关于空调水系统全面水力平衡的分析
浅谈空调水系统水力平衡
浅谈空调水系统水力平衡摘要:随着空调在建筑中变得越来越普遍,空调水系统中选用水力平衡,则通过水力平衡的特点来进行介绍水力平衡调节的步骤和详细的方式,通过空调水系统水力平衡调节的各个方面进行分别的介绍和总结分析,对于空调的各个部分,对人类生活的各部分的影响都有着非常大的作用。
它使人们在生活中变得更舒适,说明人们的生活在不断的进步,社会在不断的向好的方向发展。
关键词:空调水系统;水利平衡1 空调水系统平衡概述空调水系统的平衡是保证空调系统正常运转,水系统的平衡是保证一种能量的低消耗,由于设计中存在的某些问题常常会导致系统存在着误差,在空调水系统中,由于各支路及末端设备的水流量都各不相同,所以需进行水系统的平衡调节;设置有效合理的方案来满足客户使用的最大效益。
2空调水系统对于现在大部分空调水系统都分为两用形式,夏天可以制冷,冬天可以制暖。
空调可以冬夏两种共同使用,水系统可以分为同程或异程系统,根据自己需要进行选择。
3平衡阀的特点在空调调节过程中调节平衡的过程需要平衡阀(静态或动态)来进行实现,它在其中起着一个非常重要的作用,有着非常准确开度指标,不是专业的人员不能随便的进行改变开度的数值。
在进行安装时,必须需要平衡阀的存在,在空调方面的使用能变得更加简单容易。
4空调水系统水力平衡空调水系统水力平衡在运行过程中,利用水作为媒介,实现空调的运作,平衡调节决定空调运行的整体效率,是否能正常地发挥其作用,它的传输需要一个完善的循环水系统,进行各部分的流入和流出,不会导致空调温度过高或者过低而造成一种不平衡的现象;这种水系统平衡的调节能使能量利用达到最大化,运行费用降到最低节约运行成本,是一种低碳环保的形式。
5水力平衡调节概况通过空调水力平衡调节,分析过程中虽然其中对于阀门的调节存在着一定的影响,但是这种调节只能说是不太精准,常常给安装的工人带来一定后期的影响和麻烦,因此需要进一步的改进,特别对于一些设计,需要大量的工作人员进行相关的设计,并进行一些改装。
空调末端主动变流量的水力平衡分析
空调末端主动变流量的水力平衡分析一、热源主动变流量崩解与末端主动变流量供热与空调系统水力作为热媒介质,其流量的变化是因应负荷网络流量的变化。
一般的说如果负荷的变化是随时一致等比的,转折流量的变化应随时一致等比。
为节约循环泵电耗而采取热源主动变流量措施:多泵、少泵、大泵的配置变化、变速措施等。
但其变或为随室外温度参数连续变化流量按日期争阶段改变流量。
另一种变流量工况是今天主要讨论操作温度的问题。
当前端负荷不成比例、随机变化,这时系统应该采用末端只要的流量调控措施。
居住者对参数的要求通过控制手段(供热的温控阀、手控阀,空调的室内参数控制的电动变量调节阀)产生流量要求,末端流量需求的总和形成热源流量。
这种变流量工况即为这种一端主变流量。
末端主动流量在技术上有如下层次概念:1、流量变化取决于后端需求,热源循环泵控制设施不能预测流量的变化,但能感知数据量的变化。
2、某一时三段末端负荷不发生明显变化,这一时段内循环的变速措施为定流量一时间变扬程。
即每一瞬时流量可能是变化的,但这种转折决定一致同意于末端要求。
循环泵变速措施是在末端决定的流量基础上,在最小可行的扬程点动行实现节能的目的。
二、末端主动变流量的工程意义供热工程在过去按建筑面积收取热费时,热用户没有主动改变负荷和流量负载的需求,有些大型供热为实现节能目的采取热源的流量调控措施,具有典型的热源主动数据量特征。
在计热量收费的情况下,水系统崩坏具备了末端主动变流量特征。
而对计量收费提高供热品质,节能运行的论说很多,达里不再赘述。
而对于计量收费时,最大热负荷绝不同时发生,如果采取了有效流量的末端主动变流量措施可以有效地调度流量需求,进一步提高热源的供热能力。
这也是计量收费对供热企业的最大利益所在。
空调工程中每一空间的冷负荷不可能的一致等比的。
但空调末端的输出负荷更大的取决于风量。
而不是水量有很多要求不高可调的一程以风量调节冷负荷,热源采取单泵,多泵运行,冬夏两套循环泵等热源主动变流量措施。
空调水系统水力平衡调试施 工工法
空调水系统水力平衡调试施工工法空调水系统水力平衡调试施工工法一、引言随着空调设备在生活和工业领域中的广泛应用,空调水系统的设计和施工变得越来越重要。
水力平衡调试是保证空调系统正常运行的关键步骤之一。
本文将介绍一种常用的空调水系统水力平衡调试施工工法。
二、水力平衡调试的意义空调系统的水力平衡调试是指通过合理分配和调整水流量,在空调系统中达到供水和回水相等,各个水路分支水流量分配合理的状态。
实施水力平衡调试的目的是确保系统在各种负荷条件下的高效和平衡运行,减少能源消耗和运维成本,提高空调设备的使用寿命。
三、水力平衡调试施工工法的步骤1. 设计阶段在空调水系统的设计阶段,需要合理地选择和布置水力调节阀、流量计、压力表等设备。
同时,还需根据实际情况确定系统中各个支路的水流量、压力设计值,以便后续施工阶段进行水力平衡调试。
2. 施工准备施工前,需要对系统中的阀门、流量计和压力表进行检查和校准,确保设备的灵敏度和准确度。
3. 初始调试系统完成安装后,首先进行初始调试。
在初始调试阶段,需要逐一开启系统中的阀门,并观察各个支路的压力和流量变化。
通过调整支路阀门的开度,使得各个支路的水流量逐渐接近设计值,并保证系统中各个支路的回水压力与供水压力相等。
4. 动态调试完成初始调试后,开始进行动态调试。
动态调试时,需要调整系统中各个支路阀门的开度,使得各个支路的水流量达到设计值,并保持一定的压力稳定度。
通过反复调整阀门开度,逐步实现系统的水力平衡。
5. 维护和监测水力平衡调试完成后,并不代表工作的结束。
为了确保系统的长期稳定运行,需要定期对系统进行维护和监测。
