中国农业大学生物化学试题知识讲解
中国农业大学生物化学真题及解析
中国农业大学生物化学2007年真题一,概念题(每题2分,共14分)1.糖有氧氧化2.脂肪酸β-氧化3.鸟氨酸循环4.酮体5.中心法则6.联合脱氨基7.氮的正平衡8.糖异生9.DNA的变性 10.Tm值 11.核糖体 12.引发体 13.冈崎片断 14.半保留复制二,填空题(每空1分,共50分)1.糖酵解有 步脱氢反应和 步底物磷酸化反应。
2.18C的饱和脂肪酸经 次β氧化生成 个FADH2 个NADH和 个ATP。
3. 真核细胞mRNA 端有 帽子结构 。
5. 糖原分解的关键酶是 。
琥珀酸脱氢酶的辅酶是。
6. 丙酮酸转变成磷酸烯醇式丙酮酸时共消耗了 个ATP。
7.三羧酸循环中有 步脱羧反应, 步脱氢反应, 步底物磷酸化反应。
8. 氮的总平衡是指机体摄入的氮量 排出的氮量。
9.LDL是由 向 运输胆固醇。
丙酮酸脱氢酶系含, , 酶和 种辅酶。
10. 脂肪酸合成时所需的NADPH 来自 和 。
11.饥饿时大脑可以用 代替糖的需要。
12.降低血糖的激素是 ,其主要作用是 。
13.PRPP的中文是 。
hnRNA的中文是 。
11.糖代谢为脂肪合成提供 , , 和 。
12.主要的生物氧化途径是 和 。
13.原核生物蛋白质合成起始氨基酸是 ,携带起始氨基酸的tRNA反密码子是 。
琥珀酸脱氢酶的辅酶是 。
14. 奇数碳原子脂肪酸代谢的 可以进入三羧酸循环。
15.丙酮酸脱氢酶含 , , 酶。
16.脂肪酸合成时所需的NADPH 来自 和 。
17.酮体在 合成而在 分解。
18.酪氨酸转变成 和 再生成糖和酮体。
19.脂肪酸合成的原件是 。
20.HDL在 形成,主要运输 。
甘油先转变成再进入糖代谢途径。
磷酸戊糖途径不可逆的部分是由 酶催化。
21.磷酸葡萄糖脱氢酶的受体是 。
谷氨酸脱氢反应中的氢的受体是 。
22.嘌呤在人体内的最终分解产物是 。
23.肝肾以外的组织由于没有 酶而无法直接补充血糖。
糖原分解的关键酶是 。
24.LDL是由 向 运输胆固醇。
2022年中农考研生物化学复习笔记
第一篇生物大分子构造与功能第一章氨基酸和蛋白质一、构成蛋白质20种氨基酸分类1、非极性氨基酸涉及:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸2、极性氨基酸极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸其中:属于芳香族氨基酸是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸是:脯氨酸含硫氨基酸涉及:半胱氨酸、蛋氨酸注意:在识记时可以只记第一种字,如碱性氨基酸涉及:赖精组二、氨基酸理化性质1、两性解离及等电点氨基酸分子中有游离氨基和游离羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。
在某一PH溶液中,氨基酸解离成阳离子和阴离子趋势及限度相等,成为兼性离子,呈电中性,此时溶液PH称为该氨基酸等电点。
2、氨基酸紫外吸取性质芳香族氨基酸在280nm波长附近有最大紫外吸取峰,由于大多数蛋白质具有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长紫外吸光度测量可对蛋白质溶液进行定量分析。
3、茚三酮反映氨基酸氨基与茚三酮水合物反映可生成蓝紫色化合物,此化合物最大吸取峰在570nm 波长处。
由于此吸取峰值大小与氨基酸释放出氨量成正比,因而可作为氨基酸定量分析办法。
三、肽两分子氨基酸可借一分子所含氨基与另一分子所带羧基脱去1分子水缩合成最简朴二肽。
二肽中游离氨基和羧基继续借脱水作用缩合连成多肽。
10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基构成促肾上腺皮质激素称为多肽;51个氨基酸残基构成胰岛素归为蛋白质。
多肽连中自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。
人体内存在许多具备生物活性肽,重要有:谷胱甘肽(GSH):是由谷、半胱和甘氨酸构成三肽。
半胱氨酸巯基是该化合物重要功能基团。
GSH巯基具备还原性,可作为体内重要还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处在活性状态。
中国农业大学食品学院生物化学本科讲义
中国农业大学食品学院生物化学本科讲义第十章酶的作用机制和酶的调节一、酶的活性部位㈠酶的活性部位的特点1、概念:三维结构上比较接近的少数特异的氨基酸残基参与底物的结合与催化作用,这一与酶活力直接相关的区域称酶的活性部位。
结合部位:专一性;催化部位:催化能力,对需要辅酶的酶分子,辅酶或其一部分就是活性中心的组成部分组成,酶活性部位的氨基酸数目对不同酶而言存在差异,占整个酶氨基酸残基小部分亲核性基团:丝氨酸的羟基,半胱氨酸的巯基和组氨酸的咪唑基。
酸碱性基团:天冬氨酸和谷氨酸的羧基,赖氨酸的氨基,酪氨酸的酚羟基,组氨酸的咪唑基和半胱氨酸的巯基等。
2、特点55⑴活性部位在酶分子的总体中只占相当小的部分(1%~2%)⑵酶的活性部位是一个三维实体⑶酶的活性部位并不是和底物的形状互补的⑷酶的活性部位是位于酶分子表面的一个裂隙内⑸底物通过次级键结合到酶上⑹酶活性部位具有柔性㈡研究酶活性部位的方法1、酶分子侧链基团的化学修饰⑴非特异性共价修饰:活力丧失程度与修饰剂浓度有正比关系;底物或可逆的抑制剂可保护共价修饰剂的修饰作用。
⑵特异性共价修饰:分离标记肽段,可判断活性部位的氨基酸残基,如二异丙基氟磷酸(DFP)专一性与胰凝乳蛋白酶活性部位丝氨酸残基的羟基结合。
⑶亲和标记法修饰剂的特点:①结构与底物类似,能专一性引入到酶活性部位;②具活泼化学基团,能与活性部位某一氨基酸共价结合。
作用机制:利用酶对底物的特殊亲和力将酶加以修饰标记,称亲和标记,相应的试剂称活性部位指示剂胰凝乳蛋白酶和胰蛋白酶:TPE是酶的底物,TPCK是酶的亲和试剂,当酶与TPCK温浴后,酶活性丧失,这种结合具有空间结构的需求,同时也阻止其他试剂如DFP结合。
