初中数学 2.6 何时获得最大利润 教学设计
6.4 二次函数的运用(1)【何时获得最大利润】
§6.4 二次函数的运用(1)【何时获得最大利润】教案备课时间: 主备人:教学目标:体会二次函数是一类最优化问题的数学模型.了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.教学重点:本节重点是应用二次函数解决实际问题中的最值.应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值.实际问题的最值,不仅可以帮助我们解决一些实际问题,也是中考中经常出现的一种题型.教学难点:本节难点在于能正确理解题意,找准数量关系.这就需要同学们在平时解答此类问题时,在平时生活中注意观察和积累,使自己具备丰富的生活和数学知识才会正确分析,正确解题.教学方法:在教师的引导下自主教学。
教学过程:一、有关利润问题:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?二、做一做:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.⑵利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.?⑶增种多少棵橙子,可以使橙子的总产量在60400个以上?三、举例:【例1】某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y(1①根据表中提供的数据描出实数对(x,y)的对应点;②猜测并确定日销售量y件与日销售单价x元之间的函数表达式,并画出图象.(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律:①试求出日销售利润P元与日销售单价x元之间的函数表达式,并求出日销售单价x 为多少元时,才能获得最大日销售利润?试问日销售利润P是否存在最小值?若有,试求出;若无,请说明理由.②在给定的直角坐标系乙中,画出日销售利润P元与日销售单价x元之间的函数图象的简图,观察图象,写出x与P的取值范围.【例2】某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围. (2)将(1)中所求出的二次函数配方成y=a (x +ab 2)2+a b ac 442-的形式,写出顶点坐标,在图所示的坐标系中画出草图.观察图象,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?四、随堂练习:1.关于二次函数y=ax 2+bx +c 的图象有下列命题:①当c=0时,函数的图象经过原点;②当c >0且函数图象开口向下时,方程ax 2+bx +c=0必有两个不等实根;③当a <0,函数的图象最高点的纵坐标是ab ac 442-;④当b=0时,函数的图象关于y 轴对称.其中正确命题的个数有( )A .1个B .2个C .3个D .4个2.某类产品按质量共分为10个档次,生产最低档次产品每件利润为8元,如果每提高一个档次每件利润增加2元.用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?五、小结:本节课我们学习了什么?六、作业:七、课后练习(补充)1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?2.将进货为40元的某种商品按50元一个售出时,能卖出500个.已知这时商品每涨价一元,其销售数就要减少20个.为了获得最大利益,售价应定为多少?3.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现,若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数表达式(注明范围);(2)求出商场平均每天销售这种年奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数表达式;(每箱利润=售价-进价)(3)求出(2)中二次函数图象的顶点坐标,并求出当x=40,70时W的值,在直角坐标系中画出函数图象的草图;(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润是多少?4.某医药研究所进行某一治疗病毒新药的开发,经过大量的服用试验后知,成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10-3毫克)随时间x小时的变化规律与某一个二次函数y=ax2+bx+c(a≠0)相吻合.并测得服用时(即时间为0时)每毫升血液中含药量为0微克;服用后2小时每毫升血液中含药量为6微克;服用后3小时,每毫升血液中含药量为7.5微克.(1)试求出含药量y(微克)与服药时间x(小时)的函数表达式,并画出0≤x≤8内的函数图象的示意图.(2)求服药后几小时,才能使每毫升血液中含药量最大?并求出血液中的最大含药量.(3)结合图象说明一次服药后的有效时间是多少小时?(有效时间为血液中含药量不为0的总时间)5.有一种螃蟹,从海上捕获后不放养最多只能存活两天.如果放养在塘内,可以延长存活时间.但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种活蟹1000kg放养在塘内,此时市场价为30元/kg,据测算,此后1kg活蟹的市场价每天可上升1元.但是,放养一天需各种费用支出400元,且平均每天还有10kg蟹死去,假定死蟹均于当天全部售出,售价都是20元/kg.(1)设x天后1kg活蟹的市场价为P元,写出P关于x的函数表达式;(2)如果放养x天后将活蟹一次性出售,并记1000kg蟹的销售总额为Q元,写出Q 关于x的函数表达式;(3)该经销商将这批蟹放养多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?6.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:(1)求y与x的函数表达式;(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S(10万元)与广告费x(10万元)函数表达式;(3)如果投入的广告费为10万元~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?。
6.何时获得最大利润
第二章 二次函数
2.6
何时获得最大利润
授课人: 王秀莲
义安一中
九年级 数学
第二章 二次函数
2.6 何时获得最大利润 某大型商场的杨总到 T恤衫部 去视察,了解的情况如下:已知 成批购进时单价是20元.根据市 场调查,销售量与销售单价满足 如下关系:在一段时间内,单价 是35元时,销售量是600件,而单 价每降低1元,就可以多销售200 件.于是杨总给该部门王经理下 达一个任务,马上制定出获利最 多的销售方案,这可把王经理给 难住了?你能帮他解决这个问题 吗?
