解得:13 54 5故点M 3 的坐标为至于 M 4坐标,显然 1, 2.综上所述, M 点坐标为或 255, 2或 1, 2 .如图: yBO放大C②当∠ BMC 为直角时,y。

中考专题讲解:直角三角形的存在性问题解题策略

中考专题讲解:直角三角形的存在性问题解题策略

中考专题讲解:直角三角形的存在性问题解题策略有关直角三角形的存在性问题,一般都是放在平面直角坐标系中和抛物线结合起来考察,这种题的解法套路一般都是固定的,在学习的过程中只需要牢固掌握直角三角形存在的基本模型:两线一圆,多加练习,这类问题就可以轻松掌握。

一、模型讲解“两线一圆”模型:在平面直角坐标系中遇到直角三角形的相关问题时,通常是以直角顶点作为分类标准,如下图,分别以点A、点B、点M为直角定点来构造直角三角形,然后根据相关条件来进行求解即可。

已知:定点A(2,1)、B(6,4)和动点M(m,0),存在直角三角形。

具体有以下三种情况:(1)过点A作直线AM垂直AB,交x轴于点M;(2)过点B作直线BM垂直AB,交x轴于点M;(3)根据直径所对的圆周角为90度,以AB为直径作圆,交x轴的点即为满足条件的点M(一般情况下有两个交点,特殊情况下只有一个交点),然后根据相关条件来进行求解即可。

作出图形后,具体求解方法有三种:方法一:“K型”图(有的叫“一线三等角”),三角形相似易得△ACM∽△BEA,求得CM,从而求出点M的坐标。

易得△AEB ∽△BFM求得BF,从而得M的坐标方法二:勾股定理∵BH²=BG²-GH² ∵AC²+CM²=AM²BH²=BM²-HM² MD²+BD²=BM²∴BG²-GH² =BM²-HM² AM²+BM²=AB²∴AC²+CM²+MD²+BD²=AB²方法三:解析法(来源于高中的解析几何,虽然有点超纲,但是很多老师都教学生这种方法)K AB ·K AM =-1,直线BM 与x 轴的交点即为M 。

K AB ·K BM =-1,直线A 与x 轴的交点即为M 。

中考压轴题动态几何之直角三角形存在性问题

中考压轴题动态几何之直角三角形存在性问题

中考压轴题动态几何之直角三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写直角三角形存在性问题模拟题.在中考压轴题中,直角三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类.原创模拟预测题1.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△P AB为直角三角形时,AP的长为.原创模拟预测题2.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q 从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?原创模拟预测题3.如图,抛物线212y x bx c =-++与x 轴分别相交于点A (﹣2,0),B (4,0),与y 轴交于点C ,顶点为点P .(1)求抛物线的解析式;(2)动点M 、N 从点O 同时出发,都以每秒1个单位长度的速度分别在线段OB 、OC 上向点B 、C 方向运动,过点M 作x 轴的垂线交BC 于点F ,交抛物线于点H .①当四边形OMHN 为矩形时,求点H 的坐标;②是否存在这样的点F ,使△PFB 为直角三角形?若存在,求出点F 的坐标;若不存在,请说明理由.原创模拟预测题4.如图,已知抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =-,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.原创模拟预测题5.如图,已知直线3y x =-+与x 轴、y 轴分别交于A ,B 两点,抛物线2y x bx c =-++经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.原创模拟预测题6.如图,二次函数2+y x bx c 的图象交x 轴于A (﹣1,0)、B (3,0)两点,交y 轴于点C ,连接BC ,动点P 以每秒1个单位长度的速度从A 向B 运动,动点Q以每秒2个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;t时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ (3)如图2,当2的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.原创模拟预测题7.如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x <4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.原创模拟预测题8.如图,已知二次函数232y ax x c =++的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数232y ax x c =++的表达式; (2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请直接写出此时点N 的坐标;(4)若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.原创模拟预测题9.如图1,一条抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且当x =﹣1和x =3时,y 的值相等,直线421815-=x y 与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M .(1)求这条抛物线的表达式.(2)动点P 从原点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒2个单位长度的速度向点C 运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t 秒.①若使△BPQ 为直角三角形,请求出所有符合条件的t 值;②求t 为何值时,四边形ACQP 的面积有最小值,最小值是多少?(3)如图2,当动点P 运动到OB 的中点时,过点P 作PD ⊥x 轴,交抛物线于点D ,连接OD ,OM ,MD 得△ODM ,将△OPD 沿x 轴向左平移m 个单位长度(0<m <2),将平移后的三角形与△ODM 重叠部分的面积记为S ,求S 与m 的函数关系式.。

直角三角形的存在性问题

直角三角形的存在性问题

直角三角形的存在性问题(因动点产生的直角三角形的存在性问题)课前预热1、两点式2、两直线互相垂直,两直线的解析式为11b x k y +=与22b x k y += → 121-=⋅k k3、三角形相似:射影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=24、三角函数求解新课认知问题提出:已知直角三角形的一边(即直角三角形的两个点确定),求 解第三点解决方法:1、找点方法:双线一圆(两垂线一圆)一圆指以已知边为直径作圆,双线指过线段(边)端点(顶点)做垂线. 2、分析题目中的定长、定角3、确定点的坐标情况分类:(1)当动点在直线上运动时常用方法:①121-=⋅k k ;②三角形相似;③勾股定理;(2)当动点在曲线上运动是时情况分类:①已知点处做直角方法:①121-=⋅k k ;②三角形相似;③勾股定理.②动点处做直角方法:寻找特殊角.动点在直线上运动时例1如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(-1,0),对称轴为直线x=-2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为秒时,△PAD的周长最小?当t为秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由当动点在曲线上运动时 (1)求解过程中只有已知点处做直角例2 如图,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.(2)求解过程中动点处做直角例3 如图,已知抛物线y=x 2+bx+c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ=43AB,求tan ∠CED 的值②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.1、(2012山东枣庄10分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C为 (-1,0) .如图所示,B 点在抛物线y =12x 2+12x -2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌△COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2.已知抛物线y=ax 2+bx+3(a ≠0)经过A (3,0),B (4,1)两点,且与y 轴交于点C .(1)求抛物线y=ax 2+bx+3(a ≠0)的函数关系式及点C 的坐标;(2)如图(1),连接AB ,在题(1)中的抛物线上是否存在点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(2),连接AC ,E 为线段AC 上任意一点(不与A 、C 重合)经过A 、E 、O 三点的圆交直线AB 于点F ,当△OEF 的面积取得最小值时,求点E 的坐标.3、(2012内蒙古)如图,抛物线2y x bx 5=--与x 轴交于A .B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.例1(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+例2(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D 为直角顶点.连接AD ,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AB 2+BD 2=AB 2,∴△ABD 为直角三角形,即点A 为所求的点Q . ∴Q 1(﹣2,0);③以点B 为直角顶点.如图,设Q 2点坐标为(x ,y ),过点Q 2作Q 2K ⊥x 轴于点K ,则Q 2K=﹣y ,OK=x ,BK=8﹣x . 易证△QKB ∽△BOD , ∴,即,整理得:y=2x ﹣16.∵点Q 在抛物线上,∴y=x 2﹣x ﹣4. ∴x 2﹣x ﹣4=2x ﹣16,解得x=6或x=8,当x=8时,点Q 2与点B 重合,故舍去;当x=6时,y=﹣4,∴Q 2(6,﹣4).例3 ⑴∵抛物线的对称轴为直线x=1, ∴1221b b a -=-=⨯ ∴b =-2.∵抛物线与y 轴交于点C (0,-3),∴c =-3,∴抛物线的函数表达式为y =x 2-2x -3.⑵∵抛物线与x 轴交于A 、B 两点,当y =0时,x 2-2x -3=0.∴x 1=-1,x 2=3.∵A 点在B 点左侧,∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y =kx +m , 则033k m m =+⎧⎨-=⎩,∴13k m =⎧⎨=-⎩∴直线BC 的函数表达式为y =x -3. ⑶①∵AB =4,PO =34AB , ∴PO =3∵PO ⊥y 轴∴PO ∥x 轴,则由抛物线的对称性可得点P 的横坐标为12-, ∴P (12-,74-)∴F(0,74 -),∴FC=3-OF=3-74=54.∵PO垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2).过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(12),P2(1-252).练习1、【答案】解:(1)证明:∵∠BCD +∠ACO =90°,∠ACO +∠OAC =90°,∴∠BCD =∠OAC 。

专题10:直角三角形的存在性问题探究

专题10:直角三角形的存在性问题探究

专题十:直角三角形的存在性问题探究引例.如图,在平面直角坐标系中,点C(0,4),射线CE∥x 轴,直线y =-12x +b 交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若△ABD 恰为等腰直角三角形,则b 的值为 .是否存在一点,使之与另外两个定点构成直角三角形的问题:首先弄清题意,注意区分直角顶点;其次借助于动点所在图形的解析式,表示出动点的坐标;然后按分类的情况,利用几何知识建立方程(组),求出动点坐标,注意要根据题意舍去不符合题意的点. 解决方法如下方法一:利用勾股定理进行边长的计算,从而来解决问题;方法二:往往可以利用到一线等三角之K 字(90°)类型和母子相似型类型,尝试建构相应的相似来进行处理;方法三:可利用直径所对的圆周角为90°来处理.导例解析:分三种情况讨论:①当∠ABD =90°时,如图1,b =43;②当∠ADB =90°时,如图2,b =83;③当∠DAB =90°时,如图3,b =2方法点睛专题导入类型一:利用勾股定理来解决直角三角形的存在性问题例1.如图,已知抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,且经过A(1,0),C(0,3)两点,与x 轴的另一个交点为B.(1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式;(2)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.第2题图【分析】(1)首先由题意,根据抛物线的对称称轴公式,待定系数法,建立关于a ,b ,c 的方程组,解方程组可得答案;(2)首先利用勾股这事不师古求得BC ,PB ,PC 的长,然后分别从点B 为直角顶点,点C 为直角顶点,点P 为直角顶点去分析求得答案. 类型二:构造相似来解决直角三角形存在性问题例2.如图①,抛物线y =-13x 2+bx +8与x 轴交于点A(-6,0),点B(点A 在点B 左侧),与y 轴交于点C ,点P 为线段AO 上的一个动点,过点P 作x 轴的垂线l 与抛物线交于点E ,连接AE,EC.(1)求抛物线的解析式及点C 的坐标;典例精讲(2)如图②,当EC ∥x 轴时,点P 停止运动,此时,在抛物线上是否存在点G ,使△AEG 是以AE 为直角边的直角三角形?若存在,请求出点G 的坐标;若不存在,说明理由.【分析】(1)用待定系数法求出抛物线解析式,令x=0时,求出y 轴交点坐标; (2)先求出点P 的坐标,再分两种情况计算:当∠AEG=90°时,判断出△EMG ∽△APE ,得出比例式求解即可;当∠EAG=90°时,判断出△GNA ∽△APE ,得到比例式计算.1. 如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值;(3)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标.2.如图,抛物线y =13x 2+bx +c 与x 轴交于A(3,0),B(-1,0)两点,过点B 作直线BC⊥x 轴,交直线y =-2x 于点C.专题过关(1)求该抛物线的解析式;(2)求该抛物线的顶点D的坐标,并判断顶点D是否在直线y=-2x上;(3)点P是抛物线上一动点,是否存在这样的点P(点A除外),使△PBC是以BC为直角边的直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由;4.如图,在平面直角坐标系中,∠ACB=90°,OC=2O B,tan∠ABC=2,点B的坐标为(1,0),抛物线y=-x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点.过点P作PD垂直x轴于点D,交线段AB于点E,DE.使PE=12①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.5.已知抛物线y=ax2+bx+c的顶点坐标为P(2,4).(1)试写出b,c之间的关系式;(2)当a>0时,若一次函数y=x+4的图象与y轴及该抛物线的交点依次为D,E,F,且E,F的横坐标x1与x2之间满足关系x2=6x1.①求△ODE与△OEF的面积比;②是否存在a,使得∠EPF=90°?若存在,求出a的值;若不存在,请说明理由.6.已知开口向下的抛物线y=ax2﹣2ax+3与x轴的交点为A,B两点(点A在点B的左边),与y轴的交点为C,OC=3OA.(1)请直接写出该抛物线解析式;(2)如图,D为抛物线的顶点,连接BD,BC,P为对称轴右侧抛物线上一点.若∠ABD=∠BCP,求点P的坐标(3)在(2)的条件下,M,N是抛物线上的动点.若∠MPN=90°,直线MN必过一定点,请求出该定点的坐标.答案例1. (1)由题意得{−b2a=−1,a +b +c =0,c =3,解得{a =−1,b =−2,c =3.∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A(1,0),∴B(-3,0).设直线BC 的解析式y =mx +n ,把B(-3,0),C(0,3)分别代入y =mx +n,得{−3m +n =0,n =3.解得{m =1,n =3.∴直线BC 的解析式为y =x +3.∴M(-1,2);(2)设P(-1,t),∵B(-3,0),C(0,3),∴BC 2=18, PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2; ②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4; ③若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18,解得t 1=3+√172,t 2=3−√172.综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+√172),P 4(-1,3−√172).例2(1)∵点A(-6,0)在抛物线y =-13x 2+bx +8上,∴0=-13×(-6)2+(-6b)+8,解得b =-23.∴抛物线的解析式为y =-13x 2-23x +8,令x =0,得y =8,∴C(0,8);(2))存在.如图①,连接EG ,AG ,过点G 作GM ⊥l ,GN ⊥x 轴,垂足分别为M ,N ,图①∵EC ∥x 轴,∴EP =CO =8.把y =8代入y =-13x 2-23x +8,则8=-13x 2-23x +8,解得x =0(舍去)或x =-2.∴P(-2,0) .∴AP =AO -PO =4.(ⅰ)如图①,当∠AEG =90°时,∵∠MEG +∠AEP =90°,∠AEP +∠EAP =90°, ∴∠MEG =∠EAP .又∵∠APE =∠EMG =90°,∴△EMG ∽△APE .∴EM AP =MGEP .设点G(m ,-13m 2-23m +8)(m >0),则GN =MP =-13m 2-23m +8.∴EM =EP -MP =8-(-13m 2-23m +8)=13m 2+23m ,MG =PN =PO +ON =2+m .∴13m 2+23m 4=2+m 8=,∴m =-2(舍去)或m =32.∴G(32,254);(ⅱ)如图②,当∠EAG =90°时,图②∵∠NAG +∠EAP =90°,∠AEP +∠EAP =90°,∴∠NAG =∠AEP .∵∠APE =∠GNA =90°,∴△GNA ∽△APE .∴GN AP =ANEP . 设点G(n ,-13 n 2-23n +8)(n >4),∴GN =13n 2+23n -8,AN =AO +ON =6+n .∴2128334+-n n =68+n .∴n =-6(舍去)或n =112.∴G(112,-234) .综上,符合条件的G 点的坐标为(32,254)或(112,-234).1.(1)由题意得{32+3b +c =0,c =3.,解得{b =−4,c =3.∴抛物线的解析式为y =x 2-4x +3;(2)如图①,过点P 作PG ∥CF 交CB 与点G .图①由题可知,直线BC 的解析式为y =-x +3,OC =OB =3,∴∠OCB =45°.同理可知∠OFE =45°.∴△CEF 为等腰直角三角形.∵PG ∥CF ,∴△GPE 为等腰直角三角形.∵F(0,m),C(0,3),∴CF =3-m .∵△CEF ∽△GEP ,∴EF =√22CF =√22(3-m), PE =√22PG .设P(t ,t 2-4t +3)(1<t<3), 则G(t ,-t +3)PE =√22PG =√22(-t +3-t -m)=√22(-m -2t +3) .∵点P 是直线y =x +m 与抛物线的交点,∴t 2-4t +3=t +m .∴PE +EF =√22 (3-m)+√22 (-m -2t +3)=√22(-2t -2m +6)=-√2 (t +m -3)=-√2 (t 2-4t)= -√2 (t -2)2+4√2.∴当t =2时,PE +EF 最大,最大值为4√2;(3)由(1)知对称轴x =2,设点D(2,n),如图②.专题过关图②当△BCD 是以BC 为直角边的直角三角形时,分两种情况讨论:(ⅰ)D 在C 上方D 1位置时,由勾股定理得CD 12+BC 2=BD 12,即(2-0)2+(n -3)2+(3√2)2=(3-2)2+(0-n)2,解得n =5;(ⅱ)D 在C 下方D 2位置时,由勾股定理得BD 22+BC 2=CD 22即(2-3)2+(n -0)2+(3√2)2=(2-0)2+(n -3)2 ,解得n =-1,综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1). 2.:(1)∵y =13x 2+bx +c 与x 轴交于A(3,0),B(-1,0)两点,∴{13×32+3b +c =0,13×(−1)2−b +c =0.解得{b =−23c =−1.,∴抛物线的解析式为y =13x 2-23x -1; (2)由y =13x 2-23x -1=13(x-1)2-43,∴抛物线的顶点D 的坐标为(1,-43). 把x =1代入y =-2x 中得y =-2.∵-43≠-2,∴顶点D 不在直线y =-2x 上;(3)存在.理由如下:如图,过点C 作x 轴的平行线,与该抛物线交于点P 1,P 2,连接BP 1,BP 2.∵直线BC ⊥x 轴,∴△P 1BC 、△P 2BC 都是直角三角形.把x =-1代入y =-2x 中得y =-2×(-1)=2.∴C(-1,2). ∴把y =2代入y =13x 2-23x -1中,得13x 2-23x -1=2,解得x 1=√10+1,x 2=-√10+1.∴P 1(√10+1,2),P 2(-√10+1,2).3. (1)设抛物线解析式为y =a(x +1)(x -3),即y =ax 2-2ax -3a . ∴-2a =2,解得a =-1,∴抛物线解析式为y =-x 2+2x +3. 当x =0时,y =-x 2+2x +3=3,则C(0,3). 设直线AC 的解析式为y =px +q ,把A(-1,0),C(0,3)代入得{−p +q =0,q =3.解得{p =3,q =3.∴直线AC 的解析式为y =3x +3.(2)∵y=-x 2+2x +3=-(x -1)2+4,∴顶点D 的坐标为(1,4).如图,作B 点关于y 轴的对称点B′,则B′(-3,0),连接DB′交y 轴于M.∵MB=MB′,∴MB+MD =MB′+MD =DB′,此时MB +MD 的值最小.∵BD 的值不变,∴此时△BDM 的周长最小.易得直线DB′的解析式为y =x +3.当x =0时,y =x +3=3,∴点M 的坐标为(0,3).(3)存在,符合条件的点P 的坐标为(73,209)或(103,-139).4.(1)在Rt△ABC 中,由点B 的坐标可知OB =1.∵OC=2OB ,∴OC=2,则BC =3.又∵tan∠ABC=2,∴AC=2BC =6,则点A 的坐标为(-2,6).把点A ,B 的坐标代入抛物线y =-x 2+bx +c 中,得{−4−2b +c =6,−1+b +c =0.解得{b =−3,c =4.∴该抛物线的解析式为y =-x 2-3x +4. (2)①由点A(-2,6)和点B(1,0)的坐标易得直线AB 的解析式为y =-2x +2.如图,设点P 的坐标为(m ,-m 2-3m +4),则点E 的坐标为(m ,-2m +2),点D 的坐标为(m ,0) .则PE =-m 2-m +2,DE =-2m +2,由PE =12DE 得-m 2-m +2=12(-2m +2),解得m =±1.又∵-2<m <1,∴m=-1,∴点P 的坐标为(-1,6).②∵M 在直线PD 上,且P(-1,6),设M(-1,y),∴AM 2=(-1+2)2+(y -6)2=1+(y -6)2,BM 2=(1+1)2+y 2=4+y 2,AB 2=(1+2)2+62=45. 分三种情况:(ⅰ)当∠AMB=90°时,有AM 2+BM 2=AB 2,∴1+(y -6)2+4+y 2=45,解得y =3±√11. ∴M(-1,3+√11)或(-1,3-√11);(ⅱ)当∠ABM=90°时,有AB 2+BM 2=AM 2,∴45+4+y 2=1+(y -6)2,解得y =-1,∴M(-1,-1).(ⅲ)当∠BAM=90°时,有AM 2+AB 2=BM 2,∴1+(y -6)2+45=4+y 2,解得y =132,∴M(-1,132).综上所述,点M 的坐标为(-1,3+√11)或(-1,3-√11)或(-1,-1)或(-1,132). 5.(1)∵抛物线顶点坐标为(2,4),∴抛物线解析式为y=a (x ﹣2)2+4=ax 2﹣4ax+4a+4,∴b=﹣4a ,c=4a+4.∴b+c=4;(2)①由题意可知△ODE 和△ODF 的底边DE 、DF 边上的高相同,∴S △ODE :S △ODF =DE :DF=x 1:x 2=1:6.∴S △ODE :S △OEF =1:5;②如图,分别过E ,F 作x 轴的垂线,垂足分别为G 、H ,交直线DP 于点M 、N , ∵直线y=x+4,∴设点E 坐标为(m ,m+4),则点F 的坐标为(6m ,6m+4).∴EM=EG ﹣MG=m+4﹣4=m ,FN=FH ﹣NH=6m+4﹣4=6m ,PM=PD ﹣MD=2﹣m ,PN=DN ﹣PD=6m ﹣2, ∵∠EPF=90°,∴∠EPM+∠FPN=90°,且∠FPN+∠PFN=90°.∴∠EPM=∠PFN . ∴△EPM ∽△PEN .∴EM PN =PM FN ,即m 6m−2=2−m 6m .整理可得6m 2+7m+2=0,解得m=12或m=23, 当m=12时,点E (12,92),F (3,7),把F 点坐标代入抛物线解析式可得a+4=7,解得a=3, ∴抛物线解析式为y=3(x ﹣2)2+4,当x=12时,代入可求得y=434≠92,即点E 不在该抛物线图象上,不符合题意.当m=23时,点E (23, 143),F (4,8),把F 点坐标代入抛物线解析式可求得a=1.∴抛物线解析式为y=(x ﹣2)2+4.当x=23时,代入可求得y=529≠143,即点E 不在抛物线图象上,不符合题意,综上可知不存在满足条件的a 的值.6.(1)当x=0时,y=ax2﹣2ax+3=3,∴C(0,3),OC=3OA=3.∴OA=1,A(﹣1,0).把点A(﹣1,0)代入抛物线解析式,得:a+2a+3=0,解得a=﹣1.∴抛物线解析式为y=﹣x2+2x+3;(2)如图1,若点P在抛物线对称轴右侧且在x轴上方,过点P作PE∥y轴交BC于点E,PF⊥BC于点F,过点D作DH⊥x轴于点H,∴∠CFP=∠BHD=90°.∵当y=﹣x2+2x+3=0时,解得:x1=﹣1,x2=3.∴A(﹣1,0),B(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4).∴DH=4,BH=3﹣1=2.∴BD==.∴Rt △BDH 中,sin ∠ABD =DH BD ==.∵C (0,3)∴BC PC 设直线BC 解析式为y =kx+b ,∴30,0 3.k b b +=⎧⎨+=⎩解得:1,3.k b =-⎧⎨=⎩, ∴直线BC 解析式为y =﹣x+3.设P (p ,﹣p 2+2p+3)(1<p <3),则E (p ,﹣p+3),∴PE =﹣p 2+2p+3﹣(﹣p+3)=﹣p 2+3p . ∵S △BCP =12PE•OB=12BC•PF,∴PF =22PE OB BC ⋅==.∵∠ABD =∠BCP ,∴Rt △CPF 中,sin ∠BCP =PE PC =sin ∠ABD =5.∴PF PC .∴PF 2=45PC 2.解得p 1=﹣1(舍去),p 2=53. ∴﹣p 2+2p+3=329.∴点P 坐标为(53,329). 如图2,若点P 在x 轴下方,∵tan ∠ABD =DH BH=2>tan45°,∴∠ABD >45°. ∵∠BCP <∠BOC 即∠BCP <45°,∴∠ABD 与∠BCP 不可能相等.综上所述,点P 坐标为(53,329); (3)如图3,过P 作PH ∥y 轴,分别过点M 、N 作MG ⊥PH 于G ,NH ⊥PH 于H .设直线MN 的解析式为y =kx+n ,M (x 1,y 1)、N (x 2,y 3),令kx+n =﹣x 2+2x+3,即=x 2+(k ﹣2)x+n ﹣3=0,∴x 1+x 2=2﹣k ,x 1x 2=n ﹣3.∴y 1+y 2=k (x 1+x 2)+2n =k (2﹣k )+2n .y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+nk (x 1+x 2)+n 2=﹣3k 2+2nk+n 2, ∵∠G =∠MPN =∠H ,∴△MPG ∽△PNH .∴MG GP PH HN= . ∵P 坐标为(53,329),MG =53﹣x 1,PH =y 1﹣329,HN =253x -,GP =2329y -. ∴12115323932593x y y x --=--.整理,得12121212255321024()()93981x x x x y y y y -++=++-. ∴222255321024(2)3(22)3293981k n y k k n k nk n --+-=-++---. 解得 k 1=﹣3n+233,k 2=332515n -+. ∴直线MN ;y =(﹣3n+233)x+n =(﹣3x+1)n+233,过定点(13,239);或y=(332515n-+)x+n=(513x-+)n+3215,过定点(53,329)即P点,舍去.∴直线MN过定点(13,239).。

