2.4 平面向量的数量积
2.4.1平面向量的数量积及运算律(3)

3.这个步骤可以使用思维导图或流程图,可以更好加深自己的理解哦~
费曼学习法--
实操
第三步 没有任何参考的情况下,仅靠大脑,复述你所获得的主要内容
(三) 仅 靠 大 脑 复 述
1.与上一步不同的是,这一步不能有任何参考, 合上你的书本、笔记等,看看此时你的大脑里还剩下了什么; 2.仅凭记忆,如果可以复述很多,说明掌握状况还可以; 3.如果一合上书,就连关系词有哪些都想不起来了, 说明还 没有掌握,需要继续回顾。
2. 求证:直径 所对的圆周角为 直角.
13
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
超级记忆法-记忆 规律
TIP1:我们可以选择恰当的记忆数量——7组之内! TIP2:很多我们觉得比较容易背的古诗词,大多不超过七个字,很大程度上也 是因 为在“魔力之七”范围内的缘故。我们可以把要记忆的内容拆解组合控制 在7组之 内(每一组不代表只有一个字哦,这7组中的每一组容量可适当加大)。 TIP3:比 如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3 组就可以了,记忆效率也会大大提高。
2014年人教A版必修四课件 2.4 平面向量的数量积

则 q =135.
问题1. 向量的数量积与向量的数乘有什么区别? 向量的数量积是向量还是数量? 向量的数乘是一个向量, 而向量的数量积是一个 数量, 是三个数量的乘积. 几何意义: | a | cosq 表示 a 在 b 方向上的投影 (如图), |OC | = | a |cosq . A a a 方向上的投影, | b | cosq 表示 b 在 D | OD | = | b | cosq . q 即 a b =|Байду номын сангаасa | | b | cosq B O C b =OC· OB =OD· OA.
即两向量的夹角为锐角时, 数量积为正, 夹角为钝角时, 数量积为负, 夹角为直角时, 数量积为零.
两非零向量垂直 数量积为零.
练习: (课本106页) 2. 已知△ABC中, AB =a, AC =b, 当 a· b<0 或 a· b=0 时, 试判断△ABC的形状. 解: a b =| a | | b | cos A, 当 a b 0 时, cosA < 0, 则角A为钝角, ∴△ABC为钝角三角形. 当 a b = 0 时, cosA = 0, 则角A为直角, ∴△ABC为直角三角形.
练习: (课本106页) 3. 已知 |a|=6, e 为单位向量, 当 a、e 之间的夹角 q 分别等于 45、90、135 时, 画图表示 a 在 e 方向 上的投影, 并求其值. 解: 各图中的投影用OA表示. | a |= 6 (1) 当q =45º 时, | a |= 6 2 45º OA = | a | cos 45= 6 O 2 A e =3 2 . (1) O e (A) (2) 当q =90º 时, (2) OA = | a | cos 90=0. | a |= 6
2.4.1平面向量数量积的物理背景及其含义4

(a b ) c a (b c )
(3)(a b ) c a c b c
b
B
a
A
C1
O
A1
c
B1
C
例 3:求证: (1)(a+b)2=a2+2a· b+b2; (2)(a+b)· (a-b)=a2-b2.
证明:(1)(a+b)2=(a+b)· (a+b) =(a+b)· a+(a+b)· b =a· a+b· a+a· b+b· b =a2+2a· b+b2.
3.向量的数量积(内积) b
θ
a
规定:0 a 0
向量的数量积是一个数量,那么它什 么时候为正,什么时候为负?
a b | a || b | cos (a 0, b 0)
B
b
O
A
a
b B
A
A1
a
aA
大于零
B1 O
O
b
B
等于零
小于零
例1 已知|a|=5,||=4, b a与b 的夹角 =120求a b.
解: a 2b a 3b a a b 6b
6 4 cos 60 12
0 2 2
且a 36, b 16
a 2b a 3b
36 12 6 16 72
例5.已知 | a | 3,| b | 4,当且仅当k为何值时, 向量a kb与a kb 互相垂直? 解:
a
A
B1
b 在 a 上投影
a 的长度 a
练习2
1.若a =0,则对任一向量b,有a b 0 √ 2.若a 0,则对任一非零向量b,有a b 0 × 3.若a 0, a b 0, 则b 0 × 4.若a b 0, 则a, b中至少有一个为0 × 5.若a 0, a b b c, 则a c 7.对任意向量a有a a
高中数学第二章平面向量2-4平面向量的数量积2-4-1平面向量数量积的物理背景及其含义优化练习新人教A版必修4

