(完整word版)五年级下册数学长方体与正方体奥数练习题

合集下载

长方体与正方体奥数题及答案

长方体与正方体奥数题及答案

1、一个长方体的棱长之和是80厘米,如果把这个长方体平均截成两段,就成了两个大小相等的正方体,求:这个长方体的表面积和体积。

80÷2÷8=5(cm) 表面积:5X5X5X2=250(平方厘米)体积:5X5X5=125(立方厘米)答:这个长方体的表面积是250平方厘米,体积是125立方2、把3个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是多少平方厘米?350÷14X6=150(平方厘米)答:每个正方体的表面积是150平方厘米?3、把一个长方体的木块截成两段,就成了两个完全相等的正方体,这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的体积是多少立方厘米?40÷8=5(厘米)5X2=10(厘米)5X5X10=250(平方厘米)答:原来那个长方体的体积是250立方厘米4、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大,这时表面积之和是多少平方厘米?(7X6+7X5+6X5)X2=214(平方厘米)214+6X7X2=298(平方厘米)答:这时表面积之和是298平方厘米5、一个长方体,前面和上面的面积之和是290平方厘米,这个长方体的长宽高都是质数,这个长方体的体积和表面积各是多少?290=29X10=29X(7+3)体积:29X7X3=609(立方厘米)表面积:(29X7+29X3+7X3)=672(平方厘米)答:这个长方体的体积j 609立方厘米,表面积是672平方厘米6、一个长方体的表面积是78平方厘米,底面积是15平方厘米,底面周长是16厘米,求长方体的体积。

78-15-15=48(平方厘米)48÷16=3(厘米)15×3=45(立方厘米)答:长方体的体积是45立方厘米7、一个长方体水箱,从里面量,长20厘米,宽30厘米,深35厘米,箱中水面高5厘米,放进一个棱长20厘米的正方体的铁块后,铁块顶面仍高于水面,这时水面的高多少厘米?20×30×5=3000(立方厘米)20×30-20×20=200(平方厘米)3000÷200=15(厘米)答:这时水面的高15厘米8、一个长方体木块,从下部和上部分别截去3厘米和2厘米的长方体后,成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?120÷(3+2)=24(平方厘米)24÷4=6(厘米)6+3+2=11(厘米)6×6×11=369(立方厘米)答:原长方体的体积是369立方厘米。

五年级下册数学长方体与正方体奥数练习题1

五年级下册数学长方体与正方体奥数练习题1

长方体和正方体(二)【例题11有一个长方体形状的零件,中间挖去一个正方体的孔(如图) 积吗?(单位:厘米)练习1:1 .有一个形状如下图的零件,求它的体积和表面积。

(单位:厘米)2 .有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是 体积和表面积各是多少?【例题2】一个正方体和一个长方体拼成了一个新的长方体, 的表面积增加了 100平方厘米。

原正方体的表面积是多少 厘米?练习2:1 .一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的 表面积减少了多少平方厘米?2 .把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?【例题3】一个棱长为6厘米的正方体木块,如果把它锯成棱长为 2厘米的正方体若干块,表面积增 加多少厘米?练习3:1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方 体的表面积之和少多少平方厘米?,你能算出它的体积和表面1厘米的正方体后,剩下物体的拼成的长方体的表面积比原来的长方体平方【例题4】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?练习4:1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?【例题5】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?练习5:1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?【例题4】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?练习4:1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。

五年级下册长方体和正方体挑战奥数习题

五年级下册长方体和正方体挑战奥数习题

挑战奥数【例1】一个长30厘米、宽20厘米、高25厘米的纸盒,按下图那样的捆绑方式用绳子捆绑起来,接头处长15厘米),一共要用多长的绳子?分析:观察图形可以发现,绳子的长度实际上是纸盒的1个右面与1个前面的长方形的周长之和。

1个右面的周长:(20+25)×2=90(厘米)一个前面的周长:(30+25)×2=110(厘米)绳子长度:90+110+15=215(厘米)答:一共要用215厘米长的绳子。

变式练习1一个长8厘米、宽5厘米、高3厘米的盒子,用3根铁丝捆起来,每个打结处要用2厘米的铁丝,那么50厘米长的铁丝够吗?(5+3)×2×2=32(厘米)(8+3)×2=22(厘米)32+22+2×3=60(厘米)60>50答:50厘米长的铁丝不够。

【例2】有一个长方体,底面是正方形,高24厘米,侧面展开是一个正方形,这个长方体的体积是多少立方厘米?分析:由侧面展开是一个正方形可以知道,长方体的底面周长与高相等,求出底面边长。

知道底面边长和高,利用体积计算公式就可求出长方体的体积。

长方体的底面边长:24÷4=6(厘米)长方体的体积:6×6×24=864(立方厘米)答:这个长方体的体积是864立方厘米。

变式练习2有一个长方体,底面是正方形,高是16厘米,侧面展开是一个长方形,长是宽的2倍。

求这个长方体的体积。

16×2=32(厘米)32÷4=8(厘米)8×8×16=1024(立方厘米)答:这个长方体的体积是1024立方厘米。

变式练习3有一个长方体,体积是576立方厘米,高是9厘米,底面是一个正方形,这个长方体的底面周长是多少厘米?576÷9=64(平方厘米)64=828×4=32(厘米)答:这个长方体的底面周长是32厘米。

