2017中考题型四 反比例函数与一次函数综合题

合集下载

2017中考数学全国试题汇编------一次函数和反比例函数综合压轴题

2017中考数学全国试题汇编------一次函数和反比例函数综合压轴题

(2)∵ M 是直线 y=m 与直线 AB 的交点
∴ M(
, m)
同理, N( ,m)
∴ MN=|
- |=4

- =±4
解得 m=2 或- 6 或 6± ∵ m>0 ∴m=2 或 6+ (3)x<-1 或 5<x<6 考点: 1.求反比例函数解析式; 2.反比例函数与一次函数交点问题 .
25(2017 湖北黄石).如图,直线 l:y=kx+b(k<0)与函数 y= (x >0)的图象相交于 A、C两点,与 x 轴相交于 T 点,过 A、C 两点作 x 轴的垂线,垂足分别为 B、D,过 A、C两点作 y 轴的垂线,垂足分 别为 E、F;直线 AE与 CD相交于点 P,连接 DE,设 A、C 两点的坐标 分别为( a, )、( c, ),其中 a>c>0. (1)如图①,求证:∠ EDP=∠ACP; (2)如图②,若 A、D、E、C四点在同一圆上,求 k 的值; (3)如图③,已知 c=1,且点 P 在直线 BF 上,试问:在线段 AT 上 是否存在点 M ,使得 OM⊥AM?请求出点 M 的坐标;若不存在,请 说明理由.
x
( 2)由图像得: 1 x 0或 x 1
考点:一次函数与反比例函数的综合运用;数形结合
26(2017 贵州六盘水)
.已知函数
y = kx + b , y = k ,k、b 为整数且
x
bk
= 1.
(1)讨论 b,k 的取值 .
(2)分别画出两种函数的所有图象 .(不需列表 )
(3)求
y
=
kx + b 与
2017 中考数学全国试题汇编 ------
一次函数和反比例函数综合题

反比例函数与一次函数的综合应用 参考答案与试题解析

反比例函数与一次函数的综合应用 参考答案与试题解析

反比例函数与一次函数的综合应用1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>32.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是;(3)点A到OB的距离AH的长度是.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;(2)点E是y轴上点C下方一点,若S=,求E点的坐标;△AEB(3)当y1>y2时,x的取值范围是.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)若点P在线段AB上,且S:S△BOP=1:4,求点P的坐标.△AOP参考答案与试题解析1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>3【解答】解:根据题意得:当y1<y2时,x的取值范围是﹣1<x<0或x>3,∴当kx<+b时,x的取值范围是﹣1<x<0或x>3.故选:B.2.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.【解答】解:(1)∵点C(3,6)在反比例函数y=的图象上,∴k2=3×6=18,∴反比例函数的解析式为y=;如图,作CE⊥x轴于E,∵C(3,6),AB=BC,∴B(0,3),∵B、C在y=k1x+b的图象上,∴,解得,∴一次函数的解析式为y=x+3;(2)由,解得或,∴D(﹣6,﹣3),=S△BOC+S△BOD=×3×3+×3×6=;∴S△COD(3)由图象可得,当0<x<3或x<﹣6时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是16;(3)点A到OB的距离AH的长度是.【解答】解:(1)设反比例函数的解析式为y=,由题意可知:k=6×2=12,∴y=,∵A(2,m)在反比例函数y=的图象上,∴m==6,∴A(2,6),∵A(2,6)、B(6,2)在一次函数y=ax+b的图象上,∴,解得,∴直线AB的表达式为y=﹣x+8;(2)设直线AB与x轴的交点为C,令y=0,则﹣x+8=0,解得x=8,∴C(8,0),=S△AOC﹣S△BOC=﹣=16,∴S△AOB故答案为:16;(3)∵B(6,2),∴OB==2,∵S=OB•AH=16,△AOB∴AH==,故答案为:.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;=,求E点的坐标;(2)点E是y轴上点C下方一点,若S△AEB(3)当y1>y2时,x的取值范围是x<﹣1或0<x<3.【解答】解:(1)将A(﹣1,6)代入一次函数y=﹣2x+b,得b=4;将A(﹣1,6)代入,得k=﹣6.(2)设E(a,0),将B(m,﹣2)代入,得m=3,∴B(3,﹣2)∴)=2CE=2(4﹣a)=,∴E(0,);(3)观察图象,当y1>y2时,x的取值范围是x<﹣1或0<x<3,故答案为:x<﹣1或0<x<3.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;:S△BOP=1:4,求点P的坐标.(3)若点P在线段AB上,且S△AOP【解答】解:(1)∵反比例函数y=经过A(1,2),∴k2=1×2=2,∴反比例函数解析式为y=,∵B(﹣2,n)在比例函数y=的图象上,∴n==﹣1,∴B(﹣2,﹣1),∵直线y=k1x+b经过A(1,2),B(﹣2,﹣1),∴,解得,∴一次函数的解析式为y=x+1;(2)观察图象,k1x+b>的x的取值范围是﹣2<x<0或x>1;(3)设P(x,x+1),:S△BOP=1:4,∵S△AOP∴AP:PB=1:4,即PB=4PA,∴(x+2)2+(x+1+1)2=16[(x﹣1)2+(x+1﹣2)2],解得x1=,x2=2(舍去),∴P点坐标为(,).。

反比例函数与一次函数综合题的解题技巧

反比例函数与一次函数综合题的解题技巧

反比例函数与一次函数综合题的解题技巧反比例函数是一类函数,它的特点是其中的变量是互为倒数关系,变量之间的函数关系是y=k/x,其中k为常数,当k<0时,反比例函数为递减;当k>0时,反比例函数为递增。

一次函数是一类函数,它的特点是其中的变量是线性的关系,变量之间的函数关系是y=kx+b,其中k为斜率,b为截距。

针对反比例函数与一次函数的综合题,我们可以采用以下解题技巧:
1.把反比例函数转换为一次函数
将反比例函数y=k/x,转化为一次函数,则有y=kx^(-1)+b,其中k是常数,b是截距,x^(-1)是x的倒数。