60500 60400 60300 60200
60100
60000
O
5
x1
10
x2
15
20
x/棵
九年级 数学
第二章 二次函数
感悟和反思 通过这节课的学习你有哪些 收获?
九年级 数学
第二章 二次函数
作业
1.单价是20元.根据 市场调查,销售量与销售单价满足如下关系:在一 段时间内,单价是35元时,销售量是600件,而单 价每降低1元,就可以多销售200件,问销售单价是 多少时获利最多 ?
• • • • •
如果设销售单价为x元,(20≤x≤35的整数) 35- x 每件降价____________ 元 600+200( 35- x ) 销售量可以表示_________________件 x -20 每件利润__________元 ( x -20 )[600+200( 35- x ) ] 获得的总利润y =_________________________
九年级 数学
第二章 二次函数
y (600 - 5 x)(100 x) -5 x 100 x 60000
九年级数学2.6何时获得最大利润教案北师大版
2.6 何时获得最大利润教学目标(一)教学知识点1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.(二)能力训练要求经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.(三)情感与价值观要求1.体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心.2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.教学重点1.探索销售中最大利润问题.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.教学难点运用二次函数的知识解决实际问题.教学方法在教师的引导下自主学习法.教具准备投影片三张第一张:(记作§2.6 A)第二张:(记作§2.6 B)第三张:(汜作§2.6 C)教学过程Ⅰ. 创设问题情境,引入新课[师]前面我们认识了二次函数,研究了二次函数的图象和性质,由简单的二次函数y =x2开始,然后是y=ax2.y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,掌握了二次函数的三种表示方式.怎么突然转到了获取最大利润呢?看来这两者之间肯定有关系.那么究竟有什么样的关系呢?我们本节课将研究有关问题.Ⅱ.讲授新课一、有关利润问题投影片:(§2.6 A)某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?没销售单价为x(x≤13.5)元,那么(1)销售量可以表示为;(2)销售额可以表示为;(3)所获利润可以表示为;(4)当销售单价是元时,可以获得最大利润,最大利润是.[师]从题目的内容来看好像是商家应考虑的问题:有关利润问题.不过,这也为我们以后就业做了准备,今天我们就不妨来做一回商家.从问题来看就是求最值问题,而最值问题是二次函数中的问题.因此我们应该先分析题意列出函数关系式.获利就是指利润,总利润应为每件T恤衫的利润(售价一进价)乘以T恤衫的数量,设销售单价为x元,则降低了(13.5-x)元,每降低1元,可多售出200件,降低了(13.5-x)元,则可多售出200(13.5-x)件,因此共售出500+200(13.5-x)件,若所获利润用y(元)表示,则y=(x-2.5)[500+200(13.5-x)].经过分析之后,大家就可回答以上问题了.[生](1)销售量可以表示为500+200(13.5-x)=3200—200x.(2)销售额可以表示为x(3200-200x)=3200x-200x 2.(3)所获利润可以表示为(3200x-200x 2)-2.5(3200-200x)=-200x 2+3700x-8000.(4)设总利润为y 元,则y =-200x 2+3700x-8000 =-200(x-218225)4372 . ∵-200<0∴抛物线有最高点,函数有最大值.当x =437=9.25元时, y 最大= 218225=9112.5元. 即当销售单价是9.25元时,可以获得最大利润,最大利润是9112.5元.二、做一做还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y =(600-5x)(100+x)=-5x 2+100x+60000.我们还曾经利用列表的方法得到一个猜测,现在验证一下你的猜测是否正确?你是怎么做的?与同伴进行交流.[生]因为表达式是二次函数,所以求橙子的总产量y 的最大值即是求函数的最大值. 所以y =-5x 2+100x+60000=-5(x 2-20x+100-100)+60000=-5(x-10)2+60500.当x=10时,y 最大=60500.[师]回忆一下我们前面的猜测正确吗?[生]正确.三、议一议(投影片§2.6 B)(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?[生]图象如上图.(1)当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小.(2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.四、补充例题投影片:(§2.6 C)已知——个矩形的周长是24 cm.(1)写出这个矩形面积S与一边长a的函数关系式.(2)画出这个函数的图象.(3)当a长多少时,S最大?[师]分析:还是有关二次函数的最值问题,所以应先列出二次函数关系式.[生](1)S=a(12-a)=a2+12a=-(a2-12a+36-36)=-(a-6)2+36.(2)图象如下:(3)当a=6时,S最大=36.Ⅲ.课堂练习P61解:设销售单价为;元,销售利润为y元,则y=(x-20)[400-20(x-30)]=-20x2+1400x-20000=-20(x-35)2+4500.