维护工作包括定期检查和清洗阀门、流量计和压力表,确保其正常工作;监测工作包括定期监测各个支路的流量和压力,及时发现并排除故障。
四、调试过程中的注意事项1. 施工工人必须具备一定的专业技术和经验,了解水力平衡调试的原理和操作方法。
2.调试过程中需仔细观察和记录各个支路的水流量、压力和温度变化情况,及时发现并解决问题。
暖通空调系统全面水力平衡解决方案
暖通空调系统全面水力平衡解决方案暖通空调系统是建筑中关键的基础设施之一,而水力平衡则是暖通空调系统中最为重要的技术之一。
水力平衡指的是各个部分的流量、压力和温度等物理量在系统内达到协调统一的状态,使整个系统运行稳定、节能、舒适。
本文将介绍暖通空调系统全面水力平衡解决方案。
水力平衡问题暖通空调系统的水力平衡问题主要体现在管道系统中。
管道系统的水力平衡问题,属于流体力学的范畴,具有复杂性、时变性和非线性等特点。
在管道系统中,水流的速度、流量、压力和温度等物理量会因系统的长度、管径、流量、节流器等因素而不同,这些因素的差异会导致系统中的局部水力失衡。
这种失衡会导致流量的变化、压力的不均匀和能量的浪费,从而影响系统的运行效率和舒适度。
解决方案为了解决暖通空调系统中的水力平衡问题,需要采取以下解决方案:管道设计管道设计是解决暖通空调系统水力平衡问题的关键。
在设计管道系统时,需要考虑到管径、管道长度、管道材质、弯头角度等因素,以确保系统可以满足流量和压力的要求。
设计流量控制流量控制是暖通空调系统中流量平衡的关键。
通过使用节流器、流量控制阀、平衡阀等设备,可以控制管道中的流量,达到水力平衡的目的。
管道调试管道调试是水力平衡实现的重要环节之一。
调试过程中需要测试流量、压力和温度等参数,根据实际情况对管道中的设备进行调整和改进,以实现水力平衡。
建立水力网络模型建立水力网络模型可以帮助工程师更好地理解管道系统中的水力平衡问题,优化系统设计和调试方案。
水力网络模型可以通过计算机模拟来实现,这种方法可以减少试错成本,并提高系统设计的精度。
定期维护系统维护是确保水力平衡可以持续有效的关键。
定期检查管道系统中的设备、清洗管道内部的沉积物、更换老化的管道等操作,可以保持系统的正常运行,并有效减少系统的故障率。
结论暖通空调系统的全面水力平衡是建筑节能和舒适性的关键环节。
通过管道设计、流量控制、调试、建立水力网络模型和定期维护等措施,可以解决水力平衡问题,使系统运行更加节能、稳定和舒适。
暖通空调水系统水力平衡调节
简介:本文阐述了暖通空调水系统中选用水力平衡阀的原因,并介绍了水力平衡阀的特性,以及应用水力平衡阀对水系统进行水力平衡调节的步骤、方法,特别是结合工程实例详细阐述了系统联调的要求、过程和评价。
关键字:水力失调水力平衡阀系统平衡调试1、引言:在建筑物暖通空调水系统中,水力失调是最常见的问题。
由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。
因此,必须采用相应的调节阀门对系统流量分配进行调节。
虽然某些通用阀门如截止阀、球阀等也具有一定的调节能力,但由于其调节性能不好以及无法对调节后的流量进行测量,因此这种调节只能说是定性的和不准确的,常常给工程安装完毕后的调试工作和运行管理带来极大的不便。
因此近些年来,在越来越多的暖通空调工程水系统的关键部位(如集水器)、特别是在一些国外设计公司设计的工程项目中,均大量地选用水力平衡阀来对系统的流量分配进行调节(包括系统安装完后的初调节和运行管理调节,本文主要阐述的是前者,也可作后者的参考)。
水力平衡阀有两个特性:⑴、具有良好的调节特性。
一般质量较好的水力平衡阀都具有直线流量特性,即在阀二端压差不变时,其流量与开度成线性关系;⑵、流量实时可测性。
通过专用的流量测量仪表可以在现场对流过水力平衡阀的流量进行实测。
2、系统水力平衡调节:水系统水力平衡调节的实质就是将系统中所有水力平衡阀的测量流量同时调至设计流量。
2.1 单个水力平衡阀调节单个水力平衡阀的调节是简单的,只需连接专用的流量测量仪表,将阀门口径及设计流量输入仪表,根据仪表显示的开度值,旋转水力平衡阀手轮,直至测量流量等于设计流量即可。
2.2 已有精确计算的水力平衡阀的调节对于某些水系统,在设计时已对系统进行了精确的水力平衡计算,系统中每个水力平衡阀的流量和所分担的设计压降是已知的。
空调水系统水力平衡及平衡阀的应用
浅谈空调水系统水力平衡及平衡阀的应用摘要:随着人们对生活品质的要求和节能意识的不断提高,水力平衡装置在空调水系统中的应用越来越广泛,本文对水力失调及水力平衡的概念及分类,水力平衡装置的原理及其在空调水系统中的应用进行了详细的阐述。
关键词:水力失调水力平衡平衡装置当前,节能减排已经成为我国的一项基本国策,而建筑节能则是其中最重要的环节之一。
由于暖通空调系统能耗在建筑整体能耗中占据很大比例,因此近些年来,影响暖通空调系统节能、舒适的关键因素之一—水力平衡技术,已经成为暖通空调行业的主要热点之一。
一、水力失调及水力平衡概念及分类:在暖通空调水系统中,水力失调是普遍存在的问题,由于系统中水力失调问题的存在,导致系统流量分配不合理使得空调区域实际需求的冷、热量与实际供给的冷、热量不匹配,从而造成某些区域冬天不热、夏天不冷的情况出现。
在系统运行中为解决这个问题,通常采用提高水泵扬程的措施,但仍会产生冷(热)不均的问题。
这种长期的不合理的运行,不仅不能解决供热或供冷品质不高的问题,还造成了大量的能源浪费。
因此,必须采用相应的水力平衡措施对系统流量分配进行调节,才能从根本上彻底解决这个问题。
1. 静态水力失调和静态水力平衡静态水力失调:是由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,, 从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调。
