(完整版)离散数学作业答案一
离散数学(第二版)课后习题答案详解(完整版)
离散数学(第⼆版)课后习题答案详解(完整版)习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5 是⽆理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p: 是⽆理数.(7)p:刘红与魏新是同学.(10)p:圆的⾯积等于半径的平⽅乘以π.(13)p:2008 年元旦下⼤雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是⽆理数. p:5 是有理数.q:5 是⽆理数.其否定式q 的真值为1.(2)25 不是⽆理数.答:否定式:25 是有理数. p:25 不是⽆理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是⾃然数.答:否定式:2.5 不是⾃然数. p:2.5 是⾃然数. q:2.5 不是⾃然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧,其真值为 1.(2)不但π是⽆理数,⽽且⾃然对数的底e 也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e 是⽆理数,符号化为p q∧,其真值为1.(3)虽然2 是最⼩的素数,但2 不是最⼩的⾃然数.答:p:2 是最⼩的素数,q:2 是最⼩的⾃然数,符号化为p q∧? ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨,其真值为1.(2)符号化:p r∨,其真值为1.(3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p:刘晓⽉选学英语,q:刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q)(p q) .7.设p:王冬⽣于1971 年,q:王冬⽣于1972 年,说明命题“王冬⽣于1971 年或1972年”既可以化答:列出两种符号化的真值表:合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;, 才有;(3)只有, 才有;(4)除⾮, 否则;(5)除⾮(6)仅当.答:设p: , 则: ; 设q: , 则: .(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.(1)若2+2=4,则地球是静⽌不动的;(2)若2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数.12.将下列命题符号化,并给出各命题的真值:(1)2+2=4 当且仅当3+3=6;(2)2+2=4 的充要条件是3+3 6;(3)2+2 4 与3+3=6 互为充要条件;(4)若2+2 4,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.(1)若今天是星期⼀,则明天是星期⼆;(2)只有今天是星期⼀,明天才是星期⼆;(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:q:⼤熊猫产在中国.r:太阳从西⽅升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“ 是⽆理数.并且,如果3 是⽆理数,则也是⽆理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是⽆理数q: 3 是⽆理数r:是⽆理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重⾔式,所以论述为真。
离散数学第1次作业参考答案
甲对一半:
乙对一半:
丙对一半: ,
根据题意,只需要求出下列公式的成真赋值:
,
根据已知条件, , , , ,并且根据已知有三位同学入围,因此, , , 。
所以,归结为 的成真赋值,可得李强为生活委员,丁金为班长,王小红为学习委员。
5 (20分)在某班班委成员的选举中,已知王小红、李强、丁金生三位同学被选进了班委会。该班的甲,乙,丙三名同学预言如下:
甲说:王小红为班长,李强为生活委员。
乙说:丁金生为班长,王小红为生活委员。
丙说:李强为班长,王小红为学习委员。
班委分工名单公布后发现,甲、乙、丙三人都恰好猜对了一半。
问:王小红、李强、丁金生各任何职(用等值演算法求解)?
离散数学第1次作业注:交纸质版作业
学号:姓名:班级:总分:
1 (5分)将下列命题符号化。
小李只能从筐里拿一个苹果或者一个梨。
1解:
设p:小李拿一个苹果,q:小李拿一个梨
原命题符号化为:
2 (25分,每题5分)将下列命题符号化,并指出各命题的真值。(1Fra bibliotek只要 ,就有 。
(2)只有 ,才有 。
(3)除非 ,才有 。
3解:
(1)原子命题符号化:
q: 3是无理数;r: 是无理数;s: 6能被2整除,t: 6能被4整除.