对酶活性中心的组氨酸咪唑环进行修饰。
2、动力学参数测定法:通过动力学方法求得相关参数,作出相应判断。
3、X-射线晶体衍射法:如溶菌酶和胰蛋白酶活性中心的测定4、定点诱变法:改变编码蛋白质的DNA基因,研究酶活性部位的必需氨基酸。
中国农业大学_806生物化学_《生物化学》重难点
第二章
糖类
第一节 单糖 第二节 寡糖 第三节 多糖 第四节 结合糖 [主要内容]:重要单糖、双糖、多糖的化学结构和性质。 [教学要求]:掌握葡萄糖的构型、构象、理化性质和常见双糖的结构式;了解多糖的种类和功能。 [教学重点]: 糖的结构、化学连键。 [教学难点]:L-,D-构型,-,-异头/构体,烯醇式结构的活性,不均一多糖。
第十一章 糖代谢
第一节 糖原分解与合成 第二节 糖酵解 第三节 柠檬酸循环 第四节 戊糖磷酸途径 第五节 葡萄糖异生作用及血糖 第六节 多糖和双糖代谢 [主要内容] 介绍糖在生物体内的合成、分解及转化,以及其生理意义。 [教学要求] 要求学生掌握糖在体内的来龙去脉,即合成、分解及转化。 [教学重点] 糖酵解,柠檬酸循环。
ห้องสมุดไป่ตู้
第九章
脂类与生物膜
第一节 生物体内的脂类 第二节 生物膜的化学组成与结构 第三节 生物膜的功能 [主要内容]:脂类分子结构特征、化学性质;生物膜结构;生物膜在物质运输、信号转导和能量转换中的 作用。 [教学要求]:要求掌握脂肪酸分子的共性,脂肪酸的活化形式,磷脂分子的双亲性,生物膜化学组成,流 动镶嵌模型要点;能举例说明生物膜的功能。 [教学重点]:磷脂分子结构,生物膜的结构与功能 [教学难点]:胆固醇在生物膜流动性中的双重调节作用;生物大分子的跨膜运输。
第十章
生物能学与生物氧化
第一节 自由能 第二节 高能磷酸化合物 第三节 线粒体电子传递链 第四节 氧化磷酸化作用 第五节 光合磷酸化作用(自学,植物生理会详细介绍) [主要内容]:介绍自由能、氧化还原电势的概念和在生物化学中的应用;线粒体电子传递链组成,氧化磷 酸化。 [教学要求]:要求掌握 ATP 的分子结构和作用,线粒体电子传递链组分的顺序;了解氧化磷酸化偶联机理。 [教学重点]:电子传递链与氧化磷酸化 [教学难点]:自由能,ATP 合成机理。
中国农业大学食品学院806生物化学试题库及答案讲解
中国农业大学食品学院806生物化学试题库及答案讲解中农生化试题库一、概念题糖有氧氧化脂肪酸β-氧化鸟氨酸循环酮体限制性内切酶中心法则联合脱氨基氮的正平衡糖异生DNA的变性\共价调节Tm值核糖体引发体冈崎片断二、问答题1.简述一分子葡萄糖生成2分子丙酮酸的过程和2分子丙酮酸生成一分子葡萄糖的过程中参与的酶及能量的异同点。
2.简述DNA合成的准确性是如何保证的。
3.讨论苯丙氨酸的代谢途径,解释苯丙氨酸是生糖兼生酮氨基酸。
4.讨论进食,轻度饥饿、极度饥饿三种状态下大脑、肝脏、肌肉和脂肪组织的糖、脂肪及氨基酸的代谢特点。
5.尿素分子中一分子氨来自天冬氨酸时,鸟氨酸循环和柠檬酸循环及氨基酸转氨基作用是如何联系起来的。
6.简述蛋白质合成过程。
7.简述糖异生的生理意义。
8.简述糖酵解的生理意义。
9.简述磷酸戊糖途径的生理意义。
10.简述70S起始复合体的合成。
11.简述体内需要大时5-磷酸核糖时6-磷酸葡萄糖的代谢。
12简述体内需要大量ATP时6-磷酸葡萄糖的代谢。
13简述三羧酸循环。
14简述脂肪组织中的脂肪的代谢调控。
15简述脱氧核糖核酸的合成。
16简述糖代谢为脂肪合成提供所有的原料。
17.简述冈崎片段的加工。
18.简述遗传密码的特点。
19.简述细胞能量对糖酵解的调控。
20.简述氨基酸脱羧后的碳架的去向。
21.简述糖酵解途径的调控元件为何是果糖激酶而不是己糖激酶?22.简述体内需要大量NADPH时6-磷酸葡萄糖的代谢。
23.简述脱氧核糖核酸的合成。
24.简述4种脂蛋白的基本结构及其作用。
25.简述蛋白质合成过程中主要的参与因子。
26.简述有氧或无氧的条件下3-磷酸甘油醛脱下的氢的去向及其意义。
27.比较并讨论脂肪合成及脂肪分解的代谢途径。
28.解释蛋白质合成中为何mRNA链中的AUG密码子不能被起始tRNA识读,而区别两种AUG密码子的结构基础是什么?29.简述三大营养物的相互转换。
30.简述DNA聚合酶和RNA聚合酶的特点。
中国农业大学_806生物化学_《生物化学》复习纲要
1. 生命物质大多由轻元素 (lightest elements)组成 2. 生物分子是碳的化合物 3. 许多生物大分子为多聚体 (polymers) 4. 生物分子之间的相互作用具有立体特异性(stereospecificity) 三、 水 (一)水的重要作用 1. 水是生命物质的溶剂 2. 水作为底物或产物参与生物化学反应 3. 水环境非常适合生命体 (二)水是极性分子 水的特殊性质: 水具有比较高的沸点和蒸发热。 此性质源于相邻水分子间比较强的吸引力-高的内聚力。 (三)水是很好的溶剂 水溶解盐,是通过水化(hydration)和电荷屏蔽作用(charge screening)实现的。 水的介电常数高。 F=Q1Q2/r2 F:离子间作用力 Q:所带电荷你 : 介电常数 r: 电荷基团间距 电常数是表示溶剂中偶极数量的一种物理特性参数。 在极性大的环境中离子间的作用力小。 四)非极性物质不溶于水 双亲性物质迫使水结构发生变化 非极性分子排开水的力量即疏水力 (五)弱键对生物分子结构与功能很重要 非共价键( Noncovalent Interaction) : 氢键 (hydrogen bonds) 离子键 (charge-charge interactions) 范德华力 (van der Waals force) 疏水键 (hydrophobic interaction) 范德华力(van der vaals interaction) :近距离接触的任意两个原子之间的弱吸引力。 弱键虽然作用力小, 但数量之大, 在维持生物大分子结构和生物分子相互作用中起重要作用。 思考题 生命体的基本特征是什么? 生命物质的特征是什么? 讨论水的性质与生命体的关系。 中国科学家在 年 用 法合成牛胰岛素。 中国科学家在 1983 年人工合成 。 中国科学家在 2002 年完成了 全序列分析。 生物大分子的三维结构主要靠 键维持,包括 、 、 和 。 带电生物大分子或电解质在水中的溶解是通过 作用和 作用实现 的。
