完整版数字通信原理第五章纠错编码习题解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章纠错编码习题解答
1、已知一纠错码的三个码组为(001010)、(101101)、(010001)。若用于检错,能检出几位错码?若用于纠错,能纠正几位错码?若纠检错结合,则能纠正几位错码同时检出几位错码?
[解]该码的最小码距为d o=4,所以有:
若用于检错,由d o> e+1,可得e=3,即能检出3位错码;若用于纠错,由d o> 2t+1,可得t=1,即能检出1位错码;若纠检错结合,由d o> e+t+1 (e>t),可得t=1, e=2,即能
纠正1 位错码同时能检出2 位错码。
2、设某(n,k)线性分组码的生成矩阵为:
001011
G 1 0 0 1 0 1
010110
①试确定该(n,k)码中的n和k;
②试求该码的典型监督矩阵H;
③试写出该码的监督方程;
④试列出该码的所有码字;
⑤试列出该码的错误图样表;
⑥试确定该码的最小码距。
[解]①由于生成矩阵G 是k 行n 列,所以k=3,n=6。
②通过初等行变换,将生成矩阵G变换成典型生成矩阵
10 0 10 1
G 0 10 1 10 I k Q
0 0 10 11
1 0 1 1 1 0
由于Q 1 1 0 , P= Q T= 0 1 1,可知典型监督矩阵为
0 1 1 1 0 1
110 10 0
H = PI r 0 110 10
10 10 0 1
85 玄4 a? 0
③监督方程为a。a3 q 0
a5 a3 a0 0
④所有码字见下表
⑤错误图样表即错误图样与校正子关系表,见下表
⑥线性码的最小码距为码字的最小重量(全零码除外) ,所
以该码的最小码距为 3。
3、已知一种(7,3)循环码的全部码组为:
0000000 0101110 1001011 1100101 0010111 0111001
1011100
1110010
试求该码的生成多项式 g(x)、典型生成矩阵G 和典型监督矩阵H ;
[解]由循环码的原理知,生成多项式g(x)对应的码字为前k-1 位码元
均为“ 0”的码字,即“ 0010111”,所以有
g(x)=x 4+x 2+x+1
x 2
g(x)
6 4
x x
3 x 2 x
1 0 1 1 1 0 0 则生成矩阵为G xg(x)
5 3 x x
2
x x
0 1 0 1 1 1 0 g(x)
4
2
x x x 1
0 0 1
0 1 1 1
1 0
0 1 0 1 1
典型化可得典型生成矩阵G 0 101110I k Q
0 010111
f
1 10 10
0 0 0 110 10 0
H = PI r
1110 0 10 1 0 1 0
0 0 1
4、已知一个(3,1,4)卷积码编码器的输出和输入关系为:
c 2 b, b 2 鸟 b 4 C3 d
b3 b4
试画出该编码器的电路方框图和码树图。当输入信息序列为
10110时,试求出其输出码序列。
[解]电路方框图和码树图见下面。
1 1 0 T
0 P = Q T
=
1
1
,可得典型监督矩阵为
1 1 1 1 0 1
10 11
由于Q 1110 ,
0 111
10110时,其输出码序列为111
111 100 111
001。
5、已知一个(2,1,3)卷积码编码器的输出和输入关系为
G D 6 C2 b2 b3
试画出该编码器的电路方框图、码树图、状态图和网格图
信息忖 起点
000
c>c
000
to
11
111
10
a
11
010
a
Oil
010
b
Q 傅凸 g
Oil b
oil c b QOfl d
更一 E e 001
/ QQl ...
d
DIO
,
001
当输入信息序列为
[解]分别见下面的图。
M; Mi M、
:3
G
00
00
信息位起点
eg
00
to
11
to
11
10
1
1
to
II
\a 10
11
b 01
01
c 11
10
d 00
00
a 10
II
b 01
01
C 11 -
10
d 00
II
01
1
1
00
J"
h 01
b
h
d
6、简要叙述前向纠错(FEC)差错控制方法的原理和主要优缺点。
[解]略
7、已知(7,3)循环码的生成矩阵为
110 0
1110
0 111
①试写出该码的生成多项式g(x)和监督矩阵
H ;