直角三角形存在性问题专题攻略

直角三角形存在性问题专题攻略

一、专题攻略1、解直角三角形的存在性问题,一般分三个步骤第一步寻找分类标准,第二步列方程,第三步解方程并验根。

2、解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起。

3、一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程。

4、在平面直角坐标系中,两点间的距离公式常常用得到。

5、有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便。

二、典型例题例、如图,在直角坐标平面内,O为原点,二次函数y=-x2十2x+ 3的图象与,轴交于点A,与y 轴交于点B,顶点为P.如果点Q是x轴上一点,以点A、P、Q为顶点的三角形是直角三角形,求点Q的坐标三、针对训练1.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC.设AB=x,若△ABC 为直角三角形,求x的值.【考点】旋转的性质;勾股定理的逆定理.【专题】分类讨论.【分析】根据三角形的三边关系:两边之和大于第三边,即可得到关于x的不等式组,求出x的取值范围,再根据勾股定理,即可列方程求解.【解答】解:∵在△ABC中,AC=1,AB=x,BC=3﹣x.∴,解得1<x<2;①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解,②若AB为斜边,则x2=(3﹣x)2+1,解得x=,满足1<x<2,③若BC为斜边,则(3﹣x)2=1+x2,解得x=,满足1<x<2,故x的值为:或.故答案为:或.【点评】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键.2.如图,已知在平面直角坐标系中,点A的坐标为(﹣2,0),点B是点A关于原点的对称点,P是函数图象上的一点,且△ABP是直角三角形.(1)求点P的坐标;(2)如果二次函数的图象经过A、B、P三点,求这个二次函数的解析式;(3)如果第(2)小题中求得的二次函数图象与y轴交于点C,过该函数图象上的点C,点P的直线与x轴交于点D,试比较∠BPD与∠BAP的大小,并说明理由.【考点】二次函数综合题.【专题】综合题.【分析】(1)先求得B点坐标,再分析△ABP满足是直角三角形时P点的情况,可分为AB为直角边和AB为斜边两种情况作答.(2)对(1)求得的P点坐标分别讨论是否满足二次函数抛物线,求得二次函数的解析式.(3)由点的坐标可证得△PBD∽△APD,则∠BPD与∠BAP满足相等.【解答】解:(1)由题意,得点B的坐标为(2,0).设点P的坐标为(x,y),由题意可知∠ABP=90°或∠APB=90°.(i)当∠ABP=90°时,x=2,y=1,∴点P坐标是(2,1);(ii)当∠APB=90°时,PA2+PB2=AB2,即(x+2)2+y2+(x﹣2)2+y2=16①.又由,可得y2=,代入①解得:(负值不合题意,舍去).当时,.∴点P点坐标是(,).综上所述,点P坐标是(2,1)或(,).(2)设所求的二次函数的解析式为y=ax2+bx+c(a≠0),(i)当点P的坐标为(2,1)时,点A、B、P不可能在同一个二次函数图象上;(ii)当点P的坐标为(,)时,代入A、B、P三点的坐标,解得:∴所求的二次函数解析式为.(3)∠BPD=∠BAP.证明如下:∵点C坐标为(0,),∴直线PC的表达式为.∴点D坐标为(,0).∴PD=2,BD=,AD=.,∴.∵∠PDB=∠ADP,∴△PBD∽△APD.∴∠BPD=∠BAP.【点评】本题考查了二次函数的综合应用,重点是求解函数的解析式.3.如图,抛物线y=ax2+bx﹣3与x轴交于两点A(1,0)、B(3,0),与y轴交于点D.(1)求抛物线的解析式;(2)在抛物线是否存在一点P,使得△BDP是以BD为斜边的直角三角形,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求出二次函数解析式即可;(2)过P作x轴的平行线交Y轴于E点,过B点作X轴的垂线交EP的延长线于F点,利用三角形相似得出P点的坐标;(3)利用△AMN∽△CDB,当N在A点左边时,当N在A点右边时,当N在A点右边时,当N在A点左边时分别得出即可.【解答】解:(1)∵抛物线y=ax2+bx﹣3与x轴交于两点A(1,0)、B(3,0),∴0=a+b﹣3,0=9a+3b﹣3,解得:a=﹣1,b=4,∴y=﹣x2+4x﹣3;(2)如图1,过P作x轴的平行线交Y轴于E点,过B点作X轴的垂线交EP的延长线于F点,设P(t,﹣t2+4t﹣3),当P点在第一象限时,则DE=﹣t2+4t,PF=3﹣t,PE=t,BF=﹣t2+4t﹣3,可证△DEP∽△PFB,,,可求得,所以P(,),同理,当P点在第四象限时,可求得P(,);(3)如图2,设N(m,0)则M(m,﹣m2+4m﹣3),MN=m2﹣4m+3若△AMN∽△CDB,,当N在A点左边时AN=1﹣m,,m=0或m=1(舍),所以M(0,﹣3),当N在A点右边时AN=m﹣1,,m=6或m=1(舍),所以M(6,﹣15),若△MAN∽△CDB,,当N在A点左边时AN=1﹣m,,m=(舍)或m=1(舍),所以此时M不存在,当N在A点右边时AN=m﹣1,,m=或m=1(舍),所以M(,),综上M1(0,﹣3)M2(6,﹣15)M3(,).【点评】此题主要考查了二次函数的综合应用,(2)(3)小题中,都用到了分类讨论的数学思想,难点在于考虑问题要全面,做到不重不漏.四、三年真题4.(15宜宾24)如图,抛物线y=﹣x2+bx+c与x轴分别相交于点A(﹣2,0),B(4,0),与y轴交于点C,顶点为点P.(1)求抛物线的解析式;(2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.①当四边形OMHN为矩形时,求点H的坐标;②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把A(﹣2,0),B(4,0),代入抛物线y=﹣x2+bx+c,求出b、c即可;(2)①表示出ON、MH,运用ON=MH,列方程求解即可;②存在,先求出BC的解析式,根据互相垂直的直线一次项系数积等于﹣1,直线经过点P,待定系数法求出直线PF的解析式,求直线BC与直线PF的交点坐标即可.【解答】解:(1)把A(﹣2,0),B(4,0),代入抛物线y=﹣x2+bx+c得:解得:b=1,c=4,∴y=﹣x2+x+4;(2)点C的坐标为(0,4),B(4,0)∴直线BC的解析式为y=﹣x+4,①根据题意,ON=OM=t,MH=﹣t2+t+4∵ON∥MH∴当ON=MH时,四边形OMHN为矩形,即t=﹣t2+t+4解得:t=2或t=﹣2(不合题意舍去)把t=2代入y=﹣t2+t+4得:y=2∴H(2,2);②存在,当PF⊥BC时,∵直线BC的解析式为y=﹣x+4,∴设PF的解析式为y=x+b,又点P(1,)代入求得b=,∴根据题意列方程组:解得:∴F(,)当PF⊥BP时,∵点P(1,),B(4,0),∴直线BP的解析式为:y=﹣x+6,∴设PF的解析式为y=x+b,又点P(1,)代入求得b=,∴根据题意列方程组:解得:∴F(,),综上所述:△PFB为直角三角形时,点F的坐标为(,)或(,).【点评】本题考查了待定系数法求直线和抛物线解析式,求顶点坐标,矩形的判定与性质以及两直线互相垂直的性质,本题有一定的综合性,难度不大,关键是掌握两直线互相垂直的性质.5.(16白银张掖28)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线,直线解析式;(2)分两种情况进行计算即可;(3)确定出面积达到最大时,直线PC和抛物线相交于唯一点,从而确定出直线PC解析式为y=﹣x+,根据锐角三角函数求出BD,计算即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点,∴,∴,∴y=﹣x2+2x+3,设直线AB的解析式为y=kx+n,∴,∴,∴y=﹣x+3;(2)由运动得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF为直角三角形,∴①△AOB∽△AEF,∴,∴,∴t=,②△AOB∽△AFE,∴,∴,∴t=1;(3)如图,存在,过点P作PC∥AB交y轴于C,∵直线AB解析式为y=﹣x+3,∴设直线PC解析式为y=﹣x+b,联立,∴﹣x+b=﹣x2+2x+3,∴x2﹣3x+b﹣3=0∴△=9﹣4(b﹣3)=0∴b=,∴BC=﹣3=,x=,∴P(,).过点B作BD⊥PC,∴直线BD解析式为y=x+3,∴BD=,∴BD=,∵AB=3S最大=AB×BD=×3×=.即:存在面积最大,最大是,此时点P(,).【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,相似三角形的性质和判定,平行线的解析式的确定方法,互相垂直的直线解析式的确定方法,解本题的关键是确定出△PAB面积最大时点P的特点.6.(16重庆B卷26)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H (不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K是直角三角形时,求t的值.【考点】二次函数综合题.【分析】(1)根据S△AMO:S四边形AONB=1:48,求出三角形相似的相似比为1:7,从而求出BN,继而求出点B的坐标,用待定系数法求出直线解析式.(2)先判断出PE×PF最大时,PE×PD也最大,再求出PE×PF最大时G(5,),再简单的计算即可;(3)由平移的特点及坐标系中,两点间的距离公式得A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,最后分三种情况计算即可.【解答】解:(1)∵点C是二次函数y=x2﹣2x+1图象的顶点,∴C(2,﹣1),∵PE⊥x轴,BN⊥x轴,∴△MAO∽△MBN,∵S△AMO:S四边形AONB=1:48,∴S△AMO:S△BMN=1:49,∴OA:BN=1:7,∵OA=1∴BN=7,把y=7代入二次函数解析式y=x2﹣2x+1中,可得7=x2﹣2x+1,∴x1=﹣2(舍),x2=6∴B(6,7),∵A的坐标为(0,1),∴直线AB解析式为y=x+1,∵C(2,﹣1),B(6,7),∴直线BC解析式为y=2x﹣5.(2)如图1,设点P(x0,x0+1),∴D(,x0+1),∴PE=x0+1,PD=3﹣x0,∵∠DPF固定不变,∴PF:PD的值固定,∴PE×PF最大时,PE×PD也最大,PE×PD=(x0+1)(3﹣x0)=﹣x02+x0+3,∴当x0=时,PE×PD最大,即:PE×PF最大.此时G(5,)∵△MNB是等腰直角三角形,过B作x轴的平行线,∴BH=B1H,GH+BH的最小值转化为求GH+HB1的最小值,∴当GH和HB1在一条直线上时,GH+HB1的值最小,此时H(5,6),最小值为7﹣=(3)令直线BC与x轴交于点I,∴I(,0)∴IN=,IN:BN=1:2,∴沿直线BC平移时,横坐标平移m时,纵坐标则平移2m,平移后A′(m,1+2m),C′(2+m,﹣1+2m),∴A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,当∠A′KC′=90°时,A′K2+KC′2=A′C′2,解得m=,此时t=m=2±;当∠KC′A′=90°时,KC′2+A′C′2=A′K2,解得m=4,此时t=m=4;当∠KA′C′=90°时,A′C′2+A′K2=KC′2,解得m=0,此时t=0.【点评】此题是二次函数综合题,主要考查了相似三角形的性质,待定系数法求函数解析式,两点间的距离公式,解本题的关键是相似三角形的性质的运用.7.(14年福州21)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.【考点】相似形综合题.【专题】几何动点问题;压轴题.【分析】(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.【解答】(1)解:当t=秒时,OP=2t=2×=1.如答图1,过点P作PD⊥AB于点D.在Rt△POD中,PD=OP•sin60°=1×=,∴S△ABP=AB•PD=×(2+1)×=.(2)解:当△ABP是直角三角形时,①若∠A=90°.∵∠BOC=60°且∠BOC>∠A,∴∠A≠90°,故此种情形不存在;②若∠B=90°,如答图2所示:∵∠BOC=60°,∴∠BPO=30°,∴OP=2OB=2,又OP=2t,∴t=1;③若∠APB=90°,如答图3所示:过点P作PD⊥AB于点D,则OD=OP•sin30°=t,PD=OP•sin60°=t,∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.在Rt△ABP中,由勾股定理得:PA2+PB2=AB2∴(AD2+PD2)+(BD2+PD2)=AB2,即[(2+t)2+(t)2]+[(1﹣t)2+(t)2]=32解方程得:t=或t=(负值舍去),∴t=.综上所述,当△ABP是直角三角形时,t=1或t=.(3)证明:如答图4,过点O作OE∥AP,交PB于点E,则有,∴PE=PB.∵AP=AB,∴∠APB=∠B,∵OE∥AP,∴∠OEB=∠APB,∴∠OEB=∠B,∴OE=OB=1,∠3+∠B=180°.∵AQ∥PB,∴∠OAQ+∠B=180°,∴∠OAQ=∠3;∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,∴∠1=∠2;∴△OAQ∽△PEO,∴,即,化简得:AQ•PB=3.【点评】本题是运动型综合题,考查了相似三角形的判定与性质、解直角三角形、勾股定理、一元二次方程等多个知识点.第(2)问中,解题关键在于分类讨论思想的运用;第(3)问中,解题关键是构造相似三角形,本问有多种解法,可探究尝试.五、两年模拟8.(2015年曲靖麒麟区中考模拟第24题)如图,过点C(0,2)的抛物线与直线AD交于A(﹣1,0),D(3,2)两点.(1)求直线AD和抛物线的解析式;(2)点M为抛物线对称轴上一点,求MA+MC最小时点M的坐标;(3)在y轴上是否存在点P使△PAD是直角三形?若存在,求出点P坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)设出一次函数、二次函数解析式分别为y=kx+b,y=ax2+bx+c,将函数图象上的点代入,即可求函数解析式;(2)连接BC,与对称轴交于M,此时MA+MC最小.求出BC解析式,将M点横坐标代入即可求出其纵坐标;(3)分四种情况讨论:①当∠AP1D=90°时,△DCP1∽△P1OA;②∠AP2D=90°时,△AOP2∽△P2CD;③设AP3解析式为y=﹣2x+s,将A(﹣1,0)分别代入解析式,求出s的值;④设AP4解析式为y=﹣2x+t,将A(3,2)分别代入解析式得,t=8.【解答】解:(1)设AD的解析式为y=kx+b,将A(﹣1,0),D(3,2)分别代入解析式得,,解得,∴AD的解析式为y=x+.设抛物线的解析式为y=ax2+bx+c,将A(﹣1,0),C(0,2),D(3,2)分别代入解析式得,解得,,函数解析式为y=﹣x2+x+2.