是稳态的、根本性的、是系统本身所固有的。
静态水力平衡:通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端设备流量同时达到设计流量,实现静态水力平衡。
2.动态水力失调和动态水力平衡动态水力失调:是系统实际运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调。
水力平衡
解决方法
实现水力平衡可以采用多种措施。可以采用同程式的设计来平衡环路之间的阻力、采用四管制的管路设计来 分别对应冬夏季工况,通过设置静态平衡阀和动态平衡阀来应对静态失调与动态失调。
实现水力平衡的难点是动态失调的解决与现场调试困难,使用智能型平衡阀是比较新型的解决方法。
这类阀门带有各类传感器(压差传感器、流量传感器、水温传感器等),通过传感器与执行器的配合去实现 平衡功能,同时可将所在环路实时的压差、流量、水温数据远传给到BMS系统,有效降低了实现水力平衡的难度。
重要性及应用
空调系统水力不平衡的现象依然很严重,而水力不平衡是造成空调能耗浪费的主要原因之一,同时,水力平 衡又是保证其他节能措施能够可靠实施的前提。
水力平衡因此,对空调系统的运行而言,首先应该做到水力平衡,让支路干管的实际运行流量与设计流量尽 量相符,让每一个末端都不会有着明显的欠流过流现象,系统的节能舒适稳定运行也就有了坚实的基础。
水力平衡
针对空调水力失调问题而产生的一种调节方法
01 原理
03 解决方法
目录
02 重要性及应用 04 发展历史
水力平衡是针对空调水力失调问题而产生的一种调节方法,目的是消除水力失调,空调水系统按照设计工况 节能舒适运行。
水力平衡包括静态平衡与动态平衡,分别对应于静态水力失调与动态水力失调。静态水力失调的原因主要包 括:管路阻力不同造成水力分配不均、两管制水系统中冬夏季不能兼顾。动态水力失调的原因主要为:末端设备 之间互相影响,无法压力无关运行。
发展历史
我国大型楼宇的水力平衡的设计在上世纪90年代是比较粗糙的。当时的水力平衡设计,仅依靠管径选择、同 程布置等一些手段来取得局部、静态的系统平衡。
到了21世纪,与暖通水力平衡相关的著作和经验总结愈加丰富,对平衡阀的使用开始系统化。水力平衡类阀 门的初代产品主要包括:静态平衡阀、用于压差控制的动态压差平衡阀、有着流量限定功能的流量平衡阀等机械 结构平衡阀。
暖通空调系统水力平衡的简述
暖通空调系统水力平衡的简述摘要:随着社会经济的快速发展及人们生活水平的不断提高,暖通空调成为人们生活中的一类重要设备,在四季中能为人们提供更加舒适的温湿度。
在暖通空调水系统中,水力平衡是确保流量在各个区域合理分配的关键,但是在暖通空调系统实际使用中,水力失衡却也是一个常见的问题,不仅给人们的生活带来极大的不便,而且容易造成电力资源浪费及影响设备的使用寿命。
因此,暖通空调系统水力失衡是人们非常重视的一个问题关键词:暖通空调水系统;水力平衡;平衡调节1水力平衡概述对于建筑的暖通空调系统,如果在运行过程中,因为某一或部分用户的制冷或制热需求的改变而使系统网路的流量分配与各热用户所要求的流量偏离,造成各用户的供冷供热量不符合要求,这种现象就是的水力失调。
相对而言,水力平衡就是说在暖通空调制冷或制热过程中,系统内任何一个用户制冷制热需求的改变都不会给系统中其他的用户制冷制热带来影响,即系统水力稳定性强。
在空调行业中,通常运用水力稳定系数来衡量暖通空调水力平衡的程度,水力稳定系数用y来表示。
y值是暖通系统中热用户的规定流量与工况变化后可能达到的最大流量的比值,y值越大,就说明设计越成功,y值过小,用户的制冷制热要求就难以得到保证。
2水力失调和水力平衡的分类2.1静态水力失调和静态水力平衡静态水力失调是一种暖通空调系统自带的、稳态的、根本性的失调现象,这种水力失调情况的出现主要是由于系统管道特性阻力数偏离设计要求管道特性阻力数而造成的,而系统管道特性阻力数比是受到设计、施工、设备材料等多因素影响的。
静态水力失调是暖通空调系统中水力失调的重要原因,这种情况下,暖通空调系统中用户的实际流量与设计要求的流量很难实现一致。
目前,针对静态水力失调现象,通常采用在管道系统中增设平衡设备(水力平衡阀)的方法来解决,水力平衡阀可以有效调节管道系统特性阻力数比值,使其与设计要求管道特性阻力数比值一致,这种情况下,如果系统总流量达到设计流量,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。
暖通空调水力平衡分析
暖通空调水力平衡分析暖通空调系统是现代建筑中必不可少的一部分,它的主要作用是为建筑内的人员提供舒适的温度和空气质量。
然而,在暖通空调系统设计与施工中,常会出现水流量不均衡、水压不稳定等问题,这会导致系统能效低下、压力波动等负面影响。
因此,进行水力平衡分析是确保暖通空调系统顺利运行的关键环节之一。
1.暖通空调系统的水力平衡水力平衡是指在管路系统中通过合理布置流通方式、管道尺寸、阀门和泵的数量及功率等,使水在管道中能够均匀流动,从而达到管路各处的流量、压力、速度等参数的平衡状态。
暖通空调系统的水力平衡主要包括两方面内容:一是通过合适的水流量配管,使各个机组能够达到设计的供冷、供热量;二是在管路中保持合适的水压力,确保系统正常运行。
2.暖通空调系统水力平衡分析的意义暖通空调系统中水力平衡的实现对系统性能和经济性都有重要影响。
水力不平衡会导致系统流量不均匀,造成冷热负荷不匹配,降低系统供暖/供冷效果,提高能耗成本,同时还会对设备和管道造成损坏。
通过水力平衡分析,可以帮助设计师、施工方和用户更好地了解系统的状况,及时解决水力不平衡问题,提高系统的能效,加强其可靠性和稳定性。