小学数学五年级下册——长方体和正方体练习题(附带答案及详细解析)

小学数学五年级下册——长方体和正方体练习题(附带答案及详细解析)

小学数学五年级下册——长方体和正方体姓名:__________ 班级:__________考号:__________一、单选题1.(2014·泉州)下面哪个答案最适合表示一瓶牛奶的净含量()A. 250cm3B. 0.25dm2C. 250mLD. 50L2.(2018六下·贵州期中)等底等高的圆柱、正方体、长方体体积相比较( )。

A. 正方体体积大B. 长方体体积大C. 圆柱体体积大D. 一样大3.(2019五下·滨州期末)一个水箱装满水可以装6L,这个水箱的()是6L。

A. 体积B. 容积C. 重量D. 面积4.一台电视机的体积约是12()。

A. 立方厘米B. 立方分米C. 立方米5.一个微波炉的容积约是18()。

A. 立方厘米B. 立方分米C. 立方米6.下列有的图形的立体图形是( )。

aA. B. C.7.求一个长方体冰块占空间的大小,是求长方体冰块的()。

①体积②容积③表面积A. 体积B. 容积C. 表面积8.(2019六上·邵阳期末)一间教室的空间大约是142()A. 平方米B. 立方米C. 立方分米9.一本数学书的体积大约是280()A. 平方厘米B. 立方分米C. 立方厘米D. 立方米10.(2014·遵义)下面哪个图形不能折成一个正方体。

()A. B. C.11.(2018五下·云南期末)一个正方体的棱长扩大为原来的2倍,它的体积扩大为原来的()倍。

A. 4B. 6C. 812.表面积是96 cm2的正方体,它的体积是()cm3A. 16B. 32C. 6413.(2020六上·宿迁月考)把长方体的长、宽、高都扩大3倍,长方体的表面积扩大()倍。

A. 3B. 6C. 9D. 2714.体积是()A. 0.64B. 4.096C. 0.512D. 2.5615.(2020五下·京山期末)一根正方体的木料,它的底面积是10cm2,把它截成3段,表面积增加了()cm2。

人教版五年级下册长方体与正方体练习题学习资料

人教版五年级下册长方体与正方体练习题学习资料

人教版五年级下册长方体与正方体练习题人教版五年级数学下册长方体、正方体练习题1、长方体的长宽高分别扩大到原来的2倍,它的表面积扩大到原来的()倍,体积扩大到原来的()倍。

2、一个正方体的棱长是2cm,把它的棱长扩大到原来的3倍,现在这个正方体的表面积是()cm2。

3、判断:棱长是6cm的正方体,它的体积和表面积相等?()棱长之和相等的两个正方体,它们的体积相等?()体积相等的两个长方体,表面积一定相等?()用四个小正方体能拼成一个稍大的正方体?()体积相等的两个正方体,棱长一定相等?()4、现在有一根150cm长的铁丝,用这根铁丝焊接成一个正方体框架,还剩铁丝6cm。

这个正方体框架的棱长是多少厘米?5、一个长方体木块被截成两个完全相同的正方体。

两个正方体的棱长之和比原来长方体的棱长之和增加了16cm。

求原来长方体的长是多少厘米?6、李叔叔做了一个正方体的木制框架,他想给木框涂上红、绿两种颜色,使每个面有且只有一条绿棱,李叔叔应涂几条绿棱?几条红棱?画出示意图。

7、一对无盖的长方体木盒,长40cm,宽32cm,高30cm。

若在外面涂上红漆,涂漆的面积是多少平方米?8、有一个正方体木块,把它分成3个大小相同的长方体之后,表面积增加了36cm2,这个木块原来的表面积是多少平方厘米?9、一根铁丝长120cm,现将这根铁丝焊接成一个长方体框架,长是14cm,宽和高相等,这个长方体框架的体积是多少立方厘米?10、小红用橡皮泥捏成了一个正方体,它的体积是729cm3。

现在要把这个橡皮泥平铺在一个长27cm,宽9cm的长方体塑料盒内,能铺多厚?11、一个长方体三个不同面的面积分别是40cm2,、30cm2和48cm2,且每个面的棱长都是整厘米数。

这个长方体的体积是多少立方厘米?12、一个长方体的高如果增加了2cm,就成为一个正方体,这时的表面积比原来增加了48cm2。

原来长方体的体积是多少?13、红星小学要建一个长80m,宽60m的长方形足球场,先要铺5cm厚的煤渣,然后铺12cm厚的三合土。

长方体正方体奥数题练习题

长方体正方体奥数题练习题

长方体正方体奥数题练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。

它的容积是多少升?4、楼房外壁用于流水的水管是长方体。

如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。

做一节水管,至少要用铁皮多少平方分米?5.把一根长米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。

小学五年级数学思维训练(奥数)《长方体和正方体巧算体积》讲解及练习题(含答案)