所以当x=35元,即销售单价提高5元时,可在半月内获得最大利润4500元.Ⅳ.课时小结本节课经历了探索T恤衫销售中最大利润等问题的过程,体会了二次函数是一类最优化问题的数学模型,并感受了数学的应用价值.学会了分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,提高解决问题的能力.Ⅴ.课后作业习题2.6Ⅵ.活动与探究某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式.(注明范围)(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价-进价).(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在坐标系中画出函数图象的草图.(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?解:(1)当40≤x≤50时,则降价(50-x)元,则可多售出3(50-x),所以y=90+3(50-x)=-3x+240.当50<x≤70时,则升高(x-50)元,则可少售3(x-50)元,所以y=90-3(x-50)=-3x+240.因此,当40≤x≤70时,y=-3x+240.(2)当每箱售价为x元时,每箱利润为(x-40)元,平均每天的利润为W=(240-3x)(x-40)=-3x2+360x-9600.(3)W=-3x2+360x-9600=-3(x2-120x+3600-3600)-9600=-3(x-60)2+1200.所以此二次函数图象的顶点坐标为(60, 1200).当x=40时,W=-3(40-60)2+1200=0;当x=70时,W=-3(70-60)2+1200=900.草图略.(4)要求最大利润,也就是求函数的最大值,只要知道顶点坐标即可.由(3)得,当x=60时,W最大=1200.即当牛奶售价为每箱60元时,平均每天的利润最大,最大利润为1200元.板书设计§2.6 何时获得最大利润一、1.有关利润问题(投影片§2.6 A)2.做一做3.议一议(投影片§2.6 B)乙补充例题(投影片§2.6 C)二、课堂练习三、课时小结四、课后作业。
2.4.2何时获得最大利润上课课件
解:
假设销售单价为x(x≥30)元,销售利润为y元,则 y= -20(x-35)2+4500
y 4500 4420
若规定销售单价不得高于 33元,则如何提高售价,可 在半月内获得最大利润?
0
33
35
X
拓展
某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如 果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可 多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大? 分析:调整价格包括涨价和降价两种情况,我们先来看涨价的情况. (1)设每件涨价x元,则每星期卖出(300-10x)件,单件商品的利 润为(60+x - 40)元 y = (60+x)(300-10x) -40 (300-10x) 怎样确定x的 取值范围? 即
议一议
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙 子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接 受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结 5个橙子.问增种多少棵橙子树,可以使橙子的总产量最多? 等量关系:橙子的总产量=每棵橙子树的产量×橙子树的数量
3. 二次函数y=-3(x+4)2-1的对称轴是 直线x=-4 ,顶点 坐标是 (-4 ,-1) 。当x= -4 时,函数有最 大 值,是 -1 。 4.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点 坐标是 (2 ,1) .当x= 2 时,函数有最 小 值,是 1 。
探究
服装厂生产某种品牌的T恤成本是每件10元。根据市场调 查,以单价13元批发给经销商,经销商愿意经销5000件, 并且表示单价每降低0.1元,愿意多经销500件。请你帮助 分析,厂家批发单价是多少时可以获利最多?
学练优九年级数学上册21.6综合与实践获取最大利润学案新版沪科版
学练优九年级数学上册21.6综合与实践获取最大利润学案新版沪科版21、6 综合与实践获取最大利润学习思路(纠错栏)学习思路(纠错栏)学习目标:1、经历销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值、2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力、学习重点:利用二次函数表示实际问题的变量关系、预设难点:对实际问题中数量关系的分析、☆ 预习导航☆一、链接:(1)二次函数y=-10x2+80x+200,顶点坐标为________;当x= 时,函数有最值为、(2)某产品进货单价为90元,按100元一个售出时,能售500个,如果这种商品涨价1元,其销售额就减少10个,为了获得最大利润,其单价应定为( )A、130元;B、120元C、110元;D、100元二、导读预习课本第52—54页☆ 合作探究☆某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x (元/个)的变化如下表:价格x(元/个)…30405060…销售量y (万个)…5432…同时,销售过程中的其他开支(不含造价)总计40万元、(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式、(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?☆ 归纳反思☆对照学习目标谈谈这节课你们有什么收获,还有什么疑惑?