(2)如图1,连接BC,与对称轴交于M,此时MA+MC最小.设BC解析式为y=ax+b,把B(4,0),C(0,2)代入解析式得,,解得,则y=﹣x+2,当x=﹣=时,y=﹣×+2=,∴M(,).(3)①当∠AP1D=90°时,△DCP1∽△P1OA,∴=,即=,∴P1C2+2P1C=3,解得,P1C=1,P1C=﹣3(舍去).∴P1O=3,∴P1(0,3).②∠AP2D=90°时,△AOP2∽△P2CD,∴=,即=,∴P2O2+2P2O=3,解得,P2O=1,P2O=﹣3(舍去).∴P2O=3,∴P2(0,﹣3).③如图3,∵AP3⊥AD,DP4⊥AD,且AD解析式为y=x+,设AP3解析式为y=﹣2x+s,将A(﹣1,0)分别代入解析式得,s=﹣2,解析式为y=﹣2x﹣2,当x=0时,y=﹣2,则得P3(0,﹣2),④设AP4解析式为y=﹣2x+t,将A(3,2)分别代入解析式得,t=8,解析式为y=﹣2x+8,当x=0时,y=8,则得P4(0,8).【点评】本题考查了二次函数综合题,涉及待定系数法求二次函数解析式和一次函数解析式、轴对称最短路径问题、存在性问题和相似三角形的判定与性质,难度较大.9.(2016年汕头潮阳区中考模拟第25题)如图所示,在平面直角坐标系xOy中,Rt△AOB的直角边OB,OA分别在x轴上和y轴上,其中OA=2,OB=4,现将Rt△AOB绕着直角顶点O按逆时针方向旋转90°得到△COD,已知一抛物线经过C、D、B三点.(1)该抛物线的解析式为;(2)设点E是抛物线上位于第一象限的动点,过点E作EF⊥x轴于点F,并交直线AB于N,过点E再作EM⊥AB于点M,求△EMN周长的最大值;(3)当△EMN的周长最大时,在直线EF上是否存在点Q,使得△QCD是以CD为直角边的直角三角形?若存在请求出点Q的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=ax2+bx+c.由线段OA、OB的长度可得出点A、B的坐标,再由旋转的特性可得出点C、D的坐标,由点B、C、D三点的坐标利用待定系数法即可求出抛物线的解析式;(2)在Rt△AOB中,找出∠ABO的正弦余弦值,再根据相似三角形的判定定理找出△EMN∽△BFN,从而得出∠MEN=∠FBN,用EN的长度来表示出EM和MN的长度,由点A、B的坐标利用待定系数法求出直线AB的函数解析式,设出点E的坐标为(t,﹣+t+4)(0<t<4),即可找出点N的坐标为(t,﹣t+2),从而得出线段EN的长度,将EN、MN、EM相加即可得出△EMN的周长,根据二次函数的性质可求出EN的最大值,由此即可得出结论;(3)结合(2)的结论可知直线EF的解析式为x=,分∠QDC=90°和∠DCQ=90°两种情况来考虑,利用相似三角形的性质找出相似边的比例关系来找出线段的长度,再根据点与点间的数量关系即可找出点Q的坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c.∵OA=2,OB=4,∴点A(0,2),点B(4,0),由旋转的特性可知:点C(﹣2,0),点D(0,4).将点B(4,0)、点C(﹣2,0)、点D(0,4)代入到抛物线解析式得:,解得:.∴该抛物线的解析式为y=﹣+x+4.故答案为:y=﹣+x+4.(2)依照题意画出图形,如图1所示.在Rt△AOB中,OA=2,OB=4,∴AB===2,∴sin∠ABO=,cos∠ABO=.∵EM⊥AB,EF⊥OB,∴∠EMN=∠BFN=90°.∵∠BNF=∠ENM,∴△EMN∽△BFN,∴∠MEN=∠FBN.在Rt△EMN中,sin∠MEN=,cos∠MEN=,∴MN=EN•sin∠MEN=EN•sin∠ABO=EN,EM=EN•cos∠MEN=EN•cos∠ABO=EN.∴C△EMN=EM+MN+EN=EN+EN+EN=EN.由(1)知A(0,2)、B(4,0),设直线AB的解析式为:y=kx+2,∴4k+2=0,解得:k=﹣,∴直线AB的解析式为:y=﹣x+2.设抛物线上点E的坐标为(t,﹣+t+4)(0<t<4),∵EF⊥OB,∴令y=﹣x+2中x=t,y=﹣t+2,∴点N的坐标为(t,﹣t+2),∴EN=﹣+t+4﹣(﹣t+2)=﹣+t+2.∴C△EMN=(﹣+t+2)=﹣+t+(0<t<4).∴当t=﹣=时,EN最大,此时C△EMN最大,∴C△EMN最大为:[﹣+2]=.(3)由(2)知,当C△EMN取最大值时,EF的解析式为:x=.①若∠QDC=90°,过点Q作QG⊥y轴于点G,如图2所示.∵EF的解析式为:x=,∴QG=,∵∠QDG+∠DQG=90°,∠CDO+∠QDG=90°,∴∠DGQ=∠CDO,又∵∠QGD=∠DOC=90°,∴△QDG∽△DCO,∴,∴DG=2×=.∴OG=OD﹣DG=4﹣=,∴点Q的坐标为(,);②若∠DCQ=90°,如图3所示.CF=﹣(﹣2)=,∵∠QCF+∠OCD=90°,∠CDO+∠OCD=90°,∴∠QCF=∠CDO,又∵∠CFQ=∠DOC=90°,∴△COD∽△QFC,∴,即,∴FQ=,∴点Q的坐标为(,﹣).综上所述,当点Q的坐标为(,)或(,﹣)时,使得△QCD是以CD为直角边的直角三角形.【点评】本题考查了二次函数的性质、待定系数法求函数解析式、相似三角形的判定及性质以及三角形的周长,解题的关键是:(1)求出点B、C、D的坐标;(2)用线段EN的长度来表示△EMN 的周长;(3)分两种情况考虑.本题属于中档题,难道不大,但非常繁琐,解决该题型题目时,依据题意作出图形,利用数形结合来解决问题是关键。

中考数学复习④ 直角三角形存在性问题探究

中考数学复习④ 直角三角形存在性问题探究

类型④直角三角形存在性问题探究,备考攻略)1.“某图形(直线或抛物线)上是否存在一点,使之与另两定点构成直角三角形”的问题.2.“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题.1.利用勾股定理计算,在解一元二次方程时计算错误.2.分类讨论漏解.3.利用相似三角形解决问题不熟练.1.若夹直角的两边与y轴都不平行:先设出动点坐标,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可.2.若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式.补救措施是:过余下的那一个点(没在平行于y轴的那条直线上的点)直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定.3.直接利用勾股定理进行计算,当已知直角三角形的三边中任意两边的长,可以直接求第三边的长.4.利用勾股定理建立方程:勾股定理是表示三边之间的关系,只有在两边确定的情形下,才可以直接利用公式求第三边,但有时题目的条件,却不能满足这点,这时可以引入未知数,让未知数参与运算,最后通过列方程求解.5.利用勾股定理判断三角形是否为直角三角形,当三角形三边关系满足勾股定理时,三角形一定是直角三角形.6.将一般的几何问题构造出直角三角形,再用勾股定理求解.7.建立直角三角形模型.8.根据条件特点,选用适当的锐角三角函数解决问题.1.分别表示出构成直角三角形的三条边的平方,再利用勾股定理分类讨论符合题意的动点的值.2.如果利用勾股定理不能求的边可以考虑利用相似的性质求解.,典题精讲)◆利用勾股定理建立方程【例1】(2017通辽中考)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(-2,0),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数解析式;(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.【解析】(1)利用待定系数法求抛物线的函数解析式;(2)由轴对称的最短路径得:因为B 与C 关于对称轴对称,所以连接AB 交对称轴于点D ,此时△ACD 的周长最小,利用勾股定理求其三边相加即可;(3)存在,当A 和C 分别为直角顶点时,画出直角三角形,设P(1,y),根据直角三角形相似列比例式可得P 的坐标.【答案】解:(1)把点A(-2,0),B(2,2)代入抛物线y =ax 2+bx +2中,⎩⎨⎧4a -2b +2=0,4a +2b +2=2,解得⎩⎨⎧a =-14,b =12,∴抛物线函数解析式为:y =-14x 2+12x +2;(2)y =-14x 2+12x +2=-14(x -1)2+94,∴对称轴是直线x =1,如图①,过B 作BE ⊥x轴于E ,∵C(0,2),B(2,2),对称轴是直线x =1,∴C 与B 关于直线x =1对称,∴CD =BD ,连接AB 交对称轴于点D ,此时△ACD 的周长最小,∵BE =2,AE =2+2=4,OC =2,OA =2,∴AB =22+42=25,AC =22+22=22,∴△ACD 的周长=AC +CD +AD =AC +BD +AD =AC +AB =22+2 5.答:△ACD 的周长的最小值是22+2 5.图①(3)存在.分两种情况:①当∠ACP =90°时,△ACP 是直角三角形,如图②.过P 作PG ⊥y 轴于G ,设P(1,y),则△CGP ∽△AOC ,∴PG OC =CG AO ,∴12=CG2,∴CG =1,∴OG =2-1=1,∴P(1,1);图②②当∠CAP =90°时,△ACP 是直角三角形,如图③,设P(1,y),则△PEA ∽△AOC ,∴AE OC =PE AO ,∴32=PE2,∴PE =3,∴P(1,-3). 综上所述,△ACP 是直角三角形时,点P 的坐标为(1,1)或(1,-3).图③◆利用勾股定理不能求的边可以考虑利用相似的性质求解【例2】(2016昆明中考)如图①,对称轴为直线x =12的抛物线经过B(2,0),C(0,4)两点,抛物线与x 轴的另一交点为A.(1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上的一点,设四边形COBP 的面积为S ,求S 的最大值; (3)如图②,若M 是线段BC 上一动点,在x 轴是否存在这样的点Q ,使△MQC 为等腰三角形且△MQB 为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.图① 图②【解析】(1)由对称轴的对称性得出点A 的坐标,由待定系数法求出抛物线的解析式;(2)作辅助线把四边形COBP 分成梯形和直角三角形,表示出面积S ,化简后是一个关于S 的二次函数,求最值即可;(3)画出符合条件的Q 点,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△COB 和直角△QMB 中利用正切和勾股定理求出即可.【答案】解:(1)∵抛物线的对称轴为直线x =12,且抛物线经过B(2,0),∴A(-1,0),设抛物线的解析式为:y =a(x +1)(x -2)(a ≠0), 把C(0,4)代入抛物线y =a(x +1)(x -2), ∴4=-2a , ∴a =-2,∴y =-2(x +1)(x -2),∴抛物线的解析式为:y =-2x 2+2x +4;图①(2)如图①,设点P(m ,-2m 2+2m +4),过点P 作PD ⊥x 轴,垂足为点D , ∴S =S梯形PCOD +S △PDB =12m(-2m 2+2m +4+4)+12(-2m 2+2m +4)(2-m)=-2m 2+4m +4=-2(m -1)2+6,∵-2<0,∴当m =1时,S 有最大值,则S 最大=6;(3)存在这样的点Q ,使△MQC 为等腰三角形且△MQB 为直角三角形.理由:分以下两种情况:图②①如图②所示,当∠BQM =90°时, ∵∠CMQ >90°,∴只能CM =MQ.设直线BC 的解析式为:y =kx +b(k ≠0),把B(2,0),C(0,4)代入得:⎩⎨⎧2k +b =0,b =4,解得⎩⎨⎧k =-2,b =4,∴直线BC 的解析式为:y =-2x +4, 设M(m ,-2m +4),则MQ =-2m +4,OQ =m ,BQ =2-m ,∵B(2,0),C(0,4), ∴OB =2,OC =4,∴在Rt △OBC 中,BC =OB 2+OC 2=22+42=25, ∵OC ⊥AB ,MQ ⊥AB , ∴MQ ∥OC ,∴△BMQ ∽△BCO , ∴BM BC =BQ BO ,即BM 25=2-m2, ∴BM =5(2-m)=25-5m ,∴CM =BC -BM =25-(25-5m)=5m , ∵CM =MQ ,图③∴5m =-2m +4,∴m =45+2=45-8.∴Q(45-8,0);②如图③所示,当∠QMB =90°时, ∵∠CMQ =90°, ∴只能CM =MQ , 设M(m ,-2m +4),在Rt △COB 和Rt △QMB 中, ∵tan ∠CBO =tan ∠MBQ =OC OB =MQBM=2, 由①知BM =22-5m , MQ =CM =5m ,∴tan ∠MBQ =MQ BM =5m25-5m =2,∴m =43,∴M ⎝⎛⎭⎫43,43. ∴BM =25-5m =235,MQ =5m =435,∴BQ =BM 2+MQ 2=103,∴OQ =BQ -OB =103-2=43,∴Q ⎝⎛⎭⎫-43,0, 综上所述,Q 点坐标为(45-8,0)或⎝⎛⎭⎫-43,0.(2017内江中考)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c(a ≠0)与y 轴交于点C(0,3),与x 轴交于A ,B 两点,点B 坐标为(4,0),抛物线的对称轴为直线x =1. (1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 值;若不存在,请说明理由.解:(1)∵点B 坐标为(4,0),抛物线的对称轴为直线x =1. ∴A(-2,0),把点A(-2,0),B(4,0),C(0,3),分别代入y =ax 2+bx +c(a ≠0),得⎩⎨⎧4a -2b +3=0,16a +4b +3=0,c =3,解得⎩⎨⎧a =-38,b =34,c =3,∴抛物线的解析式为y =-38x 2+34x +3;图①(2)设运动时间为t s ,则AM =3t ,BN =t. ∴MB =6-3t.∵B(4,0),C(0,3), ∴OB =4,OC =3, 在Rt △BOC 中,BC =OB 2+OC 2=32+42=5. 如图①,过点N 作NH ⊥AB 于点H. ∴NH ∥CO ,∴△BHN ∽△BOC , ∴HN OC =BN BC ,即HN 3=t 5,∴HN =35t. ∴S △MBN =12MB·HN =12(6-3t)·35t=-910t 2+95t =-910(t -1)2+910,∴-910<0,∴当t =1时,S 有最大值,S △MBN 最大=910.答:运动1 s 使△MBN 的面积最大,最大面积是910;图②(3)如图②,在Rt △OBC 中,cos B =OB BC =45.设运动时间为t s ,则AM =3t ,BN =t. ∴MB =6-3t.①当∠MNB =90°时,cos B =BN MB =45,即t 6-3t =45,∴t =2417;②当∠BMN =90°时,cos B =MB BN =45,即6-3t t =45,∴t =3019,综上所述,t 的值为2417或3019 s 时,△MBN 为直角三角形.。