2.把一次函数转换为反比例函数
将一次函数y=kx+b,转化为反比例函数,则有y=k/x+b,其中k是斜率,b是截距,x是变量。

3.计算斜率和截距
可以根据已知点,根据联立方程求出斜率和截距,用于验算正确性。

4.给定一点,求出函数
可以根据已知点,求出函数的斜率和截距,然后根据斜率和截距求出函数的具体形式。

- 1 -。

一次函数与反比例函数综合题

一次函数与反比例函数综合题

一次函数与反比例函数综合题类型一 反比例函数与一次函数综合1. (2017湘潭)已知反比例函数y =kx 的图象过点A (3,1). (1)求反比例函数的解析式;(2) 若一次函数y =ax +6(a ≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.2. (2017武汉)如图,直线y =2x +4与反比例函数y =kx 的图象相交于A (-3,a )和B 两点. (1)求k 的值;(2)直线y =m (m >0)与直线AB 相交于点M ,与反比例函数y =kx 的图象相交于点N .若MN =4,求m 的值.第2题图3. (2017泸州二诊)如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 和反比例函数y =mx 的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积;(3)观察图象,直接写出方程kx +b -mx =0的解.第3题图4. (2017资阳模拟)如图,已知直线y =kx 与双曲线y =4x (x >0)相交于点A (2,m ),将直线y =kx 向下平移2个单位长度后与y 轴相交于点B ,与双曲线交于点C ,连接AB 、AC .第4题图(1)求直线BC 的函数表达式; (2)求△ABC 的面积.类型二 反比例函数与几何图形综合5. 如图,已知,A (0,4),B (-3,0),C (2,0),D 为B 点关于AC 的对称点,反比例函数y =kx 的图象经过D 点. (1)证明四边形ABCD 为菱形; (2)求此反比例函数的解析式;(3)已知在y =kx 的图象(x >0)上有一点N ,y 轴正半轴上有一点M ,且四边形ABMN 是平行四边形,求M 点的坐标.第5题图6. (2017泰安)如图,在平面直角坐标系中,Rt △AOB 的斜边OA 在x轴的正半轴上,∠OBA =90°,且tan ∠AOB =12,OB =25,反比例函数y =kx 的图象经过点B . (1)求反比例函数的表达式;(2)若△AMB 与△AOB 关于直线AB 对称,一次函数y =mx +n 的图象过点M 、A ,求一次函数的表达式.第6题图类型三 反比例函数与一次函数、几何图形综合7. 如图,双曲线y =kx (x >0)经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(4,6),连接AC 交x 轴于D ,连接BD . (1)确定k 的值; (2)求直线AC 的解析式;(3)判断四边形OABD 的形状,并说明理由;(4)求△OAC 的面积.第7题图8. (2017绵阳模拟)如图,直线y =-x +b 与反比例函数y =kx 的图象相交于A (1,4),B 两点,延长AO 交反比例函数图象于点C ,连接OB .(1)求k 和b 的值;(2)直接写出一次函数值小于反比例函数值的自变量x 的取值范围; (3)在y 轴上是否存在一点P ,使S △PAC =25S △AOB ?若存在,请求出点P 坐标;若不存在,请说明理由.第8题图答案1. 解:(1)将点A (3,1)代入反比例函数解析式中, 得1=k 3, ∴k =3,∴反比例函数的解析式为y =3x ; (2)对于一次函数y =ax +6(a ≠0),联立两解析式得⎩⎨⎧y =3x y =ax +6,消去y 得3x =ax +6,去分母得ax 2+6x -3=0 ①,∵一次函数与反比例函数图象只有一个交点, ∴①式中Δ=62-4a ×(-3)=0, 解得a =-3≠0,∴一次函数解析式为y =-3x +6.2. 解:(1) ∵直线y =2x +4与反比例函数y =kx 的图象相交于A (-3,a ),∴a =2×(-3)+4=-2, ∴点A 坐标为(-3,-2), k =xy =(-3)×(-2)=6; (2) ∵M 在直线y =2x +4上, ∴设M (m -42,m ),∵N 在反比例函数y =6x 上, ∴设N (6m ,m ),∴MN =x M -x N =m -42-6m =4或MN =x N -x M =6m -m -42=4, ∵m >0,∴解得m =6+43或m =2.3. 解:(1)∵点B (2,-4)在函数y =mx 的图象上, ∴m =-8,∴反比例函数的解析式为y =-8x ; 又∵点A (-4,n )在函数y =-8x 的图象上, ∴n =2, ∴A (-4,2),∵y =kx +b 经过A (-4,2),B (2,-4)两点,∴⎩⎪⎨⎪⎧-4k +b =22k +b =-4, 解得⎩⎪⎨⎪⎧k =-1b =-2,∴一次函数的解析式为y =-x -2; (2)如解图,设直线AB 与x 轴交于点C ,第3题解图当y =0时,x =-2, ∴点C (-2,0),即OC =2,∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=6; (3)方程kx +b -mx =0的解为x 1=-4,x 2=2. 4. 解:(1)∵点A (2,m )在y =4x 的图象上, ∴m =2,A 点坐标为(2,2), ∵点A 在y =kx 上, ∴k =1,∴直线BC 的解析式为y =x -2;(2)如解图,过点A 作AD ∥y 轴交BC 于点D ,第4题解图把x =2代入y =x -2中得,y =0, ∴D (2,0), ∴AD =2,∵点C 为直线BC 与反比例函数的交点,∴⎩⎨⎧y =4x y =x -2, 解得x =1±5, ∴C (1+5,5-1),∴S △ABC =S △ABD +S △ACD =12×2×2+12×2×(1+5-2)=1+ 5. 5. (1)证明:∵A (0,4),B (-3,0),C (2,0), ∴OA =4,OB =3,OC =2, ∴AB =OA 2+OB 2=5,BC =5, ∴AB =BC ,∵D 为B 点关于AC 的对称点, ∴AB =AD ,CB =CD , ∴AB =AD =CD =CB , ∴四边形ABCD 为菱形; (2)解:∵四边形ABCD 为菱形, ∴D 点的坐标为(5,4),∵反比例函数y =kx 的图象经过D 点, ∴4=k 5, ∴k =20,∴反比例函数的解析式为y =20x ; (3)解:∵四边形ABMN 是平行四边形, ∴AN ∥BM ,AN =BM ,∴AN 是BM 经过平移得到的, ∴首先BM 向右平移了3个单位长度, ∴N 点的横坐标为3, 代入y =20x ,得y =203, ∴M 点的纵坐标为203-4=83, ∴M 点的坐标为(0,83).6. 解:(1)如解图,过点B 作BD ⊥OA ,垂足为点D ,设BD =a , ∵tan ∠AOB =BD OD =12, ∴OD =2BD =2a ,∵∠ODB =90°,OB =25, ∴a 2+(2a )2=(25)2, 解得a =±2(-2舍去), ∴a =2,∴BD =2,OD =4, ∴B (4,2),∵反比例函数y =kx 的图象经过点B , ∴k =4×2=8,∴反比例函数表达式为y =8x ;第6题解图(2)∵tan ∠AOB =12,∴AB =12OB =5,∴OA =OB 2+AB 2=(25)2+(5)2=5,∴点A 的坐标为(5,0),又∵OM =2OB ,B (4,2),∴M(8,4),把点M 、A 的坐标代入y =mx +n 中得:⎩⎪⎨⎪⎧0=5m +n 4=8m +n, 解得m =43,n =-203, ∴一次函数的表达式为y =43x -203.7. 解:(1)将A (4,6)代入解析式y =k x 得:k =24;(2)∵AB ∥x 轴,B 的纵坐标是6,C 为OB 中点,∴把y =3代入反比例函数解析式y =24x 得x =8,即C 点坐标为(8,3),设直线AC 的解析式为y =kx +b (k ≠0),将A (4,6),C (8,3)代入得⎩⎪⎨⎪⎧4k +b =68k +b =3,解得⎩⎨⎧k =-34b =9,∴直线AC 的解析式为y =-34x +9;(3)四边形OABD 为平行四边形.理由如下:∵点C 的坐标为(8,3),点A 的坐标为(4,6),∴点B 的坐标为(16,6),∴AB =16-4=12,把y =0代入y =-34x +9中得:x =12,即D (12,0),∴OD =12,∴AB =OD ,又∵AB ∥OD ,∴四边形OABD 为平行四边形;(4)S ▱OABD =12×6=72,根据平行四边形的性质可知,S △OAC =14S ▱OABD =18.8. 解:(1)将A (1,4)分别代入y =-x +b 和y =k x 得:4=-1+b ,4=k 1,解得:b =5,k =4;(2)x >4或x <0<1;【解法提示】联立两解析式⎩⎨⎧y =-x +5y =4x,解得⎩⎪⎨⎪⎧x 1=1y 1=4,⎩⎪⎨⎪⎧x 2=4y 2=1, ∴B 点坐标为(4,1),∴一次函数值小于反比例函数值的自变量x 的取值范围为x >4或0<x <1;第8题解图(3)存在.理由如下:如解图,过点A 作AN ⊥x 轴于点N ,过点B 作BM ⊥x 轴于点M , 由(2)知,B 点坐标为(4,1),∴S △AOB =S 四边形ANMB =12(AN +BM )×MN =12×(4+1)×3=152,∵S △P AC =25S △AOB ,∴S △P AC =25×152=3,如解图,过点A 作AE ⊥y 轴于点E ,过点C 作CD ⊥y 轴于点D ,设P (0,t ),∴S△PAC=12OP·CD+12OP·AE=12OP·(CD+AE)=12|t|×2=|t|=3,解得:t=3或-3,∴P(0,3)或(0,-3).。

中考一次函数与反比例函数[含答案]

中考一次函数与反比例函数[含答案]

反比例函数与一次函数综合题针对演练1. 已知正比例函数y =2x 的图象与反比例函数y =k x(k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1. (1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小若存在,请求出点M 的坐标;若不存在,请说明理由.第1题图2. 如图,反比例函数2y x=的图象与一次函数y =kx +b 的图象交于点A 、B ,点A 、B 的横坐标分别为1、-2,一次函数图象与y 轴交于点C ,与x 轴交于点D . (1)求一次函数的解析式;(2)对于反比例函数2y x=,当y <-1时,写出x 的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA若存在,请求出点P的坐标;若不存在,请说明理由.第2题图3. 已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数且n≠0)的图象在第二象限交于点⊥x轴,垂足为D.若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤nx的解集.4. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y=mx的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第4题图5. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=m x (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC . (1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形如果存在,求出点D 的坐标;如果不存在,说明理由.第5题图6. 如图,直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=mx(x<0)交于点A(-1,n).(1)求直线与双曲线的解析式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形△OAB相似若存在求出D点的坐标,若不存在,请说明理由.第6题图7. 如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称并说明理由.第7题图8. 如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过点C作CA⊥x轴,过点D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.第8题图9. 如图,点B 为双曲线y =kx(x >0)上一点,直线AB 平行于y 轴,交直线y =x于点A ,交x 轴于点D ,双曲线y =k x与直线y =x 交于点C ,若OB 2-AB 2=4.(1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD 若存在,求出点P 的坐标;若不存在,请说明理由.第9题图答案1.解:(1)设A点的坐标为(x,y),则OP=x,PA=y,∵△OAP的面积为1,∴12xy=1,∴xy=2,即k=2,∴反比例函数的解析式为2yx;(2)存在,如解图,作点A关于x轴的对称点A′,连接A′B,交x轴于点M,此时MA+MB最小,∵点B的横坐标为2,∴点B的纵坐标为y=22=1,即点B的坐标为(2,1).又∵两个函数图象在第一象限交于A点,∴2 2xx=,解得x1=1,x2=-1(舍去).∴y=2,∴点A的坐标为(1,2),∴点A关于x轴的对称点A′(1,-2),设直线A′B的解析式为y=kx+b,代入A′(1,-2),B(2,1)得,23,215k b kk b b+=-=⎧⎧⎨⎨+==-⎩⎩解得,∴直线A′B的解析式为y=3x-5,令y=0,得x=53,∴直线y=3x-5与x轴的交点为(53,0),即点M的坐标为(53,0).第1题解图2.解:(1)∵反比例函数y=2x图象上的点A、B的横坐标分别为1、-2,∴点A的坐标为(1,2),点B的坐标为(-2,-1),∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1;(2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x<0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1,∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m, ∴m =-1,∴点P 的坐标为(-1,-2). 3.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0).将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10).将点C (-2,10)代入y =nx ,得10=2n -,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分) (2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分)将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x<0或x≥5. …………………………………… (10分)【解法提示】不等式kx +b ≤nx的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.4.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-,∴n =1,∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n ,1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53,令y=0,得x=-5,则C点坐标为(-5,0),∴t的最大值为A′B=(-2-1)2+(-1+2)2=10.第4题解图5.解:(1)∵一次函数y1=14x+1的图象与x轴交于点A,与y轴交于点C,∴A(-4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O为AB的中点,即OA=OB=4,且BP=2OC=2,∴点P的坐标为(4,2),将点P(4,2)代入y2=mx,得m=8,∴反比例函数的解析式为y2=8 x;(2)x>4;【解法提示】由图象可知,当y1>y2时,即是直线位于双曲线上方的部分,所对应的自变量x的取值范围是x>4.(3)存在.假设存在这样的D点,使四边形BCPD为菱形,如解图,连接DC 与PB交于点E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,∴D点的坐标为(8,1),将D(8,1)代入反比例函数8yx=,D点坐标满足函数关系式,即反比例函数图象上存在点D,使四边形BCPD为菱形,此时D点坐标为(8,1).第5题解图6.解:(1)∵直线y=x+b与x轴交于点C(4,0),∴把点C(4,0)代入y=x+b,得b=-4,∴直线的解析式为y=x-4,∵直线也过A点,∴把点A(-1,n)代入y=x-4,得n=-5,∴A(-1,-5),将A(-1,-5)代入y=mx(x<0),得m=5,∴双曲线的解析式为5yx=;(2)如解图,过点O作OM⊥AC于点M,∵点B是直线y=x-4与y轴的交点,∴令x=0,得y=-4,∴点B(0,-4),∴OC=OB=4,∴△OCB是等腰直角三角形,∴∠OBC=∠OCB=45°,∴在△OMB中,sin45°=OMOB=4OM,∴OM=22,∵AO=12+52=26,∴在△AOM中,sin∠OAB=OMOA=2226=21313;第6题解图(3)存在.如解图,过点A作AN⊥y轴于点N,则AN=1,BN=1,∴AB=12+12=2,∵OB=OC=4,∴BC=42+42=42,又∵∠OBC=∠OCB=45°,∴∠OBA=∠BCD=135°,∴△OBA∽△BCD或△OBA∽△DCB,∴OBBC=BACD或OBDC=BABC,即442=2CD或4DC=242,∴CD=2或CD=16,∵点C(4,0),∴点D的坐标是(6,0)或(20,0).7.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ).在Rt △AOB 中, tan ∠OAB =OB OA =33,∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°,∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是(3+32t ,12t ).∵点C 、E 在y =kx 的图象上,∴(3+32t )×12t =3t ,解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第7题解图8.解:(1)∵双曲线y =kx 经过点D (6,1),∴6k =1,解得k =6;(2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴, ∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4=-3,∴6x=-3,解得x =-2,∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c),∴点A 、B 的坐标分别为A (c ,0),B (0,1), 设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得,∴直线AB 的解析式为y =-1x c+1,设直线CD 的解析式为y =ex +f ,则16,661e ec f cc c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c +,∵AB 、CD 的解析式中k 都等于1c-,∴AB 与CD 的位置关系是AB ∥CD . 9.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =kx(x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a)2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a)2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y xy x =⎧⎪⎨=⎪⎩联立2222x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得(舍去),∴C 点坐标为(2,2), 第9题解图∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12),∴AB =4-12=72,CM =4-2,∴S △ABC =12CM ·AB =12×(4-2)×72 =7-724;(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP ,设P 点坐标为(a ,2a ),则A 点坐标为(a ,a ),∴AP =|a -2a|,∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|,∴(a -2)2=14×222(2)a a -,即(a -2)2=14×222((a a a +⨯-,∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去),∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。