☆ 达标检测☆1、某市政府大力扶持大学生创业、李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯、销售过程中发现,每天销售量w(件)与销售单价x(元)之间的关系可近似的看作一次函数:、设李明每天获得利润为y(元),当销售单价定为多少元时,每天可获得最大利润?2、某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10万件、为了获得更好的效益,公司准备拿出一定的资金做广告、根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:x(10万元)012…y11、51、8…(1)求y与x的函数表达式;(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S(10万元)与广告费x(10万元)函数表达式;(3)如果投入的广告费为10万元~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?。
人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计
人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计一. 教材分析《二次函数与最大利润问题》这一节内容,是在学生学习了二次函数的基础上进行的。
教材通过实例引出二次函数在实际问题中的应用,让学生感受数学与生活的紧密联系,培养学生的应用意识。
同时,本题也是中考的热点题型,对于学生来说,理解和掌握二次函数在最大利润问题中的应用,对于提高他们的数学素养和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,将二次函数应用于实际问题中,求最大利润问题,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们解决问题的能力。
三. 教学目标1.理解二次函数在最大利润问题中的应用。
2.能够列出二次函数表示的生产成本函数,并求出最大利润。
3.培养学生的应用意识和解决问题的能力。
四. 教学重难点1.重点:二次函数在最大利润问题中的应用。
2.难点:如何将实际问题转化为二次函数问题,并求解最大利润。
五. 教学方法采用问题驱动的教学方法,通过实例引导学生主动探究二次函数在最大利润问题中的应用,培养学生的动手能力和解决问题的能力。
同时,辅以小组合作学习,让学生在讨论中加深对知识的理解。
六. 教学准备1.准备相关的实例,用于引导学生探究二次函数在最大利润问题中的应用。
2.准备PPT,用于展示问题和解答过程。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容:某工厂生产一种产品,固定成本为8000元,每生产一件产品的成本为200元,售价为300元,问工厂每月生产多少件产品时,可以获得最大利润?2.呈现(10分钟)引导学生将实际问题转化为数学问题,列出二次函数表示的生产成本函数和利润函数。
设每月生产x件产品,利润函数为:y = 300x - 200x - 8000 = 100x - 8000。
3.操练(10分钟)让学生尝试求解最大利润,引导他们发现这是一个二次函数的最大值问题。
何时获得最大利润1
O
27
28
29
30
31
x /元
总结 :
运用函数来决策定价的问题: 运用函数来决策定价的问题:
构建二次函数模型:将问题转化为二次函数的一个具体的表达式. 构建二次函数模型:将问题转化为二次函数的一个具体的表达式. 求二次函数的最大(或最小值) 求二次函数的最大(或最小值)
销售量
600 600+200 + 600+200×2 + × 600+200×3 + × 600+200×4 + ×
总利润
7500 11200 13000 14400 15400
0元 元 1元 元 2元 元 3元 元 4元 元
令王经理非常开心的结论: 令王经理非常开心的结论: Yes! 价格下降,销量增加,总利润不断增加!!! 价格下降,销量增加,总利润不断增加!!!
y=(100+x)(600-5x) = - 5x2+100x+60000 =-5(x-10)2+60500
∵a<0 ∴ y有最大值
b 4ac − b 2 4 × (−5) × 60000 − 100 2 ∴当 x = − = 10时,y = = = 60500 最大值 2a 4a 4 × (−5)
挑战新高
检查求得的最大值或最小值对应的自变量的值必 检查求得的最大值或最小值对应的自变量的值必 须在自变量的取值范围内 。
某商店购进一批单价为20元的日用品,如果以单价30元销售, 某商店购进一批单价为20元的日用品,如果以单价30元销售, 20元的日用品 30元销售 那么半个月内可以售出400 400件 根据销售经验, 那么半个月内可以售出400件.根据销售经验,提高单价会导 致销售量的减少,即销售单价每提高1 销售量相应减少20 致销售量的减少,即销售单价每提高1元,销售量相应减少20 如何提高售价,才能在半个月内获得最大利润? 件.如何提高售价,才能在半个月内获得最大利润?
《何时获得最大利润》教学课件
复习提问
1. 二次函数y=a(x-h)2+k的图象是一条抛物线, 二次函数 的图象是一条 直线x=h ,顶点坐标是 (h,k) . 它的对称轴是 直线
b 直 x =− 线 它的对称轴是 2a,顶点坐是
4ac −4a ;当
2 . 二次函数 二次函数y=ax2+bx+c的图象是一条抛物线 , 的图象是一条 2
2.某旅行社组团去外地旅游,30人起组团, 某旅行社组团去外地旅游, 人起组团 人起组团, 某旅行社组团去外地旅游 每人单价800元。旅行社对超过30人的团 元 旅行社对超过 人的团 每人单价 给予优惠,即旅行团每增加一人, 给予优惠,即旅行团每增加一人,每人的 单价就降低10元 单价就降低 元。当一个旅行团的人数是 多少时,旅行社可以获得最大营业额? 多少时,旅行社可以获得最大营业额?