(2)整个论述符号化为:
(3)真值:1
4 (共30分,每题15分)求下列公式的主析取范式和主合取范式,并判断公式的类型(用等值演算法)
(1) ;
(2)
4解:
(1)
主析取范式
(完整版)离散数学答案(尹宝林版)第一章习题解答
(完整版)离散数学答案(尹宝林版)第一章习题解答第一章命题逻辑习题与解答⒈ 判断下列语句是否为命题,并讨论命题的真值。
⑴ 2x - 3 = 0。
⑵ 前进!⑶ 如果8 + 7 > 20,则三角形有四条边。
⑷ 请勿吸烟!⑸ 你喜欢鲁迅的作品吗?⑹ 如果太阳从西方升起,你就可以长生不老。
⑺ 如果太阳从东方升起,你就可以长生不老。
解⑶,⑹,⑺表达命题,其中⑶,⑹表达真命题,⑺表达假命题。
⒉ 将下列命题符号化:⑴ 逻辑不是枯燥无味的。
⑵ 我看见的既不是小张也不是老李。
⑶ 他生于1963年或1964年。
⑷ 只有不怕困难,才能战胜困难。
⑸ 只要上街,我就去书店。
⑹ 如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐。
⑺ 如果林芳在家里,那么他不是在做作业就是在看电视。
⑻ 三角形三条边相等是三个角相等的充分条件。
⑼ 我进城的必要条件是我有时间。
⑽ 他唱歌的充分必要条件是心情愉快。
⑾ 小王总是在图书馆看书,除非他病了或者图书馆不开门。
解⑴ p :逻辑是枯燥无味的。
“逻辑不是枯燥无味的”符号化为 ?p 。
⑵ p :我看见的是小张。
q :我看见的是老李。
“我看见的既不是小张也不是老李”符号化为q p ?∧?。
⑶ p :他生于1963年。
q :他生于1964年。
“他生于1963年或1964年”符号化为p ⊕ q 。
⑷ p :害怕困难。
q :战胜困难。
“只有不怕困难,才能战胜困难”符号化为q → ? p 。
⑸ p :我上街。
q :我去书店。
“只要上街,我就去书店”符号化为p → q 。
⑹ p :小杨晚上做完了作业。
q :小杨晚上没有其它事情。
r :小杨晚上看电视。
s :小杨晚上听音乐。
“如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐”符号化为s r q p ∨→∧。
⑺ p :林芳在家里。
q :林芳做作业。
r :林芳看电视。
“如果林芳在家里,那么他不是在做作业就是在看电视”符号化为r q p ∨→。
⑻ p :三角形三条边相等。
离散数学习题答案.docx
精品文档离散数学习题答案习题一及答案:( P14-15 )14、将下列命题符号化:( 5)李辛与李末是兄弟解:设 p:李辛与李末是兄弟,则命题符号化的结果是p( 6)王强与刘威都学过法语解:设 p:王强学过法语; q:刘威学过法语;则命题符号化的结果是p q ( 9)只有天下大雨,他才乘班车上班解:设 p:天下大雨; q:他乘班车上班;则命题符号化的结果是q p( 11)下雪路滑,他迟到了解:设 p:下雪; q:路滑; r :他迟到了;则命题符号化的结果是( p q)r15、设 p: 2+3=5.q:大熊猫产在中国 .r:太阳从西方升起 .求下列复合命题的真值:( 4)(p q r )(( p q)r )解: p=1, q=1,r=0 ,(p q r )(110)1,((p q)r )((11)0)(00)1(p q r )(( p q)r ) 1 1119、用真值表判断下列公式的类型:( 2)( p p)q解:列出公式的真值表,如下所示:p q p qp) ( p p)q( p001111011010100101110001由真值表可以看出公式有 3 个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:精品文档( 4)( p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:( p q)1p0q0q0所以公式的成真赋值有: 01,10, 11。
习题二及答案:( P38)5、求下列公式的主析取范式,并求成真赋值:( 2)(p q) (q r )解:原式( p q) q r q r( p p) q r( p q r ) ( p q r )m3m7,此即公式的主析取范式,所以成真赋值为011, 111。
6、求下列公式的主合取范式,并求成假赋值:( 2)( p q) ( p r )解:原式( pp r ) ( p q r )( p q r )M 4,此即公式的主合取范式,所以成假赋值为 100。
离散数学作业标准答案
离散数学作业一、选择题1、下列语句中哪个就是真命题(C )。
A.我正在说谎。
B.如果1+2=3,那么雪就是黑色的。
C.如果1+2=5,那么雪就是白色的。
D.严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 就是( C )。
A 、 恒假的B 、 恒真的C 、 可满足的D 、 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ∃∀→中的变元x ( C )。
A.就是自由变元但不就是约束变元 B.既不就是自由变元又不就是约束变元 C.既就是自由变元又就是约束变元 D.就是约束变元但不就是自由变元4、设A={1,2,3},则下列关系R 不就是等价关系的就是(C ) A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C.R={<1,1>,<2,2>,<3,3>,<1,4>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R,σ(x)= -x 2+2x-1,则σ就是( D )。