【人教版】2017年中考数学:题型4反比例函数与一次函数综合题含答案

【人教版】2017年中考数学:题型4反比例函数与一次函数综合题含答案

题型四反比率函数与一次函数综合题
针对操练
m
1. 如图,一次函数 y=kx+1(k≠0)与反比率函数 y=x(m≠0)的图象有公共点A(1,
2),直线 l ⊥x 轴于点 N(3,0),与一次函数和反比率函数的图象分别订交于点B,C,连结 AC.
(1)求 k 和 m 的值;
(2)求点 B 的坐标;
(3)求△ ABC 的面积.
第1题图
k
2.已知正比率函数 y=2x 的图象与反比率函数 y=x(k≠0)在第一象限内的图象交
于点 A,过点 A 作 x 轴的垂线,垂足为点P,已知△ OAP 的面积为 1.
(1)求反比率函数的分析式;
(2)有一点 B 的横坐标为 2,且在反比率函数图象上,则在x 轴上能否存在一点M,使得 MA +MB 最小?若存在,恳求出点M 的坐标;若不存在,请说明原因.
第2题图
3. 如图,反比率函数y 2
的图象与一次函数 y=kx+b 的图象交于点 A、B,点 A、x
B 的横坐标分别为1、- 2,一次函数图象与 y 轴交于点 C,与 x 轴交于点 D.
(1) 求一次函数的分析式;
(2) 关于反比率函数y 2
,当 y<- 1 时,写出 x 的取值范围;
x
(3)在第三象限的反比率函数图象上能否存在一点P,使得 S△ODP=2S△OCA?若存在,恳求出点P 的坐标;若不存在,请说明原因.
第 3题图。

综合题:一次函数二次函数反比例函数中考综合题复习

综合题:一次函数二次函数反比例函数中考综合题复习

第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。

2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。

中考数学压轴题提升训练一次函数与反比例函数综合题含解析

中考数学压轴题提升训练一次函数与反比例函数综合题含解析

一次函数与反比例函数综合题【例1】。

如图,直线l:y=ax+b交x轴于点A(3,0),交y于第一象限的点P,点P的轴于点B(0,-3),交反比例函数y kx横坐标为4.的解析式;(1)求反比例函数y kx(2)过点P作直线l的垂线l1,交反比例函数y k的图象于x点C,求△OPC的面积.【答案】见解析。

【解析】解:(1)∵y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),∴3a+b=0,b=-3,解得:a=1,即l1的解析式为:y=x-3,当x=4时,y=1,即P(4,1),将P点坐标代入y k得:k=4,x;即反比函数的解析式为:y4x(2)设直线l1与x轴、y轴分别交于点E,D,∵OA=OB=3,∴∠OAB=∠OBA=45°,∵l⊥l1,∴∠DPB=90°,∴∠ODP=45°,设直线l1的解析式为:y=-x+b,将点P(4,1)代入得:b=5,联立:y=-x+5,y4x,解得:x=1,y=4或x=4,y=1,即C(1,4),∴S△OPC=S△ODE-S△OCD-S△OPE=12×5×5-12×5×1-12×5×1=152.【变式1—1】.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–12x+3交AB,BC于点M,N,反比例函数kyx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)∵B(4,2),四边形OABC为矩形,∴OA=BC=2,在y=–12x+3中,y=2时,x=2,即M(2,2),将M(2,2)代入kyx=得:k=4,∴反比例函数的解析式为:4yx=.(2)在4yx=中,当x=4时,y=1,即CN=1,∵S四边形BMON=S矩形OABC-S△AOM-S△CON=4×2-12×2×2-12×4×1=4,∴S△OPM=4,即12·OP·OA=4,∵OA=2,∴OP=4,∴点P 的坐标为(4,0)或(-4,0)。

2017年度中考一次函数与反比例函数[含答案解析]

2017年度中考一次函数与反比例函数[含答案解析]

反比例函数与一次函数综合题针对演练1. 已知正比例函数y=2x的图象与反比例函数y=kx(k≠0)在第一象限内的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,则在x轴上是否存在一点M,使得MA +MB最小?若存在,请求出点M的坐标;若不存在,请说明理由.第1题图2. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第2题图3. 已知,如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6. (1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx +b ≤n x的解集 .4. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.第4题图5. 如图,直线y1=14x+1与x轴交于点A,与y轴交于点C,与反比例函数y2=mx(x>0)的图象交于点P,过点P作PB⊥x轴于点B,且AC=BC.(1)求点P的坐标和反比例函数y2的解析式;(2)请直接写出y1>y2时,x的取值范围;(3)反比例函数y2图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.第5题图6. 如图,直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=mx(x<0)交于点A(-1,n).(1)求直线与双曲线的解析式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形△OAB相似?若存在求出D点的坐标,若不存在,请说明理由.第6题图7. 如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第7题图8. 如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过点C作CA⊥x轴,过点D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.第8题图9. 如图,点B为双曲线y=kx(x>0)上一点,直线AB平行于y轴,交直线y=x于点A,交x轴于点D,双曲线y=kx与直线y=x交于点C,若OB2-AB2=4.(1)求k的值;(2)点B的横坐标为4时,求△ABC的面积;(3)双曲线上是否存在点P,使△APC∽△AOD?若存在,求出点P的坐标;若不存在,请说明理由.第9题图答案1.解:(1)设A 点的坐标为(x ,y ),则OP =x ,PA =y , ∵△OAP 的面积为1,∴12xy =1,∴xy =2,即k =2,∴反比例函数的解析式为2y x=;(2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2,∴点B 的纵坐标为y =22=1,即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点,∴22x x=, 解得x 1=1,x 2=-1(舍去).∴y =2,∴点A 的坐标为(1,2), ∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0),即点M 的坐标为(53,0).第1题解图2.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1;(2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0; (3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1,∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m, ∴m =-1,∴点P 的坐标为(-1,-2). 3.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0).将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10).将点C (-2,10)代入y =nx ,得10=2n -,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分) (2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分)将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分)【解法提示】不等式kx +b ≤n x的解集,即是直线位于双曲线下方的部分所对应的自变量x的取值范围,也就是-2≤x <0或x ≥5.4.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x =-,∴n =1,∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求, ∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n ,1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53,令y =0,得x =-5, 则C 点坐标为(-5,0), ∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第4题解图5.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与y 轴交于点C ,∴A (-4,0),C (0,1),又∵AC =BC ,CO ⊥AB , ∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2, ∴点P 的坐标为(4,2),将点P (4,2)代入y 2=m x,得m =8,∴反比例函数的解析式为y2=8x ;(2)x>4;【解法提示】由图象可知,当y1>y2时,即是直线位于双曲线上方的部分,所对应的自变量x的取值范围是x>4.(3)存在.假设存在这样的D点,使四边形BCPD为菱形,如解图,连接DC与PB交于点E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,∴D点的坐标为(8,1),将D(8,1)代入反比例函数8yx=,D点坐标满足函数关系式,即反比例函数图象上存在点D,使四边形BCPD为菱形,此时D点坐标为(8,1).第5题解图6.解:(1)∵直线y=x+b与x轴交于点C(4,0),∴把点C(4,0)代入y=x+b,得b=-4,∴直线的解析式为y=x-4,∵直线也过A点,∴把点A(-1,n)代入y=x-4,得n=-5,∴A(-1,-5),将A(-1,-5)代入y=mx(x<0),得m=5,∴双曲线的解析式为5yx=;(2)如解图,过点O作OM⊥AC于点M,∵点B是直线y=x-4与y轴的交点,∴令x=0,得y=-4,∴点B (0,-4),∴OC =OB =4,∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OMOB =4OM,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA=2226=21313;第6题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2,∵OB =OC =4,∴BC =42+42=42,又∵∠OBC =∠OCB =45°,∴∠OBA =∠BCD =135°, ∴△OBA ∽△BCD 或△OBA ∽△DCB ,∴OB BC =BA CD 或OB DC =BABC ,即442=CD 或4DC =242,∴CD =2或CD =16,∵点C (4,0), ∴点D 的坐标是(6,0)或(20,0). 7.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F .设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA=33,∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°,∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是(3+32t ,12t ).∵点C 、E 在y =kx的图象上,∴(3+32t )×12t =3t ,解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分)②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23),设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3,∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第7题解图8.解:(1)∵双曲线y =kx经过点D (6,1),∴6k=1,解得k =6;(2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4=-3,∴6x=-3,解得x =-2,∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c),∴点A 、B 的坐标分别为A (c ,0),B (0,1), 设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得,∴直线AB 的解析式为y =-1x c+1,设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c +, ∵AB 、CD 的解析式中k 都等于1c-,∴AB 与CD 的位置关系是AB ∥CD .9.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x(x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,ka),∴AB =a -k a ,BD =ka,在Rt △OBD中,OB 2=BD 2+OD 2=(ka)2+a 2,∵OB 2-AB 2=4,∴(ka)2+a 2-(a -k a)2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y x y x =⎧⎪⎨=⎪⎩联立2222x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得(舍去),∴C 点坐标为(2,2), 第9题解图∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12),∴AB =4-12=72,CM =4-2,∴S △ABC =12CM ·AB =12×(4-2)×72 =7-724;(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形, ∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP ,设P 点坐标为(a ,2a ),则A 点坐标为(a ,a ),∴AP =|a -2a |,∵C 点坐标为(2,2),∴CM=|a-2|,∴|a-2|=12|a-2a|,∴(a-2)2=14×222(2)aa-,即(a-2)2=14×222((a aa+⨯-,∴4a2-(a+2)2=0,解得a=2或a=-23(舍去),∴P点坐标为(2,2),则此时点C与点P重合,所以不能构成三角形,故不存在.。