小学五年级数学思维训练(奥数)《长方体和正方体巧算体积》讲解及练习题(含答案)

长方体和正方体巧算体积专题简析:物体所占空间的大小叫物体的。

长方体和正方体的物体都占一定的空间。

长方体所含体积的数量正好等于长、宽、高的乘积,所以,长方体的体积=长×宽×高=横截面面积×长=底面积×高例1 把一块棱长为6分米的正方体钢坯,熔铸成横截面是9平方分米的长方体钢材。

铸成的钢材有多长?分析与解答:把正方体钢坯熔铸成长方体后,虽说形状变了,可体积没有变,正方体钢坯的体积就是长方体钢材的体积。

所以先求出正方体的体积,也就是长方体的体积。

用体积除以长方体钢材的横截面面积,就可以求出长方体钢材的长度了。

方法总结:抓住体积不变这个隐藏的量,熔铸前体积等于熔铸后的体积,再根据“体积÷横截面积=长”这个公式,从而轻松解决问题。

随堂练习:把一个棱长10厘米的正方体橡皮泥,重新捏成一个高和宽都是2厘米的长方体,这个长方体的长是多少分米?例2 一只长15分米、宽12分米的长方体玻璃钢中,有10分米深的水。

放入一块棱长为3分米的正方体铁块,铁块全部浸没在水中并且水未溢出,这时,水面升高了几厘米?分析与解答:将物体放入容器中,水面的高度肯定上升,上升的水的体积其实就是物体的体积。

本题可以先求出正方体铁块的体积,也就是增加的水的体积,再用这个体积除以容器的底面积从而求出水面上升的高度了。

方法总结:要明白一点:当物体完全沉没在水中时,物体的体积=上升的水的体积。

随堂练习:一个长方体容器,底面积是200平方厘米,高10厘米,里面盛有5厘米深的水。

现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?例3 如图,一个长方体,高截去2cm,表面积就减少了48平方分析与解答:当高少了2cm后,首先明白表面积少了哪些面?应该是前后左右四个小面,因为上面虽然也少了,但又多出来一个上面,所以少了4个小面,因为剩下的部分是一个正方体,所以这四个小面是完全相等的,故用48除以4从而得出一个小面的面积,再用一个小面的面积除以2,从而能求出正方体的棱长,也是原长方体的长和宽,接着求出原长方体的高,最后求出体积。

小学数学五年级下长方体与正方体训练附参考答案

小学数学五年级下长方体与正方体训练附参考答案

小学数学五年级下长方体与正方体训练附参考答案一、单选题(共 13 小题)1、一个长方体(正方体除外)最多有()棱相等.A、4B、8C、122、下面的图□不能围成长方体或正方体。

□内应填( )A、B、C、3、选项中有3个立方体,其中不是用左边图形折成的是( )A、B、C、4、把下边的正方体的表面展开,可能得到的展开图是( )A、B、C、D、C、4条D、5条6、图中有()个面中露在外面。

A、14B、15C、167、下面哪个不是正方体的展开图( )A、B、C、8、用一根长铁丝正好可以做一个长7厘米、宽4厘米、高5厘米的长方体框架,则这根铁丝长( )A、16厘米B、126平方厘米C、64厘米9、选项中哪个正方体展开后可以得到下面的展开图( )A、B、C、D、10、如图,有一个无盖的正方体纸盒,下底标有字母“M”,沿图中粗线将其剪开展成平面图形想想会是( )A、B、C、11、下面第哪个图形不能折成正方体?( )A、B、C、12、下列图形中,是正方体的表面展开图的是( )A、B、C、13、一个立方体木块,6个面都涂上红色,然后把它切成大小相等的27个小立方体,其中有三个面是红色的小立方体有( )A、4B、12C、6D、8二、多选题(共 1 小题)1、把下边图中的五个小方格折起来,可以是一个无盖的纸盒的是( )A、B、C、三、判断题(共 1 小题)1、一个长方体,如果有两个相邻的面是正方形,这个长方体就是正方体.______.四、填空题(共 16 小题)1、如图中,棱AE与平面DCGH的关系是______.2、如图中,与平面BCGF垂直的平面有______个.3、长方体和正方体都有______个面,______条棱,______个顶点.4、长方体有8个顶点,______条棱,______个面.5、用一根144厘米长的铁丝,围成一个正方体框架,它的棱长是______厘米;如果用它围成一个长方体的框架,长20厘米、宽10厘米、高______厘米.6、小丽为奶奶选了一份生日礼物.(如图)用彩带捆扎,至少需要______cm彩带.(打结处用了30cm)7、在长方体ABCD-EFGH中,与棱EF和棱EH都异面的棱是______.8、如图在长方体ABCD-EFGH中,与棱EF垂直的棱是______.(写出符合题意的所有棱)9、右面的正方体,按图中所示切去一角,剩下的图形有______个面,______条棱,______个顶点.10、如图,长方体ABCD-A1B1C1D1中,与平面ADD1A1平行的棱是______.11、如图是长方体的展开图,与1号面相对的面是( )号面。