中国农业大学--生物化学提要
中国农业大学--生物化学提要生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
四、生物化学的应用1.农业2.医药3.营养4.临床化学5.药理学6.毒理学第一章糖第一节概述一、定义糖类(carbohydrate)是一类多元醇的醛衍生物或酮衍生物,或者称为多羟醛或多羟酮的聚合物。
实际上糖类包括多羟醛、多羟酮、它们的缩聚物及其衍生物。
二、糖的分类糖类物质是一大类物质的总称。
根据其能否水解和水解后的产物,将糖类分为单糖(monosaccharides)、寡糖(oligosaccharides)、多糖(polysaccharide)。
中国农业大学_806生物化学_《生物化学》 复习2
插入、缺失 染色体结构 畸变
19
通式、方向
模板与非模板
起始 RNA合成 (原核)
RNA Pol(全酶、核心酶、
σ)
启动子
延长(核心酶) 终止(2类终止子、ρ因子)
RNA合成(真核)
RNA Pol I、II、III
产物 位置 抑制剂
20
转录后加工
hnRNA、内含子 mRNA(内含子、帽子、尾巴) tRNA rRNA
磷酸戊糖途径
反应
第一阶段(不可逆反应)
意义
5
生物氧化
标准自由能的变化的计算
化学平衡常数 Keq→ΔG0’
ΔG0’ =- RT ln [C] [D] /[A] [B]
氧化还原电势ΔE0’→ΔG0’
ΔG0’=-nFΔE0’
6
高能磷酸化合物
高能键(定义)
化学中 生物化学中
核)
原核生物 起始氨基酸 起始tRNA 起始氨酰- tRNA
N-fMet-tRNAf N-fMet tRNAf (formyl-)
真核生物
Met tRNAi (initiation)
Met-tRNAi
(延伸中的甲硫氨酸tRNA
tRNAm)
23
rRNA和核糖体
结构组成(原核、真核) 活性中心 多核糖体
与复制、转录的方向匹配
氨酰tRNA合成酶
氨基酸的活化、转移
蛋白质合成的过程(原核)
起始
辨认起始密码子、SD序列 起始复合物、IF1、2、3、
延长
结合(EF-Tu、EF-Ts) 转肽 移位(EF-G)
终止(RF)
25
中国农业大学食品学院生物化学本科笔记讲义讲解
68
信息学派:Delbruck M., Luria S. 等,Schrodinger E.认为生命的本质是信息传递的问题:信息如何被 编码?如何 保持其稳定性?偶然的变异是如何产生的? 生化遗传学派:用生物化学的方法阐明基因是如何行使功能而控制特定性状的。 ⑵ DNA 双螺旋结构 研究基础:核酸化学结构知识;Chargaff E.发现的DNA 碱基组成规律;Wilkins M.等得到DNA X-衍射图及 数据。 蛋白质α-螺旋结构的启示。 1953Watson 和Crick 提出DNA 双螺旋结构模型说明了基因的结构、信息和功能三者的关系,使三个学派得 到统 一,并推动了分子生物学的发展。 ⒊ 分子生物学研究迅猛发展
中国农业大学食品学院生物化学知识点讲解
中国农业大学食品学院生物化学知识点讲解第十一章RNA的生物合成和加工RNA合成需要模板两种模板:DNA和RNA,前者为转录或DNA指导下的RNA合成;后者为复制或RNA指导下的RNA合成讲解内容:DNA指导下的RNA合成RNA指导下的RNA复制一.DNA指导下RNA合成㈠.概述合成前体或原料:四种核糖核苷三磷酸合成模板:DNA链中一条,模板链,负链,无义链,非编码链;另一条链称为非模板链,正链,有义链,编码链合成单位:转录单位,包括起始,延伸和终止合成方向:5→3,无需引物合成催化酶:DNA指导下的RNA聚合酶101㈡.DNA指导下的RNA聚合酶1.聚合酶通性以适当的DNA为模板,全保留方式;底物为四种核苷三磷酸;合成方向5→3;无需引物Mg2+促进聚合反应⒉大肠杆菌DNA指导下的RNA聚合酶全酶由α2ββσ五种亚基组成46-48万α2ββ核心酶:已开始合成RNA链延长,不具有起始合成σ使RNA聚合酶稳定地结合到DNA的启动子上,转录的起始密切相关全酶制剂中含ω亚基,功能未知⒊真核生物DNA指导下的RNA聚合酶真核生物RNA聚合酶通常有8-14个亚基,并含有Zn2+离子.利用抑制剂α-鹅膏蕈碱可将其分为三大类酵母RNA聚合酶II进行凝胶电泳时至少有10条明显的条带,最大的三个亚基相当于大肠杆菌β,β和α亚基,无σ因子的类似物,转录的起始需要转录因子.㈢.启动子和转录因子启动子:RNA聚合酶识别,结合和开始转录的一段DNA序列转录因子:RNA聚合酶起始转录需要的辅助因子(蛋白质)称为转录因子,其作用或是识别DNA的特殊序列,或是识别其他因子,或是识别RNA聚合酶原核生物启动子的一般结构σ因子能直接和启动子的-35序列以及-10序列相互作用,二者之间的间距大小直接影响σ因子的作用力,不同启动子σ因子可能不同真核生物启动子真核生物启动子通常由一些短的保守序列所组成,被各种适当的转录因子识别,多种转录因子和RNA聚合酶在起点上形成前起始复合物促进转录.真核生物启动子三类,分别与三种RNA聚合酶的转录相关.RNA聚合酶I和RNA聚合酶III的启动子结构种类有限,而RNA聚合酶II启动子结构多种多样.类别I启动子控制rRNA前体基因的转录,转录产物经切割和加工后生成各种成熟rRNA两个富含GC的区域:核心启动子,-45至+20,上游控制元件-180至-107两种转录因子:UBF1,结合在GC区;SL1类似于大肠杆菌聚合酶σ因子,能使RNA聚合酶I结合在转录起点上并开始转录类别II启动子涉及众多编码蛋白质的基因表达的控制该类别启动子的转录涉及到四类控制元件:基本启动子,起始子,上游元件和应答元件;这些元件的不同组合,加上其他序列的变化,构成了数量庞大的各种启动子基本启动子序列为中心在-25至-30左右的7bp保守区,RNA聚合酶的定位有关起始子DNA双链在此解开并决定转录的起点位置作用于基本启动子的因子称通用因子,起始转录必须的RNA聚合酶II与通用因子在启动子上的装配过程有些启动子无TATA框,通过某些识别起始子的通用因子介导其他因子结合并装配成起始复合物TATA框和起始子均无的启动子通过结合于上游元件的因子介导并装配成起始复合物.102类别III启动子RNA聚合酶III转录相关,小分子RNA的转录5S和tRNA以及胞质小RNA(scRNA)基因启动子位于起点下游,在基因内部核内小RNA(snRNA)基因启动子在转录起点上游㈣.