答案:-63
9.已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.
解析:①当a∥b时,
若a与b同向,则它们的夹角θ=0°,
∴a·b=|a||b|cos 0°=3×6×1=18;
若a与b反向,则它们的夹角θ=180°,
解析:(1)由|3a-b|= ,得(3a-b)2=5,
所以9a2-6a·b+b2=5,因为a2=b2=1,所以a·b= .因此(a+3b)2=a2+6a·b+9b2=15,
所以|a+3b|= .
(2)设3a-b与a+3b的夹角为θ,
因为(3a-b)·(a+3b)=3a2+8a·b-3b2= ,
所以cosθ= = = ,
故 · =( + )·
= ·( - )
= ·( - )
= · + -
= | || |cos 120°+ | |2- | |2
= ×2×1× + ×1- ×22=- .
答案:-
8.已知a+b=2i-8j,a-b=-8i+16j,i,j为相互垂直的单位向量,那么a·b=________.
解析:将两已知等式相加得,2a=-6i+8j,所以a=-3i+4j.同理将两已知等式相减得,b=5i-12j,而i,j是两个互相垂直的单位向量,
1.已知|a|=6,|b|=3,a·b=-12,则向量a在向量b方向上的投影是( )
A.2B.-2
C.4D.-4
解析:记向量a与b的夹角为θ,由a·b=|a||b|cosθ=-12,即6×3cosθ=-12,所以cosθ=- ,所以a在b方向上的投影为|a|cosθ=6× =-4.
高中数学第二章平面向量2.4平面向量的数量积(1)课件新人教A版必修4

第十页,共35页。
3.已知向量a,b满足(mǎnzú)|a|=1,|b|=4,且a·b=2,则a与b的夹角为 ________.
第十六页,共35页。
解析: (1)a·b=|a||b|cos 120°=3×4×-12=-6. (2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|·cos 120°-3|b|2=2×32+
5×3×4×-12-3×42=-60.
第三十一页,共35页。
[拓展练]☆ 3.(1)已知向量 a,b 满足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,则 a 与 b 的夹角为________; (2)已知非零向量 a,b 满足 a+3b 与 7a-5b 互相垂直,a-4b 与 7a-2b 互 相垂直,求 a 与 b 的夹角.
第六页,共35页。
2.数量积的几何意义及数量积的符号
(1)按照投影的定义,非零向量 b 在 a 方向上的投影为|b|cos θ,其具体情况,
我们也可以借助下面图形分析:
θ 的范围
θ=0° 0°<θ<90° θ=90° 90°<θ<180° θ=180°
图形
b 在 a 上的 投影的正负
正数
正数
0
第七页,共35页。
|2a+b|2=(2a+b)(2a+b)=4|a|2+|b|2+4a·b=4|a|2+|b|2+4|a||b|cos 60°=175. ∴|2a+b|=5 7.
数学人教A版(2019)必修第二册6.2.4平面向量数量积(共15张ppt)

,求
∙ .
设 =12, =9, ∙ =-54 ,求与的夹角
向量的数量积的几何意义是什么?
B
a
A
b
C A1
B2
D
两个非零向量、,他们的夹角为,
探究向量在上的投影向量的情况.
两个非零向量、,他们的夹角为,是与方向相同的单位
向量.
(1) ∙ = , = .(求向量长度的工具)
如何规定向量的乘法.
向量的乘法的结果是什么量?这个值由那些量决定?符号
由什,我们把数量
cos量叫做、的数量积,记作 ∙
即 ∙ = cos
规定零向量与任一非零向量的数量积为0.
已知 = , = , 与的夹角 =
6.2.4向量的数量积
学习目标
1、向量数量积的运算.
2、向量投影及投影向量的概念
重点、难点 向量数量积的概念与运算律.
向量的概念源自哪一门学科?我们已经研究了向量的哪些
运算?这些向量的运算表运算结果是什么?
前面学习了向量的加,减,数乘(线性运算).
其运算结果是向量.
向量能否相乘?如何规定向量的乘法?我们该怎样研究?
(2) ⊥ ⟺ ∙ =0.(直线垂直的重要条件)
(3) ∙ = ∙ = cos.
已知 = , = , 与的夹角 = °,求 ∙ ,
( + )2 , + .
1、本节课学习了哪些知识和内容.
2、结合实例说明向量数量积的几何意义.
感谢聆听!
2.4《平面向量的数量积》教案(新人教必修4)