3.暖通空调系统水力平衡分析的方法及工具暖通空调系统水力平衡分析的方法包括实地测量、计算分析以及试验室模拟等。
实地测量方法:通过现场测量管道的压力、流量、温度等参数,分析管道系统水力状况。
计算分析方法:根据建筑物空调系统的相关参数,使用计算软件进行模拟计算分析。
试验室模拟法:在模拟试验室中对管道系统进行模拟试验,分析系统性能和水力平衡状况。
工具方面,现在有许多强大的水力计算软件,如Elite、Flowmaster和Revit MEP等,可以帮助工程师进行精准的水力平衡分析。
4.暖通空调系统水力平衡分析应注意的事项(1)确保管道清洁:管道系统中有铁屑、沙子等杂物,将直接影响水流量的均匀性,从而影响水力平衡的达成。
(2)合理选择管道尺寸:为了保证水流量的均衡,一般采用相同尺寸的管道进行配管,如果在分支管道上使用较小的管径,可能会影响到主干管道的水力平衡。
watts空调水系统全面水力平衡完美解决方案
静态水力平衡:通过在水系统管道中增设静态平衡阀 及对系统进行全面水力平衡调试,使在设计工况下,每个 末端设备流量均同时达到设计流量,实现静态水力平衡。
实现静态水力平衡的主要产品有:静态平衡阀
( 三 ) 三个测量标准的实现形式 实现静态水力平衡的系统也就达到了全面水力平衡的
2、电动控制阀两端的压差不能变化太大,以保证控制阀有 良好的控制特性。
3、一二次侧系统的流量相匹配,确保主机和末端获得设计 供回水温度。
实现动态水力平衡的主要产品有:动态流量平衡阀、 压差控制阀、电动平衡二通阀、动态平衡电动调节阀。
一二次侧水力互扰:当主机侧多台主机并联时,存在 多台主机不同组合条件下运行,这时各运行主机之间会存 在水力互扰;或者,在二次侧运行工况变化时,系统的阻 力特性会随之改变,从而引起输配侧不同支路之间的水力 互扰。对于二次泵变流量系统,还存在一二次侧流量不匹 配问题。
为实现室内设定温度,系统每天提前 1~2 小 时开机
每天比水力失调系统少运行 1 小时以上
按一天运行 8 小时计算,少运行 1 小时节省 运行能耗 12.5%!
系统阻力过大,水泵在高扬程下运行
系统可在最低阻力下运行,计算出多余扬程, 通过变频降低水泵能耗
通常可降低能耗
20%
!
部分负荷下,水力失调将更加严重,过流回 路加剧过流,造成能耗浪费
第一个测量标准:在设计工况下,所有末端设备都能同时 够达到设计流量。
实现动态水力平衡的系统也就达到了全面水力平衡的 第二个测量标准:电动控制阀两端的压差不能变化太大, 以保证控制阀有良好的控制特性。
当实现了前两个测量标准,同时在一二次侧界面处采 用了合适的旁通方式,通过全面水力平衡调试后,确保一 次侧流量大于等于二次侧的设计流量,那么空调系统就能 达到全面水力平衡的第三个测量标准:一二次侧系统的流 量相匹配。
空调水系统调试过程中水力平衡问题
空调水系统调试过程中水力平衡问题摘要:近年来我国大型公建迅猛发展,中央空调供热/制冷日益普及,然而空调系统运行中存在诸多问题,水力失调便是其中的突出问题,所以保证空调系统的水力平衡是其运行中的重要环节。
本文归纳了供热/供冷管网水力平衡失调的原因,并提出了调节水力平衡的几种方法一、供冷/热管网水里平衡失调的表现及原因(一)供冷/热管网水力平衡失调的表现在中央空调系统中,水里失衡的表现主要是:各环路的流量输配不均衡,致使各用户冷热输配不均,距循环泵近的房间供热时室温偏高,供冷时室温偏低,据循环泵较远的用户供热时室温偏低,供冷时室温偏高。
另外还产生一些其他问题,如系统在大流量小温差的工况下运行,冷/热源难以达到其额定出力,投入运行的设备超过实际负荷需要,水泵工作点偏离高效区,燃料和电能消耗过高,水里平衡失调已成为空调系统中普遍存在又难以根治的难题。
(二)中央空调水力平衡失调的原因1实际施工与设计存在偏差设计人员在进行设计时,已经进行了精确的管网水力平衡计算,选定了适当合理的管径,但施工人员在施工过程中未严格按图施工,造成实际施工情况和理论设计之间出现较大偏差2设计人员设计时存在设计不合理现象供热管网一般采用异程式枝状管网,在异程管网中各环路的路程不同,阻力不同,这种方式使得热水流经近端用户的路程短,而流经远端用户的路程长,使得近端用户作用压差大,而远端用户作用压差小,这种管网如果设计、调节不合理就会造成近端用户流量远超过设计流量,远端用户流量远小于设计流量,造成近热远冷的现象,二、供热管网水里平衡调解原理1. 水力工况的基本公式供热管网水力平衡调节就是通过调节管路的阻力使各用户的流量接近于设计流量,对于简单管路来说,压力降和阻力系数、流量之间有如下关系:ΔP=S×G2其中,ΔP为管段两端的压力降,G为流经该管段的流量,S为该管段的阻力系数,只与管段的材料,管径,内壁粗造度等有关可见,作用压力一定情况下管路阻力与流量的平方成反比,对于空调管网来说,各系统是并联的,存在如下流量分配关系阻力系数S大的支管其流量小,阻力S小的支管其流量大。
暖通空调系统中的水力平衡问题
暖通空调系统中的水力平衡问题时间:2012-06-12 16:15 来源:特灵空调编辑:公司编辑点击:1492次字号:小大在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。
水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。
但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调在供热或空调水系统中,热水或冷冻水由闭式输配系统输送到各用户末端。
水流量应按设计要求合理地分配至供热或空调末端,以及每一个控制环路以满足其热/冷负荷需求,保证理想的供热或空调舒适度。
但由于种种原因大部分输配环路及冷热源机组(并联)环路存在水力失调,使得流经用户及机组的流量与设计流量要求不符。