终止子和终止因子终止子:提供转录停止信号的DNA序列终止因子:协助RNA聚合酶识别终止信号的辅助因子(蛋白质),Nus因子通读:终止子的作用被特异的因子所阻止,使聚合酶得以越过终止子继续转录抗终止因子:引起抗终止子作用的蛋白质称大肠杆菌两类终止子:转录中终止信号位于已转录的序列中,原核生物的终止子在终止点之前均有一个回文结构,其产生的RNA可形成由茎环构成的发夹结构,使聚合酶减慢移动或暂停RNA的合成.不依赖ρ因子的终止子,简单终止子:依赖ρ的终止子,RNA-DNA解螺旋酶活力Nus因子,转录辅助因子,NusA,提高终止频率,可能机理为促使RNA聚合酶在终止位置的停顿.NusA可与RNA聚合酶的核心酶结合,形成α2ββNusA复合物,NusA识别终止序列,转录停顿真核生物转录终止信号和终止过程了解甚少,且三种聚合酶的终止序列和终止机制存在较大差异和多样性㈤.转录过程1.原核生物转录过程模板识别,转录起始,转录延伸和转录终止转录模板识别转录起始RNA聚合酶从转录+1开始按照碱基配对结合核苷三磷酸,第一个核苷酸多为G或A,随后核苷酸结合,35磷酸二酯键形成,依次合成2-9个核苷酸链,σ因子离开核心酶,转录起始阶段结束,进入延伸阶段转录延伸和终止聚合酶沿DNA分子向前移动,解链区前移,新生RNA链逐渐生长,并与模板链形成RNA-DAN杂交体,随着解链区前移,转录后的DNA恢复双螺旋结构,RNA链被置换.解链产生的扭曲张力由拓扑异构酶I消除RNA酶在NusA作用下识别终止子,停止转录,聚合酶和RNA链离开模板,转录终止.2.真核生物转录过程转录过程与细菌相似,但其RNA聚合酶自身不能识别和结合到启动子上,需要在启动子上由转录因子和RNA聚合酶装配成活性转录复合物才能起始转录装配,起始,延长和终止四个阶段㈥.RNA生物合成的抑制剂⒈嘌呤和嘧啶碱基类似物抑制核苷酸生物合成或合成相应的核苷酸渗入到核酸分子,形成异常RNA.5-氟尿嘧啶,6-巯基嘌呤,2,6-二氨基嘌呤等⒉DNA模板功能抑制剂与DNA模板结合,使DNA失去模板功能,抑制其复制和转录.烷化剂,放线菌素和嵌入染料⒊RNA聚合酶的抑制剂抑制真核生物RNA聚合酶,α-鹅膏蕈碱103细菌RNA聚合酶,利福霉素,利链菌素二.RNA的转录后加工RNA转录后加工:细胞内,由RNA聚合酶合成的原初转录物往往需要经过一系列的变化,包括链的裂解,5端与3端的切除和特殊结构的形成,核苷的修饰和糖苷键的改变,以及拼接和编辑等过程转变为成熟的RNA分子,或RNA成熟rRNA,tRNA和mRNA的加工原核生物和真核生物的差异㈠.原核生物RNA的加工rRNA的编码基因与某些tRNA的基因一起转录;tRNA基因也成簇存在,并与某些蛋白质的基因一起转录,经断链成为rRNA和tRNA前体,然后加工成熟⒈rRNA前体加工7个rRNA的转录单位,16S,23S,5SrRNA及一个或几个tRNA基因组成⒉tRNA前体的加工核酸内切酶在tRNA两端切断核酸外切酶从3端逐个切去附加的顺序,进行修剪如自身无CCA OH,则在tRNA3端加CCA OH核苷酸的修饰异构化㈡.真核生物RNA加工真核生物rRNA和tRNA前体的加工过程与原核生物有些相似⒈真核生物rRNA前体加工真核生物rRNA基因成簇排列在一起,由16-18S,5.8S和26-28SrRNA组成一个转录单位,由RNA聚合酶I转录产生一个长的rRNA前体,哺乳动物45S,酵母37S;5SrRNA由聚合酶III转录2.tRNA前体的加工与原核生物类似,转录的前体分子在tRNA的5端和3端的附加序列由核酸内切酶和外切酶加以切除,有些含有居间序列经酶促反应切掉;3端加CCA OH序列;碱基和核酸的修饰3.mRNA前体的加工mRNA的原初转录物为相对分子量极大的前体,在核内形成分子大小不一的中间物,成为核内不均一RNA(hnRNA),半寿期差异大,25%经加工转变为mRNA5形成特殊的帽子(M7G5ppp5NmpNp)3端切断并加上多聚腺苷酸(polyA)尾巴通过拼接除去由内含子转录来的序列链内核苷酸甲基化三.RNA指导下的RNA合成RNA是遗传物质,通过复制合成出与其自身相同的分子,RNA复制.噬菌体QβRNA复制单链RNA,该RNA可以翻译产生相应的酶,具有mRNA功能,称为正链,其互补链为负链复制酶:模板特异性强,只能识别自身的RNA四个亚基:α,δ,γ和β,前三个来自宿主细胞,β亚基为噬菌体编码噬菌体Qβ的RNA进入大肠宿主细胞后,先翻译合成复制酶,然后再以RNA为模板合成负链104正链合成除复制酶外,还需要来自宿主细胞的蛋白质因子HF1和HFII;由负链形成无须这两个因子病毒RNA的复制方式病毒含正链RNA,Qβ噬菌体病毒含负链和复制酶:复制产生正链,合成蛋白和RNA病毒复制,重新组装成新病毒颗粒病毒含双链RNA和复制酶:先合成正链RNA,翻译合成相关蛋白,随后合成负链形成双链RNA分子.致癌RNA病毒:需要逆转录过程四.RNA指导下的DNA合成逆转录:以RNA为模板,按照RNA中的核苷酸顺序合成DNA,这与通常转录过程中遗传信息流从DNA到RNA的方向相反称逆转录前病毒假说:1964年,Temin认为致癌RNA病毒的复制需要经过一个DNA中间体(前病毒),此中间体可部分或全部整合到宿主细胞DNA中,并随着细胞增殖传递至子代细胞1970年,Temin和Baltimore分别找到逆转录酶1975年获得诺贝尔生理和医学奖逆转录酶性质:合成底物为四种脱氧核糖核苷三磷酸模板和引物适当浓度的Mg2+DNA延长方向5→3RNA指导下的DNA聚合酶活力DNA指导下的DNA聚合酶活力核糖核酸酶活力,专门水解RNA-DNA杂种分子的RNA复习方法如果细心对比一下历年的专业课考题,我们就会发现考研专业课考试的重复性很强,虽然题量和题型可能会有一些的改动,但是每年考试的命题重点基本上不会有太大的变化。