§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课教 具:多媒体、实物投影仪 内容分析:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律. 教学过程: 一、复习引入:1. 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 4.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,b a ),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则 1212,y y x x AB5.a ∥b (b0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点. ②当λ<0(1 )时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a1111.10.力做的功:W = |F | |s |cos ,是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0 ≤ ≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c如右图:a b = |a ||b |cos= |b ||OA|,b c = |b ||c |cos = |b ||OA|a b = b c 但ac(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当C为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |.4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos2 aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba5|a b | ≤ |a ||b |三、讲解范例:例1 已知|a |=5, |b |=4, a 与b 的夹角θ=120o ,求a ·b . 例2 已知|a |=6, |b |=4, a 与b 的夹角为60o 求(a+2b)·(a-3b).例3 已知|a |=3, |b |=4, 且a 与b 不共线,k 为何值时,向量a+kb 与a-kb 互相垂直. 例4 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2. 解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0; 对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с), ∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例6 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能. 四、课堂练习:1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A.60° B .30° C.135° D.45°2.已知|a |=2,|b |=1,a 与b 之间的夹角为3,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12 3.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( ) A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知向量a 、b 的夹角为3,|a |=2,|b |=1,则|a +b |·|a -b |= . 5.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = . 6.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 7.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.8.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角. 9.对于两个非零向量a 、b ,求使|a +tb |最小时的t 值,并求此时b 与a +tb 的夹角. 五、小结(略) 六、课后作业(略) 七、教学后记:第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b |cos叫a与b的数量积,记作a b ,即有a b = |a||b|cos,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图C定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当= 0时投影为|b|;当= 180时投影为|b|.4.向量的数量积的几何意义:数量积a b等于a的长度与b在a方向上投影|b|cos的乘积.5.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b =|a ||b |. 特别的a a = |a |2或a a a ||4cos =||||b a ba ;5|a b | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律 1.交换律:a b = b a证:设a ,b 夹角为,则a b = |a ||b |cos ,b a = |b ||a |cos∴a b = b a2.数乘结合律:( a ) b = (a b ) = a ( b ) 证:若 > 0,( a ) b = |a ||b |cos , (a b ) = |a ||b |cos,a ( b ) = |a ||b |cos , 若 < 0,( a ) b =| a ||b |cos() =|a ||b |(cos) = |a ||b |cos, (a b )= |a ||b |cos ,a (b ) =|a || b |cos() =|a ||b |(cos) = |a ||b |cos.3.分配律:(a + b ) c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos 1 + |b | cos 2∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos2,∴c (a + b ) = c a + c b 即:(a + b ) c= a c + b c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d (a+b)2=a2+2a·b+b2三、讲解范例:例1 已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直,a 4b 与7a2b 垂直,求a 与b 的夹角. 解:由(a + 3b )(7a 5b ) = 0 7a 2 + 16a b 15b 2 = 0 ①(a4b )(7a2b ) = 0 7a 230a b + 8b 2 = 0 ②两式相减:2a b = b 2 代入①或②得:a 2 = b 2设a 、b 的夹角为,则cos=21222 ||||||b b b a b a ∴ = 60例2 求证:平行四边形两条对角线平方和等于四条边的平方和.解:如图:平行四边形ABCD 中,DC AB ,BC AD ,AC =AD AB ∴|AC|2=AD AB AD AB AD AB 2||222而BD =AD AB , ∴|BD|2=AD AB AD AB AD AB 2||222∴|AC |2 + |BD |2 = 2222AD AB = 2222||||||||AD DC BC AB例3 四边形ABCD 中,AB =a,BC =b,CD =с,DA =d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量. 解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2① 同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等. ∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB ⊥BC .综上所述,四边形ABCD 是矩形.评述:(1)在四边形中,AB ,BC ,CD ,DA 是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系. 四、课堂练习:1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3D.不平行也不垂直 4.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 5.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 6.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 五、小结(略) 六、课后作业(略) 七、板书设计(略) 八、课后记:第9课时三、平面向量数量积的坐标表示、模、夹角教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式. ⑶能用所学知识解决有关综合问题. 教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用 授课类型:新授课教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.向量的数量积的几何意义:C数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos; 2aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba ;5|a b | ≤ |a ||b |5.平面向量数量积的运算律 交换律:a b = b a数乘结合律:( a ) b = (a b ) = a ( b ) 分配律:(a + b ) c = a c + b c 二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a ,),(22y x b ,试用a 和b 的坐标表示b a .设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11 ,j y i x b 22 所以))((2211j y i x j y i x b a 2211221221j y y j i y x j i y x i x x 又1 i i ,1 j j ,0 i j j i ,所以b a 2121y y x x这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a 2121y y x x 2. 平面内两点间的距离公式一、 设),(y x a ,则222||y x a 或22||y x a.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a (平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a ,),(22y x b ,则b a 02121 y y x x 三、 两向量夹角的余弦( 0)co s =||||b a ba 222221212121y x y x y y x x四、 讲解范例:五、 设a = (5, 7),b = ( 6, 4),求a ·b 及a 、b 间的夹角θ(精确到1o ) 例2 已知A (1, 2),B (2, 3),C ( 2, 5),试判断△ABC 的形状,并给出证明. 例3 已知a = (3, 1),b = (1, 2),求满足x a = 9与x b = 4的向量x . 解:设x = (t , s ), 由429349s t s t b x a x32s t ∴x = (2, 3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22b a b a 又∵0≤θ≤π,∴θ=4评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使 B = 90 ,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x 5, y 2) ∵OB AB ∴x (x 5) + y (y 2) = 0即:x 2 + y 2 5x 2y = 0 又∵|OB | = |AB | ∴x 2 + y 2 = (x 5)2 + (y 2)2即:10x + 4y = 29由2723232729410025221122y x y x y x y x y x 或∴B 点坐标)23,27( 或)27,23(;AB =)27,23( 或)23,27(例6 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当A = 90 时,AB AC = 0,∴2×1 +3×k = 0 ∴k =23当B = 90 时,AB BC = 0,BC =AC AB = (1 2, k 3) = ( 1, k 3) ∴2×( 1) +3×(k 3) = 0 ∴k =311 当C = 90 时,AC BC = 0,∴ 1 + k (k 3) = 0 ∴k =2133 六、 课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.83 2.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( ) A.)54,53(或)53,54( B .)54,53(或)54,53( C.)54,53( 或)53,54(D.)54,53( 或)54,53(4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 6.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 七、 小结(略) 八、 课后作业(略) 九、 板书设计(略) 十、 课后记:。
高中数学第二章平面向量2.4平面向量的数量积(2)课件新人教A版必修4