A.单射而非满射B.满射而非单射C.双射D.既不就是单射,也不就是满射 6、下列二元运算在所给的集合上不封闭的就是( D ) A 、 S={2x-1|x ∈Z +},S 关于普通的乘法运算 B 、 S={0,1},S 关于普通的乘法运算 C 、 整数集合Z 与普通的减法运算D 、 S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所示,哪个能使({a,b},*)成为含幺元半群( D )b b b a a a b a * a b b b a a b a *8( A )A B C D 9、下列各组数中,能构成无向图的度数列就是( D ) A.1,1,1,2,4 B.1,2,3,4,5 C.0,1,0,2,4 D.1,2,3,3,510、一棵树有2个4度顶点,3个3度顶点,其余都就是树叶,则该树中树叶的个数就是( B )A 、8B 、9C 、 10D 、 11 11、“所有的人都就是要死的。
(完整版)《离散数学》同步练习答案
华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。
q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。
(2)设A,B都是命题公式,A B,则A B的真值是T。
(3)设:p:刘平聪明。
q:刘平用功。
在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。
(5)设,p:径一事;q:长一智。
在命题逻辑中,命题:“不径一事,不长一智。
" 可符号化为: p q 。
(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。
(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。
”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。
(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。
(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。
(12)设P:你努力.Q:你失败。
在命题逻辑中,命题:“除非你努力,否则你将失败。
”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。
q:小王是400米赛跑冠军。
在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。
(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。
二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。
()2.命题公式p q r是析取范式。
( √ )3.陈述句“x + y > 5”是命题。
(完整版)离散数学题目及答案
数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
离散数学习题答案解析
离散数学习题答案解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语∧解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是p q(9)只有天下大雨,他才乘班车上班→解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是q p (11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是()∧→p q r 15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(4)()(())∧∧⌝↔⌝∨⌝→p q r p q r解:p=1,q=1,r=0,∧∧⌝⇔∧∧⌝⇔,p q r()(110)1p q r⌝∨⌝→⇔⌝∨⌝→⇔→⇔(())((11)0)(00)1∴∧∧⌝↔⌝∨⌝→⇔↔⇔()(())111p q r p q r19、用真值表判断下列公式的类型:(2)()→⌝→⌝p p q解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。
习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。
离散数学习题解答(祝清顺版)
(1) 错误; (2) 正确; (3) 正确; (4) 错误; (5) 错误; (6) 错误; (7) 正确; (8) 正确; (9) 错误; (10) 错误. 10. (1) {d}; (2) {a, c, e}; (3) {a, b, c, e}; (4) {b, d, e}. 11. 各集合的文氏图如图所示(阴影部分).