1.产生水力失调的原因和结果水力失调有两方面:动态水力失调,是指当某些用户的水流量改变时,会影响其它用户的流量也随之变化,偏离设计要求。
静态水力失调,是指系统虽然经过水力平衡计算,并达到规定的要求,但由于设计、施工安装、设备材料等原因导致的,各用户的实际流量与设计要求不符引起的系统水力失调。
这种水力失调是先天性的、根本的,如果不加以解决,影响将始终存在。
水力不平衡常会导致:(1)系统中某些用户流量过大引起其他用户流量过小,不利环路无法获得所需要的流量。
(2)由于冷热源与输配管路流量不匹配,在满负荷时,供热温度比预期值低,供冷温度比预期值高,导致水系统处于大流量、小温差运行工况。
(3)水泵选型偏大,水泵运行在偏离高效区不合适的工作点处。
能量输配效率低下,无法进行整体调控和节能运行。
(4)在大流量小温差的工况下运行,冷热源难以达到其额定出力,使实际运行的机组超负荷或运行机组台数超过实际负荷要求的台数。
(5)在装备有自动控制的系统中,往往由于水量不符合设计要求,而使自控装置失灵或不能充分发挥其控制功能,导致温控效果差。
(6)由于调节阀的调节相互影响,电机频繁动作,使用寿命缩短。
空调冷热水温度、水力计算和管路平衡
空调冷热水温度、水力计算和管路平衡舒适性空调的冷热媒参数的确定舒适型空调的冷热媒参数,应考虑对冷热源装置、末端设备、循环水泵功率的影响等因素的确定,并应保证技术可靠、经济合理:1、 空调冷水供回水温差不应小于5℃;冷水机组直接供冷系统的空调冷水供回水温度可按冷水机组空调额定工况取7/12℃;循环水泵功率较大的工程,宜适当降低供水温度,加大供回水温差,但应校核降低水温对冷水机组性能系数和制冷量的影响。
2、 采用蓄冷装置的供冷系统,空调冷水供水温度应根据采用的蓄冷介质和蓄冷、取冷方式等参考表5.8.1确定;当采用冰蓄冷装置能获得较低的供水温度时,应奖励加大供回水温差;3、 采用换热器加热空调热水时,其空调热水供水温度宜采用60~65℃,供回水温差不应小于10℃;4、 采用直燃式冷(温)水机组、空气源热泵、地源热泵等作为热源,供回水温度和温差应按设备要求确定;5、 当空调冷水或热水采用大温差时,应校核流量减少对采用定型盘管的末端设备(如风机盘管等)传热系数和传热量的影响,所用的风机盘管机组的性能应经过测试。
空调系统的水流量1、 计算管段的水量应按下式计算:tQ G ∆=163.1(5.8.2) 式中 G ——计算管段的水量(m 3/h);Q ——计算管段的空调符合(kW );t ∆——供回水温差(℃)。
2、 计算管段的水量可按所接空气处理机组和风机盘管的额定流量的叠加值进行简化计算,当其总水量达到与水泵流量相等时,干管水流量值不再增加。
空调冷水系统的阻力计算1、 管道每米长摩擦阻力可按下式计算:85.187.485.1105s j h i q d C H --=(5.8.3-1)式中i H ——计算管段的比摩阻(kPa/m );d ——管道计算内径(m );q ——设计秒流量(m 3/s );C ——海澄-威廉系数,钢管闭式系统取C=120,开式系统取C=100。
2、 比摩阻宜控制在100~300Pa/m ,不应大于400Pa/m ;且空调房间内空调管道流速不宜超过表5.8.3-1的限值。
空调同程水系统水力平衡问题探讨
位于起始端的大流量设备参与同程循环。
(2)大流量的空调箱或新风箱位于水管循
环的中间,对于同程系统的水力平衡影响不大。
雷诺数
空调水系统根据管道布置形式可分为同程 和异程两种类型。其中,同程系统中空调水流
Re =
(5)
经各并联环路的管道总长度相等,各设备水量
式中,R —单位长度直管段的摩擦阻力(习
分配比较均匀,便于水力平衡,初投资较高。 称比摩阻),Pa/m ;λ—摩擦阻力系数,m ;ρ— 异程系统中空调水流经各并联环路的管道总长 水的密度,kg/m3 ;v —水的流速,m/s ;v—运动 度不相等,各设备水量分配容易产生失调,特 黏度,m2/s;k—管内表面的当量绝对粗糙度,m;
别是系统比较大时,失调现象比较突出,初投 闭式循环水系统 ;k=0.2mm ;d —管道直径,m。
资相对较低。所以,通常的做法是末端数量较
(3)局部阻力计算 :
多时将空调冷热水系统设计为同程系统,以减 少水系统中水力失调,便于调节以及达到使用 要求。
但是,在实际工程设计中,经常遇到风机 盘管和新风空调箱或空调箱使用同一水平环路 的情况,大流量的设备和小流量设备布置在同
(1)
(2)沿程阻力计算见式(2):
DPm
=
m
$
1 d
(2)
当直管段长度 l =1 时,
R
=
m d
$
t $ v2 2
Hale Waihona Puke (3)对于紊流过渡区的摩擦阻力系数λ,可按
热水管道
i
R=0.0089·d
G · -4.87
N
1.85
(9)
式中,i L—冷水管道单位长度摩擦压力损 失,kPa/m ;i R—热水管道单位长度摩擦压力损 失,kPa/m ;d N—管道的计算内径,m ;G —设计 流量,m3/s[1]。
暖通空调水系统的水力平衡调节
暖通空调水系统的水力平衡调节暖通空调水系统的平衡调节在集中供热和中央空调的水系统运行中,水力失调是常见的问题。
水力系统的失调有两方面的含义。
一方面是指虽然经过详细的水力计算并达到规定要求,但在实际运行后,各用户的流量与设计要求不符,这种水力失调是稳定的、根本性的,称之为稳态失调。
另一方面是指系统运行中,当一些用户的水流量改变时,会使其它用户的流量随之变化,这涉及到水力稳定性的概念。
对其它用户影响小,则水力失调程度小,水力稳定性好,称之为动态(稳定性)失调。
管网水力失调的原因是多方面的,归纳起来主要有两种情况。
一种是管网中流体流动的动力源提供的能量与设计要求不符,例如泵的型号、规格的变化及其性能参数的差异、动力电源的波动、流体自由液面差的变化等,导致管网中压头和流量偏离设计值。