解:设一个旅行团有x人时,旅行社营业额为y元. 设一个旅行团有x人时,旅行社营业额为y 则 y=〔 800-10(30y=〔 800-10(30-x) 〕·x =-10x2+1100x =-10(x-55)2+30250 10(x∴当x=55时,y最大=30250 x=55时 答:一个旅行团有55人时,旅行社可 一个旅行团有55人时, 55人时 获最大利润30250 30250元 获最大利润30250元
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子. 某果园有100棵橙子树,每一棵树平均结600个橙子. 100棵橙子树 600个橙子 现准备多种一些橙子树以提高产量, 现准备多种一些橙子树以提高产量,但是如果多种 树,那么树之间的距离和每一棵树所接受的阳光就 会减少.根据经验估计,每多种一棵树, 会减少.根据经验估计,每多种一棵树,平均每棵树 就会少结5个橙子. 就会少结5个橙子. 如果增种x棵树 果园橙子的总产量为y 棵树, 如果增种 棵树,果园橙子的总产量为 那么y与 之间的关系式为 之间的关系式为: 个,那么 与x之间的关系式为: 那么 y=(600-5x)(100+x )=-5x²+100x+60000
《何时获得最大利润》教学课件
某果园有100棵橙子树,每一棵树平均结600个橙子.
现准备多种一些橙子树以提高产量,但是如果多种
树,那么树之间的距离和每一棵树所接受的阳光就
会减少.根据经验估计,每多种一棵树,平均每棵树就
会少结5个橙子. 如果增种x棵树,果园橙子的总产量为y 个,那么y与x之间的关系式为: y=(600-5x)(100+x )=-5x² +100x+60000
1.理解问题; 2.分析问题中的变量和常量,以及它们之间的关系; 3.用数学的方式表示出它们之间的关系; 4.做数学求解; 5.检验结果的合理性,拓展等.
课堂练习
1.某商店购进一批单价为20元的ቤተ መጻሕፍቲ ባይዱ用品,如果以单
价30元销售,那么半个月内可以售出400件.根据
销售经验,提高单价会导致销售量的减少,即销售
若设销售价为x元(x≤13.5元),那么
销售量可表示为 : 500 200 13.5 x 件;
销售额可表示为: x 500 200 13.5 x
元;
所获利润可表示为: x 2.5 500 200 13.5 x 元;
验证猜想
解: y=(600-5x)(100+x )
=-5x²+100x+60000 =-5(x-10)2+60500
∵当x=10时,y最大=60500 ∴增种10棵树时, 总产量最多,是60500个
“二次函数应用” 的思路
回顾本课“最大利润”和 “最高产量” 解决问题的过程,你能总结一下解决 此类问题的基本思路吗?
当销售单价为 9.25 元时,可以获得最大利润,最大利
润是 9112.5 元.
还记得本章一开始涉及的“种多少棵 橙子树”的问题吗?
沪科版数学九年级上册21.6综合与实践-获取最大利润 课件(共23张PPT)
w=[2000-5(x-100)](x-80)
2.某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?
由公式可得:当 x=- 时,即x=175,P最大= .∴t=-20x+6000=2500,∴ P=311500 元.
随堂练习
1.进价为80元的某件定价100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价x(元)之间的函数关系为________________.每月利润w(元)与衬衣售价x(元)之间的函数关系式为 . (以上关系式只列式不化简).
解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元,商品每天的利润y与x的函数关系式是y=(10-x-8)(100+100x),即 y=-100x2+100x+200,配方得 y=-100(x-0.5)2+225,∵x=0.5时,满足0≤x≤2,∴当x=0.5时,函数取得最大值,最大值y=225.∴将这种商品的售价降低0.5元时,能使销售利润最大.
归纳小结
同学们再见!
授课老师:
时间:2024年9月1日
第21章 二次函数与反比例函数
21.6 综合与实践 获取最大利润
学习目标
学习重难点
重点
难点
1.根据已知数据求出二次函数的具体表达式.2.依据二次函数模型解决最大利润问题.
二次函数在最优化问题中的应用.
从现实问题中建立二次函数模型.
回顾复习
二次函数的一般形式:y=ax²+bx+c(a≠0) =当x= 时,y取得最值
人教版初中初三年级九年级数学上册 商品利润最大问题 精品教学教案
第2课时商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x档的产品一天的总利润为y元,则有y=[10+2(x-1)][76-4(x -1)]=-8x2+128x+640=-8(x-8)2+1152.当x=8时,y最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.。
九年级数学 6.何时获得最大利润教学设计
那么 Y=(7600-200x)(x-20)
=-200x2+11600x-152000
= -200(x-29)2 +16200
答: 当x 29, 即销售单价是29元时所获利润最多, 最大利润是16200元。
探究:某大型商场经营 T恤衫,已知成批购进时
何时获得最大利润
ቤተ መጻሕፍቲ ባይዱ
一、测验:(每空1分,共10分)
1. 二次函数y=2(x-3)2+5的对称轴 是 直线x=3 ,顶点坐标是 (3 ,5) 。 当x= 3 时,y的最 小 值是 5 。
2. 二次函数y=-3(x+4)2-1的对称轴 是 直线x=-4,顶点坐标是 (-4 ,-1) 。 当x= -4 时,函数有最 小值,是 -1 。
二、练习:
求下列函数的最大值或最小值。
(1) y=-x2-2x (2)y=2x2-8x+9
探究1:某大型商场经营 T恤衫,已知成批购进时
单价是20元.根据市场调查,销售量与销售单价 满足如下关系:在一段时间内,单价是35元时, 销售量是600件,而单价每降低1元,就可以多销 售200件.请问:销售单价是多少元时,可以获利最 多?最大利润为多少?