中考二次函数与直角三角形有关的问题知识解读

中考二次函数与直角三角形有关的问题知识解读

二次函数与直角三角形有关的问题知识解读【专题说明】二次函数之直角三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的直角三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。

【解题思路】直角三角形的存在性问题1.找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点2.方法:(1)以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1(2)以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解下面主要介绍2种常用方法:【方法1 几何法】“两线一圆”(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C;(2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C;(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C.(直径所对的圆周角为直角)如何求得点坐标?以C2为例:构造三垂直.),坐标为(故代入得:坐标得、由,易证0213232222C C C BN AM B A N MB BN AM BN AMB ===∆≈∆()),坐标为(,,坐标为故或故又即代入得:设,,坐标得、由求法相同,如下:易证、040231a ,4a ,3ab ,3ab 1N a,31,4333333343C C C C C C C C C C b b M BN AM B A NBM N AMNB AM ==+=======∆≈∆【方法2 代数法】点-线-方程23m 20352235110,m 135-m 1-m 35-m 11-m 22222122111=+=+=+=+==,解得:)代入得方程(,,,)表示线段:();,()、,(),又坐标为()表示点:设(:不妨来求下)()()()(BC C C C A AB B A【典例分析】【方法1 勾股定理】【典例1】(2021秋•建华区期末)抛物线y=x2+bx+c经过A、B(1,0)、C(0,﹣3)三点.点D为抛物线的顶点,连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在y轴上是否存在一点E,使△ADE为直角三角形?若存在,请你直接写出点E的坐标;若不存在,请说明理由.【解答】解(1)∵抛物线y=x2+bx+c经过B(1,0)、C(0,﹣3),∴,解得,∴抛物线的解析式为:y=x2+2x﹣3.(4)在y轴上存在点E,使△ADE为直角三角形,理由如下:∵抛物线的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),设E点坐标为(0,m),∴AE2=m2+9,DE2=m2+8m+17,AD2=20,当∠EAD=90°时,有AE2+AD2=DE2,∴m2+9+20=m2+8m+17,解得m=,∴此时点E的坐标为(0,);当∠ADE=90°时,DE2+AD2=AE2,m2+8m+17+20=m2+9,解得m=﹣,∴此时点E的坐标为(0,﹣);当∠AED=90°时,AE2+DE2=AD2,m2+9+m2+8m+17=20,解得m=﹣1或m=﹣3,∴此时点E的坐标为(0,﹣1)或(0,﹣3).【变式1-1】(2022•灞桥区校级模拟)如图,抛物线与x轴交于点A(1,0),B(3,0),与y轴交于点C(0,3).(1)求二次函数的表达式及顶点坐标;(2)连接BC,在抛物线的对称轴上是否存在一点E,使△BCE是直角三角形?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)(x﹣3),将点C(0,3)代入y=a(x﹣1)(x﹣3),∴3a=3,∴a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为(2,﹣1);(2)存在一点E,使△BCE是直角三角形,理由如下:∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,设E(2,t),∵△BCE是直角三角形,∴BE⊥CE,∵B(3,0),C(0,3),∴BC=3,BE=,CE=,①当BC为斜边时,∴18=()2+()2,解得t=,∴E点坐标为(2,)或(2,);②当BE为斜边时,∴18+()2=()2,解得t=5,∴E点坐标为(2,5);③当CE为斜边时,∴18+()2=()2,解得t=﹣1,∴E点坐标为(2,﹣1);综上所述:E点坐标为(2,)或(2,)或(2,5)或(2,﹣1)【变式1-2】(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).【方法2 构造“K”字型利用相似作答】【典例2】(2022•碑林区校级四模)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c 交x轴于点A(﹣5,0),B(﹣1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,点E为抛物线C2上一点若△DOE是以DO为直角边的直角三角形,求点E的坐标.【解答】解:(1)将点A(﹣5,0),B(﹣1,0),C(0,5)代入y=ax2+bx+c,∴,解得,∴y=x2+6x+5,∵y=x2+6x+5=(x+3)2﹣4,∴顶点D(﹣3,﹣4);(2)设抛物线C2上任意一点(x,y),则(x,y)关于y轴对称的点为(﹣x,y),∵点(﹣x,y)在抛物线C1上,∴抛物线记作C2的解析式为y=x2﹣6x+5,设E(t,t2﹣6t+5),过点D作DG⊥x轴交于点G,过点E作EH⊥x轴交于点H,∵∠DOE=90°,∴∠GOD+∠HOE=90°,∵∠GOD+∠GDO=90°,∴∠HOE=∠GDO,∴△GDO∽△HOE,∴=,∵DG=4,GO=3,HE=﹣t2+6t﹣5,OH=t,∴=,∴t=4或t=,∴E(4,﹣3)或E(,﹣).【变式2-1】(2022•济南)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;【解答】解:(1)将B(8,0)代入y=ax2+x﹣6,∴64a+22﹣6=0,∴a=﹣,∴y=﹣x2+x﹣6,当y=0时,﹣t2+t﹣6=0,解得t=3或t=8(舍),∴t=3,∵B(8,0)在直线y=kx﹣6上,∴8k﹣6=0,解得k=,∴y=x﹣6;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P(m,﹣m2+m﹣6),∴PM=m2﹣m+6,AM=m﹣3,在Rt△COA和Rt△AMP中,∵∠OAC+∠P AM=90°,∠APM+∠P AM=90°,∴∠OAC=∠APM,∴△COA∽△AMP,∴=,即OA•MA=CO•PM,3(m﹣3)=6(m2﹣m+6),解得m=3(舍)或m=10,∴P(10,﹣);【变式2-2】(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.【解答】解:(1)针对于抛物线y=x2﹣2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,∴x=3或x=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(3,0),∴AC==;(2)由(1)知,B(3,0),C(0,﹣3),∴OB=OC=3,设M(m,m2﹣2m﹣3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°﹣∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,∴﹣m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,﹣4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(﹣2,5);③当∠BMC=90°时,如图2,Ⅰ、当点M在第四象限时,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC+∠EMB=90°,∴∠DCM=∠EMB,∴△CDM∽△MEB,∴,∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,∴,∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m=,∴M(,﹣),Ⅱ、当点M在第三象限时,M(,﹣),即满足条件的M的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).。

专题复习——探索直角三角形存在性问题

专题复习——探索直角三角形存在性问题

专题复习——探索直角三角形存在性问题学习目标:1、经历探索直角三角形存在性问题的过程,熟练掌握解直角三角形存在性方法。

2、体会分类讨论与方程思想等数学思想,体验解决问题方法的多样性一、热身练习:1、下列四组线段,可以构成直角三角形的是( )A. 1、2、3B. 2、3、4C. 8、15、17D. 9、16、252、下列不能判断△ABC是直角三角形的是( )A. ∠C=∠A-∠BB.∠A:∠B:∠C=5:2:3C. a:b:c=3:4:5D. 9、16、253、⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长为_______。

4、一次函数y=kx+b的图象经过(1,2),(3,4),则k为_________。

5、在平面直角坐标系中,已知A(-2,1),B(2,4),则线段AB的长为_________。

二、典例精析:已知如图,点A(0,3),B(8,3),点C在x轴上,若△ABC是直角三角形,请求出所以满足条件的C 的坐标。

三、中考变式:已知抛物线y=-x2+bx+c与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C。

(1)求抛物线的解析式。

(2)设点P为抛物线的对称轴上的一动点,求使△BPC为直角三角形的点P的坐标。

四、跟踪训练:如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了t秒(0<t<4)时,在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出t的值;若不存在,请说明理由.五、巩固练习:1、已知下列各组正数为边长,能组成直角三角形的是( )A.a-1,2a,a+1 B.a-1,a+1 C.a-1,a+1 D .a-1,a,a+12、一直角三角形的两边长分别是3和4,则第三边的长为____________。