人教版五年级下册数学第三单元《长方体与正方体》测试卷附参考答案【完整版】

人教版五年级下册数学第三单元《长方体与正方体》测试卷附参考答案【完整版】

人教版五年级下册数学第三单元《长方体与正方体》测试卷一.选择题(共6题,共12分)1.下图中有()个正方体。

A.3B.4C.5D.62.一个体积为40立方分米的长方体木块,从顶点挖掉一个棱长为1分米的小正方体后,()。

A.表面积变小,体积变小B.表面积不变,体积变小C.表面积变小,体积不变3.一个棱长为3分米的正方体,可以切成棱长为1厘米的正方体()块。

A.27B.54C.2700D.270004.一个长8分米,宽6分米,高5分米的长方体纸盒,最多能放()个棱长为2分米的正方体木块。

A.24B.12C.155.一个长方体的底面是5平方米的正方形,它的侧面展开图正好是一个正方形,这个长方体的侧面积是()平方米。

A.100B.400C.80D.606.一个长方体水池,长20米,宽10米,深2米,这个水池占地()平方米。

A.200B.400C.520二.判断题(共6题,共12分)1.1升水即为10000毫升水。

()2.正方体的棱长扩大2倍,体积就扩大6倍。

()3.两个正方体的表面积相等,它们的体积也一定相等。

()4.一瓶油有5000升。

()5.体积单位比面积单位大,面积单位比长度单位大。

()6.在一个棱长1分米的正方体的一角,挖去一个棱长3厘米的小正方体,那么剩下部分的体积与原正方体体积相比变小了,表面积也变小了。

()三.填空题(共6题,共19分)1.把一个棱长2分米的正方体,切成两个相等的长方体,表面积增加了()平方分米。

2.用容量为500毫升的瓶来装1升水,可装()瓶;用容量为200毫升的瓶来装1升水,可装()瓶。

3.一个长方体的底面积是32平方分米,高和宽都是4分米,这个长方体的表面积是________平方分米。

4.升用字母()表示,毫升用字母()表示。

5.你知道吗?据科学家测定,我国一个正常的成年人每天大约需要2000—3000毫升的水维持体内的平衡,保证身体健康;在不冷不热的季节,一个除了吃食物外,平均每天应喝1400毫升左右的水,也就是应喝相当于2.5瓶矿泉水那么多。

五年级下数学长方体和正方体专项练习题

五年级下数学长方体和正方体专项练习题

五年级下数学长方体和正方体专项练习题五年级下数学长方体和正方体专项练习题方体和正方体是小学五年级数学下册的重要内容,从本单元开始,学生正式进行对立体图形的学习。

下面是店铺为大家收集的五年级下数学长方体和正方体专项练习题,供大家参考借鉴,希望可以帮助到有需要的朋友。

一、填空题。

(每空1分,共35分)1、长方体有____个顶点,有___条棱,有___个面。

相对的面____________,相对的棱_______,相交于长方体一个顶点的三条棱的长度分别叫做它的____、____、____。

2、873 ml=__________L 790 dm3=__________m3 45 dm3=______L1.2 m3=__________cm3 354 ml=_________cm3 1500 cm3=_____dm34.07m3=___m3___dm3 90020 cm3=____ L ____ ml3、一个长方体的长、宽、高分别是7cm、6cm和5cm,它的棱长总和是( )cm。

做这样一个长方体盒子,需要( )cm2材料。

4、一个长方体的金鱼缸,长是8dm,宽是5dm,高是6dm,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是________dm2。

5、把30L水装入容积是250ml的水瓶里,能装________瓶。

6、挖一个长和宽都是5m的长方体水池,要使水池的容积是50m3,应该挖_____米深。

7、在括号里填上适当的单位名称。

电视机的体积约50( ) 指甲盖的面积约1( )一瓶色拉油约4.2( ) 一个铅笔盒的体积大约是400( )一颗糖的体积约2( ) 一个苹果重50( )8、一块长25cm,宽12cm的,厚8cm的砖,所占的空间是________cm3,占地面积最大是_________cm2。