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。

反比例函数与一次函数综合练习题(总复习用)

反比例函数与一次函数综合练习题(总复习用)

y x 0反比例函数与一次函数综合练习题1.如图是反比例函数 y=m+2x 的图象的一支,根据图象回答下列问题: (1)图象的另一支在哪个象限?常数m 的取值范围是什么? (2)已知点(-3,y 1), (-1,y 2), (2,y 3), 则函数值y 1、y 2、y 3的大小关系怎样?2.已知:如图,一次函数的图象经过第一、二、三象限,与y 轴交于点C ,与x 轴交于点D .OB =10 ,tan ∠DOB =13. ⑴求反比例函数的解析式:⑵设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m的函数关系式,并写出自变量m 的取值范围;3.如图所示,已知反比例函数y= k x的图象经过点A (- 3 ,b ),过点A 作AB ⊥x 轴于点B ,△AOB 的面积为 3 。

⑴求k 、b 的值;⑵若一次函数y=ax+1的图象经过点A ,并且与x 轴相交于点M ,求AO ∶AM ; ⑶如果以AM 为一边的正三角形AMP 的顶点P 在二次函数y=-x 2+ 3 mx+m -9的图象上,求m 的值。

4.如图,已知C 、D 是双曲线y= m x 在第一像限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(x 1,y 1),(x 2,y 2),连结OC 、OD 。

⑴求证:y 1<OC<y 1+ 1y m ; ⑵若∠BOC=∠AOD=α,tan α=13,OC=10 ,求直线CD 的解析式; ⑶在⑵的条件下,双曲线上是否存在一点P ,使得S △POC =S △POD ?若存在,请给出证明;若不存在,请说明理由。

5.已知一次函数y=mx+b 与反比例函数y= m x(m ≠0) ⑴k 满足什么条件时,这两个函数在同一坐标系xOy 中的图象有两个公共点?⑵设⑴中的两个公共点为A ,B ,试判断∠AOB 是锐角还是钝角?6.已知A (m ,2)是直线l 与双曲线y= 3x的交点。

浙江省2017年中考数学真题分类汇编 坐标系、一次函数与反比例函数(解析版)

浙江省2017年中考数学真题分类汇编 坐标系、一次函数与反比例函数(解析版)

浙江省2017年中考数学真题分类汇编:坐标系、一次函数与反比例函数(解析版)一、单选题1、(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A、0<y1<y2B、y1<0<y2C、y1<y2<0D、y2<0<y12、(2017·台州)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是()A、B、C、D、3、(2017•绍兴)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A、B、C、D、4、(2017·丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象.下列说法错误的是()A、乙先出发的时间为0.5小时B、甲的速度是80千米/小时C、甲出发0.5小时后两车相遇D、甲到B地比乙到A地早小时二、填空题5、(2017·丽水)如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是________;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是________.6、(2017•宁波)已知△ABC的三个顶点为A ,B ,C ,将△ABC向右平移m()个单位后,△ABC某一边的中点恰好落在反比例函数的图象上,则m的值为________.7、(2017·金华)如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= 的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为________.8、(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y= (k≠0)的图象恰好经过点A′,B,则k的值为________.三、解答题9、(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.10、(2017·金华)(本题6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).(1)作出ABC关于原点O成中心对称的A 1B1C1.(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在A 1B1C1的内部(不包括顶点和边界),求a的取值范围.11、(2017·台州)如图,直线:与直线:相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线与直线,分别相交于C,D,若线段CD长为2,求a的值12、(2017•宁波)如图,正比例函数的图象与反比例函数的图象交于A、B两点,点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当时,写出自变量的取值范围.13、(2017•杭州)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?14、(2017·嘉兴)如图,一次函数()与反比例函数()的图象交于点,.(1)求这两个函数的表达式;(2)在轴上是否存在点,使为等腰三角形?若存在,求的值;若不存在,说明理由.15、(2017·衢州)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。

一次函数和反比例函数综合练习含答案

一次函数和反比例函数综合练习含答案

《一次函数和反比例函数》中考题1、已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在第一象限内的图象交于点B (2,n ),连结BO ,若4=AOB S △。

(1)求该反比例函数的解析式和直线AB 的解析式;(2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.【思路分析】(1)先由A (﹣2,0),得OA=2,点B (2,n ),S △AOB =4,得OA•n=4,n=4,则点B 的坐标是(2,4),把点B (2,4)代入反比例函数的解析式为y=,可得反比例函数的解析式为:y=;再把A (﹣2,0)、B (2,4)代入直线AB 的解析式为y=kx+b 可得直线AB 的解析式为y=x+2.(2)把x=0代入直线AB 的解析式y=x+2得y=2,即OC=2,可得S △OCB =OC×2=×2×2=2.【解】(1)由A (-2,0),得OA =2.∵点B (2,n )在第一象限内,4=AOB S △。

∴21OA ×n=4,∴n=4。

∴点B 的坐标为(2,4)………………(2分)设反比例函数的解析式为y=x8(a ≠0) 将点B 的坐标代入,得4=2a ,∴a=8。

∴反比例函数的解析式为y=x 8………………(4分) 设直线AB 的解析式为y=kx+b(k ≠0)将点A 、B 的坐标分别代入,得⎩⎨⎧=+=+-.42,02b k b k解得⎩⎨⎧==.2,1b k ∴直线AB 的解析式为y=x+2. ………………(6分)(2)在y=x+2中,;令x =0,得y=2。

∴点C 的坐标是(0,2),∴OC =2。

∴2222121=⨯⨯=⨯=B OCB x OC S △.………………(10分) 2、如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数xk y =(x >0,k ≠0)的图像经过线段BC 的中点D 。

中考数学《反比例函数与一次函数的交点问题》专项练习题及答案

中考数学《反比例函数与一次函数的交点问题》专项练习题及答案

中考数学《反比例函数与一次函数的交点问题》专项练习题及答案一、单选题1.如图,直线y=ax(a≠0)与反比例函数y=k x(k≠0)的图象交于A,B两点.若点B的坐标是(3,5),则点A的坐标是()A.(﹣3,﹣5)B.(﹣5,﹣3)C.(3.﹣5)D.(5,﹣3)2.如图,反比例函数y1= k1x和一次函数y2=k2x+b的图象交于A,B N点.A,B两点的横坐标分别为2,-3.通过观察图象,若y1>y2,则x的取值范围是()A.0<x<2B.-3<x<0或x>2C.0<x<2或x<-3D.-3<x<03.某数学小组在研究了函数y1=x与y2=4x性质的基础上,进一步探究函数y=y1+y2的性质,经过讨论得到以下几个结论:①函数y=y1+y2的图象与直线y=3没有交点;②函数y=y1+y2的图象与直线y=a只有一个交点,则a=±4;③点(a,b)在函数y=y1+y2的图象上,则点(-a,-b)也在函数y=y1+y2的图象上.以上结论正确的是()A.①②B.①②③C.②③D.①③4.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2C.−1<x<2D.−1<x<0或0<x<25.如图,正比例函数y=x与反比例函数y= 2x的图象相交于A,B两点,分别过A,B两点作y轴的垂线,垂足分别为C,D,连接AD,BC,则四边形ACBD的面积为()A.2B.4C.6D.86.我们知道,方程x2+2x﹣1=0的解可看作函数y=x+2的图象与函数y=1x的图象交点的横坐标,那么方程kx2+x﹣4=0(k≠0)的两个解其实就是直线y=kx+1与双曲线y=4x的图象交点的横坐标,若这两个交点所对应的坐标为(x1,4x1)、(x2,4x2),且均在直线y=x的同侧,则实数k的取值范围是()A.12<k<32B.﹣12<k<32C.﹣116<k<0或0<k<32D.12<k<32或﹣116<k<07.如图,直线y=x+a−2与双曲线y=4x交于A,B两点,则当线段AB的长度取最小值时,a的值为A.0B.1C.2D.58.如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A,B两点,其中点A的横坐标为2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2B.x<﹣2或0<x<2 C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>29.如图,函数y=−x与函数y=−4x的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,则四边形ADBC的面积为()A.2B.4C.6D.810.正比例函数y1=k1x(k1>0)与反比例函数y2= k2x(k2>0)部分图象如图所示,则不等式k1x>k2x的解集在数轴上表示正确的是()A.B.C.D.11.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中△OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y=kx(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD=32,则k的值为()A.3B.52C.2D.112.在平面直角坐标系中,直线y=﹣x+2与反比例函数y=1x的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=1x的图象有2个公共点,则b的取值范围是()A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣2二、填空题13.如图,过原点且平行于y=3x−1直线与反比例函数y=k x(k≠0,x>0)的图像相交x于点C,过直线OC上的点A(1,3),作AB⊥x轴于点B,交反比例函数图象于点D,且AD=2BD,那么点C的坐标为.14.已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是15.若反比例函数 y =b−3x和一次函数 y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = 。