5
195 = 1 ∙ 154 + 41 154 = 3 ∙ 41 + 31 41 = 1 ∙ 31 +10 31 = 3 ∙ 10 +1 10=10 ∙ 1 +0 所以, gcd(934, 195) = 1. 代回去, 有 gcd(540, 168) = 1 = 31 3 ∙ 10 = 31 3 ∙ (41 1∙31) = 4 ∙ 31 3 ∙ 41 = 4 ∙ (154 3 ∙ 41) 3 ∙ 41 = 4 ∙ 154 15 ∙ 41 = 4 ∙ 154 15 ∙ (1951 ∙ 154) = 19 ∙ 154 15 ∙ 195 = 19 ∙ (934 4 ∙ 195) 15 ∙ 195 = 19 ∙ 934 91 ∙ 195 故 gcd(540, 168) = 19 ∙ 934 91 ∙ 195, 其中 m=19, n = 91. (2) 方法同(1). 计算可得: gcd(369, 25) = 1, gcd(369, 25)= 4 ∙ 369 59 ∙ 25, 其中 m=4, n = 59. (3) 方法同(1). 计算可得: gcd(369, 25) = 33, gcd(369, 25)= 8 ∙ 165 1 ∙ 1287, 其中 n=8, m = 1. (4) 方法同(1). 计算可得: gcd(369, 25) = 2, gcd(369, 25)= 17 ∙ 42 2 ∙ 256, 其中 n=8, m = 1. 32. 由定理 1.3.8, 可得 ab=lcm(a, b)gcd(a, b)=24 ∙ 144. 由已知条件 a+b=120, 根据根与 系数的关系可构造一个一元二次方程 x2120x+24 ∙ 144=0 解之得, x1=72, x2=48. 由此可得 a=72, b=48 或 a=48, b=72. 33. (1) 运用辗转相除法可得 10920 = 1 ∙ 8316 + 2604 8316 = 3 ∙ 2604 + 504 2604 = 5 ∙ 504 + 84 504 = 6 ∙ 84 +0 所以, gcd(934, 195) = 84. (2) 对于(1)中各式回代过去, 有 gcd(10920, 8316) = 84 = 2604 5 ∙ 504 = 2604 5 ∙ (8316 3 ∙ 2604) = 16 ∙ 2604 5 ∙ 8316 = 16 ∙ (10920 1 ∙ 8316) 5 ∙ 8316 = 16 ∙ 10920 21 ∙ 8316 故 gcd(10920, 8316) = 21 ∙ 8316+16 ∙ 10920, 其中 m = 21, n=16. (3) 由最大公因子与最小公倍数的关系, 有 ab 8316 10920 =1081080. lcm(a, b) gcd(a, b) 84
离散数学习题一,二参考答案
《离散数学》习题一参考答案第一节 集合的基数1.证明两个可数集的并是可数集。
证明:设A ,B 是两可数集,},,,,,{321 n a a a a A =,},,,,,{321 n b b b b B = ⎪⎩⎪⎨⎧-→j b i a N B A f j i 212: ,f 是一一对应关系,所以|A ∪B|=|N|=0ℵ。
2.证明有限可数集的并是可数集证:设k A A A A 321,,是有限个可数集,k i a a a a A in i i i i ,,3,2,1),,,,,(321 ==⎪⎩⎪⎨⎧+-→==i k j a N A A f ij k i i )1(:1,f 是一一对应关系,所以|A|=| k i i A 1=|=|N|=0ℵ。
3.证明可数个可数集的并是可数集。
证:设 k A A A A 321,,是无限个可数集, ,3,2,1),,,,,(321==i a a a a A in i i i i⎪⎪⎩⎪⎪⎨⎧+-+-+→=∞=i j i j i a N A A f ij i i )2)(1(21:1 , 所以f 是一一对应关系,所以|A|=| ∞=1i i A |=|N|=0ℵ。
4.证明整系数多项式所构成的集合是可数集。