另一种是管网的流动阻力特性发生变化,例如在管路安装中管材实际粗糙度的差别、焊接光滑程度的差别、存留于管道中泥沙、焊渣多少的差别、管路走向改变而使管长度的变化、弯头、三通等局部阻力部件的增减等,均会导致管网实际阻抗与设计值偏离。
尤其是一些在管网设置的阀门,改变其开度即可能改变管网的阻力特性。
水力失调对管网系统运行会产生不利影响。
管网系统往往是多个循环环路并联在一起的管路系统。
各并联环路之间的水力工况相互影响,必然会引起其他环路的流量发生变化。
如果某一管段的阀门开大或关小,必然导致管路流量的重新分配,即引起了水力工况的改变。
当某些环路因发生水力失调而流量过小,如锅炉循环系统中水冷壁管路流量分配不均,使部分管束水流停滞则有可能发生爆管事故;在制冷机水循环系统中,蒸发器管束因此可能发生冻管事故。
在供热空调系统中流体流量的变化使其负担输配的冷热量改变,即其水力失调必然会导致热力失调。
在水力失调发生的同时,管网中的压力分布也发生了变化。
在一些特殊情况下,局部管路和设备内的压力超过一定的限值,则可能使之破坏。
为了解决水力失调问题,可以采用静态水力平衡阀、动态平衡阀、动态平衡电动调节阀等阀门进行平衡调节。
全面水力平衡暖通空调水力系统设计与应用手册
全面水力平衡暖通空调水力系统设计与应用手册一、引言暖通空调系统在建筑物中起着重要的作用,保障室内空气质量和舒适度。
而水力系统作为暖通空调系统的一个重要组成部分,对系统的稳定性、效率和节能性有着重要影响。
全面水力平衡暖通空调水力系统的设计与应用显得尤为重要。
本手册旨在通过系统的介绍、设计原则与方法、应用案例分析等方面的内容,为相关从业人员提供指导和借鉴,帮助他们更好地理解和应用全面水力平衡暖通空调水力系统。
二、全面水力平衡暖通空调水力系统的介绍1. 水力系统的概念和作用水力系统是指在暖通空调系统中,通过管道、阀门、水泵等设备输送冷热水的系统。
水力系统的主要作用包括传热、传热、水力平衡和控制等。
2. 全面水力平衡的概念全面水力平衡是指在水力系统设计中,通过合理的布局、管道尺寸的选择、阀门的调节等手段,使得系统中的各个支路、回路能够达到平衡状态。
水力平衡的实现有利于提高系统的热效率、降低能耗、延长设备使用寿命。
三、全面水力平衡暖通空调水力系统的设计原则与方法1. 设计原则(1)综合考虑系统的整体平衡性(2)合理选择管道尺寸和布局(3)采用自动控制技术提高系统稳定性(4)优化水泵和阀门的选择和配置2. 设计方法(1)初步确定系统的水流量和压降(2)计算管道的阻力和选型(3)合理考虑管道的布局和衔接(4)选择适当的阀门和调节装置四、全面水力平衡暖通空调水力系统的应用案例分析以某高层建筑为例,介绍其全面水力平衡暖通空调水力系统的设计方案和实际应用效果,包括系统的结构布置、主要设备的选择和配置、水力平衡的实现效果等。
五、总结与展望全面水力平衡暖通空调水力系统的设计与应用是暖通空调领域的一个重要课题。
该手册旨在通过介绍系统原理、设计方法和实际案例,帮助相关从业人员更好地理解与应用该系统,为建筑节能与环保做出贡献。
未来,随着科技的不断发展,全面水力平衡暖通空调水力系统将会得到更广泛的应用,为建筑节能和绿色发展提供更多解决方案。
机房空调水系统水力不平衡问题探讨
机房空调水系统是一个较为复杂的系统,对机房空调系统的运行效果至关重要。
文章总结归纳了机房空调水系统常见的几种弊病,并探讨其产生原因,提出了相应的改进措施。
下面是深圳邦德瑞厂家的小编带来的机房空调水系统水力不平衡问题探讨。
机房空调水系统水力不平衡的问题机房空调水系统中一个较为突出问题是水力不平衡。
对于某些规模较大又较复杂的系统,通常有许多控制回路,由于回路大小不一、管线长短不一,稍有不慎就会出现水力不平衡现象。
1.水力不平衡对冷热源机组的影响保持冷热源机组的流量在机组规定的限度内可以使设备免受损害,在流量低于机组设计流量时,安全装置将使机组停止运行。
时开时停将使机组所提供的出力低于室内负荷所需的功率,同时如果水量突然减小,控制器来不及反应,也来不及调整机组的出力,就有可能发生水在管内冻结,其后果是相当严重的。
如果是多台机组并联使用,随着负荷的减小,设计机组容量会是负荷所需容量的几倍。
当实际投入运行机组多于实际需要时,部分机组会长期地重复开启和停止,且启停周期很短。
这样,将导致机组效率降低及能耗增加,而且缩短了机组的使用寿命。
为确保机组良好运行,合理的方法是在每台机组处设置平衡阀,这样可调整流量至设计值。
对于并联安装的冷却塔,出水管上应设平衡管,以保证各个冷却塔水量的平衡。
2.水力不平衡对输配系统的影响在输配系统中,距离水泵最远的环路因阻力大其差压为最小,而距水泵最近的环路则具有最大差压值。
如果没有任何措施弥补这种差异,那么近水泵段或系统环路阻力小的环路,水流量会大大高于设计流量;反之,则大大低于设计值,整个系统中的水量处于分配不均状态。
这种不均匀的水量会使建筑物内室温不均匀,以及室温持续波动;近冷水机组处房间过冷,距离远的则室温偏高;另外流量偏大的环路的房间相对较快地达到要求的室温,流量偏小的环路的房间需较长时间才能达到要求的室温。
解决因环路压差不同引起的水力不平衡的较好办法,是在各环路回水总管上设平衡阀,可将各环路流量调至设计要求值。
中央空调水力平衡分配器工作原理
中央空调水力平衡分配器是一种用于调节和平衡中央空调系统中不同分区间冷热水流量的设备。
它能够有效地提高中央空调系统的运行效率,并且能够保证不同区域的舒适度。
下面,我们将详细介绍中央空调水力平衡分配器的工作原理。
一、水力平衡的概念1. 水力平衡的定义水力平衡是指在给定的管网系统中,通过调节流体的流量、压力和速度等参数,使得管网中各个分支的流量和压力达到一定的平衡状态。