直角三角形存在性问题专题攻略

直角三角形存在性问题专题攻略

一、专题攻略1、解直角三角形的存在性问题,一般分三个步骤第一步寻找分类标准,第二步列方程,第三步解方程并验根。

2、解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起。

3、一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程。

4、在平面直角坐标系中,两点间的距离公式常常用得到。

5、有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便。

二、典型例题例、如图,在直角坐标平面内,O为原点,二次函数y=-x2十2x+ 3的图象与,轴交于点A,与y 轴交于点B,顶点为P.如果点Q是x轴上一点,以点A、P、Q为顶点的三角形是直角三角形,求点Q的坐标三、针对训练1.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC.设AB=x,若△ABC 为直角三角形,求x的值.【考点】旋转的性质;勾股定理的逆定理.【专题】分类讨论.【分析】根据三角形的三边关系:两边之和大于第三边,即可得到关于x的不等式组,求出x的取值范围,再根据勾股定理,即可列方程求解.【解答】解:∵在△ABC中,AC=1,AB=x,BC=3﹣x.∴,解得1<x<2;①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解,②若AB为斜边,则x2=(3﹣x)2+1,解得x=,满足1<x<2,③若BC为斜边,则(3﹣x)2=1+x2,解得x=,满足1<x<2,故x的值为:或.故答案为:或.【点评】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键.2.如图,已知在平面直角坐标系中,点A的坐标为(﹣2,0),点B是点A关于原点的对称点,P是函数图象上的一点,且△ABP是直角三角形.(1)求点P的坐标;(2)如果二次函数的图象经过A、B、P三点,求这个二次函数的解析式;(3)如果第(2)小题中求得的二次函数图象与y轴交于点C,过该函数图象上的点C,点P的直线与x轴交于点D,试比较∠BPD与∠BAP的大小,并说明理由.【考点】二次函数综合题.【专题】综合题.【分析】(1)先求得B点坐标,再分析△ABP满足是直角三角形时P点的情况,可分为AB为直角边和AB为斜边两种情况作答.(2)对(1)求得的P点坐标分别讨论是否满足二次函数抛物线,求得二次函数的解析式.(3)由点的坐标可证得△PBD∽△APD,则∠BPD与∠BAP满足相等.【解答】解:(1)由题意,得点B的坐标为(2,0).设点P的坐标为(x,y),由题意可知∠ABP=90°或∠APB=90°.(i)当∠ABP=90°时,x=2,y=1,∴点P坐标是(2,1);(ii)当∠APB=90°时,PA2+PB2=AB2,即(x+2)2+y2+(x﹣2)2+y2=16①.又由,可得y2=,代入①解得:(负值不合题意,舍去).当时,.∴点P点坐标是(,).综上所述,点P坐标是(2,1)或(,).(2)设所求的二次函数的解析式为y=ax2+bx+c(a≠0),(i)当点P的坐标为(2,1)时,点A、B、P不可能在同一个二次函数图象上;(ii)当点P的坐标为(,)时,代入A、B、P三点的坐标,解得:∴所求的二次函数解析式为.(3)∠BPD=∠BAP.证明如下:∵点C坐标为(0,),∴直线PC的表达式为.∴点D坐标为(,0).∴PD=2,BD=,AD=.,∴.∵∠PDB=∠ADP,∴△PBD∽△APD.∴∠BPD=∠BAP.【点评】本题考查了二次函数的综合应用,重点是求解函数的解析式.3.如图,抛物线y=ax2+bx﹣3与x轴交于两点A(1,0)、B(3,0),与y轴交于点D.(1)求抛物线的解析式;(2)在抛物线是否存在一点P,使得△BDP是以BD为斜边的直角三角形,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求出二次函数解析式即可;(2)过P作x轴的平行线交Y轴于E点,过B点作X轴的垂线交EP的延长线于F点,利用三角形相似得出P点的坐标;(3)利用△AMN∽△CDB,当N在A点左边时,当N在A点右边时,当N在A点右边时,当N在A点左边时分别得出即可.【解答】解:(1)∵抛物线y=ax2+bx﹣3与x轴交于两点A(1,0)、B(3,0),∴0=a+b﹣3,0=9a+3b﹣3,解得:a=﹣1,b=4,∴y=﹣x2+4x﹣3;(2)如图1,过P作x轴的平行线交Y轴于E点,过B点作X轴的垂线交EP的延长线于F点,设P(t,﹣t2+4t﹣3),当P点在第一象限时,则DE=﹣t2+4t,PF=3﹣t,PE=t,BF=﹣t2+4t﹣3,可证△DEP∽△PFB,,,可求得,所以P(,),同理,当P点在第四象限时,可求得P(,);(3)如图2,设N(m,0)则M(m,﹣m2+4m﹣3),MN=m2﹣4m+3若△AMN∽△CDB,,当N在A点左边时AN=1﹣m,,m=0或m=1(舍),所以M(0,﹣3),当N在A点右边时AN=m﹣1,,m=6或m=1(舍),所以M(6,﹣15),若△MAN∽△CDB,,当N在A点左边时AN=1﹣m,,m=(舍)或m=1(舍),所以此时M不存在,当N在A点右边时AN=m﹣1,,m=或m=1(舍),所以M(,),综上M1(0,﹣3)M2(6,﹣15)M3(,).【点评】此题主要考查了二次函数的综合应用,(2)(3)小题中,都用到了分类讨论的数学思想,难点在于考虑问题要全面,做到不重不漏.四、三年真题4.(15宜宾24)如图,抛物线y=﹣x2+bx+c与x轴分别相交于点A(﹣2,0),B(4,0),与y轴交于点C,顶点为点P.(1)求抛物线的解析式;(2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.①当四边形OMHN为矩形时,求点H的坐标;②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把A(﹣2,0),B(4,0),代入抛物线y=﹣x2+bx+c,求出b、c即可;(2)①表示出ON、MH,运用ON=MH,列方程求解即可;②存在,先求出BC的解析式,根据互相垂直的直线一次项系数积等于﹣1,直线经过点P,待定系数法求出直线PF的解析式,求直线BC与直线PF的交点坐标即可.【解答】解:(1)把A(﹣2,0),B(4,0),代入抛物线y=﹣x2+bx+c得:解得:b=1,c=4,∴y=﹣x2+x+4;(2)点C的坐标为(0,4),B(4,0)∴直线BC的解析式为y=﹣x+4,①根据题意,ON=OM=t,MH=﹣t2+t+4∵ON∥MH∴当ON=MH时,四边形OMHN为矩形,即t=﹣t2+t+4解得:t=2或t=﹣2(不合题意舍去)把t=2代入y=﹣t2+t+4得:y=2∴H(2,2);②存在,当PF⊥BC时,∵直线BC的解析式为y=﹣x+4,∴设PF的解析式为y=x+b,又点P(1,)代入求得b=,∴根据题意列方程组:解得:∴F(,)当PF⊥BP时,∵点P(1,),B(4,0),∴直线BP的解析式为:y=﹣x+6,∴设PF的解析式为y=x+b,又点P(1,)代入求得b=,∴根据题意列方程组:解得:∴F(,),综上所述:△PFB为直角三角形时,点F的坐标为(,)或(,).【点评】本题考查了待定系数法求直线和抛物线解析式,求顶点坐标,矩形的判定与性质以及两直线互相垂直的性质,本题有一定的综合性,难度不大,关键是掌握两直线互相垂直的性质.5.(16白银张掖28)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线,直线解析式;(2)分两种情况进行计算即可;(3)确定出面积达到最大时,直线PC和抛物线相交于唯一点,从而确定出直线PC解析式为y=﹣x+,根据锐角三角函数求出BD,计算即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点,∴,∴,∴y=﹣x2+2x+3,设直线AB的解析式为y=kx+n,∴,∴,∴y=﹣x+3;(2)由运动得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF为直角三角形,∴①△AOB∽△AEF,∴,∴,∴t=,②△AOB∽△AFE,∴,∴,∴t=1;(3)如图,存在,过点P作PC∥AB交y轴于C,∵直线AB解析式为y=﹣x+3,∴设直线PC解析式为y=﹣x+b,联立,∴﹣x+b=﹣x2+2x+3,∴x2﹣3x+b﹣3=0∴△=9﹣4(b﹣3)=0∴b=,∴BC=﹣3=,x=,∴P(,).过点B作BD⊥PC,∴直线BD解析式为y=x+3,∴BD=,∴BD=,∵AB=3S最大=AB×BD=×3×=.即:存在面积最大,最大是,此时点P(,).【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,相似三角形的性质和判定,平行线的解析式的确定方法,互相垂直的直线解析式的确定方法,解本题的关键是确定出△PAB面积最大时点P的特点.6.(16重庆B卷26)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H (不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K是直角三角形时,求t的值.【考点】二次函数综合题.【分析】(1)根据S△AMO:S四边形AONB=1:48,求出三角形相似的相似比为1:7,从而求出BN,继而求出点B的坐标,用待定系数法求出直线解析式.(2)先判断出PE×PF最大时,PE×PD也最大,再求出PE×PF最大时G(5,),再简单的计算即可;(3)由平移的特点及坐标系中,两点间的距离公式得A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,最后分三种情况计算即可.【解答】解:(1)∵点C是二次函数y=x2﹣2x+1图象的顶点,∴C(2,﹣1),∵PE⊥x轴,BN⊥x轴,∴△MAO∽△MBN,∵S△AMO:S四边形AONB=1:48,∴S△AMO:S△BMN=1:49,∴OA:BN=1:7,∵OA=1∴BN=7,把y=7代入二次函数解析式y=x2﹣2x+1中,可得7=x2﹣2x+1,∴x1=﹣2(舍),x2=6∴B(6,7),∵A的坐标为(0,1),∴直线AB解析式为y=x+1,∵C(2,﹣1),B(6,7),∴直线BC解析式为y=2x﹣5.(2)如图1,设点P(x0,x0+1),∴D(,x0+1),∴PE=x0+1,PD=3﹣x0,∵∠DPF固定不变,∴PF:PD的值固定,∴PE×PF最大时,PE×PD也最大,PE×PD=(x0+1)(3﹣x0)=﹣x02+x0+3,∴当x0=时,PE×PD最大,即:PE×PF最大.此时G(5,)∵△MNB是等腰直角三角形,过B作x轴的平行线,∴BH=B1H,GH+BH的最小值转化为求GH+HB1的最小值,∴当GH和HB1在一条直线上时,GH+HB1的值最小,此时H(5,6),最小值为7﹣=(3)令直线BC与x轴交于点I,∴I(,0)∴IN=,IN:BN=1:2,∴沿直线BC平移时,横坐标平移m时,纵坐标则平移2m,平移后A′(m,1+2m),C′(2+m,﹣1+2m),∴A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,当∠A′KC′=90°时,A′K2+KC′2=A′C′2,解得m=,此时t=m=2±;当∠KC′A′=90°时,KC′2+A′C′2=A′K2,解得m=4,此时t=m=4;当∠KA′C′=90°时,A′C′2+A′K2=KC′2,解得m=0,此时t=0.【点评】此题是二次函数综合题,主要考查了相似三角形的性质,待定系数法求函数解析式,两点间的距离公式,解本题的关键是相似三角形的性质的运用.7.(14年福州21)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.【考点】相似形综合题.【专题】几何动点问题;压轴题.【分析】(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.【解答】(1)解:当t=秒时,OP=2t=2×=1.如答图1,过点P作PD⊥AB于点D.在Rt△POD中,PD=OP•sin60°=1×=,∴S△ABP=AB•PD=×(2+1)×=.(2)解:当△ABP是直角三角形时,①若∠A=90°.∵∠BOC=60°且∠BOC>∠A,∴∠A≠90°,故此种情形不存在;②若∠B=90°,如答图2所示:∵∠BOC=60°,∴∠BPO=30°,∴OP=2OB=2,又OP=2t,∴t=1;③若∠APB=90°,如答图3所示:过点P作PD⊥AB于点D,则OD=OP•sin30°=t,PD=OP•sin60°=t,∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.在Rt△ABP中,由勾股定理得:PA2+PB2=AB2∴(AD2+PD2)+(BD2+PD2)=AB2,即[(2+t)2+(t)2]+[(1﹣t)2+(t)2]=32解方程得:t=或t=(负值舍去),∴t=.综上所述,当△ABP是直角三角形时,t=1或t=.(3)证明:如答图4,过点O作OE∥AP,交PB于点E,则有,∴PE=PB.∵AP=AB,∴∠APB=∠B,∵OE∥AP,∴∠OEB=∠APB,∴∠OEB=∠B,∴OE=OB=1,∠3+∠B=180°.∵AQ∥PB,∴∠OAQ+∠B=180°,∴∠OAQ=∠3;∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,∴∠1=∠2;∴△OAQ∽△PEO,∴,即,化简得:AQ•PB=3.【点评】本题是运动型综合题,考查了相似三角形的判定与性质、解直角三角形、勾股定理、一元二次方程等多个知识点.第(2)问中,解题关键在于分类讨论思想的运用;第(3)问中,解题关键是构造相似三角形,本问有多种解法,可探究尝试.五、两年模拟8.(2015年曲靖麒麟区中考模拟第24题)如图,过点C(0,2)的抛物线与直线AD交于A(﹣1,0),D(3,2)两点.(1)求直线AD和抛物线的解析式;(2)点M为抛物线对称轴上一点,求MA+MC最小时点M的坐标;(3)在y轴上是否存在点P使△PAD是直角三形?若存在,求出点P坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)设出一次函数、二次函数解析式分别为y=kx+b,y=ax2+bx+c,将函数图象上的点代入,即可求函数解析式;(2)连接BC,与对称轴交于M,此时MA+MC最小.求出BC解析式,将M点横坐标代入即可求出其纵坐标;(3)分四种情况讨论:①当∠AP1D=90°时,△DCP1∽△P1OA;②∠AP2D=90°时,△AOP2∽△P2CD;③设AP3解析式为y=﹣2x+s,将A(﹣1,0)分别代入解析式,求出s的值;④设AP4解析式为y=﹣2x+t,将A(3,2)分别代入解析式得,t=8.【解答】解:(1)设AD的解析式为y=kx+b,将A(﹣1,0),D(3,2)分别代入解析式得,,解得,∴AD的解析式为y=x+.设抛物线的解析式为y=ax2+bx+c,将A(﹣1,0),C(0,2),D(3,2)分别代入解析式得,解得,,函数解析式为y=﹣x2+x+2.(2)如图1,连接BC,与对称轴交于M,此时MA+MC最小.设BC解析式为y=ax+b,把B(4,0),C(0,2)代入解析式得,,解得,则y=﹣x+2,当x=﹣=时,y=﹣×+2=,∴M(,).(3)①当∠AP1D=90°时,△DCP1∽△P1OA,∴=,即=,∴P1C2+2P1C=3,解得,P1C=1,P1C=﹣3(舍去).∴P1O=3,∴P1(0,3).②∠AP2D=90°时,△AOP2∽△P2CD,∴=,即=,∴P2O2+2P2O=3,解得,P2O=1,P2O=﹣3(舍去).∴P2O=3,∴P2(0,﹣3).③如图3,∵AP3⊥AD,DP4⊥AD,且AD解析式为y=x+,设AP3解析式为y=﹣2x+s,将A(﹣1,0)分别代入解析式得,s=﹣2,解析式为y=﹣2x﹣2,当x=0时,y=﹣2,则得P3(0,﹣2),④设AP4解析式为y=﹣2x+t,将A(3,2)分别代入解析式得,t=8,解析式为y=﹣2x+8,当x=0时,y=8,则得P4(0,8).【点评】本题考查了二次函数综合题,涉及待定系数法求二次函数解析式和一次函数解析式、轴对称最短路径问题、存在性问题和相似三角形的判定与性质,难度较大.9.(2016年汕头潮阳区中考模拟第25题)如图所示,在平面直角坐标系xOy中,Rt△AOB的直角边OB,OA分别在x轴上和y轴上,其中OA=2,OB=4,现将Rt△AOB绕着直角顶点O按逆时针方向旋转90°得到△COD,已知一抛物线经过C、D、B三点.(1)该抛物线的解析式为;(2)设点E是抛物线上位于第一象限的动点,过点E作EF⊥x轴于点F,并交直线AB于N,过点E再作EM⊥AB于点M,求△EMN周长的最大值;(3)当△EMN的周长最大时,在直线EF上是否存在点Q,使得△QCD是以CD为直角边的直角三角形?若存在请求出点Q的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=ax2+bx+c.由线段OA、OB的长度可得出点A、B的坐标,再由旋转的特性可得出点C、D的坐标,由点B、C、D三点的坐标利用待定系数法即可求出抛物线的解析式;(2)在Rt△AOB中,找出∠ABO的正弦余弦值,再根据相似三角形的判定定理找出△EMN∽△BFN,从而得出∠MEN=∠FBN,用EN的长度来表示出EM和MN的长度,由点A、B的坐标利用待定系数法求出直线AB的函数解析式,设出点E的坐标为(t,﹣+t+4)(0<t<4),即可找出点N的坐标为(t,﹣t+2),从而得出线段EN的长度,将EN、MN、EM相加即可得出△EMN的周长,根据二次函数的性质可求出EN的最大值,由此即可得出结论;(3)结合(2)的结论可知直线EF的解析式为x=,分∠QDC=90°和∠DCQ=90°两种情况来考虑,利用相似三角形的性质找出相似边的比例关系来找出线段的长度,再根据点与点间的数量关系即可找出点Q的坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c.∵OA=2,OB=4,∴点A(0,2),点B(4,0),由旋转的特性可知:点C(﹣2,0),点D(0,4).将点B(4,0)、点C(﹣2,0)、点D(0,4)代入到抛物线解析式得:,解得:.∴该抛物线的解析式为y=﹣+x+4.故答案为:y=﹣+x+4.(2)依照题意画出图形,如图1所示.在Rt△AOB中,OA=2,OB=4,∴AB===2,∴sin∠ABO=,cos∠ABO=.∵EM⊥AB,EF⊥OB,∴∠EMN=∠BFN=90°.∵∠BNF=∠ENM,∴△EMN∽△BFN,∴∠MEN=∠FBN.在Rt△EMN中,sin∠MEN=,cos∠MEN=,∴MN=EN•sin∠MEN=EN•sin∠ABO=EN,EM=EN•cos∠MEN=EN•cos∠ABO=EN.∴C△EMN=EM+MN+EN=EN+EN+EN=EN.由(1)知A(0,2)、B(4,0),设直线AB的解析式为:y=kx+2,∴4k+2=0,解得:k=﹣,∴直线AB的解析式为:y=﹣x+2.设抛物线上点E的坐标为(t,﹣+t+4)(0<t<4),∵EF⊥OB,∴令y=﹣x+2中x=t,y=﹣t+2,∴点N的坐标为(t,﹣t+2),∴EN=﹣+t+4﹣(﹣t+2)=﹣+t+2.∴C△EMN=(﹣+t+2)=﹣+t+(0<t<4).∴当t=﹣=时,EN最大,此时C△EMN最大,∴C△EMN最大为:[﹣+2]=.(3)由(2)知,当C△EMN取最大值时,EF的解析式为:x=.①若∠QDC=90°,过点Q作QG⊥y轴于点G,如图2所示.∵EF的解析式为:x=,∴QG=,∵∠QDG+∠DQG=90°,∠CDO+∠QDG=90°,∴∠DGQ=∠CDO,又∵∠QGD=∠DOC=90°,∴△QDG∽△DCO,∴,∴DG=2×=.∴OG=OD﹣DG=4﹣=,∴点Q的坐标为(,);②若∠DCQ=90°,如图3所示.CF=﹣(﹣2)=,∵∠QCF+∠OCD=90°,∠CDO+∠OCD=90°,∴∠QCF=∠CDO,又∵∠CFQ=∠DOC=90°,∴△COD∽△QFC,∴,即,∴FQ=,∴点Q的坐标为(,﹣).综上所述,当点Q的坐标为(,)或(,﹣)时,使得△QCD是以CD为直角边的直角三角形.【点评】本题考查了二次函数的性质、待定系数法求函数解析式、相似三角形的判定及性质以及三角形的周长,解题的关键是:(1)求出点B、C、D的坐标;(2)用线段EN的长度来表示△EMN 的周长;(3)分两种情况考虑.本题属于中档题,难道不大,但非常繁琐,解决该题型题目时,依据题意作出图形,利用数形结合来解决问题是关键。