证明:设整系数n 次多项式的全体记为}|{1110Z a a x a x a x a A i n n n n n ∈++++=--则整系数多项式所构成的集合 ∞==1N n A A ;由于k x 的系数k a 是整数,那么所有k x 的系数的全体所构成的集合是可数集,由习题2“有限个可数集的并是可数集”可得n A 是可数集,再又习题4“可数个可数集的并是可数集”得出整系数多项式所构成的集合 ∞==1N n A A 也是可数集。
5.证明不存在与自己的真子集等势的有限集合.证明:设集合A 是有限集,则|A|=n ,若B 是A 的真子集,则|B|≤|A|=n ,A-B ≠φ,即|A-B|=|A|-|AB|>0;又A=(A-B )∪B ,(A-B )B=φ,所以,,就是|A|>|B|,即得结论。
20春地大《离散数学》在线作业一_136答案
C: (1, 0, 0), (1, 0, 1), (1, 1, 0)
D: (1, 1, 0), (1, 0, 1), (1, 1, 1)
正确答案: C
(单选题)8: 在有n个顶点的连通图中,其边数( )
A: 最多有n-1条
B: 至少有n-1 条
D: 二部图
正确答案: A
(单选题)23:
A: (1)正确
B: (2)Байду номын сангаас确
C: (3)正确
D: (4)正确
正确答案: D
(单选题)24:
A: A正确
B: B正确
C: C正确
D: D正确
正确答案: D
(单选题)25: 一棵树有2个2度顶点,1 个3度顶点,3个4度顶点,则其1度顶点为( )
A: 5
B: 7
(单选题)1: 下面给出的集合中,哪一个是前缀码?( )
A: {0,10,110,101111}
B: {01,001,000,1}
C: {b,c,aa,ab,aba}
D: {1,11,101,001,0011}
正确答案: B
(单选题)2: 设R是集合A={1,2,3,4}上的二元关系,R={,,},则下列( )不成立
B: 正确
正确答案: B
(判断题)29:
A: 错误
B: 正确
正确答案: B
(判断题)30: 与任何公式A等值的析取范式都是存在的并且是唯一的( )
A: 错误
B: 正确
正确答案: A
(判断题)31: “北京与天津的距离很近”是复合命题( )
A: 错误
B: 正确
离散数学答案版(全)
第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。
教学目的:1. 熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。
2. 熟练掌握常用的基本等价式及其应用。
3. 熟练掌握(主)析/合取范式的求法及其应用。
4. 熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。
5. 熟练掌握形式演绎的方法。
教学重点:1 .命题的概念及判断2 .联结词,命题的翻译3. 主析(合)取范式的求法4. 逻辑推理教学难点:1. 主析(合)取范式的求法2. 逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。
1.1.2 命题的表示命题通常使用大写字母 A , B,…,Z或带下标的大写字母或数字表示,如A i, [10], R等,例如A1:我是一名大学生。
A1:我是一名大学生.[10]:我是一名大学生。
R:我是一名大学生。
1.2命题联结词1.2.1否定联结词「P1.2.2合取联结词A1.2.3 析取联结词V1.2.4 条件联结词—125126 与非联结词T性质:(1)P T P=「( PAP)二「P;(2)(P T Q)T( P T Q) -「( P T Q) - PAQ;(3)( P T P)T( Q TQ) -「P T「Q= P V Q。
127 或非联结词J性质:(1) P J P=「( P V Q) =「P;(2)( P J Q );( P J Q) =「( P J Q) = P V Q;(3)( P J P)J( Q J Q) =「P Q=P V-Q) = PAQ1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2 )如果P是公式,则「P是公式;(3)如果P、Q是公式,则PAQ、PVQ、P > Q、P Q都是公式;(4)当且仅当能够有限次的应用(1)、(2)、(3)所得到的包括命题变元、联结词和括号的符号串是公式。
离散数学习题答案精选全文完整版