在中央空调系统中,不同区域的冷热负荷是不同的,因此需要通过水力平衡来保证冷热水在各个分支管道中的流量和压力达到平衡。
2. 水力平衡的重要性水力平衡是中央空调系统中至关重要的一环,它能够有效地提高系统的热效率,减少能源消耗,并且能够保证系统稳定运行,延长设备使用寿命,提高设备的舒适度和环境适应性。
二、中央空调水力平衡分配器的工作原理1. 结构组成中央空调水力平衡分配器通常由主体壳体、流量计、流量调节阀、阀门、调节手柄等部件组成。
主体壳体上安装有多个分支出口,每个分支出口连接着对应的区域冷热水供应管道。
2. 工作原理(1)进水分配中央空调系统的冷热水由主体壳体的进水口进入水力平衡分配器,流经流量计进行计量,并且经过流量调节阀进行调节,然后进入分支供应管道,根据不同区域的冷热负荷需求分配到各个分支管道中。
(2)流量调节在分支供应管道上的流量调节阀能够根据实际需要对流量进行调节,进而保证各个分支管道中的冷热水流量达到平衡状态,不因区域冷热负荷变化而产生过热或者过冷现象。
(3)压力平衡水力平衡分配器在分流冷热水的还能够通过阀门进行压力平衡,确保各分支管道中的冷热水压力均衡,不会因管道长度和材质的差异而导致部分区域的供水压力过大或者过小。
(4)平衡调整水力平衡分配器上的调节手柄可以根据实际需要对各个分支管道的流量进行微调,能够动态地根据实际情况对系统进行平衡调整,确保系统运行效率和能源利用率最优化。
三、中央空调水力平衡分配器的优势1. 提高运行效率水力平衡分配器能够有效地平衡不同区域的冷热水流量和压力,提高冷热水的利用率,减少能源浪费,提高系统的运行效率。
论暖通空调变流量水力系统平衡问题_0
论暖通空调变流量水力系统平衡问题近年来,大型商场、工作室飞速发展,暖通空调成为改善室内温度、环境、建筑品味的主要设施,对品质和节能的要求也在不断提高。
随着暖通空调技术的发展以及建设单位或业主的各种思想层出不穷,建筑物暖通空调工程的设计也越来越复杂。
变流量系统的全面平衡问题成为暖通空调的重要问题。
本文就讨论了暖通空调变流量水力系统平衡问题。
标签:暖通空调;变流量;水力系统;平衡控制对于大多数空调房间而言,其冷热量需求是不暖通断变化的,其对空调水量的需求也是不断变化的。
通常情况下,由设在空调末端设备处的自动控制两通类阀门控制进出空调末端设备的水量以适应冷暖通热量需求的变化。
而水力平衡最早出产平衡阀的公司,能够追溯到一百多年以前,直到20、30年前,一些动态水利平衡阀出现了,这些产品逐步被投放到采暖系统中使用,主要是解决管道系统、设备散布以及在采暖系统中出现的水力失调等等问题,直到后来才被运用到了空调系统。
一、变流量水利平衡系统的现状变流量水利平衡系统制造理念是在选择设施和管道时都需要按负荷最大化设计,然而在实际变流量水利系统运行中,安装在终端装置上的控制阀门会调节水流量来满足相应负荷情况需要,因为暖通空调在多数时间段都是在一种负荷的状态下运转,所以高效和节能得到了很大的提升。
暖通空调设备绝大部分时间内在远低于设计负荷情况下运转,空调水系统供回水温差远低于供暖系统的温差,无法进行质调节,流量调节才是合理的做法让暖通空调变流水系统精准度出现偏差,达不到舒适节能的效果,随着暖通空调越来越大型化,这样动态水力失衡的情况也就越来越显著。
二、暖通空调变流量水力平衡概述1、静态水力失调和静态水力平衡由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求的管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求的流量不一致引起的水力失调,叫做静态水力失调。
静态水力平衡是指系统中所有末端设备的电动控制阀均处于全开的位置,所有动态水力平衡设备开度也都同定在设计参数位置,这时,如果所有末端设备的流量均能达到设计值,则可认为系统达到静态水力平衡。
掌握暖通空调安装工程中的水力平衡规范要求
掌握暖通空调安装工程中的水力平衡规范要求随着社会的发展,暖通空调安装工程在建筑行业中的地位日益重要。
水力平衡是暖通空调系统正常运行的基础,因此,掌握水力平衡规范要求对于安装工程的顺利进行至关重要。
本文将就暖通空调安装工程中的水力平衡规范要求进行深入探讨。
一、水力平衡的概念水力平衡是指在暖通空调系统中,通过适当的调节措施,使系统内各支路的水流量和水压分布达到合理均衡的状态。
水力平衡的实现可以保证系统的各个部分能够正常运行,同时降低能耗,提高系统性能。
二、水力平衡的意义1. 确保系统运行稳定:水力平衡能够避免暖通空调系统中出现某一支路流量过大或过小,从而导致系统运行不稳定的情况。
2. 降低能耗:通过水力平衡,可以合理调节各支路的供回水温差,减少冷凝水回水温度的过高,降低供回水温差,达到节能的效果。
3. 提高系统性能:水力平衡可以保证系统整体性能的发挥,提高换热器的热传递效率,保证正常供回水温差,提高冷却效果。
三、水力平衡的规范要求1. 设计阶段:在暖通空调安装工程的设计阶段,应根据系统的实际情况,合理确定支路的数量和位置,保证冷热源旁边的水平分支的下层应尽量不超过3支。
此外,还应根据所选设备和系统布置,合理确定最佳供水压力,保证供水压力在正常范围内。
2. 安装阶段:在安装暖通空调系统时,应使用符合规范要求的材料和设备,避免使用过长或过小的管道,确保管道的密封性。
管道应设置排气阀和排污阀,便于系统的调试和维护。
3. 调试阶段:在系统调试阶段,应逐支路逐一调节各支路的流量和压力,保证各支路的水力平衡。
可使用调节阀、流量计等装置进行调试,确保系统的正常运行。
4. 运行维护阶段:在运行维护阶段,应定期检查系统的水压和水流量,并及时进行调整和维护,保持系统的水力平衡。
同时,还应设立相关的记录和报表,定期对系统进行评估和改进。