中考数学解法探究专题:直角三角形的存在性问题

中考数学解法探究专题:直角三角形的存在性问题

考题研究:这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。

这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查。

解题攻略:解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).解题类型及其思路:当直角三角形存在时可从三个角度进行分析研究:(1)当动点在直线上运动时,常用的方法是①,②三角形相似,③勾股定理;(2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法①,②三角形相似,③勾股定理;第二是当动点处作直角的方法:寻找特殊角例题解析(2017年真题和2017年模拟)1.如图,在平面直角坐标系中,A,B,C为坐标轴上的三点,且OA=OB=OC=4,过点A的直线AD交BC于点D,交y轴于点G,△ABD的面积为8.过点C作CE⊥AD,交AB交于F,垂足为E.(1)求D点的坐标;(2)求证:OF=OG;(3)在第一象限内是否存在点P,使得△CFP为等腰直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由.2.在△ABC中,∠ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB的两侧,连接CD.(1)如图1,若∠ABC=30°,则∠CAD的度数为.(2)已知AC=1,BC=3.①依题意将图2补全;②求CD的长;小聪通过观察、实验、提出猜想,与同学们进行交流,通过讨论,形成了求CD长的几种想法:想法1:延长CB,在CB延长线上截取BE=AC,连接DE.要求CD的长,需证明△ACD≌△BED,△CDE为等腰直角三角形.想法2:过点D作DH⊥BC于点H,DG⊥CA,交CA的延长线于点G,要求CD 的长,需证明△BDH≌△ADG,△CHD为等腰直角三角形.…请参考上面的想法,帮助小聪求出CD的长(一种方法即可).(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).3.已知:Rt△ABC中,∠ACB=90°,CA=3,CB=4,设P,Q分别为AB边,CB边上的动点,它们同时分别从A,C出发,以每秒1个单位长度的速度向终点B运动,设P,Q运动的时间为t秒.(1)求△CPQ的面积S与运动时间t之间的函数关系式,并求出S的最大值.(2)t为何值时,△CPQ为直角三角形.(3)①探索:△CPQ是否可能为正三角形,说明理由.②P,Q两点同时出发,若点P的运动速度不变,试改变点Q的运动速度,使△CPQ为正三角形,求出点Q的运动速度和此时的t值.4.学习了线段垂直平分线的性质,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.此时,点P在线段AB的上.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且∠APB=90°,求证:PD=AB.探究:如图3,已知△ABC为直角三角形,斜边AB=5,AC=4,准外心P在边AC 上,试探究PA的长.5.已知:如图,△ABC是边长为4cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:(1)求△ABC的面积;(2)当t为何值是,△PBQ是直角三角形?(3)探究:是否存在某一时刻t,使四边形APQC的面积是△ABC面积的八分之五?如果存在,求出t的值;不存在请说明理由.6.如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B(),C();(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=.7.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.8.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.9.如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A (2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+ x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.(1)试求该抛物线表达式;(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?10.如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.11.如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E 作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.信息读取(1)梯形上底的长AB=;(2)直角梯形ABCD的面积=;图象理解(3)写出图②中射线NQ表示的实际意义;(4)当2<t<4时,求S关于t的函数关系式;问题解决(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.12.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.13.已知二次函数y=ax2+bx﹣2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.(1)求实数a、b的值;(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式;14.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD 的面积为S,试判断S有最大值或最小值?并说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.15.如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(A点在B点左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段PQ=AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.2017年07月30日045的初中数学组卷参考答案与试题解析一.解答题(共15小题)1.如图,在平面直角坐标系中,A,B,C为坐标轴上的三点,且OA=OB=OC=4,过点A的直线AD交BC于点D,交y轴于点G,△ABD的面积为8.过点C作CE⊥AD,交AB交于F,垂足为E.(1)求D点的坐标;(2)求证:OF=OG;(3)在第一象限内是否存在点P,使得△CFP为等腰直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)根据已知条件得到AB=8,B(4,0),C(0,4),待定系数法求得BC的解析式为y=﹣x+4,根据三角形的面积得到DH=2,即可得到结论;(2)根据已知条件得到△AGO~△CGE,由相似三角形的性质得到∠GAO=∠GCE,根据全等三角形的性质即可得到结论;(3)根据直线AD的解析式y=x+,求得OF=OG=,①如图2,当∠CFP=90°,FP=FC时,过P作PH⊥x轴于H,根据全等三角形的性质得到PH=OF=,FH=OC=4,于是得到P1(,);②如图3,当∠PCF=90°,CP=FC时,根据全等三角形的性质得到PH=OC=4,CH=OF=,于是得到P2(4,);③如图4,当∠CPF=90°,PC=PF时,根据全等三角形的性质得到PN=PM,CN=FM,根据ON=OM,列方程得到CN=CM=,于是得到P3(,).【解答】解:(1)如图1,作DH⊥x轴于H,∵OA=OB=OC=4,∴AB=8,B(4,0),C(0,4),设BC的解析式为y=kx+b,把B,C两点代入得,解得:,∴BC的解析式为y=﹣x+4,∵△ABD的面积为8,AB=8,∴DH=2,所以D点的纵坐标为2,把y=2代入y=﹣x+4得:x=2,∴D(2,2);(2)∵CE⊥AD,∴∠CEG=∠AOG=90°,又∵∠AGO=∠CGE,∴△AGO~△CGE,∴∠GAO=∠GCE,在△COF与△AOG中,,∴△COF≌△AOG,∴OF=OG;(3)存在,∵A(﹣4,0),D(2,2),∴直线AD的解析式为y=x+,∴OG=,∴OF=OG=,①如图2,当∠CFP=90°,FP=FC时,过P作PH⊥x轴于H,∴∠PHF=∠COF=90°,∴∠OCF+∠OFC=∠OFC+∠PFH=90°,∴∠OCF=∠PFH,在△COF与△PFH中,,∴△COF≌△PFH,∴PH=OF=,FH=OC=4,∴OH=,∴P1(,);②如图3,当∠PCF=90°,CP=FC时,同理证得△PHC≌△CFO,∴PH=OC=4,CH=OF=,∴OH=,∴P2(4,);③如图4,当∠CPF=90°,PC=PF时,过P作PM⊥x轴于M,PN⊥y轴于N,∴四边形PNOM是矩形,∴∠NPM=90°,∴∠CPN+∠NPF=∠NPF+∠FPM=90°,∴∠CPN=∠FPM,在△CPN与△FPM中,,∴△PNC≌△PMF,∴PN=PM,CN=FM,∴矩形PNOM是正方形,∴ON=OM,∴4﹣CN=+CN,∴CN=CM=,∴PN=PM=,∴P3(,),综上所述:P的坐标为(,),(4,),(,).2.在△ABC中,∠ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB的两侧,连接CD.(1)如图1,若∠ABC=30°,则∠CAD的度数为105°.(2)已知AC=1,BC=3.①依题意将图2补全;②求CD的长;小聪通过观察、实验、提出猜想,与同学们进行交流,通过讨论,形成了求CD 长的几种想法:想法1:延长CB,在CB延长线上截取BE=AC,连接DE.要求CD的长,需证明△ACD≌△BED,△CDE为等腰直角三角形.想法2:过点D作DH⊥BC于点H,DG⊥CA,交CA的延长线于点G,要求CD 的长,需证明△BDH≌△ADG,△CHD为等腰直角三角形.…请参考上面的想法,帮助小聪求出CD的长(一种方法即可).(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).【考点】KY:三角形综合题.【分析】(1)先判断出∠CAD=∠DBE,再利用等腰直角三角形求出∠ABD=45°,进而求出∠CBD,最后用邻补角即可得出结论;(2)①根据题意及基本作图即可补全图形;②想法1,构造出△ACD≌△BED,进而判断出△CDE是等腰直角三角形,再利用等腰直角三角形的性质即可得出解;想法2,构造出△BDH≌△ADG,进而判断出△CDH是等腰直角三角形,再利用等腰直角三角形的性质即可得出结论;(3)同(2)的方法即可得出结论.【解答】解:(1)∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DBE+∠CBD═180°,∴∠CAD=∠DBE.∵△ADB是等腰直角三角形,∴∠ABD=45°,∵∠ABC=30°,∴∠CBD=∠ABD+∠ABC=75°,∴∠CAD=∠DBE=180°﹣75°=105°故答案为:105°.(2)①补全图形,如图1所示.②想法1:如图2,∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DBE+∠CBD═180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE=90°.∴△CDE为等腰直角三角形.∵AC=1,BC=3,∴CE=4.∴CD=.想法2:如图2,∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DAG+∠CAD═180°,∴∠CBD=∠DAG.∵DA=DB,∠DGA=∠DHB=90°,∴△BDH≌△ADG.∴DH=DG,BH=AG.∴∠DCH=∠DCG=45°.∴△CHD为等腰直角三角形.∵AC=1,BC=3,∴CH=2.∴CD=.(3)AC+BC=CD,理由:如图2,∵∠ACB=∠ADB=90°,∴∠CAD+∠CBD═180°.∵∠DBE+∠CBD═180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE=90°.∴△CDE为等腰直角三角形.∴CE=CD,∵CE=BC+BE=BC+AC.即:.3.已知:Rt△ABC中,∠ACB=90°,CA=3,CB=4,设P,Q分别为AB边,CB边上的动点,它们同时分别从A,C出发,以每秒1个单位长度的速度向终点B运动,设P,Q运动的时间为t秒.(1)求△CPQ的面积S与运动时间t之间的函数关系式,并求出S的最大值.(2)t为何值时,△CPQ为直角三角形.(3)①探索:△CPQ是否可能为正三角形,说明理由.②P,Q两点同时出发,若点P的运动速度不变,试改变点Q的运动速度,使△CPQ为正三角形,求出点Q的运动速度和此时的t值.【考点】KY:三角形综合题.【分析】(1)作PD⊥AC于D,PE⊥BC于E,根据勾股定理求出AB,用t表示出AD、PD,根据三角形的面积公式计算即可;(2)根据勾股定理列出算式,求出t的值;(3)①根据等边三角形的三线合一列式计算即可;②设点Q的运动速度为a,根据等边三角形的性质列式求出a,根据等边三角形的性质、正切的概念计算即可.【解答】解:(1)作PD⊥AC于D,PE⊥BC于E,∵∠ACB=90°,CA=3,CB=4,∴AB==5,∵AP=t,∴AD=t,PD=t,∴PE=DC=3﹣t,∴S=×t×(3﹣t)=﹣t2+t,∵S=﹣t2+t=﹣(t﹣)2+,∴S的最大值为;(2)只有当PC2+PQ2=CQ2时,△CPQ为直角三角形,∴(t)2+(3﹣t)2+(3﹣t)2+(t﹣t)2=t2,解得,t1=3,t2=15(舍去),∴当t=3时,△CPQ为直角三角形;(3)①△CPQ不可能为正三角形,理由如下:若△CPQ是正三角形,则PC=PQ,EC=EQ,即t﹣t=t,解得,t=0,∴△CPQ不可能为正三角形;②设点Q的运动速度为a,当CE=EQ时,即t=at﹣t,解得,a=,∵∠PCQ=60°,∴PE=PD,解得,t=.4.学习了线段垂直平分线的性质,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.此时,点P在线段AB的垂直平分线上.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且∠APB=90°,求证:PD=AB.探究:如图3,已知△ABC为直角三角形,斜边AB=5,AC=4,准外心P在边AC 上,试探究PA的长.【考点】KY:三角形综合题.【分析】举例:根据线段垂直平分线的判定解答;应用:根据等腰三角形的三线合一、直角三角形的性质证明;探究:分PA=PC、PA=PB两种情况,根据勾股定理计算即可.【解答】解:举例:∵PA=PB,点P为△ABC的准外心,∴点P在线段AB的垂直平分线上,故答案为:垂直平分线;应用:∵△ABC是等边三角形,CD⊥AB,∴AD=DB,又∠APB=90°,∴PD=AB;探究:当PA=PC时,PA=AC=2;当PA=PB时,如图3,作PE⊥AB于E,设PA=x,则PB=x,PC=4﹣x,由勾股定理得,x2=(4﹣x)2+32,解得,x=,综上所述,当准外心P在边AC上时,PA=2或.5.已知:如图,△ABC是边长为4cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:(1)求△ABC的面积;(2)当t为何值是,△PBQ是直角三角形?(3)探究:是否存在某一时刻t,使四边形APQC的面积是△ABC面积的八分之五?如果存在,求出t的值;不存在请说明理由.【考点】KY:三角形综合题;AA:根的判别式;KO:含30度角的直角三角形.【分析】(1)过点A作AD⊥BC,根据勾股定理求出AD的长,利用三角形的面积公式进行解答即可;(2)分两种情况进行讨论:①∠BPQ=90°;②∠BQP=90°,然后在直角三角形BQP 中根据BP,BQ的长和∠B的度数进行求解即可;(3)先作QD⊥AB于D,根据∠BQD=30°,得到QD=BD=×t=t,然后根据四边形APQC的面积是△ABC面积的八分之五,可得出一个关于t的方程,如果方程无解,则说明不存在这样的t值,如果方程有解,那么求出的t值即可.【解答】解:(1)如图,过点A作AD⊥BC,则∠BAC=30°,∵AC=4,∴CD=AC=2,∴Rt△ACD中,AD==2,∴△ABC的面积=×BC×AD=×4×2=4;(2)设经过t秒,△PBQ是直角三角形,则AP=tcm,BQ=tcm,△ABC中,AB=BC=4cm,∠B=60°,∴BP=(4﹣t)cm,若△PBQ是直角三角形,则分两种情况:①当∠BQP=90°时,BQ=BP,即t=(4﹣t),解得t=(秒),②当∠BPQ=90°时,BP=BQ,4﹣t=t,解得t=(秒),综上所述,当t=秒或秒时,△PBQ是直角三角形;(3)不存在这样的t.理由:如图,作QD⊥AB于D,则∠BQD=30°,∴QD=BD=×t=t,∴△BQP的面积=×BP×QD=×(4﹣t)×t=t﹣t2,当四边形APQC的面积是△ABC面积的时,△BQP的面积是△ABC面积的,即t﹣t2=×4,化简得:t2﹣4t+6=0,∵△=b2﹣4ac=16﹣4×1×6=﹣8<0,∴不存在这样的t,使四边形APQC的面积是△ABC面积的八分之五.6.如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B(3,0),C(0,﹣4);(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=.【考点】HF:二次函数综合题.【分析】(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到==2,设OC=P2E=2x,CP2=OE=x,得到BE=3﹣x,CF=2x﹣4,于是得到FP2=,EP2=,求得P2(,﹣),过P1作P1G⊥x轴于G,P1H ⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(3)如图3中,连接AP,∵OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大,【解答】解:(1)在y=x2﹣4中,令y=0,则x=±3,令x=0,则y=﹣4,∴B(3,0),C(0,﹣4);故答案为:3,0;0,﹣4;(2)存在点P,使得△PBC为直角三角形,①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴==,设OC=P2E=2x,CP2=OE=x,∴BE=3﹣x,CF=2x﹣4,∴==2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴==,∴CH=,P4H=,∴P4(,﹣﹣4);同理P3(﹣,﹣4);综上所述:点P的坐标为:(﹣1,﹣2)或(,﹣)或(,﹣﹣4)或(﹣,﹣4);学科网(3)如图(3),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC的延长线上时,AP的值最大,最大值=5+,∴OE的最大值为故答案为:.7.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把点A、B、C的坐标分别代入抛物线解析式,列出关于系数a、b、c的解析式,通过解方程组求得它们的值;与t的函数关系式S (2)设运动时间为t秒.利用三角形的面积公式列出S△MBN=﹣(t﹣1)2+.利用二次函数的图象性质进行解答;△MBN(3)根据余弦函数,可得关于t的方程,解方程,可得答案.【解答】解:(1)∵点B坐标为(4,0),抛物线的对称轴方程为x=1.∴A(﹣2,0),把点A(﹣2,0)、B(4,0)、点C(0,3),分别代入y=ax2+bx+c(a≠0),得,解得,所以该抛物线的解析式为:y=﹣x2+x+3;(2)设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.由题意得,点C的坐标为(0,3).在Rt△BOC中,BC==5.如图1,过点N作NH⊥AB于点H.∴NH∥CO,∴△BHN∽△BOC,∴,即=,∴HN=t.=MB•HN=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+,∴S△MBN当△PBQ存在时,0<t<2,∴当t=1时,S△PBQ最大=.答:运动1秒使△PBQ的面积最大,最大面积是;(3)如图2,在Rt△OBC中,cos∠B==.设运动时间为t秒,则AM=3t,BN=t.∴MB=6﹣3t.当∠MNB=90°时,cos∠B==,即=,化简,得17t=24,解得t=,当∠BMN=90°时,cos∠B==,化简,得19t=30,解得t=,综上所述:t=或t=时,△MBN为直角三角形.8.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)利用待定系数法求抛物线的函数表达式;(2)由轴对称的最短路径得:因为B与C关于对称轴对称,所以连接AB交对称轴于点D,此时△ACD的周长最小,利用勾股定理求其三边相加即可;(3)存在,当A和C分别为直角顶点时,画出直角三角形,设P(1,y),根据三角形相似列比例式可得P的坐标.【解答】解:(1)把点A(﹣2,0),B(2,2)代入抛物线y=ax2+bx+2中,,解得:,∴抛物线函数表达式为:y=﹣x2+x+2;(2)y=﹣x2+x+2=﹣(x﹣1)2+;∴对称轴是:直线x=1,如图1,过B作BE⊥x轴于E,∵C(0,2),B(2,2),对称轴是:x=1,∴C与B关于x=1对称,∴CD=BD,连接AB交对称轴于点D,此时△ACD的周长最小,∵BE=2,AE=2+2=4,OC=2,OA=2,∴AB==2,AC==2,∴△ACD的周长=AC+CD+AD=AC+BD+AD=AC+AB=2+2;答:△ACD的周长的最小值是2+2,(3)存在,分两种情况:①当∠ACP=90°时,△ACP是直角三角形,如图2,过P作PD⊥y轴于D,设P(1,y),则△CGP∽△AOC,∴,∴,∴CG=1,∴OG=2﹣1=1,∴P(1,1);②当∠CAP=90°时,△ACP是直角三角形,如图3,设P(1,y),则△PEA∽△AOC,∴,∴=,∴PE=3,∴P(1,﹣3);综上所述,△ACP是直角三角形时,点P的坐标为(1,1)或(1,﹣3).9.如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A (2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+ x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.(1)试求该抛物线表达式;(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?【考点】HF:二次函数综合题.【分析】(1)将点A和点C的坐标代入抛物线的解析式可得到关于a、c的方程组,然后解方程组求得a、c的值即可;(2)设P(m,m2+m﹣4),则F(m,﹣m﹣4),则PF=﹣m2﹣m,当PF=OC时,四边形PCOF是平行四边形,然后依据PF=OC列方程求解即可;(3)①先求得点D的坐标,然后再求得AC、DC、AD的长,最后依据勾股定理的逆定理求解即可;②分为△ACD∽△CHP、△ACD∽△PHC两种情况,然后依据相似三角形对应成比例列方程求解即可【解答】解:(1)由题意得:,解得:,∴抛物线的表达式为y=x2+x﹣4.(2)设P(m,m2+m﹣4),则F(m,﹣m﹣4).∴PF=(﹣m﹣4)﹣(m2+m﹣4)=﹣m2﹣m.∵PE⊥x轴,∴PF∥OC.∴PF=OC时,四边形PCOF是平行四边形.∴﹣m2﹣m=4,解得:m=﹣或m=﹣8.当m=﹣时,m2+m﹣4=﹣,当m=﹣8时,m2+m﹣4=﹣4.∴点P的坐标为(﹣,﹣)或(﹣8,﹣4).(3)①证明:把y=0代入y=﹣x﹣4得:﹣x﹣4=0,解得:x=﹣8.∴D(﹣8,0).∴OD=8.∵A(2,0),C(0,﹣4),∴AD=2﹣(﹣8)=10.由两点间的距离公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,∴AC2+CD2=AD2.∴△ACD是直角三角形,且∠ACD=90°.②由①得∠ACD=90°.当△ACD∽△CHP时,=,即=或=,解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.当△ACD∽△PHC时,=,即=或即=.解得:n=0(舍去)或n=2或n=﹣18.综上所述,点P的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P、C、H为顶点的三角形与△ACD相似.10.如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先利用直线解析式确定A点和B点坐标,然后利用待定系数法求抛物线的解析式;(2)OP=t,AQ=t,则PA=3﹣t,先判断∠QAP=45°,讨论:当∠PQA=90°时,如图①,利用等腰直角三角形的性质得PA=AQ,即3﹣t=•t;当∠APQ=90°时,如图②,利用等腰直角三角形的性质得AQ=AP,即t=•(3﹣t),然后分别解关于t的方程即可;(3)如图③,延长FQ交x轴于点H,设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),易得△AQH为等腰直角三角形,则AH=HQ=AQ=t,则可表示出点Q的坐标为(3﹣t,t),点F的坐标为[3﹣t,﹣(3﹣t)2+2(3﹣t)+3)],所以FQ=﹣t2+3t,再证明四边形PQFE为平行四边形得到EP=FQ.即3﹣t=3t﹣t2,然后解方程求出t即可得到点F的坐标;(4)如图④所示:OP=t,AQ=t,则BQ=3﹣t,利用配方法得到y=﹣(x ﹣1)2+4,则点M的坐标为(1,4),利用两点间的距离公式得到MB=,AB=3,AM=2,于是根据勾股定理的逆定理可证明∠ABM=90°,根据相似三角形的判断方法,由于∠QBM=∠BOP,则当=时,△BOP∽△QBM时,即=或当=时,△BOP∽△MBQ,即=,然后分别解关于t的方程即可.【解答】解:(1)当y=0时,﹣x+3=0,解得x=3,则A点坐标为(3,0),当x=0时,y=﹣x+3=3,则B点坐标为(0,3),将A(3,0),B(0,3)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)OP=t,AQ=t,则PA=3﹣t,∵OA=OB=3,∠BOA=90°,∴∠QAP=45°.当∠PQA=90°时,如图①,PA=AQ,即3﹣t=•t,解得t=1;当∠APQ=90°时,如图②,AQ=AP,即t=•(3﹣t),解得t=;综上所述,当t=1或t=时,△PQA是直角三角形;(3)如图③,延长FQ交x轴于点H,设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),易得△AQH为等腰直角三角形,∴AH=HQ=AQ=•t=t,∴点Q的坐标为(3﹣t,t),点F的坐标为[3﹣t,﹣(3﹣t)2+2(3﹣t)+3)],∴FQ=﹣(3﹣t)2+2(3﹣t)+3)﹣t=﹣t2+3t,∵EP∥FQ,EF∥PQ,∴四边形PQFE为平行四边形,∴EP=FQ.即3﹣t=3t﹣t2,解得t1=1,t2=3(舍去),∴点F的坐标为(2,3);(4)存在.如图④所示:OP=t,AQ=t,则BQ=3﹣t,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M的坐标为(1,4),∴MB==,而AB=3,AM==2,∴AB2+BM2=AM2,∴△ABM为直角三角形,∠ABM=90°,∵∠QBM=∠BOP,∴当=时,△BOP∽△QBM时,即=,整理得t2﹣3t+3=0,△=32﹣4×1×3<0,方程无实数解:当=时,△BOP∽△MBQ,即=,解得t=,综上所述,当t=时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.11.如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E 作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.信息读取(1)梯形上底的长AB=2;(2)直角梯形ABCD的面积=12;图象理解(3)写出图②中射线NQ表示的实际意义;(4)当2<t<4时,求S关于t的函数关系式;问题解决(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.【考点】HF:二次函数综合题.【分析】(1)根据图②可知,当0≤t≤2时,E在线段AB上运动(包括与A、B 重合),在此期间E点运动了2,因此可求得AB的长为2.(2)根据图形可知:当2<t<4时,E在AB的延长线上,且F在D点左侧,此期间E点运动了2,因此下底长为2+2=4,根据t=2时,重合部分的面积为8可求出梯形的高为4,因此梯形的面积为×(2+4)×4=12.(3)当t>4时,直线l与梯形没有交点,因此扫过的面积恒为梯形的面积12.(4)当2<t<4时,直线扫过梯形的部分是个五边形,如果设直线l与AD的交点为0,那么重合部分的面积可用梯形的面积减去三角形OFD的面积来求得.梯形的面积在(2)中已经求得.三角形OFD中,底边DF=4﹣t,而DF上的高,可用DF的长和∠BCD的正切值求出,由此可得出S,t的函数关系式.(5)本题要分情况讨论:①当0<t<2时,重合部分的平行四边形的面积:直角梯形AEFD的面积=1:3,据此可求出t的值.②当2<t<4时,重合部分的五边形的面积:三角形OFD的面积=3:1,由此可求出t的值.。