w9、正方体的棱长扩大3倍,表面积扩大_____倍,体积扩大_____倍。

10、一个长方体平均分成两个正方体(右图),正方体的棱长是4m,则这个长方体的表面积是_____m2,体积是_____m3。

五年级奥数分册第15周 长方体和正方体(三)-专题训练.doc

五年级奥数分册第15周  长方体和正方体(三)-专题训练.doc

第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。

例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。

因此,锯好后表面积增加432平方厘米。

练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。

求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。

所以原正方体的表面积是12×6=72平方厘米。

练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。

(word完整版)长方体正方体综合测试题

(word完整版)长方体正方体综合测试题

(word完整版)长方体正方体综合测试题长方体和正方体综合测试题一、填表题1、揉一团面粉做饼把饼做得越大,表面积(变大、不变、变小)体积(变大、不变、变小)。

2、一个正方体的棱长总和是36厘米,求这个正方体的表面积是 ,体积是。

3、个长方形的长、宽、高各扩大3倍,它的体积扩大了倍。

4、正方体的棱长扩大2倍,它的表面积扩大倍,体积扩大倍。

5、一个棱长2分米的正方体,切成两个相等的长方体,表面积增加平方米。

6、把一个棱长是4分米的正方体,分割成两个长方体,再在表面涂上漆,这两个长方体涂漆的总面积是平方分米。

7、把三个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方米.这个正方形的表面积是平方米。

8、用三个长5厘米、宽3厘米、高2厘米的长方体木块拼成一个表面积最大的长方体,这个大长方体的表面积是平方厘米。

9、一个房间长5米,宽3米,高2。

8米,现需油漆四壁和天花板,扣除门窗的面积4。

5平方米,求油漆的总面积有平方米.10、把一个长5厘米、宽4厘米、高3厘米的长方体木块外表涂上红色,然后切成棱长为1厘米的小正方体木块.三面涂色的小正方体有块,两面涂色的小正方体有块,一面涂色的小正方体有块。

三、判断题1、一个长方体木箱,竖着放和横着放时所占的空间不一样大.()3、正方体的底面周长是20厘米,它的体积是125立方厘米。

( )5、长方体的体积就是长方体的容积.()6、正方体和长方体的体积都可以用底面积乘高来进行计算。

( )7、两个正方体拼成一个长方体,这个长方体表面积等于这两个正方体表面积的和.()8、一个正方体棱长缩小3倍,它的表面积缩小9倍,体积也缩小9倍。

()四、拓展题1、一个密封的长方体玻璃缸,长50厘米、宽30厘米、高20厘米,水深10厘米,如果把玻璃缸向右竖立后,这是水深多少厘米?2、在一个长20米,宽10米,深2米的长方体游泳池内贴瓷砖,每块瓷砖是边长0。

2米的正方形,一共需要多少块这样的瓷砖?3、一个长方体,如果高增加3厘米,就成为一个正方体.这时表面积比原来增加了96平方厘米。

(常考题)新人教版小学数学五年级下册第三单元长方体和正方体测试题(含答案解析)(2)

(常考题)新人教版小学数学五年级下册第三单元长方体和正方体测试题(含答案解析)(2)

(常考题)新人教版小学数学五年级下册第三单元长方体和正方体测试题(含答案解析)(2)一、选择题1.从8个小正方体拼成的大正方体中拿走一个小正方体,表面积()A. 不变B. 变大了C. 变小了D. 无法确定2.两个正方体的表面积都是24cm2,用这两个正方体拼成一个长方体后,长方体的表面积是()cm2。

A. 20B. 40C. 163.学校要挖一个长40dm、宽20dm、深4dm的沙坑,需要()m3的黄沙才能填满。

A. 3200 B. 3.2 C. 324.一个正方体的棱长之和是36dm,这个正方体的表面积是()dm2。

A. 27B. 54C. 81D. 2165.把两个棱长5厘米的正方体拼成一个长方体,拼成的长方体的表面积比原来两个正方体的表面积之和少了()平方厘米。

A. 50B. 40C. 25D. 1506.下面的图形中,()能折成一个正方体。

A. B. C.7.下面图形()沿虚线不能折成正方体.A. B. C.8.一个正方体的棱长扩大到原来的2倍,它的体积扩大到原来的()倍。

A. 2B. 4C. 6D. 89.一个长方体的长为20cm,宽为10cm,高为15cm,沿竖直或水平方向切一刀,将长方体切成两个相同的小长方体,表面积最多增加()。

A. 200cm2B. 300cm2C. 400cm2D. 600cm2 10.如果正方体的棱长扩大到原来的3倍,则它的表面积扩大到原来的()倍。

A. 6B. 9C. 2711.下图中,()是正方体的展开图.A. B. C.12.用一根长()的铁丝正好可以做一个长6cm、宽5cm、高3cm的长方体框架。

A. 28cmB. 48cmC. 56cm二、填空题13.棱长是7cm的正方体的表面积是________cm2,体积是________cm3。

14.一盒磁带的长为110mm,宽为70mm,高为16mm,将3盒这样的磁带包成一包(接口处不计),当包成的长方体长为________mm、宽为________mm、高为________mm 时,最节省包装纸。

五年级下册第三单元“长方体和正方体”配套练习题

五年级下册第三单元“长方体和正方体”配套练习题

五年级下册第三单元“长方体和正方体”配套练习题五年级下册第三单元“长方体和正方体”配套练习题第一课时:长方体和正方体的认识重点:长方体和正方体的特征。

难点:长方体和正方体的联系和区别。

一、知识点:※知识点一:长方体的特征:长方体的特征:长方体是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形,相对的面完全相同;有12条棱,相对的棱长度相等,有8个顶点。

※知识点二:长方体长、宽、高的意义。

相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4※正方体的特征:正方体的特征:正方体的6个面完全相同,12条棱的长度全相等,有8个顶点。

正方体棱长总和=棱长×12※正方体和长方体的关系:长方体正方体相同点 6个面,12条棱,8个顶点不同点 6个面都是长方形(有时有两个相对6个面都是正方形,的面是正方形),相等面完全相同。