中国农业大学食品学院生物化学讲义笔记解析
第五章蛋白质的三维结构
一、研究蛋白质构象的方法 ㈠X-衍射法:推算出分子的形状,原理,步骤
更多资料下载:
才思教育考研考博全心全意
㈡研究溶液中蛋白质构象的光谱学方法 1、紫外差光谱:推断蛋白质分子的大体构象 2、荧光和荧光偏振:测定疏水区形成的微区 3、圆二色性:测定-螺旋,-折叠片含量 4、核磁共振:蛋白质分子的三维构象 5、拉曼光谱:测定主链构象。 二、稳定蛋白质三维结构的作用力 键能 肽键 二硫键两者共90kcal/mol 离子键3kcal/mol 氢键1kcal/mol 疏水键1kcal/mol 范德华力0.1kcal/mol 这四种键能远小于共价键,称次级键 提问:次级键微弱但却是维持蛋白质三级结构中主要的作用力,原因何在?,数量巨大 ㈠氢键:多肽主链上的羰基氧和酰胺氢形成氢键,维系蛋白质二级结构的主要作用力;侧链间、侧链与水 介质、 主链肽基与侧链、主链肽基与水之间均可形成氢键
胶原蛋白有多种类型如Ⅰ,Ⅱ,Ⅲ型等,不同类型的胶原由于氨基酸组成和含糖量不同物理性能不同。 2、胶原蛋白的氨基酸组成:含有很高量的Gly(30%)和Pro(13%),并含有3个不常见的氨基酸;胶原蛋 白 是糖蛋白,糖是在肽链合成以后,折叠前发生的。 六、超二级结构和结构域 ㈠超二级结构 定义:若干相邻的二级结构单元(螺旋、折叠、转角)组合在一起,彼此相互作用,形成有规则在空间上 能辨 认的二级结构组合体、充当三级结构的构件,称为超二级结构 类型: 、、-曲折 1、:由两股平行或反平行的右手螺旋彼此缠绕形成的左手卷曲螺旋或称超螺旋,也有三股螺旋和四股 螺 旋,肌球蛋白、角蛋白和纤维蛋白原的主要结构元件。 2、:二段平行的折叠股和一段链连接组成,最常的是3段平行股和二段螺旋构成 3、-曲折:-曲折:折叠中相邻的两条反平行链通过转角连接而成,希腊钥匙拓扑异构 ㈡结构域 1、结构域的概念 多肽链首先形成二级结构,相邻的二级结构片段组装在一起形成超二级结构,进而多肽链折成近乎球形的 结 构;对于较大蛋白质分子和亚基,多肽链往往有两个以上相对独立的三维,这种相对独立的三维实体就是 结 构域,蛋白质三维折叠的一个层次;结构域进一步缔合就形成三级结构 2、多肽链的手性效应:多肽链折叠形成的螺旋结构大多数是右手;折叠股亦具有轻度右手扭曲成β的倾向; 一 种效应是β折叠股间的右手交叉连接;一种效应是β折叠片也以右手方式扭曲 3、结构域的类型:四种类型:全α-结构,α/β-结构,全β-结构,金属或二硫键 七、球状蛋白质与三级结构 ㈠球状蛋白质的分类 1、全α-结构(反平行α螺旋)蛋白质 主要由α-螺旋组成,这些α-螺旋由结构域表面的环区域相连接。 在已知的蛋白质结构中,有两种最常见的螺旋排列方式。 其一是四螺旋束,如细胞色素b562,非血卟啉含氧转移蛋白。 其二是球状折叠,如肌红蛋白和血红蛋白。 2、α/β结构(平行或混合型β折叠片)蛋白质 含有一个由α-螺旋包围着的平行或混合β-回折的核。 所有的糖酵解酶都是α /β型结构,许多其他的酶以及结合运输蛋白也是这种结构。 在α /β型结构中,由环区域形成结合裂缝,这些区域虽对结构的稳定无作用,但通常参与结合和催化活 性。
中国农业大学食品学院生物化学课后习题及答案讲解
中国农业大学食品学院生物化学课后习题及答案讲解第五章糖的其他代谢途径一.葡萄糖异生作用㈠.糖异生的前体丙酮酸:转化为丙酮酸的物质可以转化为糖,如:经苹果酸穿梭→草酰乙酸→磷酸烯醇式丙酮酸→G生糖氨基酸:转氨或脱氨后生成的酮酸直接或间接转化为G,如:Ala,Glu,Asp等肌肉乳酸,经血液运送至肝脏进入异生反刍动物能将纤维素消化为乙酸,丁酸,丙酸,异生为G奇数脂肪酸氧化产生琥珀酸CoA㈡.糖异生途径1.丙酮酸到磷酸烯醇式丙酮酸丙酮酸进入线粒体,丙酮酸羧化酶的催化下,羧化生成草酰乙酸草酰乙酸-----PEP:烯醇式丙酮酸羧激酶可存在于线粒体基质、细胞溶胶或二者均有,种属差异。
存在于细胞溶胶中,经过苹果酸穿梭2.FBP→F6P3.G6P→G光面内质网结合酶,其活性需要一种与钙离子结合的稳定蛋白协同作用,G6P进入光面内质网催化.糖异生和糖酵解能量比较㈢.糖异生的生理意义维持血糖浓度恒定的重要措施之一,通过异生途径合成G对维持血糖浓度起重要作用;脑组织,红细胞以血液中葡萄糖为主要燃料,自身无糖原贮存饥饿,剧烈运动后,对机体恢复起重要作用:科里循环(Cori cycle)反刍动物可利用异生作用将某些酸类物质转化为葡萄糖植物种子萌发,果实成熟时利用糖异生作用,生成葡萄糖89㈣.糖异生的调节葡萄糖异生和糖酵解作用有协同作用磷酸果糖激酶,果糖1,6二磷酸酶的调节丙酮酸激酶,丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶己糖激酶和葡萄糖6磷酸酶二.戊糖磷酸途径㈠.戊糖磷酸途径研究史同位素标记证明葡萄糖C1和C6经糖酵解和三羧酸循环,产生CO2机率不同加入碘乙酸,氟化物等糖酵解的抑制剂,葡萄糖仍可分解利用1931年,Warburg等发现了G6P脱氢酶和6-磷酸葡萄糖酸脱氢酶,NADP+四碳糖,五碳糖,七碳糖的分离1953年,Dicken提出代谢途径Warburg-Dicken途径,戊糖支路,己糖单磷酸途径,磷酸葡萄糖酸氧化途径和戊糖磷酸循环㈡.戊糖磷酸途径主要反应1.氧化阶段:产生戊糖和NADPH,参与的酶2.非氧化阶段戊碳糖异构;戊碳糖间转酮;转醛;四碳糖和五碳糖间转酮反应3.戊糖磷酸途径总结代谢意义细胞产生还原力(NADPH)的主要途径细胞内不同结构糖分子的重要来源,并为各种单糖的相互转化提供条件代谢调节:限速酶:葡萄糖-6-磷酸脱氢酶NADP+/NADPH㈡体内葡萄糖的利用与细胞代谢关系1.机体对核糖-5-磷酸的需要和NADPH的需要处于平衡,磷酸戊糖途径氧化阶段完成G6P+2NADP++H2O→核糖-5-P+2NADPH+H++CO22.机体主要需要核糖-5-磷酸细胞分裂,糖酵解和戊糖磷酸途径非氧化阶段5G6P+ATP→6核糖-5-P+ADP+H+3.机体对NADPH的需要超过核糖-5-磷酸G6P+7H2O+12NADP+→6CO2+12NADPH+12H++Pi4.