直角三角形的存在性问题

直角三角形的存在性问题

直角三角形的存在性问题(因动点产生的直角三角形的存在性问题)课前预热1、两点式2、两直线互相垂直,两直线的解析式为11b x k y +=与22b x k y += → 121-=⋅k k3、三角形相似:射影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD ∙=2⇒ AB AD AC ∙=2CD ⊥AB AB BD BC ∙=24、三角函数求解新课认知问题提出:已知直角三角形的一边(即直角三角形的两个点确定),求 解第三点解决方法:1、找点方法:双线一圆(两垂线一圆)一圆指以已知边为直径作圆,双线指过线段(边)端点(顶点)做垂线.2、分析题目中的定长、定角3、确定点的坐标情况分类:(1)当动点在直线上运动时常用方法:①121-=⋅k k ;②三角形相似;③勾股定理;(2)当动点在曲线上运动是时情况分类:①已知点处做直角方法:①121-=⋅k k ;②三角形相似;③勾股定理.②动点处做直角方法:寻找特殊角.动点在直线上运动时例1如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(-1,0),对称轴为直线x=-2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为秒时,△PAD的周长最小?当t为秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由当动点在曲线上运动时(1)求解过程中只有已知点处做直角例2 如图,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.(2)求解过程中动点处做直角 例3 如图,已知抛物线y=x 2+bx+c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ=43AB,求tan ∠CED 的值②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.1、(2012山东枣庄10分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C为 (-1,0) .如图所示,B 点在抛物线y =12x 2+12x -2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌△COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2.已知抛物线y=ax 2+bx+3(a ≠0)经过A (3,0),B (4,1)两点,且与y 轴交于点C .(1)求抛物线y=ax 2+bx+3(a ≠0)的函数关系式及点C 的坐标;(2)如图(1),连接AB ,在题(1)中的抛物线上是否存在点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(2),连接AC ,E 为线段AC 上任意一点(不与A 、C 重合)经过A 、E 、O 三点的圆交直线AB 于点F ,当△OEF 的面积取得最小值时,求点E 的坐标.3、(2012内蒙古)如图,抛物线2y x bx 5=--与x 轴交于A .B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.例1(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+例2(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D 为直角顶点.连接AD ,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AB 2+BD 2=AB 2,∴△ABD 为直角三角形,即点A 为所求的点Q .∴Q 1(﹣2,0);③以点B 为直角顶点.如图,设Q 2点坐标为(x ,y ),过点Q 2作Q 2K ⊥x 轴于点K ,则Q 2K=﹣y ,OK=x ,BK=8﹣x . 易证△QKB ∽△BOD , ∴,即,整理得:y=2x ﹣16.∵点Q 在抛物线上,∴y=x 2﹣x ﹣4. ∴x 2﹣x ﹣4=2x ﹣16,解得x=6或x=8,当x=8时,点Q 2与点B 重合,故舍去;当x=6时,y=﹣4,∴Q 2(6,﹣4).例3 ⑴∵抛物线的对称轴为直线x=1, ∴1221b b a -=-=⨯ ∴b =-2.∵抛物线与y 轴交于点C (0,-3),∴c =-3,∴抛物线的函数表达式为y =x 2-2x -3.⑵∵抛物线与x 轴交于A 、B 两点,当y =0时,x 2-2x -3=0.∴x 1=-1,x 2=3.∵A 点在B 点左侧,∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y =kx +m , 则033k m m =+⎧⎨-=⎩,∴13k m =⎧⎨=-⎩∴直线BC 的函数表达式为y =x -3. ⑶①∵AB =4,PO =34AB , ∴PO =3∵PO ⊥y 轴∴PO ∥x 轴,则由抛物线的对称性可得点P 的横坐标为12-, ∴P (12-,74-)∴F(0,74 -),∴FC=3-OF=3-74=54.∵PO垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2).过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(1-2,-2),P2(1-62,52).B A OC D 11x=1 xyEFP QG练习1、【答案】解:(1)证明:∵∠BCD +∠ACO =90°,∠ACO +∠OAC =90°,∴∠BCD =∠OAC 。

专题01 直角三角形的存在性问题

专题01 直角三角形的存在性问题

专题一 直角三角形的存在性问题【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点.这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查.【解题攻略】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).【解题类型及其思路】当直角三角形存在时可从三个角度进行分析研究:(1)当动点在直线上运动时,常用的方法是①121k k ⋅=- ,②三角形相似,③勾股定理;(2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法①121k k ⋅=- ,②三角形相似,③勾股定理;第二是当动点处作直角的方法:寻找特殊角【典例指引】类型一 【确定三角形的形状】典例指引1.如图,已知抛物线y =ax 2+85x +c 与x 轴交于A ,B 两点,与y 轴交于丁C ,且A (2,0),C (0,﹣4),直线l :y =﹣12x ﹣4与x 轴交于点D ,点P 是抛物线y =ax 2+85x +c 上的一动点,过点P 作PE ⊥x 轴,垂足为E ,交直线l 于点F .(1)试求该抛物线表达式;(2)如图(1),若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标;(3)如图(2),过点P 作PH ⊥y 轴,垂足为H ,连接AC .①求证:△ACD 是直角三角形;②试问当P 点横坐标为何值时,使得以点P 、C 、H 为顶点的三角形与△ACD 相似?名师点睛:1.求二次函数的解析式:(1)已知二次函数过三个点,利用一般式,y =ax 2+bx +c (0a ≠).列方程组求二次函数解析式.(2)已知二次函数与x 轴的两个交点1,0x () (2,0)x ,利用双根式,y = ()()12a x x x x --(0a ≠)求二次函数解析式,而且此时对称轴方程过交点的中点, 122x x x +=. (3)已知二次函数的顶点坐标,利用顶点式()2y a x h k =-+,(0a ≠)求二次函数解析式.(4)已知条件中a ,b ,c ,给定了一个值,则需要列两个方程求解.(5)已知条件有对称轴,对称轴也可以作为一个方程;如果给定的两个点纵坐标相同1,y x () (2,)x y ,则可以得到对称轴方程122x x x +=. 2.处理直角坐标系下,二次函数与一次函数图象问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,找出不同点间的关系.如果需要得到一次函数的解析式,依然利用待定系数法求解析式.【举一反三】 如图①,在平面直角坐标系中,二次函数213y x bx c =-++的图象与坐标轴交于A , B , C 三点,其中点A 的坐标为()3,0-,点B 的坐标为()4,0,连接AC , BC .动点P 从点A 出发,在线段AC 上以每秒1个单位长度的速度向点C 作匀速运动;同时,动点Q 从点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t 秒.连接PQ . (1)填空: b =__________, c =__________.(2)在点P , Q 运动过程中, APQ 可能是直角三角形吗?请说明理由.(3)在x 轴下方,该二次函数的图象上是否存在点M ,使PQM 是以点P 为直角顶点的等腰直角三角形?若存在,请求出运动时间t ;若不存在,请说明理由.(4)如图②,点N 的坐标为3,02⎛⎫- ⎪⎝⎭,线段PQ 的中点为H ,连接NH ,当点Q 关于直线NH 的对称点Q '恰好落在线段BC 上时,请直接写出点Q '的坐标.类型二 【确定点的坐标】典例指引2.如图,抛物线2y x bx c =++与x 轴交于A ,B 两点,B 点坐标为(3,0).与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值;(3)点D 为抛物线对称轴上一点.①当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标;②若△BCD 是锐角三角形,求点D 的纵坐标的取值范围.【举一反三】如图,直线y =﹣x +3与x 轴,y 轴分别相交于点B ,C ,经过B ,C 两点的抛物线y =ax 2+bx +c 与x 轴的另一交点为A ,顶点为P ,且对称轴是直线x =2.(1)求该抛物线的函数表达式;(2)请问在抛物线上是否存在点Q ,使得以点B ,C ,Q 为顶点的三角形为直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由;(3)过S (0,4)的动直线l 交抛物线于M ,N 两点,试问抛物线上是否存在定点T ,使得不过定点T 的任意直线l 都有∠MTN =90°?若存在,请求出点T 的坐标;若不存在,请说明理由.类型三 【确定动点运动的时间】典例指引3.已知二次函数y =ax 2+bx -2的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当x =-2和x =5时二次函数的函数值y 相等.(1)求实数a ,b 的值;(2)如图①,动点E ,F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F AC 方向运动.当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF .①是否存在某一时刻t ,使得△DCF 为直角三角形?若存在,求出t 的值;若不存在,请说明理由;②设△DEF 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式.【举一反三】如图,抛物线2y ax bx c =++与x 轴交于两点A (﹣4,0)和B (1,0),与y 轴交于点C (0,2),动点D 沿△ABC 的边AB 以每秒2个单位长度的速度由起点A 向终点B 运动,过点D 作x 轴的垂线,交△ABC 的另一边于点E ,将△ADE 沿DE 折叠,使点A 落在点F 处,设点D 的运动时间为t 秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t ,使得△EFC 为直角三角形?若存在,求出t 的值;若不存在,请说明理由;(3)设四边形DECO 的面积为s ,求s 关于t 的函数表达式.【新题训练】1.抛物线()20y ax bx c a =++≠与x 轴交于A (4,0),B (6,0)两点,与y 轴交于点C (0,3).(1)求抛物线的解析式; (2)点P 从点O 出发,以每秒2个单位长度的速度向点B 运动,同时点E 也从点O 出发,以每秒1个单位长度的速度向点C 运动,设点P 的运动时间为t 秒(0<t <3).①过点E 作x 轴的平行线,与BC 相交于点D (如图所示),当t 为何值时,△PDE 的面积最大,并求出这个最大值; ②当t =2时,抛物线的对称轴上是否存在点F ,使△EFP 为直角三角形?若存在,请你求出点F 的坐标;若不存在,请说明理由.2.如图,直线y =x +2与抛物线y =ax 2+bx +6相交于A(12, 52)和B(4,m),点P 是线段AB 上异于A 、B 的动点,过点P 作PC ⊥x 轴,交抛物线于点C .(1)求抛物线的表达式;(2)是否存在这样的点P ,使线段PC 的长有最大值?若存在,求出这个最大值,若不存在,请说明理由;(3)当△PAC 为直角三角形时,求点P 的坐标.3.如图,抛物线与y 轴交于点()0,4A ,与x 轴交于B 、C 两点,其中OB 、OC 是方程的210160x x -+=两根,且OB OC <.(1)求抛物线的解析式;(2)直线AC 上是否存在点D ,使B C D 为直角三角形.若存在,求所有D 点坐标;反之说理;(3)点P 为x 轴上方的抛物线上的一个动点(A 点除外),连PA 、PC ,若设PAC 的面积为S . P 点横坐标为t ,则S 在何范围内时,相应的点P 有且只有1个.。

直角三角形存在性问题教学解析

直角三角形存在性问题教学解析

直角三角形存在性问题教学解析环节一:模型解析【问题1】:如果△ABC为直角三角形,有几种情况?(∠A=90°或∠B=90°或∠C=90°)AB C环节二:方法解析【问题2】:在Rt△ABC中,∠A=30°,BC=3,动点D从B出发向C运动,动点E从C出发向A运动,速度都为1cm/s,若△DEC为直角三角形,求t可能的值。

【意图:有角解直】。

C3【问题3】:在Rt△ABC中,AC=5,BC=3,动点D从B出发向C运动,动点E从C出发向A运动,速度都为1cm/s,若△DEC为直角三角形,求t可能的值。

【意图:无角相似】。

C3【问题4】:问题3还有其他解法吗?如果能用t表示DE的长,那么在直角三角形中三边都能够用含t的代数式表示,思考如何求t值?【意图:勾股方程莫忘记】.总结:有角解直、无角相似、勾股方程莫忘记环节三:方法选择例1:矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿线段DA、BA向点A的方向运动,当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN可得△FMN,设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒(0≤x≤4).求x为何值,△FMN为直角三角形。