6个面完全相同。

相对棱的长度相等。

12条棱长度都相等二、课前预习:预习27页,并回答下面问题。

1、长方体:2、正方体:(1)长方体有个面。

(1)长方体有个面。

(2)每个面是什么形状, (2)每个面是什么形状, (3)哪些面是完全相同的, (3)哪些面是完全相同的, (4)长方体有条棱 (4)长方体有条棱 (5)哪些棱长度相等, (5)哪些棱长度相等, (6)长方体有个顶点 (6)长方体有个顶点 (7)大家还有什么发现, (7)大家还有什么发现,三、分层练习:A组:一、填空:1、长方体有( )和面,( )个顶点,( )条棱,( )棱长度相等。

2、把长方体放在桌面上,最多只能看到它的( )个面。

3、相交于一个顶点的三条棱的长度分别叫做长方体的( )、( )、( )。

4、正方体有( )个面,每个面都是( )形,每个面的面积都( )。

5、正方体有( )条棱,所有棱的长度都( )。

五年级下册数学奥数试题 -- 长方体与正方体 全国通用 含答案

五年级下册数学奥数试题 -- 长方体与正方体  全国通用 含答案

长方体与正方体一、走进来:大科学家伽里略说:“大自然用数学语言讲话。

这个语言的字母是:圆、三角形还有长方体及其它各种形体。

”圆、三角形等是平面图形;长方体、正方体等是立体图形平面图形是研究同一个平面内的各数量之间的关系;而立体图形研究的是若干个面内的数量和数量之间的关系。

长方体和正方体是我们最熟悉的几何体。

我国国家游泳中心就是一个巨大的长方体,它的长、宽、高分别为 177米、 177米、30米,又被称为“水立方”,2008年奥运会主要的游泳赛事将在这个巨大的长方体建筑内举行!本章我们将进一步认识长方体、正方体及其组合而成的立体图形的特征,学习其体积和表面积的计算方法和技巧。

提高作图能力、观察能力、计算能力和空间想象力。

二、一起做:【例1】有一个长6厘米,宽4厘米,高8厘米的长方体木块,表面被刷上了红油漆,把它截成棱长是2厘米的若干个小正方体教具,然后把各个小正方体教具中没有刷上红油漆面也刷上红油漆,问还要刷多少平方厘米的红油漆?提示:先画出图形,然后借助图形观察分析,弄清没有刷上红油漆的面处在大正方体的何位置。

【例2】老师为了考核同学们的空间想象能力,用若干个棱长为1cm的小正方体摆成如图所示的立体图形。

你能计算出这个立方体的体积和表面积吗?提示:求体积关键是数一数小正方体的个数,注意数正方体时要讲究顺序性。

数一数相对的面,看看你有什么发现?【例3】有一个六个面都涂满巧克力的长方体的大蛋糕,长4分米,宽4分米,高6分米,把它切成棱长是1分米的若干个小正方体蛋糕分给幼儿园的小朋友,问:(1)没有吃到巧克力的小朋友共有多少人?(2)吃到三个面、两个面、一个面涂有巧克力蛋糕的小朋友各有多少人?提示:动手画一画图,看看三面、二面、一面涂巧克力及没有涂巧克力的小正方各在长方体的什么位置。

相信你一定能发现其中的规律!【例4】在一个棱长为9厘米的正方体的钢坯上、下底面正中间打一个对穿孔,制成一个机器零件。

已知这个对穿孔是底面边长为2厘米的正方形,这个机器零件的体积和表面积各是多少?如果在前、后、左、右面正中间也各打一个同样的对穿孔,你能算出这个零件的体积和表面积吗?提示:你能画出相应的图形吗?体积的计算可采用相减的办法,当打三个对穿孔时需注意如何处理三个孔的交汇处的立方体。

2021年五年级下册奥数专题训练----长方形、正方形周长(附答案)

2021年五年级下册奥数专题训练----长方形、正方形周长(附答案)

2021年五年级奥数专题训练----长方形、正方形周长姓名:___________班级:___________考号:___________一、图形计算1.下图是一座楼房的平面图,求这个图的周长.2.求下图的周长.(单位:cm)二、解答题3.把一个正方形分成甲、乙两部分,比较甲、乙两部分周长的长短。

4.两个相同的长方形,长10cm,宽4cm,按下图叠放在一起,这个图形的周长是多少?5.用四个完全一样的长方形和一个小正方形,拼成一个周长是48dm的大正方形(如图),求每个长方形的周长。

6.下图是由16个同样大小的正方形组成的一个“5”字形,已知它的面积是400cm2,求它的周长。

7.如图所示,一张长方形的纸,剪去一个最大的正方形后,剩下一个小长方形,这个小长方形的周长是多少?8.用一个长8cm、宽4cm的长方形和七个边长是4cm的正方形,拼成一个大正方形,拼成的大正方形的周长是多少?9.一个正方形,边长减少5cm,则面积减少65cm2,求原正方形的周长。