机体需要NADPH和ATP,不需要核糖-5-磷酸3G6P+6NADP++5NAD++5Pi+8ADP→5丙酮酸+3CO2+6NADPH+5NADH+8ATP+2H2O+8H+三、淀粉和糖原代谢㈠淀粉分解代谢㈡糖原分解代谢:糖原磷酸化酶、糖原脱支酶、磷酸葡萄糖变位酶1、糖原磷酸化酶糖原磷酸化酶的分子结构:1938,Carl Cori和Gerty Cori分离得到磷酸化酶a和磷酸化酶b;Robert Fletterick和Louise Johnson对结构和作用进行研究糖原磷酸化酶的作用特点:催化糖原1→4糖苷键磷酸解;从非还原末端磷酸解2.糖原脱支酶90糖基转移:将三个葡萄糖残基转移到另一分支的非还原性末端的葡萄糖残基上,或者糖原的核心链糖原脱支:脱下1→6连接的葡萄糖残基,产生一分子葡萄糖和1→4相连的葡萄糖残基3.磷酸葡萄糖变位酶葡萄糖-1-磷酸转变成葡萄糖-6-磷酸;活性部位有丝氨酸残基,带有一个磷酸基团;葡萄糖1,6-二磷酸的存在对酶发挥活性是必要的;催化机理与磷酸甘油酸变位酶相似㈢糖原的生物合成1957年,Luis Leloir等人,糖基供体尿苷二磷酸葡萄糖,UDP-葡萄糖糖原的合成通过3个步骤,包括三种酶:UDP-葡萄糖焦磷酸化酶;糖原合酶;糖原分支酶1.UDP-葡萄糖焦磷酸化酶葡萄糖-1-磷酸与UTP反应生成UDP-葡萄糖和PPi,活化了葡萄糖1位羟基2.糖原合酶催化UDPG与糖原分支的非还原末端G残基第4位碳原子上的羟基形成α1→4糖苷键其催化需要至少四个葡萄糖残基引物糖链,生糖原蛋白(Gluconin),糖原引物蛋白;糖原合酶与生糖原蛋白结合时具有催化活性二聚体,每个亚基含有9个丝氨酸残基,可被不同程度的磷酸化,受到不同程度的抑制.3.糖原分支酶断开α(1→4)糖苷键;形成α(1→6)糖苷键;㈣.糖原代谢的调节糖原合酶的调控肝脏中糖原代谢调控的特殊性血糖浓度直接控制肝脏中相关酶的活性G浓度高时,G与磷酸化酶a结合,由R态变为无活性的T,磷酸酶水解磷酸根,磷酸化酶a变为磷酸化酶b,糖原的降解减弱;磷酸化酶水解磷酸化的糖原合酶,由无活性状态变为活性状态,促进糖原的合成.复习方法如果细心对比一下历年的专业课考题,我们就会发现考研专业课考试的重复性很强,虽然题量和题型可能会有一些的改动,但是每年考试的命题重点基本上不会有太大的变化。
中国农业大学考研生物化学考研真题(1997-2010)剖析
[2] 中国农业大学考研生物化学考研真题(1997-2010)编辑点评:中国农业大学考研生物化学97-10年真题已经发布,请相关考生注意查看。
1998年生物化学一、填空题。
(每空1分,共30 分。
)1 测定多肽链N-末端的常用方法有__________________、__________________和__________ ________等。
2蛋白质二级结构的类型有________________、________________和___________________ .3 氨肽酶可以水解____________键,限制性内切酶可以水解_____________________键。
4 DNA双螺旋的直径为_____________,螺距为_______________。
5 目前普遍接受的生物膜结构模型是______________________________________。
6 在糖酵解过程中,___________________________是最重要的控制酶,另外_____________ 和___________________也参与糖酵解速度的调节。
7 鱼藤酮能专一地阻断呼吸链上电子由______________流向____________________。
8 线粒体的穿梭系统有________________和___________________两种类型。
9 黄嘌呤核苷酸转变为__________核苷酸时需要氨基化,其氨基来自_________________ .10 原核生物蛋白质合成中,蛋白因子IF-2与___________________结合并协助其进入核糖体的____________位。
11 RNA聚合酶全酶由______________和______________组成。
12 密码子共______个,其中_________个为终止密码子,_____________个为编码氨基酸的密码子,起始密码子为_____________________。
中国农业大学_806生物化学_《生物化学》2010冲刺讲义
pHpI 时,带正电,在电场中向负移动 pHpI 时,不带电,在电场中不移动 三、重要化学反应 1.Sanger 反应:鉴定多肽链的氨基末端氨基酸 反应试剂:DNFB 黄色 2.艾德曼(Edman)反应:鉴定多肽链氨基末端氨基酸;蛋白质测序 反应试剂: PITC 无色 3.茚三酮反应:定性或定量氨基酸 反应试剂:水合茚三酮 蓝紫色(脯氨酸为黄色) 第二节 蛋白质结构与功能
生物化学冲刺班讲义 中国农业大学
生物化学冲刺班讲义
目
录
第一课时 ................................................................................................. 2 第二课时 ............................................................................................... 17 第三课时 ............................................................................................... 29 第四课时 ............................................................................................... 46
第一课时
一、整体内容分析
内容比重图 3% 3% 8% 9% 9% 11% 12% 12% 12% 21%
糖代谢 氨基酸代谢 脂代谢 酶 糖类
蛋白质 核酸 其他(代谢和生物能学) 复制转录翻译 生物膜