四、水力平衡的常见问题及解决方法1. 流量不平衡:流量不平衡是暖通空调系统中常见的问题,可能导致某些支路无法正常供水或排水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:本文将分析产生水力失调的原因,着重介绍平衡阀的分类以及各自的功能与特性,分析各类平衡阀在水力平衡调节中所起的作用,总结出平衡阀在设计选用以及合理性布置方面的一些经验。
关键词:静态平衡阀;动态流量平衡阀;动态压差平衡阀;水力失调
在空调水系统中水力失调的现象是普遍存在的,一方面由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起系统的静态水力失调。
另一方面当用户阀门开度变化引起水流量改变时,其它用户的流量也随之发生改变,偏离设计要求流量,从而导致的动态水力失调。
静态水力失调是稳态的、根本性的,是系统本身所固有的,是当前我国暖通空调水系统中水力失调的重要因素。
动态水力失调是动态的、变化的,它不是系统本身所固有的,是在系统运行过程中产生的。
对于空调水系统存在的静态和动态水力失调,通过在管道系统中增设静态水力平衡阀对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,系统总流量达到设计流量时,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。
以及利用动态水力平衡阀的屏蔽作用,使其自身的流量不随其他用户阀门开度发生变化而变化,实现系统的动态平衡。
因此平衡阀在空调水系统的水力平衡中具有很好的调节作用,也是保证空调系统正常运行必不可少的重要部件。
1水力失调和水力平衡的概念:
1.1在热水供热系统以及空调冷冻水系统中各热(冷)用户的实际流量与设计要求流量之间的不一致性称为该用户的水力失调。
水力失调的程度可以用实际流量与设计要求流量的比值x来衡量,x称水力失调度。
x = qs/qj(qs:用户的实际流量,qj:用户的设计要求流量)
1.2水力平衡是指网路中各个热用户在其它热用户流量改变时保持本身流量不变的能力,通常用热用户的水力稳定性系数r来表示。
r=1/ xmax = qj/ qmax
(qj:用户的设计要求流量,qmax:用户出现的最大流量)
2产生水力失调的原因与分析
2.1静态失调
空调水系统虽经过详细的水力计算,但在施工安装过程中,各用户的流量仍不能达到设计要求。
如管网中流体流动的动力源(一般指泵、重力差等)提供的能量与设计要求不符,泵的型号、规格的变化及其性能参数的差异,流体自由液面差的变化等,导致管网中压头和流量偏离设计值;再比如管材粗糙度,焊接光滑度,管路路由的长度量,三通的增减等参数发生变化时,均会导致管网的实际流动阻力特性与设计值偏离。
这种水力失调是稳定的、根本性的,是不以设计为转移的,如不加以解决影响将始终存在。
2.2动态失调
系统在实际运行中,当一些末端用户的水流量发生改变时(关闭或调节),会使其它用户的流量随之产生变化。
因此,在通过详细的水力计算选择合适的管径及设备的基础上,为使水流量合理完善地分配至每一个环路的采暖或空调末端,满足每一栋建筑及功能房间的冷、热负荷需求,我们往往会通过平衡阀来有效的解决这个问题。
接下来,将针对平衡阀的选择设置进行探讨,以供同行在工程设计中参考。
3 平衡阀的选择与应用
3.1平衡阀的分类及特性
结合目前市场上的水力平衡阀,主要可分为两类:静态平衡阀和动态平衡阀。
其中,静
态平衡阀是通过改变阀芯与阀座的间隙(开度),来改变流经阀门的流通阻力,以达到调节流量的目的。
而动态平衡阀是根据系统工况(压差)的变动而自动变化阻力系数,在一定的压差范围内,有效地控制通过的流量,使其保持一个常值。
3.2 静态平衡阀的选择与应用
静态平衡阀一般应分级设置,当平衡支路上的各个末端时,可以将支路看作为一个“黑匣子”,即一个单元。
该单元对其外部流量的调整起比例的反映,上一级合作阀门能够较容易的补偿这种扰动。
接下来,各支路单元使用立管平衡阀作为合作阀门来进行相互平衡。
随后立管上的所有单元构成一个较大的单元,其流量可使立管的平衡阀来调节。
最后,将每个立管作为一个单元来相互平衡,而主管上的平衡阀作为合作阀门。
这样逐级进行调试,以达到管路的水力平衡。
由此可见,静态平衡阀的使用和调试与风管系统中的多叶调节阀相似,几乎可以应用在各类管路系统中。
只要有足够的调试时间,系统理论上总能达到水力平衡;但是由于静态平衡阀只能够手动调节,不能根据实际流量需求的变化而变化,所以仅能消除系统的静态水力失调。
3.3动态流量平衡阀的选择与应用
动态流量平衡阀作用的对象是流量,它可以在一定的压差范围内自动保持流量的恒定,一般应用在下列方面:
3.3.1 多个不同的冷热源及冷却塔并联时,自动流量平衡阀设置在每个冷热源和冷却塔的进口或者出口,通常与电磁阀一起使用,保证通过每个冷热源及冷却塔的水流量恒定。
3.3.2 异程式水系统中,动态流量平衡阀设置在每个定流量末端设备的进口或者出口,通常与电动三通阀一起使用,保证通过每个末端设备的水流量恒定。
由此可见,动态流量平衡阀使用方便,设置在定流量管路上,通常与电磁阀或电动三通阀一起使用。
它可以自动保持系统的流量恒定,不必进行复杂的调试。
它不仅能够消除系统的静态水力失调,而且可以消除系统的动态水力失调,几乎适用于所有定流量系统。
并且末端设备设置了动态流量平衡阀以后,支路上不必再设置动态流量平衡阀。
但是,自动流量平衡阀不适用于变流量系统。
原因是:如果自动流量平衡阀设置在变流量系统的支路上,当一些末端设备需要小流量时,自动流量平衡阀在一定压差范围内仍维持设定的流量;例如当一些fcu自控阀门关闭时,由于支路总流量恒定,正在使用的fcu流量会增加,会引起fcu控制阀的频繁启闭,因此不应采用。