解析:(1)设每千克应涨价x元,列方程得:
(5+x)(200-10x)=1500
解得:x1=10 所以 x=5
x2=5 因为顾客要得到实惠,5<10
答:每千克应涨价5元.
(2)设商场每天获得的利润为y元,则根据题意,得
y=( x +5)(200-10x)= -10x2+150x+1000 当x= b 150 7.5 时,y有最大值.
(整理)初中数学九年级下册《26何时获得最大利润》
量就相应减少20件。
若销售单价提高x元时,半个月内获得的利润为y元,请写出y与x之间的函数关系式。
销售单价提高多少时,才能在半个月内获得最大利润?最大利润是多少?(三)巩固新知某商店经营T恤衫,已知成批购进时单价是2.5元。
根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件。
销售单价是多少时,可以获得最大利润?最大利润是多少?(四)新知应用某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,且增加的橙子树最多不得超过20棵。
假设果园增种x棵橙子树,果园橙子的总产量为y个,请写出y与x之间的关系式,并回答下列问题. (1)我们曾经利用列表的方法得到一个猜测,增种多少棵橙子树时,总产量最大?x 1 … 8 9 10 11 12y …猜测的结论:当增种______棵橙子树时,橙子的总产量最大,最大产量为______个。
(2)现在请你用所学知识验证一下你的猜测是否正确。
(3)请画出函数的图象。
(4)利用函数图象描述橙子的总产量与增种橙子树的棵数之间通过这个实际问题,让学生感受到二次函数是一类最优化问题的数学模型,并感受数学的应用价值。
经历了探索T恤衫销售中最大利润等问题的过程,提高了学生的运算能力和运算技巧思考并独立完成,并交流结论提高学生运用函数图象解决实际问题的能力学会了分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,提高解决问题的能力。
教师指导纠正。
九年级数学下册 二次函数的应用——最大利润教案 北师大版 教案
张家口市第五中学教案课题二次函数的应用——最大利润课型复习课时 1教学目标1.巩固并熟练掌握二次函数的性质。
知识:2.能够运用二次函数的性质解决实际问题。
能力:建立二次函数模型,进一步体会如何应用二次函数的有关知识解决一些生活实际问题,进而提高理解实际问题、从数学角度抽象分析实际问题和运用数学知识解决实际问题的能力。
思想教育: 从实际生活中认识到:数学来源于生活,数学服务于生活。
教学重点巩固并熟练掌握二次函数的性质。
教学难点能够运用二次函数的性质解决实际问题。
教法归纳总结学法类比、分析、应用教具多媒体板书设计二次函数的应用——最大利润教学教程教师活动学生活动矫正反馈一、这节复习课设计意图:二次函数的实际应用是中学数学中的重点与难点。
建立二次函数模型,进一步体会如何应用二次函数的有关知识解决一些生活实际问题,进而提高理解实际问题、从数学角度抽象分析实际问题和运用数学知识解决实际问题的能力。
从实际生活中认识到:数学来源于生活,数学服务于生活。
二、前提测评——设计意图:通过几个习题二次函数复习,使学生回顾二次函数的性质,总结出函数的最值是由此函数的增减性来决定的;当Y随X的增大而增大时,x取最大,Y最大;当Y随X的增大而减小时,X取最小,Y最大。
反之成立。
• 2.杂技团进行杂技表演,演员从跷跷板右端处弹跳到人梯顶端椅子处,其身体(看成一点)的路线是抛物线的一部分,如图.演员弹跳离地面的最大高度__ 米 .3.一家电脑公司推出一款新型电脑,投放市场以来3个月的利润情况如图所示,该图可以近似看作为抛物线的一部分,则该抛物线对应的二次函数解析式____________;该公司在经营此款电脑过程中,第__月的利润最大,最大利润是________万元。
• 4.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。
市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件。
北师大版数学九年级下册二次函数的应用第2课时何时获得最大利润课件
知识迁移,活学活用
小结:解题的关键是要理清楚材料中的数量 关系,将实际问题转化为数学模型,利用已学的 数学知识解决实际问题.