【无角相似优于勾股方程】例2:如图,直线与抛物线212y x bx c =++交于点A (0,1),B (4,3)两点。

与x 轴交于点D 。

⑴求直线和抛物线的解析式;⑵动点P 在x 正半轴上移动,当△总结:. 课后思考:如图,抛物线2y x =- 在抛物线上求点Q ,使△BCQ 是以。

2021年九年级数学中考专题复习 直角三角形的存在性

2021年九年级数学中考专题复习  直角三角形的存在性

2021年九年级数学中考专题复习直角三角形的存在性解题策略:1.直角三角形的构造方法以线段AB为边的直角三角形的另一个顶点在以AB为直径的圆上,或在分别过点A,B且与AB垂直的直线上(A,B两点除外).2.直角三角形存在性问题的解题策略解直角三角形的存在性问题时,若没有明确指出直角三角形的直角,则需要分类讨论.(1)几何法:先分类讨论直角,再画出直角三角形,从而构造弦图解决问题.如图,若∠ACB=90°,分别过点A,B作经过点C的直线的垂线,垂足为E,F,则△AEC∽△CFB,从而得到线段间的关系式.(2)代数法:先罗列三边长,再分类讨论直角,根据勾股定理列出方程,然后解方程并检验.能力训练:1.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴上,且OA=4,AB=3,动点M从点A出发以每秒1个单位长度的速度沿AO向终点O移动,同时点N从点O出发以每秒1.25个单位长度的速度沿OB向终点B移动.问:在两个动点运动过程中,是否存在某一时刻t,使得△OMN为直角三角形?若存在,请求出t的值;若不存在,请说明理由.2.如图1,在平面直角坐标系中,抛物线G 1:y=a(x-)2+与x 轴交于点A(-,0)和点B.25641565(1)求抛物线G 1的表达式;(2)如图2,将抛物线G 1先向左平移1个单位,再向下平移3个单位,得到抛物线G 2,若抛物线G 1与抛物线G 2相交于点D,连接BD.问:抛物线G 2上是否存在点P,使得△BDP 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c(a≠0)与x 轴交于A(-1,0),B(3,0)两点,与y 轴交于点C.试探究:在抛物线上是否存在点P,构成以A,P,C 为顶点,AC 为直角边的直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,函数y=-ax 2+2ax+3a(a>0)的图象交x 轴于点A,B,交y 轴于点C,它的对称轴交x 轴于点E.过点C 作CD∥x 轴交抛物线于点D,连接DE 并延长交y 轴于点F,直线AF 交CD 于点H,连接HE.若△HEF 是直角三角形,求a 的值.5.如图,在平面直角坐标系中,顶点为P(4,-4)的抛物线经过原点O(0,0),点A 在抛物线上,OA 与其对称轴l 交于点M,点M 与点N 关于点P 对称,连接AN,ON 问:点A 在对称轴l 右侧的抛物线上运动时,△ANO 能否为直角三角形?如果能,请求出所有符合条件的点A 的坐标;如果不能,请说明理由.6.如图,在平面直角坐标系中,直线y=kx-3与反比例函数y=的图象有A(-1,a),B 两个交点,若M 是x 轴上4x 的一个动点,且△AMB 为直角三角形,求满足条件的点M 的坐标.7.如果抛物线C 1的顶点在抛物线C 2上,抛物线C 2的顶点也在抛物线C 1上时,那么我们称抛物线C 1与C 2是“互为关联”的抛物线.如图,在平面直角坐标系中,抛物线C 1:y=x 2+x 与C 2:y=ax 2+x+c 是“互为关联”的14抛物线,A,B 分别是抛物线C 1,C 2的顶点,抛物线C 2经过点D(6,-1).问:抛物线C 2上是否存在点E,使得△ABE 为直角三角形?如果存在,请求出点E 的坐标;如果不存在,请说明理由.8.如图,在平面直角坐标系中,抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.F是直线AC上的动点.问:在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.9.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E是BC边上一点.当BE=2时,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧,当正方形BEFG沿BC向右平移,记平移中的正方形BEFG为正方形B'EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B'EFG的边EF与AC 交于点M,连接B'D,B'M,DM.问:是否存在这样的t,使△BDM为直角三角形?若存在,请求出t的值;若不存在,请说明理由.10.如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=-2相交于点D,A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.问:在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题十:直角三角形的存在性问题探究引入:x+b交线段引例.如图,在平面直角坐标系中,点C(0,4),射线CE∥x轴,直线y=-12OC于点B,交x轴于点A,D是射线CE上一点.若△ABD恰为等腰直角三角形,则b的值为.方法梳理是否存在一点,使之与另外两个定点构成直角三角形的问题:首先弄清题意,注意区分直角顶点;其次借助于动点所在图形的解析式,表示出动点的坐标;然后按分类的情况,利用几何知识建立方程(组),求出动点坐标,注意要根据题意舍去不符合题意的点.解决方法如下方法一:利用勾股定理进行边长的计算,从而来解决问题;方法二:往往可以利用到一线等三角之K字(90°)类型和母子相似型类型,尝试建构相应的相似来进行处理;方法三:可利用直径所对的圆周角为90°来处理.导例解析:分三种情况讨论:①当∠ABD=90°时,如图1,b=4;②当∠ADB=90°时,如3;③当∠DAB=90°时,如图3,b=2图2,b=83精讲精练类型一:利用勾股定理来解决直角三角形的存在性问题例1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.(1)若直线y=mx+n经过B,C两点,求抛物线和直线BC的解析式;(2)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.第2题图【分析】(1)首先由题意,根据抛物线的对称称轴公式,待定系数法,建立关于a,b,c 的方程组,解方程组可得答案;(2)首先利用勾股这事不师古求得BC,PB,PC的长,然后分别从点B为直角顶点,点C 为直角顶点,点P为直角顶点去分析求得答案.类型二:构造相似来解决直角三角形存在性问题x2+bx+8与x轴交于点A(-6,0),点B(点A在点B左侧),例2.如图①,抛物线y=-13与y轴交于点C,点P为线段AO上的一个动点,过点P作x轴的垂线l与抛物线交于点E,连接AE,EC.(1)求抛物线的解析式及点C的坐标;(2)如图②,当EC∥x轴时,点P停止运动,此时,在抛物线上是否存在点G,使△AEG是以AE为直角边的直角三角形?若存在,请求出点G的坐标;若不存在,说明理由.【分析】(1)用待定系数法求出抛物线解析式,令x=0时,求出y轴交点坐标;(2)先求出点P的坐标,再分两种情况计算:当∠AEG=90°时,判断出△EMG∽△APE,得出比例式求解即可;当∠EAG=90°时,判断出△GNA∽△APE,得到比例式计算.专题练习1. 如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标.x2+bx+c与x轴交于A(3,0),B(-1,0)两点,过点B作直线BC⊥x 2.如图,抛物线y=13轴,交直线y=-2x于点C.(1)求该抛物线的解析式;(2)求该抛物线的顶点D的坐标,并判断顶点D是否在直线y=-2x上;(3)点P是抛物线上一动点,是否存在这样的点P(点A除外),使△PBC是以BC为直角边的直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由;4.如图,在平面直角坐标系中,∠ACB=90°,OC=2O B,tan∠ABC=2,点B的坐标为(1,0),抛物线y=-x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点.过点P作PD垂直x轴于点D,交线段AB于点E,DE.使PE=12①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.5.已知抛物线y=ax2+bx+c的顶点坐标为P(2,4).(1)试写出b,c之间的关系式;(2)当a>0时,若一次函数y=x+4的图象与y轴及该抛物线的交点依次为D,E,F,且E,F的横坐标x1与x2之间满足关系x2=6x1.①求△ODE与△OEF的面积比;②是否存在a,使得∠EPF=90°?若存在,求出a的值;若不存在,请说明理由.6.已知开口向下的抛物线y=ax2﹣2ax+3与x轴的交点为A,B两点(点A在点B的左边),与y轴的交点为C,OC=3OA.(1)请直接写出该抛物线解析式;(2)如图,D为抛物线的顶点,连接BD,BC,P为对称轴右侧抛物线上一点.若∠ABD=∠BCP,求点P的坐标(3)在(2)的条件下,M,N是抛物线上的动点.若∠MPN=90°,直线MN必过一定点,请求出该定点的坐标.答案例1. (1)由题意得{−b 2a =−1,a +b +c =0,c =3,解得{a =−1,b =−2,c =3. ∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A(1,0),∴B(-3,0).设直线BC 的解析式y =mx +n ,把B(-3,0),C(0,3)分别代入y =mx +n,得{−3m +n =0,n =3.解得{m =1,n =3.∴直线BC 的解析式为y =x +3.∴M(-1,2); (2)设P(-1,t),∵B(-3,0),C(0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2; ②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4; ③若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18,解得t 1=3+√172,t 2=3−√172.综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+√172),P 4(-1,3−√172).例2(1)∵点A(-6,0)在抛物线y =-13x 2+bx +8上, ∴0=-13×(-6)2+(-6b)+8,解得b =-23.∴抛物线的解析式为y =-13x 2-23x +8,令x =0,得y =8,∴C(0,8);(2))存在.如图①,连接EG ,AG ,过点G 作GM ⊥l ,GN ⊥x 轴,垂足分别为M ,N ,图①∵EC ∥x 轴,∴EP =CO =8.把y =8代入y =-13x 2-23x +8,则8=-13x 2-23x +8,解得x =0(舍去)或x =-2.∴P(-2,0) .∴AP =AO -PO =4.(ⅰ)如图①,当∠AEG =90°时,∵∠MEG +∠AEP =90°,∠AEP +∠EAP =90°, ∴∠MEG =∠EAP .又∵∠APE =∠EMG =90°,∴△EMG ∽△APE .∴EM AP =MG EP .设点G(m ,-13m 2-23m +8)(m >0),则GN =MP =-13m 2-23m +8.∴EM =EP -MP =8-(-13m 2-23m +8)=13m 2+23m , MG =PN =PO +ON =2+m . ∴13m 2+23m 4=2+m8=,∴m =-2(舍去)或m =32.∴G(32,254); (ⅱ)如图②,当∠EAG =90°时,图② ∵∠NAG +∠EAP =90°,∠AEP +∠EAP =90°,∴∠NAG =∠AEP .∵∠APE =∠GNA =90°,∴△GNA ∽△APE .∴GN AP =AN EP .设点G(n ,-13 n 2-23n +8)(n >4),∴GN =13n 2+23n -8,AN =AO +ON =6+n . ∴2128334+-n n =68+n .∴n =-6(舍去)或n =112.∴G(112,-234) .综上,符合条件的G 点的坐标为(32,254)或(112,-234). 专题练习答案1.(1)由题意得{32+3b +c =0,c =3.,解得{b =−4,c =3.∴抛物线的解析式为y =x 2-4x +3; (2)如图①,过点P 作PG ∥CF 交CB 与点G .图①由题可知,直线BC 的解析式为y =-x +3,OC =OB =3,∴∠OCB =45°.同理可知∠OFE =45°.∴△CEF 为等腰直角三角形.∵PG ∥CF ,∴△GPE 为等腰直角三角形.∵F(0,m),C(0,3),∴CF =3-m .∵△CEF ∽△GEP ,∴EF =√22CF =√22 (3-m), PE =√22PG . 设P(t ,t 2-4t +3)(1<t<3), 则G(t ,-t +3)PE =√22PG =√22 (-t +3-t -m)=√22 (-m -2t +3) .∵点P 是直线y =x +m 与抛物线的交点,∴t 2-4t +3=t +m .∴PE +EF =√22 (3-m)+√22 (-m -2t +3)=√22 (-2t -2m +6)=-√2 (t +m -3)=-√2 (t 2-4t)= -√2 (t -2)2+4√2.∴当t =2时,PE +EF 最大,最大值为4√2;(3)由(1)知对称轴x =2,设点D(2,n),如图②.图②当△BCD 是以BC 为直角边的直角三角形时,分两种情况讨论:(ⅰ)D 在C 上方D 1位置时,由勾股定理得CD 12+BC 2=BD 12,即(2-0)2+(n -3)2+(3√2)2=(3-2)2+(0-n)2 ,解得n =5;(ⅱ)D 在C 下方D 2位置时,由勾股定理得BD 22+BC 2=CD 22即(2-3)2+(n -0)2+(3√2)2=(2-0)2+(n -3)2 ,解得n =-1,综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).2.:(1)∵y =13x 2+bx +c 与x 轴交于A(3,0),B(-1,0)两点, ∴{13×32+3b +c =0,13×(−1)2−b +c =0.解得{b =−23c =−1.,∴抛物线的解析式为y =13x 2-23x -1; (2)由y =13x 2-23x -1=13(x-1)2-43,∴抛物线的顶点D 的坐标为(1,-43). 把x =1代入y =-2x 中得y =-2. ∵-43≠-2,∴顶点D 不在直线y =-2x 上;(3)存在.理由如下:如图,过点C 作x 轴的平行线,与该抛物线交于点P 1,P 2,连接BP 1,BP 2.∵直线BC ⊥x 轴,∴△P 1BC 、△P 2BC 都是直角三角形.把x =-1代入y =-2x 中得y =-2×(-1)=2.∴C(-1,2).∴把y =2代入y =13x 2-23x -1中,得13x 2-23x -1=2, 解得x 1=√10+1,x 2=-√10+1.∴P 1(√10+1,2),P 2(-√10+1,2).3. (1)设抛物线解析式为y =a(x +1)(x -3),即y =ax 2-2ax -3a . ∴-2a =2,解得a =-1,∴抛物线解析式为y =-x 2+2x +3.当x =0时,y =-x 2+2x +3=3,则C(0,3).设直线AC 的解析式为y =px +q ,把A(-1,0),C(0,3)代入得{−p +q =0,q =3.解得{p =3,q =3.∴直线AC 的解析式为y =3x +3. (2)∵y=-x 2+2x +3=-(x -1)2+4,∴顶点D 的坐标为(1,4).如图,作B 点关于y 轴的对称点B′,则B′(-3,0),连接DB′交y 轴于M.∵MB=MB′,∴MB+MD =MB′+MD =DB′,此时MB +MD 的值最小.∵BD 的值不变,∴此时△BDM 的周长最小.易得直线DB′的解析式为y =x +3.当x =0时,y =x +3=3,∴点M 的坐标为(0,3).(3)存在,符合条件的点P 的坐标为(73,209)或(103,-139).4.(1)在Rt△ABC 中,由点B 的坐标可知OB =1.∵OC=2OB ,∴OC=2,则BC =3.又∵tan∠ABC=2,∴AC=2BC =6,则点A 的坐标为(-2,6).把点A ,B 的坐标代入抛物线y =-x 2+bx +c 中,得{−4−2b +c =6,−1+b +c =0.解得{b =−3,c =4.∴该抛物线的解析式为y =-x 2-3x +4. (2)①由点A(-2,6)和点B(1,0)的坐标易得直线AB 的解析式为y =-2x +2.如图,设点P 的坐标为(m ,-m 2-3m +4),则点E 的坐标为(m ,-2m +2),点D 的坐标为(m ,0) .则PE =-m 2-m +2,DE =-2m +2,由PE =12DE 得-m 2-m +2=12(-2m +2),解得m =±1.又∵-2<m <1,∴m=-1,∴点P 的坐标为(-1,6).②∵M 在直线PD 上,且P(-1,6),设M(-1,y),∴AM 2=(-1+2)2+(y -6)2=1+(y -6)2,BM 2=(1+1)2+y 2=4+y 2,AB 2=(1+2)2+62=45. 分三种情况:(ⅰ)当∠AMB=90°时,有AM 2+BM 2=AB 2,∴1+(y -6)2+4+y 2=45,解得y =3±√11. ∴M(-1,3+√11)或(-1,3-√11);(ⅱ)当∠ABM=90°时,有AB 2+BM 2=AM 2,∴45+4+y 2=1+(y -6)2,解得y =-1,∴M(-1,-1).(ⅲ)当∠BAM=90°时,有AM 2+AB 2=BM 2,∴1+(y -6)2+45=4+y 2,解得y =132,∴M(-1,132).综上所述,点M 的坐标为(-1,3+√11)或(-1,3-√11)或(-1,-1)或(-1,132). 5.(1)∵抛物线顶点坐标为(2,4),∴抛物线解析式为y=a (x ﹣2)2+4=ax 2﹣4ax+4a+4,∴b=﹣4a ,c=4a+4.∴b+c=4;(2)①由题意可知△ODE 和△ODF 的底边DE 、DF 边上的高相同,∴S △ODE :S △ODF =DE :DF=x 1:x 2=1:6.∴S △ODE :S △OEF =1:5;②如图,分别过E ,F 作x 轴的垂线,垂足分别为G 、H ,交直线DP 于点M 、N , ∵直线y=x+4,∴设点E 坐标为(m ,m+4),则点F 的坐标为(6m ,6m+4).∴EM=EG ﹣MG=m+4﹣4=m ,FN=FH ﹣NH=6m+4﹣4=6m ,PM=PD ﹣MD=2﹣m ,PN=DN ﹣PD=6m ﹣2, ∵∠EPF=90°,∴∠EPM+∠FPN=90°,且∠FPN+∠PFN=90°.∴∠EPM=∠PFN . ∴△EPM ∽△PEN .∴EM PN =PM FN ,即m 6m−2=2−m 6m .整理可得6m 2+7m+2=0,解得m=12或m=23, 当m=12时,点E (12,92),F (3,7),把F 点坐标代入抛物线解析式可得a+4=7,解得a=3, ∴抛物线解析式为y=3(x ﹣2)2+4,当x=12时,代入可求得y=434≠92,即点E 不在该抛物线图象上,不符合题意.当m=23时,点E (23, 143),F (4,8),把F 点坐标代入抛物线解析式可求得a=1.∴抛物线解析式为y=(x ﹣2)2+4.当x=23时,代入可求得y=529≠143,即点E 不在抛物线图象上,不符合题意,综上可知不存在满足条件的a 的值.6.(1)当x=0时,y=ax2﹣2ax+3=3,∴C(0,3),OC=3OA=3.∴OA=1,A(﹣1,0).把点A(﹣1,0)代入抛物线解析式,得:a+2a+3=0,解得a=﹣1.∴抛物线解析式为y=﹣x2+2x+3;(2)如图1,若点P在抛物线对称轴右侧且在x轴上方,过点P作PE∥y轴交BC于点E,PF⊥BC于点F,过点D作DH⊥x轴于点H,∴∠CFP=∠BHD=90°.∵当y=﹣x2+2x+3=0时,解得:x1=﹣1,x2=3.∴A(﹣1,0),B(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4).∴DH=4,BH=3﹣1=2.∴BD==.∴Rt △BDH 中,sin ∠ABD =DH BD ==∵C (0,3)∴BC PC 设直线BC 解析式为y =kx+b ,∴30,0 3.k b b +=⎧⎨+=⎩解得:1,3.k b =-⎧⎨=⎩, ∴直线BC 解析式为y =﹣x+3.设P (p ,﹣p 2+2p+3)(1<p <3),则E (p ,﹣p+3),∴PE =﹣p 2+2p+3﹣(﹣p+3)=﹣p 2+3p . ∵S △BCP =12PE•OB=12BC•PF,∴PF =22PE OB BC ⋅==.∵∠ABD =∠BCP ,∴Rt △CPF 中,sin ∠BCP =PE PC =sin ∠ABD .∴PF .∴PF 2=45PC 2.解得p 1=﹣1(舍去),p 2=53. ∴﹣p 2+2p+3=329.∴点P 坐标为(53,329). 如图2,若点P 在x 轴下方,∵tan ∠ABD =DH BH=2>tan45°,∴∠ABD >45°.∵∠BCP <∠BOC 即∠BCP <45°,∴∠ABD 与∠BCP 不可能相等. 综上所述,点P 坐标为(53,329); (3)如图3,过P 作PH ∥y 轴,分别过点M 、N 作MG ⊥PH 于G ,NH ⊥PH 于H .设直线MN 的解析式为y =kx+n ,M (x 1,y 1)、N (x 2,y 3),令kx+n =﹣x 2+2x+3,即=x 2+(k ﹣2)x+n ﹣3=0,∴x 1+x 2=2﹣k ,x 1x 2=n ﹣3.∴y 1+y 2=k (x 1+x 2)+2n =k (2﹣k )+2n .y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+nk (x 1+x 2)+n 2=﹣3k 2+2nk+n 2,∵∠G =∠MPN =∠H ,∴△MPG ∽△PNH .∴MG GP PH HN= . ∵P 坐标为(53,329),MG =53﹣x 1,PH =y 1﹣329,HN =253x -,GP =2329y -. ∴12115323932593x y y x --=--.整理,得12121212255321024()()93981x x x x y y y y -++=++-. ∴222255321024(2)3(22)3293981k n y k k n k nk n --+-=-++---. 解得 k 1=﹣3n+233,k 2=332515n -+.∴直线MN;y=(﹣3n+233)x+n=(﹣3x+1)n+233,过定点(13,239);或y=(332515n-+)x+n=(513x-+)n+3215,过定点(53,329)即P点,舍去.∴直线MN过定点(13,239).。

相关文档
最新文档