10.在一个边长为8cm的正方形的四个角上各剪去一个边长为2cm的正方形,求剩下的图形的周长。

11.有一块长方形土地,若长、宽各减少4m,剩下的仍然是一个长方形,并且周长为120m,求减少部分的面积。

12.用同样的长方形瓷砖,在一盆盆景的周围镶成大正方形的边框,边框的周长是264cm,里面小正方形的面积是900cm2,求每块瓷砖的面积。

试题答案1.180m【解答】(30+50+10)×2=180(m)2.34cm3.甲的周长大于乙的周长。

4.40cm5.24厘米【解答】大正方形边长:48÷4=12(厘米)实际上是四个完全一样的长方形的“长+宽”的和;长方形的周长是:12×2=24(厘米)6.170厘米【解答】解:设小正方形边长为a400÷16=25a×a=25a=5周长:(5×4+7×5)×2+3×4×5=55×2+60=110+60=170(厘米)7.120厘米【分析】看做“小长方形的长+宽=大长方形的长”【解答】60×2=120(厘米)答:这个小长方形的周长是120厘米。

小学奥数:长方体与正方体(一).专项练习及答案解析

小学奥数:长方体与正方体(一).专项练习及答案解析

对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba H GF ED CB A①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:2()S ab bc ca =++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?后面前面右面左面上面【考点】长方体与正方体 【难度】1星 【题型】解答【解析】 如右图所示,可以分前、后、左、右、上、下六个方向看这个立体图形.前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1例题精讲长方体与正方体(一)个面.所以共有1112218+++++=(个)面.前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱66618++=(条).【答案】8个面,18条棱【巩固】右图中共有多少个面?多少条棱?【考点】长方体与正方体【难度】1星【题型】解答【解析】9个面,21条棱.【答案】9个面,21条棱【例 2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【答案】600【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【答案】15000【例 3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】原来正方体的表面积为5⨯5⨯6=150.现在立体图形的表面积减少了前后两个面中的部分面,它们的面积为(3⨯2)⨯2=12,所以减少的面积就是12.【答案】12【例 4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【解析】原来正方体的表面积为 5 ×5×6=150,现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.【答案】百分之八【例 5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【答案】120【例 6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【解析】大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.【答案】3【例 7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),1 2⨯12⨯4=1(平方厘米),14⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【答案】1 294【例 8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报【解析】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【例 9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体【难度】4星【题型】解答【关键词】迎春杯【解析】截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是: 15⨯15⨯6-7⨯7⨯2=1252.想想为什么不是15⨯15⨯6-7⨯7-8⨯8 ?【答案】1252【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【解析】 可以将这个图形看作一个八棱柱,表面积和为:87662616661787292⨯-⨯⨯+⨯+++++++=()()(平方厘米).也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()8786762292⨯+⨯+⨯⨯=(平方厘米).【答案】292【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米(如图),第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求. 剩下的体积应是()33321151212961107⨯⨯-++=(平方厘米).【答案】1107【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次, 6+1⨯1⨯2⨯6=18(平方米).【答案】18【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1⨯l=1(平方米),所以表面积增加了9⨯2⨯1=18(平方米).原来正方体的表面积为6⨯1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【答案】24【巩固】一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2⨯=.563168(cm)【答案】168【例 12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】10⨯10⨯6=600(平方厘米).【答案】600【例 13】 有n 个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n 为多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 由于堆成的长方体的底面就是原来正方体的底面,说明这个长方体是由这些正方体一字排开组成的,从这个长方体的顶部拿去一个正方体,减少的面积相当于侧面的四个正方形的面积,所以正方体每个面的面积是144436÷=(平方厘米).所堆成的长方体的表面积,包含底面的2个正方形和侧面的4n 个正方形,所以(3096362)14421n =-⨯÷=.【答案】21【例 14】 边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6⨯3⨯3+6⨯5⨯5+6⨯8⨯8-2⨯2⨯3⨯3-2⨯5⨯5=502.【答案】502【例 15】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【答案】54【例 16】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 17】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。

奥数题(长正方体)精编版

奥数题(长正方体)精编版

★卷一、填空题1、有一个长方体盒子,长8厘米,宽和高都是5厘米,这个长方体的体积是。

2、修建一个正方体的蓄水池,棱长是9米,需挖土立方米。

3、用一根长8分米的铁丝做成一个高是8厘米的长方体框架,要使长方体的体积最大,这个体积是立方厘米。

4、有沙16立方米,要垫在长8米、宽2.5米的沙坑里,可以垫的厚度是。

5、挖一个长120米、宽32米、深4米的大水塘,用每小时挖土60立方米挖土机来挖,需小时可认挖完。

6、长方体不同的三个面的面积分别是10平方厘米、15平方厘米和6平方厘米,这个长方形的体积是立方厘米。

7、一个长方体,不同的三个面的面积分别是35平方厘米、21平方厘米和15平方厘米,且长、宽、高都是质数,则这个长方体的体积是立方厘米。

8、有一个小金鱼缸,长4分米、宽3分米,水深2分米,把一小块假山石浸入水中后,水面上升了0.8分米,这块假山石的体积是立方分米。

9、将表面积分别为216平方厘米和384平方厘米的两个正方体铁柱熔成一个长方体,若这个长方体的长是13厘米,宽7厘米,则它的高是厘米。

10、一个长方体盛水容器的底面是一个边长60厘米的正方形,容器里直立着一个高1米、底面边长15厘米的长方体铁块,这时容器里的水深0.5米,如果把铁柱取出,容器里的水深将是厘米。