可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)5是无理数。
(3)3是素数或4是素数。
(4)x2+3<5,其中x是任意实数。
(5)你去图书馆吗?(6)2与3都是偶数。
(7)刘红与魏新是同学。
(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。
(11)只有6是偶数,3才能是2的倍数。
(12)8是偶数的充分必要条件是8能被3整除。
(13)2025年元旦下大雪。
1、2、3、6、7、10、11、12、13是命题。
在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。
2.将上题中是简单命题的命题符号化。
(1)p:中国有四大发明。
(2)q:5是无理数。
(7)r:刘红与魏新是同学。
(10)s:圆的面积等于半径的平方乘π。
(1)t:2025年元旦下大雪。
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。
“5是有理数”的否定式是“5不是有理数”。
解:原命题可符号化为:p:5是有理数。
其否定式为:非p。
非p的真值为1。
4.将下列命题符号化,并指出真值。
(1)2与5都是素数。
(2)不但π是无理数,而且自然对数的底e也是无理数。
(3)虽然2是最小的素数,但2不是最小的自然数。
(4)3是偶素数。
(5)4既不是素数,也不是偶数。
a:2是素数。
b:5是素数。
c:π是无理数。
d:e是无理数。
f:2是最小的素数。
g:2是最小的自然数。
h:3是偶数。
i:3是素数。
j:4是素数。
k:4是偶数。
解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。
这五个复合命题的真值分别为1,1,1,0,0。
5.将下列命题符号化,并指出真值。
a:2是偶数。
b:3是偶数。
c:4是偶数。
离散数学作业1_集合与关系答案
离散数学作业1_集合与关系1. 设A、B、C为任意三个集合,判断下列命题的真与假。
如命题为真,则证明之;否则,举反例说明。
(1)若A⋂C=B⋂C,则A=B(假命题)(2)若A⋃C=B⋃C ,则A=B(假命题)(3)若A⋂C=B⋂C 且A⋃C=B⋃C ,则A=B(真命题,参考ppt 1.2节例8)2.证明A-B=A∩~B.证明思路:任取x∈A-B⇔……⇔ x∈A∩~B证明:任取x∈A-B⇔x∈A且x/∈B(根据相对补的定义)⇔ x∈A且x∈~B(根据绝对补的定义)⇔ x∈A∩~B3. 设A={1,2,3,4,5,6},下面各式定义的R都是A上的二元关系。
试分别以序偶、关系矩阵、关系图三种形式分别写出R。
(1) R={<x,y>|x整除y};(2) R={<x,y>|x是y的倍数};(3) R={<x,y>|(x-y)2∈A};(4) R={<x,y>|x/ y是素数}。
解:(1)R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,2>,<2,4.>,<2,6>,<3,3 >,<3,6>,<4,4>,<5,5>,<6,6>}(2)R={<1,1>,<2,1>,<2,2>,<3,1>,<3,3>,<4,1>,<4,2>,<4,4>,<5,1>,<5,5>,<6,1>,<6,2>,<6,3>,<6,6>}(3)R={<1,2>,<1,3>,<2,1>,<2,3>,<2,4>,<3,2>,<3,4>,<3,1>,<3,5>,<4,3 >,<4,5>,<4,2>,<4,6>,<5,4>,<5,6>,<5,3>,<6,5>,<6,4>}(4) 质数又称素数。
离散数学课后答案(一)
自考2324离散数学课后答案1.21 答:a)的真值为T;b)的真值为T;c)不是命题;d)的真值为F;e)F;f)不是命题;g)F;h)不是命题;i)T;j)不是命题;k)F。
34 答:a)原子命题为:今天天气炎热;今天有雷阵雨b)原子命题为:你去比赛;我去比赛;c)原子命题为:我看电视;我看电影;我做作业;d)原子命题为:四边形ABCD是平行四边形;四边形的对边平行;1.31. 答: a) 不是合式公式。
b) 是合式公式。
c) 是合式公式。
d) 不是合式公式。