中考数学专练——反比例函数与一次函数的综合

中考数学专练——反比例函数与一次函数的综合

2023年数学专练——反比例函数与一次函数的综合一、综合题1.如图,已知反比例函数kyx=与一次函数y x m=+的图象交于点B和点(14)A k-+,,一次函数的图象与x轴交于点C .(1)求出两个函数的表达式.(2)求AOB的面积.(3)直接写出kx mx+≥的解集.2.已知:如图,函数kyx=与28y x=-+的图象交于点A(1,a)、B(b,2).(1)求函数kyx=的解析式以及点A、B的坐标;(2)观察图象,直接写出不等式k28xx≥-+的解集;(3)若点P是x轴上的动点,当AP+BP取得最小值时,直接写出出点P的坐标.3.如图,直线y1=ax+b与双曲线y2=kx交于A,B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).(1)求直线和双曲线的解析式;(2)根据图象直接写出ax+b﹣kx>0中x的取值范围.4.如图,在平面直角坐标系中,一次函数y x m=-+的图象与反比例函数(0)ky xx=>的图象交于A、B两点,已知()2,4A,(),2B n .(1)求反比例函数的表达式;(2)当 0x > 时,求不等式kx m x>-+ 的解集. 5.已知图中的曲线是函数 5m y x-=(m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数y=2x 图象在第一象限的交点为 A (2,n ),求点A 的坐标及反比例函数的解析式.6.如图,一次函数y =kx+b 的图象与反比例函数y = 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,且OB =6,(1)求函数y = 和y =kx+b 的解析式.(2)已知直线AB 与x 轴相交于点C ,在第一象限内,求反比例函数y = 的图象上一点P ,使得S △POC =9.7.如图,直线 y kx b =+ y kx b =+ 与反比例函数 12y x=相交于 A(2)m -, 、 B(n 3),.(1)连接 OA 、 OB ,求 AOB 的面积; (2)根据(1)中的图象信息,请直接写出不等式12kx b x>+ 的解集. 8.如图,一次函数 1y kx b =+ 的图象与反比例函数 2my x=的图象交于点A (-3, 8m + ),B ( n ,-6)两点.(1)求一次函数与反比例函数的解析式; (2)求 AOB 的面积;(3)直接写出 12y y > 时,x 的取值范围.9.如图,在直角坐标系中,O 为坐标原点.已知反比例函数 ky x=( 0k > )的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C (x ,y )在反比例函数 ky x=的图象上,求当1≤x≤3时,函数值y 的取值范围. 10.如图,在平面直角坐标系中,一次函数 ()0y kx b k =+≠ 与反比例函数 ()0my m x=≠ 的图像交于点 ()3,1A ,且过点 ()1,3B -- .(1)求反比例函数和一次函数的表达式; (2)根据图像直接写出当 mkx b x+>时, x 的取值范围. 11.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8),B (﹣4,m )两点.(1)求k 1,k 2,b 的值; (2)求△AOB 的面积;(3)请直接写出不等式1k x≤ 2k x+b 的解. 12.如图所示,一次函数y =kx+b 的图象与反比例函数y =mx的图象交于A(1,t+1),B(t-5,-1)两点.(1)求一次函数和反比例函数的解析式;(2)若点(c ,p)和(n ,q)是反比例函数y =mx图象上任意两点,且满足c =n+1时,求 q p pq - 的值.(3)若点M(x 1,y 1)和N(x 2,y 2)在直线AB(不与A 、B 重合)上,过M 、N 两点分别作y 轴的平行线交双曲线于E 、F ,已知x 1<-3,0<x 2<1,当x 1x 2=-3时,判断四边形NFEM 的形状.并说明理由.13.如图,反比例函数 8y x=-与一次函数 2y x =-+ 的图象交于A 、B 两点.(1)求A 、B 两点的坐标;(2)求△AOB 的面积. (3)当x 为何值时 8y x=-的函数值大于 2y x =-+ 的函数值,直接写出x 的取值范围14.如图,在平面直角坐标系xOy 中,直线y =2x +2与函数y =kx(k ≠0)的图象交于A ,B 两点,且点A 的坐标为(1,m ).(1)求k ,m 的值;(2)直接写出关于x 的不等式2x +2>kx的解集; (3)若Q 在x 轴上,△ABQ 的面积是6,求Q 点坐标.15.如图,一次函数 1y kx =+ 的图象与反比例函数 my x=的图象交于点 A 、 B ,点 A 在第一象限,过点 A 作 AC x ⊥ 轴于点 C , AD y ⊥ 轴于点 D ,点 B 的纵坐标为-2,一次函数的图象分别交 x 轴、 y 轴于点 E 、 F ,连接 DB 、 DE .已知 4ADFS= , 3AC OF = .(1)求一次函数与反比例函数的解析式; (2)求 DBE 的面积;(3)直接写出反比例函数的值大于一次函数的值的 x 的取值范围.16.如图,已知直线 5l y x =-+:(1)当反比例函数 (0,0)ky k x x=>> 的图象与直线 l 在第一象限内至少有一个交点时,求k 的取值范围 (2)若反比例函数 (0,0)ky k x x=>> 的图象与直线 l 在第一象限内相交于点 11(,)A x y 、 22(,)B x y ,当 213x x -= 时,求k 的值并根据图象写出此时关的不等式 5kx x-+< 的解集17.如图,过直线 12y kx =+上一点 P 作 PD x ⊥ 轴于点D ,线段 PD 交函数 (0)my x x=> 的图像于点C ,点C 为线段 PD 的中点,点C 关于直线 y x = 的对称点 C ' 的坐标为 (13),.(1)求k 、m 的值;(2)求直线 12y kx =+与函数 (0)my x x=> 图像的交点坐标;(3)直接写出不等式1(0)2m kx x x >+> 的解集. 18.如图,一次函数y =k 1x+b 的图象与反比例函数y =2k x的图象相交于点A(3,1),B(﹣1,n)两点.(1)分别求出一次函数和反比例函数的解析式; (2)根据图象,直接写出满足k 1x+b≥2k x的x 的取值范围; (3)连接BO 并延长交双曲线于点C ,连接AC ,求△ABC 的面积.19.如图,双曲线 ()0ky k x=> 经过矩形OABC 的边BC 的中点E ,交AB 于点D.设点B 的坐标为(m ,n ).(1)直接写出点E 的坐标,并求出点D 的坐标;(用含m ,n 的代数式表示) (2)若梯形ODBC 的面积为,求双曲线的函数解析式.20.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,反比例函数y=k x(k≠0)在第一象限内的图象经过点D (m ,2)和AB 边上的点E (3,23).(1)求反比例函数的表达式和m 的值;(2)将矩形OABC 的进行折叠,使点O 于点D 重合,折痕分别与x 轴、y 轴正半轴交于点F ,G ,求折痕FG 所在直线的函数关系式.答案解析部分1.【答案】(1)解:将点 (14)A k -+, 代入 ky x= , 得 4k k -+= 解得 2k =∴ 反比例函数表达式为 2y x=, (12)A , 将点 (12)A , 代入 y x m =+ 得 21m =+1m ∴=∴ 一次函数的表达式为 1y x =+(2)解:由一次函数 1y x =+ 的图象与 x 轴交于点 C .令 0y = ,解得 1x =- ,则 (10)C -, 则 1OC =联立 21y x y x ⎧=⎪⎨⎪=+⎩解得 1121x y =-⎧⎨=-⎩ , 2212x y =⎧⎨=⎩ ()21B ∴--,()113=121222AOBA B SOC y y ∴=⋅⋅-⨯⨯--= (3)解:一次函数 1y x =+ 与反比例函数 2y x=交于点 (12)A , , ()21B --, 根据函数图象可得 kx m x+≥的解集为: 1x ≥ 或 20x -≤< 【解析】【分析】(1)将A (1,-k+4)代入y=kx中可得k 的值,进而可得反比例函数的解析式;将A (1,2)代入y=x+m 中求出m ,进而可得一次函数的解析式;(2)易得C (-1,0),则OC=1,联立反比例函数与一次函数的解析式求出x 、y ,可得B (-2,-1),接下来根据三角形的面积公式进行计算;(3)根据图象,找出一次函数在反比例函数图象上方部分所对应的x 的范围即可.2.【答案】(1)解:将A (1,a ),B (b ,2)代入y =﹣2x+8中得:a=6,b=3∴A (1,6),B (3,2), 把A (1,6)代入y =kx中,可得k =6 ∴反比例函数解析式为y =6x,A 、B 两点坐标分别为A (1,6)、B (3,2); (2)解:由图象得:不等式6x<﹣2x+8的解集为1<x <3或x <0; (3)(52,0) 【解析】【解答】解:(3)如图,作点A 关于x 轴的对称点A′(1,-6),连结A′B 交x 轴于点P ,则点P 即为所求,此时AP+BP 的值最小.设直线A′B 的解析式为y =mx+n , ∵B (3,2),A′(1,-6),∴326m n m n +=⎧⎨+=-⎩ ,解得 410m n =⎧⎨=-⎩, ∴直线A′B 的解析式为y =4x-10, 当y =0时,y =52, ∴点P 的坐标为(52,0).【分析】(1)将点A 、B 的坐标代入一次函数表达式求解a 、b ,再将点A 坐标代入反比例函数表达式求解k 即可;(2)结合图像,函数值大的图像在上方的原则直接写出答案即可;(3)利用“将军饮马”的方法,先作对称轴,再求解即可。

最新【人教版】中考数学:题型(4)反比例函数与一次函数综合题(含答案)

最新【人教版】中考数学:题型(4)反比例函数与一次函数综合题(含答案)