2000—2009 的真题统计分析(除名词解释外的所有题型) 重点在蛋白质、酶学、三大物质的代谢,以及复制转录翻译 二、考点归类(08、09 年真题) 1.高频高点 、 VLDL、HDL 等载脂蛋白、氨基酸脱氨、糖异生柠檬酸循环、 糖酵解(乳酸和乙醇) 糖代谢三个交汇点、生物膜、 ATP、 酮体、 核酸酶 、电子传递链、脂肪酸氧化、 DNA 的二级结构、 tRNA 结构、mRNA 结构 2.一般考点 DNA 聚合酶、RNA 聚合酶、淀粉、纤维素、糖原组成、 纸层析、蛋白质显色、谷胱 甘肽、western blot 、ELISA 、RT-PCR 、Southern blot 、 跨膜主动运输、琼脂和琼脂糖、 高能磷酸化合物 3. 新考点 表观遗传学、SNP、小 RNA 4.大题分布 蛋白质(结构、功能、分离纯化) ,核酸(结构,分离纯化)酶学,糖代谢,脂代谢, 氨基酸代谢,三大代谢综合题,核酸合成,蛋白质合成 5.小题分布 核酸的结构、性质,糖类的组成,20 种基本氨基酸,糖代谢和脂代谢中的酶以及重要 步骤,以及一些比较偏的知识点 三、讲课思路 第一课时:氨基酸、蛋白质结构与功能、蛋白质分离分析、酶与辅酶 第二课时:糖类、糖代谢、生物氧化、脂类与生物膜 第三课时:脂代谢、氨基酸代谢、核酸、核苷酸代谢 第四课时:核酸的生物合成、蛋白质生物合成、代谢调控
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国农业大学生物化学试题《生物化学》复习一一、填空题1、在电场中蛋白质不迁移的pH叫做。
2、1913年Michaelis和Menten提出与酶促反应速度关系的数学方程式。
即米-曼氏方程式,简称米氏方程式。
3、TPP的中文名称是,其功能部位在噻唑环上。
4、催化果糖-6-磷酸C-1磷酸化的酶是。
5、脂肪酸生物合成的限速反应步骤是由催化的。
6、 CoQ是电子传递链中惟一的组分。
7、增加溶液的离子强度能使某种蛋白质的溶解度增高的现象叫做。
8、tRNA的氨基酸臂上含有特殊的结构。
9、维生素D3是由其前体经紫外线照射转变而成。
10、在糖无氧酵解中,唯一的氧化发生在分子上。
11、尿素循环中产生的鸟氨酸和两种氨基酸不是蛋白质氨基酸。
12、因为核酸分子具有,所以在260nm处有吸收峰,可用紫外分光光度计测定。
13、α-酮戊二酸在大多数转氨酶催化的反应中具有汇集的作用。
14、在哺乳动物体内由8分子乙酰CoA合成1分子的软脂酸,总共需要消耗分子的NADPH。
15、以RNA为模板合成DNA的酶叫作。
16、大多数蛋白质中氮的含量较恒定,平均为 %。
17、核苷酸的主要合成途径为。
19、痛风是因为体内产生过多造成的。
20、黄嘌呤氧化酶既可以使用黄嘌呤又可以使用作为底物。
二、解释概念题1、退火:2、氧化磷酸化:3、脂肪酸的β-氧化:4、转氨基作用:5、磷氧比值(P/O):三、判断题【】1、利用双缩脲反应可以确定蛋白质的水解程度。
【】2、tRNA分子中用符号Ψ表示假尿嘧啶。
【】3、在任何条件下,酶的Km值都是常数。
【】4、生食胡萝卜可以有效地补充维生素A。
【】5、沿糖酵解途径简单逆行,可从丙酮酸等小分子前体物质合成葡萄糖。
【】6.酶的抑制剂可以引起酶活力下降或消失,但并不引起酶变性。
【】7.用双倒数作图法可求出别构酶的Km值。
【】8.人类缺乏V B1会产生脚气病。
【】9.发酵可在活细胞外进行。
【】10.三羧酸循环是分解和合成的两用途径。
四、单选题1、下列哪一项不是蛋白质α-螺旋结构的特点?【】A. 天然蛋白质多为右手螺旋B. 肽链平面充分伸展C. 每隔3.6个氨基酸螺旋上升一圈D. 每个氨基酸残基上升高度为0.15nm2、下述氨基酸中哪一种最有可能出现在球状蛋白质分子的表面?【】A.Pro B.Ser C.Leu D.Val3、下列哪个性质是氨基酸和蛋白质所共有的?【】A. 胶体性质B. 沉淀反应C. 两性性质D. 变性性质4、若某酶特性按照典型的米氏动力学公式,米氏常数K m可从反应速度对底物浓度所作的双倒数图形中的哪一项求得?【】A.曲线的斜率 B. 曲线的拐点 C. 曲线在X轴上的截距的绝对值的倒数D. 曲线在X轴上的截距的绝对值5、哪一种情况可用增加[S]的方法减轻抑制程度?【】A.不可逆抑制作用 B. 无法确定 C. 可逆的非竞争性抑制作用D. 可逆的竞争性抑制作用6、酶促反应的特点是: 【】A. 提高反应的活化能B. 能触发化学反应的进行C. 高效率性D. 反应前后酶的质量不变7、下列哪种维生素是合成视紫红质的物质: 【】A. 维生素BB. 维生素DC. 维生素CD. 维生素A8、磺胺类药物能抗菌抑菌是因为【】A. 属于非竞争性抑制作用B. 抑制了细菌的二氢叶酸还原酶C. 竞争对象是叶酸D. 抑制了细菌的二氢叶酸合成酶9、某双链DNA之所以具有高熔解温度是由于它含有较多的【】A. 胞嘧啶+鸟嘌呤B. 胞嘧啶+胸腺嘧啶C. 腺嘌呤+鸟嘌呤D. 腺嘌呤+胸腺嘧啶10、RNA经NaOH水解,其产物是【】A. 2´-核苷酸和3´-核苷酸的混合物B. 2´-核苷酸C. 3´-核苷酸D. 5´-核苷酸11、人体内不能合成的脂肪酸是【】A.油酸B. 亚油酸C.硬脂酸D.软脂酸12、在代谢的研究中,第一个被阐明的循环途径是【】A. 尿素循环B.乳酸循环C.丙氨酸循环D. 三羧酸循环13、下列哪种物质可使电子传递和氧化磷酸化作用分离。
【】A. COB. 2,4-二硝基苯酚C. NOD. 抗霉素A14、下列哪种与能量有关的反应不是在线粒体中进行?【】A. 糖酵解 B.柠檬酸循环 C . 氧化磷酸化 D . 脂肪酸氧化五、简答题1、用阳离子交换树脂分离下列氨基酸时,用pH7的缓冲液洗脱时哪种氨基酸先被洗脱下来?(1)Asp、Lys (2)Arg、Met(3)Glu、Val。
2、从两种不同的细菌中分离出的DNA样品,腺嘌呤(A)各占总碱基的32%和17%。
问两种DNA样品中鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C)的相对比例各是多少?3、怎样证明酶是蛋白质?4、目前解释氧化作用与磷酸化作用偶联机制的假说有哪些?得到普遍公认的是哪一种?说明该假说的主要内容。