e) 是合式公式2. 答:a) 由合式公式的定义中的规定(1)A、B本身是一个合式公式;由规定(3)(A∨B)是一个合式公式;由规定(4)再次应用(3)可得式(A→(A∨B);b) 由合式公式定义规定(1)A、B本身各是一合式公式;由规定(2)|A是一合式公式;由规定(4)应用(3)得(|A∧B)是一合式公式;再应用(3)得原式是一个合式公式。
c) 由合式公式定义规定(1)A、B本身各是一合式公式;由规定(2)|A是一合式公式;由规定(3)(|A→B)、(B→A)各是合式公式;由规定(4)应用(3)得到的式子为合式公式。
5.试以真值表证明下列命题。
a)合取运算的结合律是P∧(Q∧R)=(P∧Q)∧R;真值表如下:最后两列的值完全相等,因此可证明合取运算结合律正确。
(答案及点评)b)析取运算的结合律;(答案及点评)b)析取运算的结合律是P∨(Q∨R)=(P∨Q)∨R;真值表如下:最后两列的值完全相等,因此可证明析取运算结合律正确。
c)合取(∧)对析取(∨)d)德摩根律。
(答案及点评)61.41.(答案及点评) a)若P为F,则该命题为T。
(双条件定义)若P为T,则(P∨Q∨R)必为P。
(析取)因此本式为永真式。
b) 若P为T,则(P→|P)为F,命题值为T。
若P为F,则(P→|P)为T,|P为T,命题为T。
所以本式为永真式。
c) 本式中,只有当P为T,且(Q→P)为F时,命题为T,而当P为T时,不论Q为何值,(Q→P)均为真,因此命题永假。
离散数学课后习题答案(第一章)
习题 1-5 (1) 试证下列各式为重言式。 a) (P∧(P→Q))→Q 证明:(P∧(P→Q))→Q ⇔(P∧(┐P∨Q))→Q ⇔(P∧┐P)∨(P∧Q)→Q ⇔(P∧Q)→Q ⇔┐(P∧Q)∨Q ⇔┐P∨┐Q∨Q ⇔┐P∨T ⇔T b) ┐P→(P→Q) 证明:┐P→(P→Q) ⇔P∨(┐P∨Q) ⇔ (P∨┐P)∨Q ⇔T∨Q ⇔T
c) ((P→Q)∧(Q→R))→(P→R) 证明:((P→Q)∧(Q→R))→(P→R) 因为(P→Q)∧(Q→R)⇒(P→R) 所以(P→Q)∧(Q→R)为重言式。 d) ((a∧b)∨(b∧c) ∨(c∧a))↔(a∨b)∧(b∨c)∧(c∨a) 证明:((a∧b)∨(b∧c) ∨(c∧a))↔(a∨b)∧(b∨c)∧(c∨a) 因为((a∧b)∨(b∧c)∨(c∧a)) ⇔((a∨c)∧b)∨(c∧a) ⇔((a∨c)∨(c∧a))∧(b∨(c∧a)) ⇔(a∨c)∧(b∨c)∧(b∨a) 所以((a∧b)∨(b∧c) ∨(c∧a))↔(a∨b)∧(b∨c)∧(c∨a) 为重言式。 (2) 不构造真值表证明下列蕴含式。 a)(P→Q)⇒P→(P∧Q) 解法 1: 设 P→Q 为 T (1)若 P 为 T,则 Q 为 T,所以 P∧Q 为 T,故 P→(P∧Q)为 T (2)若 P 为 F,则 Q 为 F,所以 P∧Q 为 F,P→(P∧Q)为 T 命题得证 解法 2: 设 P→(P∧Q)为 F ,则 P 为 T,(P∧Q)为 F ,故必有 P 为 T,Q 为 F ,所以 P→Q 为 F。 解法 3: (P→Q) →(P→(P∧Q)) ⇔┐(┐P∨Q)∨(┐P∨(P∧Q)) ⇔┐(┐P∨Q)∨((┐P∨P)∧(┐P∨Q)) ⇔T 所以(P→Q)⇒P→(P∧Q) b)(P→Q)→Q⇒P∨Q 设 P∨Q 为 F,则 P 为 F,且 Q 为 F, 故 P→Q 为 T,(P→Q)→Q 为 F,所以(P→Q)→Q⇒P∨Q。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学作业7
离散数学数理逻辑部分形成性考核书面作业
本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、
数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外) 安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。
并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。
一、填空题
1 .命题公式P (Q P)的真值是T或1 ______ .