题型四 反比例函数与一次函数综合题针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx (m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC . (1)求k 和m 的值; (2)求点B 的坐标; (3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =kx (k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数, k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤nx 的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC .(1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx (x <0)交于点A (-1,n ). (1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =kx 经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =kx 与直线y =x 交于点C ,若OB 2-AB 2=4. (1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y =mx 的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x=23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103, 又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,P A =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1, 即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0), 即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10). 将点C (-2,10)代入y =nx ,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分) 将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分) 【解法提示】不等式kx +b ≤n x 的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53, 令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与 y 轴交于点C , ∴A (-4,0),C (0,1), 又∵AC =BC ,CO ⊥AB ,∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2,∴点P 的坐标为(4,2),将点P (4,2)代入y 2=mx ,得m =8,∴反比例函数的解析式为y 2=8x;(2)x >4;【解法提示】由图象可知,当y 1>y 2时,即是直线位于双曲线上方的部分,所对应的自变量x 的取值范围是x >4.(3)存在.假设存在这样的D 点,使四边形BCPD 为菱形,如解图,连接DC 与PB 交于点E ,∵四边形BCPD 为菱形, ∴CE =DE =4, ∴CD =8,∴D 点的坐标为(8,1),将D (8,1)代入反比例函数8y x,D 点坐标满足函数关系式,即反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时 D 点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4,∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx (x <0),得m =5, ∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4,∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM ,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2, ∵OB =OC =4, ∴BC =42+42=42, 又∵∠OBC =∠OCB =45°, ∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB , ∴OB BC =BA CD 或OB DC =BA BC ,即442=CD 或4DC =242,∴CD =2或CD =16, ∵点C (4,0),∴点D 的坐标是(6,0)或(20,0).8.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t , ∴点C 的坐标是(3+32t ,12t ). ∵点C 、E 在y =kx 的图象上, ∴(3+32t )×12t =3t , 解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x 经过点D (6,1), ∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1, ∴点C 的纵坐标为1-4=-3, ∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得, ∴直线CD 的解析式为y =12x -2;(3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x (x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a ),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a )2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a )2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y x y x =⎧⎪⎨=⎪⎩联立x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得 ∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12), ∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP ,设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|,∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|,∴(a -2)2=14×222(2)a a -,即(a -2)2=14×222((a a a +⨯-, ∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去), ∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。