具体步骤如下: (1)根据题意,列出二次函数表达式,注意 实际问题中自变量x的取值范围. (2)将二次函数表达式配方为顶点式的情势. (3)根据二次函数图象及其性质,在自变量 的取值范围内求出函数的最值.
请你帮助分析,厂家批发单价是多少时可 以获利最多?
视察学生,合理指点
解:批发价为x元时,获利y元.
则单件利润为(x-10)元,
降价后的销售量为
5
000
+
13 - x 0.1
×
500
件.
则
y
=
(
x
-
10)
5
000
+
13 - x 0.1
×
500
= 5 000( 000(- x2 + 24x - 140)
= -5 000[( x - 12)2 - 4].
所以,当批发价是12元时,获利最多.
知识迁移,活学活用
某旅社有客房120间,每间房的日租金为 160元时,每天都客满,经市场调查发现,如 果每间客房的日租金增加10元,那么客房每天 出租数会减少6间.不考虑其他因素,旅社将每 间客房的日租金提高到多少元时,客房日租金 的总收入最高?最高总收入是多少?
分析:客房日租金的总收入=客房的日租金 ×客房出租的间数.
知识迁移,活学活用
解:设客房的日租金增加x个10元,则客房每天的 出租数减少6x间,设客房日租金的总收入为y元, 则y=(160+10x)(120-6x)=-60(x-2)2+19 440. ∵x ≥0,且120-6x>0,∴0 ≤ x<20. 当x=2时, y有最大值19 440. 这时每间客房的日租金为160+10×2=180(元). 即旅社将每间客房的日租金提高到180元时,客房 日租金的总收入最高,最高总收入为19 440元.
初三中考二次函数应用题最大利润问题
初三数学中的二次函数,是中考的必考考点,而且是必出大题的,而对于二次函数的应用,也是常考的知识点,尤其是最近几年,销售利润问题也是非常的热门,其实对于销售利润问题,如果同学们能够掌握关于销售的公式,牢牢掌握随着售价的变化,销售数量也随之变化这个关键点,这类问题也是非常简单的。
解决这类问题一般是先运用“总利润=单件商品的利润*销售的总数量”或“总利润=总售价-总成本”,建立利润与价格之间的二次函数解析式,然后求出这个函数解析式的顶点坐标,即求得最大利润。
初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点例题1:某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数解析式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数解析式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点【解析】:此题是最常见的,也是最基本的利润问题,从题目中“价格每提高1元,平均每天少销售3箱”,可知价格提高a元时,每天少销售3a箱。
因此销售价x(元/箱)时,每天销售量y=90-3(x-50)=-3x+240。
然后根据利润公式,总利润=单件商品的利润*销售的总数量,得W=(x-40)(-3x+240)=-3x^2+360x-9600=-3(x-60)^2+1200。
所以当x<60时,w随x的增大而增大,又由题意可知x≤55,∴当x=55时,可获得利润最大,最大利润为w=1125元。
例题2:某商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为:初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点(1)已知y与t之间的变化规律符合一次函数关系,试求一次函数关系是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(0﹤n<9)给“精准扶贫”对象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.6 何时获得最大利润
课时安排
7课时
从容说课
从题目来看,“何时获得最大利润”似乎是商家才应该考虑的问题.但是你知道吗?这正是我们研究的二次函数的范畴.因为二次函数化为顶点式后,很容易求出最大或最小值.而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题.因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践.即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释.在教学中,要对学生进行适时的引导,并采用小组讨论的方式掌握本节课的内容,从而发展学生的数学应用能力.
第七课时
课题
§2.6 何时获得最大利润
教学目标
(一)教学知识点
1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.
2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.
(二)能力训练要求
经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.
(三)情感与价值观要求
1.体会数学与人类社会的密切联系,了解数学的价值.增进对数学的理解和学好数学的信心.
2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.
教学重点
1.探索销售中最大利润问题.
2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.
教学难点
运用二次函数的知识解决实际问题.
教学方法
在教师的引导下自主学习法.
教具准备
投影片三张
第一张:(记作§2.6 A)
第二张:(记作§2.6 B)
第三张:(汜作§2.6 C)
教学过程
Ⅰ. 创设问题情境,引入新课
[师]前面我们认识了二次函数,研究了二次函数的图象和性质,由简单的二次函数y=x2开始,然后是y=ax2.y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,掌握了二次函数的三种表示方式.怎么突然转到了获取最大利润呢?看来这两者之间肯定有关系.那么究竟有什么样的关系呢?我们本节课将研究有关问题.
Ⅰ.讲授新课
一、有关利润问题
投影片:(§2.6 A)
某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.
请你帮助分析,销售单价是多少时,可以获利最多?