2•设P:他生病了,Q:他出差了. R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P V Q)-R
3. ____________________________________________________________ 含有三个命题变项P,Q,R的命题公式P Q的主析取范式是__________________ _(P Q R) (P Q R)_
4. 设P(x): x是人,Q(x): x去上课,则命题“有人去上课.” 可符号化为—
x(P(x) Q(x))_
5. 设个体域D = {a, b},那么谓词公式xA(x) yB(y)消去量词后的等值式为
(A(a) A(b)) (B(a) B(b))_
6 .设个体域D = {1,2, 3},A(x)为“x大于3”,则谓词公式(x)A(x)的真值为F 或0 ________________ .
7.谓词命题公式(x)((A(x) B(x)) C(y))中的自由变元为 ________ .
8 .谓词命题公式(x)(P(x) Q(x) R(x,y))中的约束变元为x _______ .
三、公式翻译题
1 .请将语句“今天是天晴”翻译成命题公式
答:设P:今天是天晴,则P
2 •请将语句“小王去旅游,小李也去旅游•”翻译成命题公式
答:设P:小王去旅游,Q :小李去旅游;则P Q 。
3 •请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式
答:设P:明天下雪,Q ;我去滑雪;则P
Q o
4 •请将语句“他去旅游,仅当他有时间•”翻译成命题公式 .
答:设P:他去旅游,Q :他有时间;则P Q o
5 •请将语句“有人不去工作”翻译成谓词公式•
答:设A(x):x 表示人,B (x):表示人工作;则x(A(x) B(x))。
6 •请将语句“所有人都努力工作•”翻译成谓词公式 .
答:设A(x): x 表示人,B (x):表示人努力工作;则x(A(x) B(x))。
四、判断说明题(判断下列各题,并说明理由•)
1.命题公式P P 的真值是1.
答 :错。
因P P
00
2.命题公式P (P Q) P 为永真式
答 :对。
因P (P
Q)
P
P P
1。
3.谓词公式xP(x) (yG(x,y) xP(x))是永真式.
解: :对。
因它的等价式 P (G P ) P
(G P) P ( G P)
(P P) G 1 G 1。
4•下面的推理是否正确,请给予说明. (1) ( x)A(x) B(x)
⑵ A(y) B(y)
四.计算题
1. 求P Q R 的析取范式,合取范式、主析取范式,主合取范式. 解:P (Q R) P (Q R) P Q R(析取范式)
(P Q
R)(合取范式)
前提引入 US (1)
2•求命题公式(P Q) (R Q)的主析取范式、主合取范式.
主析取范式:(P Q R) ( P Q R) ( P Q R) ( P Q R) (P Q R) (P Q R) (P Q R); 主合取范式:(P Q R)
3.
设谓词公式(x)(P(x,y) ( z)Q(y,x,z)) ( y)R(y,z).
(1) 试写出量词的辖域;
(2) 指出该公式的自由变元和约束变元.
解:x 辖域P(x, y) ( z)Q(y,x,z); z 辖域Q(y,x, z); y 辖域R(y,z)。
在(x)P(x, y)中y 是自由元,乂是约束元; 在(z)Q(y,x,z)中y,x 是自由元,z 是约束元; 在y(R(x,y)中x 是自由元,y 是约束元。
4. 设个体域为D={a i , a 2},求谓词公式y xP(x,y)消去量词后的等值式; 解:y xP(x, y) y( xP(x, y))
y((P(a n y) P@2,y))
(P(a i ,aJ P(a 「a 2)) (P(a 2,aJ P®^)) 五、证明题
R) R)
主析取范式:(P Q
(P Q R) (P Q 主合取范
式:(P Q R)
(P Q R) ( P Q R) ( P Q R) (P Q R);
1 •试证明(P (Q R)) P Q与(P Q)等价.
证明:右边(P (Q R)) Q P (( P Q) (Q (Q R)) ((P Q) Q) P(吸收律)Q P (P
P(吸收律)Q)左边。
2. 试证明(x)(P(x) R(x)) ( x)P(x) ( x)R(x).
证明:书P202例13。