重庆市中考数学题型复习题型四反比例函数综合题类型一与一次函数结合练习

重庆市中考数学题型复习题型四反比例函数综合题类型一与一次函数结合练习

类型一 与一次函数结合针对演练1. 如图,在平面直角坐标系中,直线y =-x +b 与函数y =k x(k ≠0)的图象相交于点A 、B ,已知点A 的坐标为(3,4),则△AOB 的周长为( )A . 10B . 20C . 10+2 2D . 10+ 2第1题图 第2题图2. (2016济宁)如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =45,反比例函数y =48x在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A . 60B . 80C . 30D . 403. (2017东营)如图,一次函数y =kx +b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =n x的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =3,OD =6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x >0时,kx +b -n x<0的解集. 第3题图4. (2018原创)如图,一次函数y =-x -1与反比例函数y =m x(m ≠0)的图象交于点A ,一次函数图象与坐标轴分别交于B 、C 两点,连接AO ,若AO =5,cos ∠AOB =255.(1)求反比例函数的解析式;(2)延长AO 交双曲线于点D ,连接CD ,求CD 的长.第4题图5. (2017重庆江北区一模)如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x(m ≠0)的图象交于点C (n ,3),与x 轴、y 轴分别交于点A 、B ,过点C作CM ⊥x 轴,垂足为M .若tan ∠CAM =34,OA =2.(1)求反比例函数和一次函数的解析式;(2)点D 是反比例函数图象在第三象限内的一点,且到x 轴的距离是3,连接AD 、BD ,求△ABD 的面积.第5题图6. (2017天水)如图所示,一次函数y =kx +b 与反比例函数y =mx的图象交于A (2,4),B (-4,n )两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B 作BC ⊥x 轴,垂足为点C ,连接AC ,求△ACB 的面积.第6题图7. 如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,与反比例函数y =k x (k ≠0)的图象在第二象限交于点C ,CE ⊥x 轴,垂足为点E ,sin ∠ABO =55,OB =2,OE =1.(1)求反比例函数的解析式;(2)若点D 是反比例函数图象在第四象限上的点,过点D 作DF ⊥y 轴,垂足为点F ,连接OD 、BF ,如果S △BAF =4S △DFO ,求点D 的坐标.第7题图8. (2018原创)如图,在平面直角坐标系中,直线AB 与y 轴相交于点A (0,-2),与反比例函数在第一象限内的图象相交于点B (m ,2),△AOB 的面积为4. (1)求该反比例函数和直线AB 的函数关系式;(2)求sin ∠OBA 的值.第8题图9. (2017重庆巴南区模拟)如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x(m ≠0)的图象交于第二、四象限内的A 、B 两点,与x 轴交于点C ,点A的坐标为(-3,n ),线段OB =10,且sin ∠BOC =35.(1)求n 的值; (2)求△AOB 的面积.第9题图10. (2017黄冈)已知:如图,一次函数y =-2x +1与反比例函数y =k x的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为点E ,过点B 作BD ⊥y 轴,垂足为点D ,且点D的坐标(0,-2),连接DE . (1)求k 的值;(2)求四边形AEDB 的面积.第10题图11. 如图,一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x(m ≠0)的图象交于点A 、B两点,点A 的坐标为(a ,2),与y 轴交于点C ,连接AO 、BO ,已知OB =210,tan ∠BOC =13. (1)求反比例函数和一次函数的解析式;(2)在y 轴上有—点P ,使得S △BCP =12S △AOB ,求点P 的坐标.第11题图12. (2017重庆八中模拟)如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)与反比例函数y =mx(m ≠0)的图象交于点A (3,1),且过点B (0,-2).(1)求反比例函数和一次函数的表达式;(2)如果点P 是x 轴上位于直线AB 右侧的一点,且△ABP 的面积是3,求点P 的坐标.第12题图13. (2017重庆八中模拟)如图,在平面直角坐标系中,正比例函数y =x 的图象与反比例函数y =kx(k ≠0)的图象交于点A (-2,-2).其中将直线OA 向上平移3个单位后与y 轴交于点C ,与反比例函数图象在第三象限内交于点B (-4,m ). (1)求该反比例函数的解析式与平移后的直线解析式; (2)求△ABC 的面积.第13题图14. (2017重庆西大附中月考)如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ).线段OA =13,E 为x 轴上一点,且tan ∠AOE =32.(1)求该反比例函数和一次函数的解析式; (2)求△AOB 的面积.第14题图15. 如图,已知一次函数y =kx +b 的图象与x 轴交于点A ,与反比例函数y =m x(x <0)的图象交于点B (-2,n ),过点B 作BC ⊥x 轴于点C ,点D (3-3n ,1)是该反比例函数图象上一点.(1)求m 的值;(2)若∠DBC =∠ABC ,求一次函数y =kx +b 的表达式.第15题图16. (2017重庆一外二模)如图,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第四象限的点B (m ,-1),且与y 轴交于点C ,与x 轴交于点D .过点B 作x 轴的垂线,垂足为点F ,连接CF .已知△BFC 的面积为32,sin ∠BDF =22.(1)求一次函数和反比例函数的解析式;(2)若点E 是点C 关于x 轴的对称点,点A 的纵坐标为3,求△ABE 的面积.第16题图17. (2017重庆一中模拟)如图,已知一次函数y =kx +b (k ≠0)与x 轴交于点C ,与反比例函数y =m x (x >0)交于点A 、B .过B 作BE ⊥x 轴于E ,连接OB .已知tan ∠BOE =14,BE =CE ,点C 的坐标为(5,0). (1)求反比例函数的解析式;(2)过A 作AF ⊥y 轴于F ,连接EF ,求△OEF 的周长.第17题图18. 如图,在平面直角坐标系xOy 中,菱形OABC 的顶点C 在x 轴上,顶点A 落在反比例函数y =mx(m ≠0)的图象上,一次函数y =kx +b (k ≠0)的图象与该反比例函数的图象交于点A 、D 两点,与x 轴交于点E .已知AO =5,S 菱形OABC =20,点D 的坐标为(-4,n ).(1)求该反比例函数和一次函数的解析式; (2)连接CA 、CD ,求△ACD 的面积.第18题图答案1. D 【解析】把A (3,4)代入y =-x +b 中得:b =7,即一次函数解析式为y =-x +7; 再把A (3,4)代入y =k x 中得:k =12,即反比例函数解析式为y =12x ,联立得:⎩⎪⎨⎪⎧y =-x +7y =12x ,解得⎩⎪⎨⎪⎧x =4y =3或⎩⎪⎨⎪⎧x =3y =4,即B (4,3),根据勾股定理及两点间的距离公式得:OA =OB =5,AB =2,则△AOB 周长为10+ 2.2. D 【解析】过点A 作AM ⊥x 轴于点M ,如解图.设OA =a ,在Rt △OAM 中,∠AMO =90°,sin ∠AOB =45,∴AM =OA ·sin ∠AOB =45a ,OM =OA 2-AM 2=35a ,∴点A 的坐标为(35a ,45a ).∵点A 在反比例函数y =48x 的图象上,∴35a ×45a =1225a 2=48,解得a =10或a =-10(舍去).∴OA =10,AM =8,OM =6,∵四边形OACB 是菱形,OB =OA =10.又∵点F 在边BC 上,∴S △AOF =12S 菱形OBCA =12OB ·AM =40.第2题解图3. 解:(1)在Rt △AOB 中,OB =3,S △AOB =3,∴OA =2,则点A (0,-2),点B (3,0),将A 、B 代入一次函数解析式得⎩⎪⎨⎪⎧3k +b =0b =-2,解得⎩⎪⎨⎪⎧k =23b =-2,∴一次函数解析式为y =23x -2.∵CD ⊥x 轴,∴∠AOB =∠CDB =90°, ∵OB =3,OD =6, ∴OB =BD , 又∵∠OBA =∠DBC , ∴△ABO ≌△CBD (ASA ), ∴CD =OA =2,∴点C 的坐标为(6,2),将点C 代入反比例函数解析式得n =6×2=12,∴反比例函数解析式为y =12x; (2)0<x <6.【解法提示】不等式kx +b -nx <0的几何意义是反比例函数图象在一次函数图象上方部分对应的自变量x 的取值范围,从而由图象可知当x >0时x 的范围是0<x <6,即不等式的解集为0<x <6.4. 解:(1)∵点A 在一次函数y =-x -1的图象上, ∴设点A 的坐标为(n ,-n -1)(n <0), ∵cos ∠AOB =-n AO =255,AO =5,解得:n =-2,∴点A 的坐标是(-2,1), ∴m =-2×1=-2,∴反比例函数的解析式为y =-2x ;(2)∵点A 的坐标为(-2,1), ∴点D 的坐标为(2,-1).令一次函数y =-x -1中x =0,则y =-1, ∴点C 的坐标为(0,-1), ∴CD ∥x 轴,∴CD =x D -x C =2-0=2.5. 解:(1)∵tan ∠CAM =CM AM =34,C (n ,3),∴AM =4,∵AO =2,∴OM =2,∴A (-2,0)、C (2,3), ∴反比例函数的解析式为y =6x ,∵点A 、C 在一次函数图象上, ∴⎩⎪⎨⎪⎧-2k +b =02k +b =3,解得⎩⎪⎨⎪⎧k =34b =32, ∴一次函数解析式为y =34x +32;(2)由题意可设D (d ,-3),代入y =6x ,得d =-2,∴D (-2,-3), ∴AD ⊥x 轴,∴S △ABD =12AD·AO=12×3×2=3.6. 解:(1)把点A (2,4)代入y =m x ,得m =8,即反比例函数解析式为y =8x,把点B (-4,n )代入y =8x ,即n =8-4=-2,∴B (-4,-2).∵A (2,4),B (-4,-2)两点在y =kx +b 的函数图象上,∴⎩⎪⎨⎪⎧2k +b =4-4k +b =-2,解得⎩⎪⎨⎪⎧k =1b =2, 即一次函数解析式为y =x +2; (2)∵BC ⊥x 轴,B (-4,-2),∴C (-4,0),BC =2,如解图,过点A 作AD ⊥BC 交BC 的延长线于点D , ∴D (-4,4),即AD =6, ∴S △ABC =12BC ·AD =12×2×6=6.第6题解图7. 解:(1)∵OB =2,OE =1, ∴BE =OB +OE =3, ∵CE ⊥x 轴, ∴∠CEB =90°,在Rt △BEC 中,∠CEB =90°,BE =3,sin ∠ABO =55, ∴tan ∠ABO =12,∴CE =BE ·tan ∠ABO =3×12=32,结合函数图象可知点C 的坐标为(-1,32),∵点C 在反比例函数y =kx(k ≠0)的图象上,∴k =-1×32=-32,∴反比例函数解析式为y =-32x;(2)∵点D 在反比例函数y =-32x第四象限的图象上,∴设点D 的坐标为(n ,-32n)(n >0).在Rt △AOB 中,∠AOB =90°,OB =2.tan ∠ABO =12,∴OA =OB ·tan ∠ABO =2×12=1,∴S △BAF =12AF ·OB =12(AO +OF )·OB =12×(1+32n )×2=1+32n,∵点D 在反比例函数y =-32n第四象限的图象上, ∴S △DFO =12×|-32|=34,S △BAF =4S △DFO ,∴1+32n =4×34,解得n =34,经验证,n =34是分式方程的解,∴点D 的坐标为(34,-2).8. 解:(1)∵△AOB 的面积为4, A (0,-2),∴12OA ×x B =12×2×x B =4, ∴x B =4,∴B 点坐标为(4,2),设反比例函数关系式为y =kx (k ≠0),将B (4,2)代入得k =4×2=8, ∴反比例函数关系式为y =8x,设直线AB 的函数关系式为y =nx -2(n ≠0), 把B (4,2)代入,得4n -2=2, ∴n =1,∴直线AB 的函数关系式为y =x -2;(2)如解图,过点O 作OD ⊥AB 于点D ,设AB 与x 轴相交于点E ,第8题解图由直线AB :y =x -2可得,OA =OE =2, ∴∠OAE =45°,∴OD =OA ·sin 45°=2,由B 点坐标为(4,2),可得OB =42+22=25, ∴sin ∠OBA =OD OB =225=1010.9. 解:(1)过点B 作BD ⊥x 轴于点D ,如解图,∵sin ∠BOC =BD BO =35,OB =10,∴BD =6, ∴OD =8,∴点B 的坐标为(8,-6),∵点B 在反比例函数y =mx (m ≠0)图象上,∴m =8×(-6)=-48,∴反比例函数解析式为y =-48x,又∵点A 在反比例函数y =-48x图象上,∴n =-48-3=16;(2)由(1)知A (-3,16),B (8,-6), ∵A ,B 均在一次函数y =kx +b 图象上,∴⎩⎪⎨⎪⎧-3k +b =168k +b =-6,解得⎩⎪⎨⎪⎧k =-2b =10, ∴一次函数解析式为y =-2x +10, 设AB 与y 轴交于点E , 令x =0,则y =10,∴点E 的坐标为(0,10),即OE =10,∴S △AOB =S △AOE +S △EOB =12×10×|-3|+12×10×8=55.第9题解图10. 解:(1)如解图所示,延长AE ,BD 交于点C ,则∠ACB =90°,第10题解图∵一次函数y =-2x +1的图象经过点A (-1,m ), ∴m =2+1=3, ∴A (-1,3),∵反比例函数y =kx 的图象经过A (-1,3),∴k =-1×3=-3;(2)∵BD ⊥y 轴,垂足为点D ,且点D 的坐标为(0,-2), ∴令y =-2,则-2=-2x +1, ∴x =32,即B (32,-2),∴C (-1,-2), ∴AC =3-(-2)=5,BC =32-(-1)=52,∴S 四边形AEDB =S △ABC -S △CDE =12AC ×BC -12CE ×CD =12×5×52-12×2×1 =214. 11. 解:(1)如解图,过点B 作BD ⊥y 轴于D , 由tan ∠BOC =BD OD =13,设BD =x ,OD =3x ,则OB =10 x =210,∴x =2, ∴BD =2,OD =6, ∴B (-2,-6),∴m =(-2)×(-6)=12,则反比例函数的解析式为y =12x .由2a =12,得a =6,则点A 的坐标为(6,2),由一次函数y =kx +b (k ≠0)得⎩⎪⎨⎪⎧-2k +b =-66k +b =2,解得⎩⎪⎨⎪⎧k =1b =-4,∴一次函数的解析式为y =x -4; (2)设P 的坐标为(0,n ).由一次函数y =x -4得点C 的坐标为(0,-4),则OC =4, ∴S △AOB =12×4×2+12×4×6=16.∵S △BCP =12×||n +4×2=12S △AOB =8,解得n =4或-12.∴点P 的坐标为(0,4)或(0,-12).第11题解图12. 解:(1)∵点A (3,1)在反比例函数y =mx (m ≠0)图象上,∴m =3,∴反比例函数的表达式为y =3x;又∵点A (3,1),B (0,-2)均在一次函数y =kx +b (k ≠0)图象上,∴⎩⎪⎨⎪⎧3k +b =1b =-2,解得⎩⎪⎨⎪⎧b =-2k =1, ∴一次函数的表达式为y =x -2; (2)如解图,设点P 的坐标为(p ,0), 设点C 为一次函数与x 轴的交点,对y =x -2,令y =0,则x =2,即C (2,0), ∴CP =p -2, ∴S △ABP =12CP ·|y A -y B |=12(p -2)(1+2) =32(p -2), ∵△ABP 的面积是3,即32(p -2)=3,解得p =4,∴点P 的坐标为(4,0).第12题解图13. 解:(1)∵正比例函数y =x 与反比例函数y =kx的图象交于点A (-2,-2),∴k =4,即反比例函数解析式为y =4x ,∵正比例函数y =x 向上平移3个单位, ∴平移后的直线解析式为y =x +3; (2)如解图,过A 作AM ⊥x 轴,交BC 于M , ∵BC 所在直线解析式为y =x +3, ∴点C 坐标为(0,3),∵直线y =x +3与反比例函数y =4x 在第三象限内的交点为B (-4,m ),∴B (-4,-1),第13题解图∵直线AO 向上平移3个单位长度得到直线BC ,∴AM =OC =3, ∴S △ABC =12AM ·|x B -x C |=12×3×4=6.14. 解:(1)如解图,过点A 作AM ⊥x 轴, ∵OA =13,tan ∠AOE =AM OM =32,∴设AM =3x ,OM =2x ,则OA =13 x =13, ∴x =1,∴AM =3,OM =2, ∴A (-2,3).∵点A 在反比例函数y =mx (m ≠0)图象上,∴m =-6,∴反比例函数的解析式为y =-6x ;∵点B 在反比例函数的图象上,∴n =-1,点B 的坐标为(6,-1).由A 、B 两点在直线AB 上,则⎩⎪⎨⎪⎧-2k +b =36k +b =-1,解得⎩⎪⎨⎪⎧k =-12b =2,∴一次函数的解析式为y =-12x +2;第14题解图(2)令y =-12x +2中,y =0,则x =4,∴C (4,0),S △AOB =S △AOC +S △BOC =12×4×3+12×4×1=8.15. 解:(1)∵点B 、点D 均在反比例函数y =mx 的图象上,∴-2×n =(3-3n )×1,解得n =3,∴点B 、点D 的坐标分别为(-2,3),(-6,1), 将点B 的坐标代入y =mx,可得m =-6;(2)如解图,过点D 作DM ⊥BC 于点M ,则DM =4,BM =2, ∴tan ∠DBM =DMBM =2,∵∠DBC =∠ABC , ∴tan ∠ABC =ACBC =2,∵BC =3, ∴AC =6, ∴OA =4,∴点A 的坐标为(4,0).将点A (4,0),B (-2,3)代入y =kx +b 中得,⎩⎪⎨⎪⎧4k +b =0-2k +b =3,解得⎩⎪⎨⎪⎧k =-12b =2, ∴一次函数的表达式为y =-12x +2.第15题解图16. 解:(1)∵点B 的坐标为(m ,-1), ∴BF =1,∵sin ∠BDF =22, ∴BD =2,DF =1,∴S △BDF =12DF ·BF =12×1×1=12,又∵S △BFC =32,∴S △CDF =32-12=1,即12DF ×OC =1, ∴OC =2, ∴C (0,2),又∵∠ODC =∠BDF =45°, ∴OD =OC =2,∴B (3,-1), ∴k =3×(-1)=-3,∴反比例函数的解析式为y =-3x;由一次函数经过B 、C 两点得⎩⎪⎨⎪⎧3a +b =-1b =2,,解得⎩⎪⎨⎪⎧a =-1b =2, ∴一次函数解析式为y =-x +2; (2)∵点E 是点C 关于x 轴的对称点, ∴E (0,-2),∴CE =4, ∵点A 的纵坐标为3, ∴3=-3x ,∴x =-1,∴点A 的坐标为(-1,3),∴S △ABE =S △ACE +S △BCE =12×4×|-1|+12×4×3=8.17. 解:(1)在Rt △BEO 中,tan ∠BOE =14,∴OE =4BE ,∵BE =CE ,点C 的坐标是(5,0), ∴4BE +BE =OC =5, ∴BE =1,OE =4, ∴点B 的坐标为(4,1),∵点B 在反比例函数y =mx的图象上,∴m =4,∴反比例函数的解析式为y =4x;(2)∵点B (4,1),点C (5,0)在一次函数y =kx +b 的图象上,∴⎩⎪⎨⎪⎧4k +b =15k +b =0,解得⎩⎪⎨⎪⎧k =-1b =5, ∴一次函数的解析式为y =-x +5. 联立得⎩⎪⎨⎪⎧y =4x y =-x +5,解得⎩⎪⎨⎪⎧x 1=4y 1=1,⎩⎪⎨⎪⎧x 2=1y 2=4,∴点A 的坐标为(1,4), ∵AF ⊥y 轴于F , ∴点F 的坐标为(0,4), 又∵点E 的坐标为(4,0), ∴OE =OF , ∵OE ⊥OF ,∴EF =OE 2+OF 2=42+42=42, ∴△OEF 的周长=OE +OF +EF =8+4 2.18. 解:(1)如解图,过点A 作AF ⊥x 轴,垂足为F ,第18题解图∵S 菱形OABC =OC ·AF =20,AO =OC =5, ∴AF =4,∵Rt △AOF 中,OF =OA 2-AF 2=52-42=3,即A (3,4),∵反比例函数y =mx 的图象过点A ,∴m =3×4=12,∴该反比例函数的解析式为y =12x,∵当x =-4时,n =12-4=-3,∴D (-4,-3),∵一次函数y =kx +b (k ≠0)的图象经过A 、D 两点,∴⎩⎪⎨⎪⎧3k +b =4-4k +b =-3,解得⎩⎪⎨⎪⎧k =1b =1, ∴该一次函数的解析式为y =x +1;(2)对于一次函数y =x +1,当y =0时,x =-1, ∴E (-1,0),∴CE =OC -OE =5-1=4,∴S △ACD =S △ACE +S △DCE =12CE ·|y A |+12CE ·|y D |=12×4×4+12×4×3=14.。