二、解答题1、有一块长方形的铁皮,长60厘米,宽40厘米。

在这块铁皮的四角剪去边长5厘米的小正方形,然后制成一个无盖的长方体盒子,求这个长方体盒子的体积。

2、把一个正方体木块锯成3个大小一样的小长方体后,表面积增加了36平方厘米。

原来正方体的体积是多少?3、把一个长方体截去一个高为8厘米的长方形后,剩下的部分是一个正方体。

正方体的表面积比原来长方体的表面积减少320平方厘米。

求原来长方体的体积。

4、有一个棱长为9厘米的正方体,在每两个对面的中央钻一个边长为2厘米的正方形孔,且穿透,所得立体的体积是多少?5、如图所示的长方体,底面和右面的面积之和是125平方分米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正方体(一)
一、知识要点
在数学竞赛中,有许多有关长方体、正方体的问题。

解答稍复杂的立体图形问题要注意几点:
1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;
2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;
3.求一些不规则的物体体积时,可以通过变形的方法来解决。

二、精讲精练
【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?
表面积是多少平方厘米?(单位:厘米)
练习1:
1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。

【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)
练习2:
1.有一个形状如下图的零件,求它的体积和表面积。

(单位:厘米)。

2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?
体积为4^3-1^3=64-1=63立方厘米
表面积不变,大小为6×4²=96平方厘米
【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。

原正方体的表面积是多少平方厘米?
练习3:
1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?
【例题4】一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。

这个长方体的体积和表面积各是多少?
练习4:
1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?
依题意长*宽+长*高=88 即长*(宽+高)=88
而长宽高都是质数,长*(宽+高)=11*(5+3)
可知长宽高分别为11,5,3
长方体的体积是11*5*3=165立方厘米。

2.一个长方体的长、宽、高是三个连续偶数,体积是960立方厘米,求它的表面积。

960=10×96,而96=8×12,
表面积是2×(10×12+10×8+8×12)=592平方厘米
3.一个长方体和一个正方体的棱长之和相等,已知长方体长、宽、高分别是6分米、4分米、25分米,求正方体体积。

(6+4+2)*4=48
48/12=4
4*4*4=64
第14讲长方体和正方体(二)
一、知识要点
在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。

解答上述问题,必须掌握这样几点:
1.将一个物体变形为另一种形状的物体(不计损耗),体积不变;
2.两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;
3.物体浸入水中,排开的水的体积等于物体的体积。

二、精讲精练
【例题1】有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。

从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。

将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?
练习1:
1.有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。

现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。

问水面高多少?
【例题2】将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

练习2:
1.有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。

现将三块铁熔成一个大正方体,求这个大正方体的体积。

2.将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。

【例题3】有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。

如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?
练习3:
1.有一个小金鱼缸,长4分米、宽3分米、水深2分米。

把一块假山石浸入水中后,水面上升0.8分米。

这块假山石的体积是多少立方分米?
2.有一块边长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。

取出铁后,水面下降了0.5厘米。

这个长方体容器的底面积是多少平方厘米?
【例题4】有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。

如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米?
练习4:
1.有两个长方体水缸,甲缸长3分米,宽和高都是2分米;乙缸长4分米、宽2分米,里面的水深1.5分米。

现把乙缸中的水倒进甲缸,水在甲缸里深几分米?
2.有一块边长2分米的正方体铁块,现把它煅造成一根长方体,这长方体的截面是一个长4厘米、宽2厘米的长方形,求它的长。

【例题5】长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。

这个长方体的体积是多少立方厘米?
练习5:
1.一个长方体,不同的三个面的面积分别是25平方厘米、18平方厘米和8平方厘米,这个长方体的体积是多少立方厘米?
2.一个长方体,不同的三个面的面积分别是35平方厘米、21平方厘米和15平方厘米,且长、宽、高都是质数,这个长方体的体积是多少立方厘米?
3.一个长方体的体积是48立方厘米,并且长、宽、高是三个连续的偶数。

这个长方体的表面积是多少平方厘米?
长方体和正方体(三)
一、知识要点
解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。

二、精讲精练
【例题1】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?
练习1:
1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?
大正方体的表面积为3*3*6=54
小正方体的表面积为1*1*6*27=162
162-54=108
2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?表面积增加=8*6*1/2*1/2-6*1*1=6.
表面积增加了6平方米.
【例题2】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?
练习2:
1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?
2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?
3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?
【例题3】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:
(1)三个面涂有红色的有几个?
(2)二个面涂有红色的有几个?
(3)一个面涂有红色的有几个?
(4)六个面都没有涂色的有几个?
练习3:
1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?
2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?
【例题4】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?
练习4:
1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。

要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?
2.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?。

相关文档
最新文档