没销售单价为x(x≤13.5)元,那么
(1)销售量可以表示为 ;
(2)销售额可以表示为 ;
(3)所获利润可以表示为 ;
(4)当销售单价是 元时,可以获得最大利润,最大利润是 .
[师]从题目的内容来看好像是商家应考虑的问题:有关利润问题.不过,这也为我们以后就业做了准备,今天我们就不妨来做一回商家.从问题来看就是求最值问题,而最值问题是二次函数中的问题.因此我们应该先分析题意列出函数关系式.
获利就是指利润,总利润应为每件T 恤衫的利润(售价一进价)乘以T 恤衫的数量,设销售单价为x 元,则降低了(13.5-x)元,每降低1元,可多售出200件,降低了(13.5-x)元,则可多售出200(13.5-x)件,因此共售出500+200(13.5-x)件,若所获利润用y(元)表示,则y =(x -2.5)[500+200(13.5-x)].
经过分析之后,大家就可回答以上问题了.
[生](1)销售量可以表示为500+200(13.5-x)=3200—200x .
(2)销售额可以表示为x(3200-200x)=3200x -200x 2.
(3)所获利润可以表示为(3200x -200x 2)-2.5(3200-200x)=-200x 2+3700x -8000.
(4)设总利润为y 元,则
y =-200x 2+3700x -8000
=-200(x -
2
18225)4372 . Ⅰ-200<0
Ⅰ抛物线有最高点,函数有最大值. 当x =
4
37=9.25元时, y 最大= 218225=9112.5元. 即当销售单价是9.25元时,可以获得最大利润,最大利润是9112.5元.
二、做一做
还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y =(600-5x)(100+x)=-5x 2+100x+60000.
我们还曾经利用列表的方法得到一个猜测,现在验证一下你的猜测是否正确?你是怎么做的?与同伴进行交流.
[生]因为表达式是二次函数,所以求橙子的总产量y的最大值即是求函数的最大值.所以y=-5x2+100x+60000
=-5(x2-20x+100-100)+60000
=-5(x-10)2+60500.
当x=10时,y最大=60500.
[师]回忆一下我们前面的猜测正确吗?
[生]正确.
三、议一议(投影片§2.6 B)
(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.
(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?
[生]图象如上图.
(1)当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小.
(2)由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60400个以上.
四、补充例题
投影片:(§2.6 C)
已知——个矩形的周长是24 cm.
(1)写出这个矩形面积S与一边长a的函数关系式.
(2)画出这个函数的图象.
(3)当a长多少时,S最大?
[师]分析:还是有关二次函数的最值问题,所以应先列出二次函数关系式.
[生](1)S=a(12-a)=a2+12a=-(a2-12a+36-36)=-(a-6)2+36.
(2)图象如下:
(3)当a=6时,S最大=36.
Ⅰ.课堂练习
P61
解:设销售单价为;元,销售利润为y元,则
y=(x-20)[400-20(x-30)]
=-20x2+1400x-20000
=-20(x-35)2+4500.
所以当x=35元,即销售单价提高5元时,可在半月内获得最大利润4500元.
Ⅰ.课时小结
本节课经历了探索T恤衫销售中最大利润等问题的过程,体会了二次函数是一类最优化问题的数学模型,并感受了数学的应用价值.
学会了分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,提高解决问题的能力.
Ⅰ.课后作业
习题2.7
Ⅰ.活动与探究
某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高1元,平均每天少销售3箱.
(1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式.(注明范围)
(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价-进价).
(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在坐标系中画出
函数图象的草图.
(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?
解:(1)当40≤x≤50时,则降价(50-x)元,则可多售出3(50-x),所以y=90+3(50-x)=-3x+240.当50<x≤70时,则升高(x-50)元,则可少售3(x-50)元,所以y=90-3(x-50)=-3x+240.
因此,当40≤x≤70时,y=-3x+240.
(2)当每箱售价为x元时,每箱利润为(x-40)元,平均每天的利润为W=(240-3x)(x-40)=-3x2+360x-9600.
(3)W=-3x2+360x-9600
=-3(x2-120x+3600-3600)-9600
=-3(x-60)2+1200.
所以此二次函数图象的顶点坐标为(60,1200).
当x=40时,W=-3(40-60)2+1200=0;
当x=70时,W=-3(70-60)2+1200=900.
草图略.
(4)要求最大利润,也就是求函数的最大值,只要知道顶点坐标即可.
由(3)得,当x=60时,W最大=1200.
即当牛奶售价为每箱60元时,平均每天的利润最大,最大利润为1200元.
板书设计
§2.6 何时获得最大利润
一、1.有关利润问题(投影片§2.6 A)
2.做一做
3.议一议(投影片§2.6 B)
乙补充例题(投影片§2.6 C)
二、课堂练习
三、课时小结
四、课后作业。