六、论述题1、为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共同通路?2、Hershey-Chase所做的噬菌体转染实验中,如果用32S标记的噬菌体去感染细菌,那么在子代病毒中是否会出现带32S标记的病毒?如果是用35P标记的噬菌体重复实验,那么在子代病毒中是否可以找到带35P标记的病毒?3、DNA分子二级结构有哪些特点?参考答案一、填空题1、等电点2、底物3、焦磷酸硫胺素4、果糖磷酸激酶5、乙酰CoA羧化酶6、非蛋白7、盐溶8、-CCA9、7-脱氢胆固醇 10、甘油醛-3-磷酸11、瓜氨酸 12、碱基 13、α-氨基 14、14 15、逆转录酶16、16 17、从头合成途径 18、ATP 19、尿酸 20、次黄嘌呤二、解释概念题1、退火:当将双链呈分散状态的DNA溶液缓慢冷却时,它们可以发生不同程度的重新结合形成双螺旋结构的现象。
2、氧化磷酸化:是NADH和FADH2上的电子通过一系列电子传递载体传递给氧,伴随NADH 和FADH2的再氧化,将释放的能量使ADP磷酸化形成ATP的过程。
3、脂肪酸的β-氧化:在一系列酶的作用下,脂肪酸羧基端的Cβ原子发生氧化,碳链在C α原子与Cβ原子间发生断裂,每次生成一个乙酰COA和较原来少二个碳单位的脂肪酸,这个不断重复进行的脂肪酸氧化过程称为β-氧化。
4、转氨基作用:在转氨酶(transaminase)的作用下,某一氨基酸的α-氨基转移到另一种α-酮酸的酮基上,生成相应的氨基酸,原来的氨基酸则转变成α-酮酸的过程。
5、磷氧比值(P/O):呼吸过程中无机磷酸(Pi)消耗量和分子氧(O2)消耗量的比值称为磷氧比。
三、判断题1—5:【×】【×】【×】【∨】【×】 6—10: 【√】【×】【√】【√】【√】四、单选题1—5:【B】【B】【C】【C】【D】 6—10: 【C】【D】【D】【A】【A】11—14:【B】【A】【B】【A】五、简答题1、用阳离子交换树脂分离下列氨基酸时,用pH7的缓冲液洗脱时哪种氨基酸先被洗脱下来?(1)Asp、Lys (2)Arg、Met(3)Glu、Val。
用离子交换树脂分离氨基酸主要根据氨基酸所带的电荷不同,带正电荷的氨基酸被交换,带负电荷的氨基酸不被交换而先下来。
带负电荷多的先于少的;另外还和氨基酸的极性有关,非极性强的与树脂吸附能力强。
(1)在pH7时,Asp带负电荷不被交换先下来,Lys带正电荷。
(1分)(2)Met不被交换先下来12分)(3)在pH7时,Glu、Val 均带负电荷,但Glu 所带负电荷要多于Val,所以Glu 不被交换先下来。
(2分)2、从两种不同的细菌中分离出的DNA样品,腺嘌呤(A)各占总碱基的32%和17%。
问两种DNA样品中鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C)的相对比例各是多少?一种T:32%,G:18%,C:18% (2分)另一种T:17%,G:33%,C:33% (2分)3、怎样证明酶是蛋白质?(1)酶能被酸、碱及蛋白酶水解,水解的最终产物都是氨基酸,证明酶是由氨基酸组成的。
(1分)(2)酶具有蛋白质所具有的颜色反应。
如双缩脲反应、茚三酮反应、乙醛酸反应。
(1分) (3)一切能使蛋白质变性的因素,如热、酸碱、紫外线等,同样可以使酶变性失活。
(1分)(4)酶同样具有蛋白质所有的大分子性质,如不能通过半透膜、可以电泳等。
(1分)4、目前解释氧化作用与磷酸化作用偶联机制的假说有哪些?得到普遍公认的是哪一种?说明该假说的主要内容。
目前解释氧化作用与磷酸化作用偶联的机制有三个,即化学偶两假说、结构偶联假说与化学渗透假说。
(1分)其中化学渗透学说得到较普遍的公认,(1分)该学说的主要内容是:这一学说认为氧化呼吸链存在于线粒体内膜上,电子经呼吸链传递时,释放的自由能驱动质子(H+)从线粒体基质跨过内膜进入到膜间隙,从而形成跨线粒体内膜的H+电化学梯度。
这个梯度的电化学电势可以被存在于线粒体内膜上的ATP合酶利用,驱动ATP的合成。
(2分)六、论述题1、为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共同通路?要点:(1)三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。
(2分)(2)糖代谢产生的碳骨架最终进入三羧酸循环氧化。
(2分)(3)脂肪分解产生的甘油可通过糖的有氧氧化进入三羧酸循环氧化(1分),脂肪酸经氧化产生乙酰CoA可进入三羧酸循环氧化。
(2分)(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环(1分),同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨基后合成非必需氨基酸(2分)。
所以,三羧酸循环是三大物质代谢共同通路。
2、Hershey-Chase所做的噬菌体转染实验中,如果用32S标记的噬菌体去感染细菌,那么在子代病毒中是否会出现带32S标记的病毒?如果是用35P标记的噬菌体重复实验,那么在子代病毒中是否可以找到带35P标记的病毒?要点:如果用32S标记的噬菌体去感染细菌,那么在子代病毒中不会出现带32S标记的病毒。
(2分)因为噬菌体去感染细菌时其蛋白质外壳并不进入细菌体内(1分),子代噬菌体的蛋白质外壳是在细菌体内新和成的,因此不带标记。
(2分)如果是用35P标记的噬菌体重复实验,那么在子代病毒中就会出现带35P标记的病毒。
(2分)因为噬菌体去感染细菌时其核酸部分将进入细菌体内(1分),并作为遗传物质传给子代噬菌体,因此在子代病毒中可以找到带标记35P的病毒。
(2分)3、DNA分子二级结构有哪些特点?要点:①两条反向平行的多核苷酸链围绕同一中心轴向右盘旋形成右手双螺旋(2分) ②双螺旋的骨架是由磷酸和脱氧核糖组成,位于外侧,碱基位于螺旋内侧,配对平行,与轴垂直;(2分)③双螺旋平均直径为2nm,螺距为3.4nm,螺旋一周包含10个碱基对,相邻碱基距离为0.34nm,之间旋转角度36º;(2分)④双螺旋结构上有两条螺形凹槽,大沟和小沟,对于DNA与PRO结合时的相互识别很重要,利于遗传信息的传递与表达。