一次函数与反比例函数综合题含答案.

一次函数与反比例函数综合题含答案.

A.12
B.9
C.6
D.4
7.
如图,反比例函数 y
k x 0 的图象经过矩形OABC
x
对角线的交点 M,分别
与 AB、BC 相交于点 D、E. 若四边形 ODBE 的面积为 6,则 k 的值为( )
y A
D C
B
O
x
A.1 B. 2
C. 3
D. 4
8. 如图,小球从点 A 运动到点 B,速度 v(米/秒)和时间 t(秒)的函数关系式是 v=2t.如果小球运动到点 B
y/km 90
30
P
O 0.5
a
甲 乙
3 x/h
23. 为了抓住世博会商机,某商店决定购进 A、B 两种世博会纪念品.若购进 A 种纪念品 10 件,B 种纪念品 5 件, 需要 1000 元;若购进 A 种纪念品 5 件, B 种纪念品 3 件,需要 550 元. (1)求购进 A、B 两种纪念品每件各需多少元? (2)若该商店决定拿出 1 万元全部用来购进这两种纪念品,考虑到市场需要,要求购进 A 种纪念品的数量不少 于 B 种纪念品数量的 6 倍,且不超过 B 种纪念品数量的 8 倍,那么该商店共有几种进货方案? (3)若销售每件 A 种纪念品可获利润 20 元,每件 B 种纪念品可获利润 30 元,在第(2)问的各种进货方案中,
D
O
6
14
x/小时
25. 在一条直线上依次有 A、B、C 三个港口,甲、乙两船同时分别从A、B 港口出发,沿直线匀速驶向 C 港,最
终达到 C 港.设甲、乙两船行驶 x(h)后,与 B 港的距离分别为 y 、 y (km), y 、 y 与 x 的函数关系如图
1
2

反比例函数与一次函数的综合题(含答案)

反比例函数与一次函数的综合题(含答案)

反比例函数与一次函数的综合题例1. 已知正比例函数y kx =与反比例函数y x=3的图象都过A m (),1,求此正比例函数的解析式及另一个交点的坐标。

例2. 如图1所示,一次函数与反比例函数的图象分别是直线AB 和双曲线。

直线AB 与双曲线的一个交点为C ,CD 垂直x 轴于点D ,OD OB OA ===244。

求一次函数和反比例函数的解析式。

图1例4. 有一个Rt △ABC ,∠A=90°,∠B=60°,AC AB ==31,。

将它放在直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数y x=3的图象上,求点C 的坐标。

例3. 如图2所示,反比例函数y kx=的图象经过点()A b -3,,过点A 作AB 垂直x 轴于点B ,△AOB 的面积为3。

(1)求k 和b 的值;(2)若一次函数y ax =+1的图象经过点A ,并且与x 轴相交于点M ,求AB :OM 的值。

图2例5 如图5所示,反比例函数y x=-8与一次函数y x =-+2的图象交于A 、B 两点。

(1)求A 、B 两点的坐标;(2)求△AOB 的面积。

反比例函数与一次函数的综合题答案例1 解:因y x =3图象过A m (),1,即13=m,故m =3,即A (3,1) 将A (3,1)代入y kx =,得k =13 所以正比例函数解析式为y x =13联立方程组得y x y xx y x y ==⎧⎨⎪⎪⎩⎪⎪==⎧⎨⎩=-=-⎧⎨⎩31331311122,解得或 ∴另一交点坐标为(--31,)例2 解:由已知OD OB OA ===244,得()()()A B D 012040,、,、,--- 设一次函数解析式为y kx b =+ 点A 、B 在一次函数图象上∴,即b k b k b =--+=⎧⎨⎩=-=-⎧⎨⎪⎩⎪120121则一次函数解析式是y x =--121 点C 在一次函数图象上 当x =-4时,y=1,即C()-41, 设反比例函数解析式为y m x =,点C 在反比例函数图象上 则14=-m,得m =-4故反比例函数解析式是y x=-4例3 解:(1)∵AB ⊥BO ,A 点坐标为()-3,b∴·即·∴又∵点在双曲线上∴△S AB BO b b A y k xk AOB ==-====⨯-=-123123322323||()(2)∵点A 在直线y ax =+1上 ∴231=-+a ∴a =-33∴y x =-+331 当y=0时,x =3 所以M 点的坐标为()30, ∴::AB OM =23例4 解:本题共有4种情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型四 反比例函数与一次函数综合题针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx (m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC . (1)求k 和m 的值; (2)求点B 的坐标; (3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =kx (k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数, k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤nx 的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC .(1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx (x <0)交于点A (-1,n ). (1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =kx 经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =kx 与直线y =x 交于点C ,若OB 2-AB 2=4. (1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y =mx 的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x=23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103, 又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,P A =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1, 即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0), 即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10). 将点C (-2,10)代入y =nx ,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分) 将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分) 【解法提示】不等式kx +b ≤n x 的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53, 令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与 y 轴交于点C , ∴A (-4,0),C (0,1), 又∵AC =BC ,CO ⊥AB ,∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2,∴点P 的坐标为(4,2),将点P (4,2)代入y 2=mx ,得m =8,∴反比例函数的解析式为y 2=8x;(2)x >4;【解法提示】由图象可知,当y 1>y 2时,即是直线位于双曲线上方的部分,所对应的自变量x 的取值范围是x >4.(3)存在.假设存在这样的D 点,使四边形BCPD 为菱形,如解图,连接DC 与PB 交于点E ,∵四边形BCPD 为菱形, ∴CE =DE =4, ∴CD =8,∴D 点的坐标为(8,1),将D (8,1)代入反比例函数8y x,D 点坐标满足函数关系式,即反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时 D 点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4,∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx (x <0),得m =5, ∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4,∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM ,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2, ∵OB =OC =4, ∴BC =42+42=42, 又∵∠OBC =∠OCB =45°, ∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB , ∴OB BC =BA CD 或OB DC =BA BC ,即442=CD 或4DC =242, ∴CD =2或CD =16, ∵点C (4,0),∴点D 的坐标是(6,0)或(20,0).8.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t , ∴点C 的坐标是(3+32t ,12t ). ∵点C 、E 在y =kx 的图象上, ∴(3+32t )×12t =3t , 解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x 经过点D (6,1), ∴6k=1,解得k =6;(2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1, ∴点C 的纵坐标为1-4=-3, ∴6x =-3,解得x =-2,∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2;(3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c ),∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x (x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a ),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a )2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a )2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M , ,2y x y x =⎧⎪⎨=⎪⎩联立2222x xy y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩解得或(舍去),∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12),∴AB =4-12=72,CM =4-2,∴S △ABC =12CM ·AB=12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP , 设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|, ∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|, ∴(a -2)2=14×222(2)a a-,即(a -2)2=14×222((a a a +⨯-, ∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去), ∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。

相关文档
最新文档