(2) 若 点
A(x1
,
y1)
,
B(x2
,
y2)
,
则
→ AB
=
(x2
-
x1
,
y2
-
y1)
,
所
以
|
→ AB
|
=
(x2-x1)2+(y2-y1)2,即|A→B|的实质是 A,B 两点间的距离或线段 AB 的长
(2)坐标表示下的运算,若 a=(x,y),则|a|= x2+y2.
第二十一页,共37页。
2.(1)已知向量 a=(1,2),b=(-3,2),则|a+b|=________,|a-b|=________;
(2)设平面向量 a=(1,2),b=(-2,y),若 a∥b,则|2a-b|等于( )
A.4
第二十六页,共37页。
[归纳升华] 用坐标求两个向量夹角与垂直问题的步骤
(1)用坐标求两个向量夹角的四个步骤: ①求 a·b 的值; ②求|a||b|的值; ③根据向量夹角的余弦公式求出两向量夹角的余弦; ④由向量夹角的范围及两向量夹角的余弦值求出夹角.
第二十七页,共37页。
(2)利用向量解决垂直问题的四个步骤: ①建立平面直角坐标系,将相关的向量用坐标表示出来; ②找到解决问题所需的垂直关系的向量; ③利用向量垂直的相关公式列出参数满足的等式,解出参数值; ④还原到所要解决的几何问题中.
答案:
(1)-15
3 (2)2
第三十页,共37页。
[变式练]☆ 2.已知平面向量 a=(3,4),b=(9,x),c=(4,y),且 a∥b,a⊥c. (1)求 b 与 c; (2)若 m=2a-b,n=a+c,求向量 m,n 的夹角的大小.
人教A版高中数学必修4第二章 平面向量2.4 平面向量的数量积习题(1)

高中数学教案学案平面向量的数量积及其应用学习目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量数量积的定义(1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影.(2)向量数量积的性质:①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ⇔________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |.2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________;(2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2),则|a |=________________,cos 〈a ,b 〉=____________________________.(4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB →|=_____________________.1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .16 2.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 3.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( )A .-2B .2 C.12 D .-124.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.5.(2009·天津)若等边△ABC 的边长为M 满足CM →=16CB →+23CA →,则MA →·MB →=________.考点一 向量的模及夹角问题 例1 (2011·马鞍山月考)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.举一反三1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是 ( )A .1B .2C. 2D.22(2)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.考点二 两向量的平行与垂直问题 例2 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).(1)求证:a +b 与a -b 垂直; (2)用k 表示a ·b ; (3)求a ·b 的最小值以及此时a 与b 的夹角θ.举一反三2 (2009·江苏)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .考点三 向量的数量积在三角函数中的应用例3 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.举一反三3 (2010·四川)已知△ABC 的面积S =12AB →·AC →·=3,且cos B =35,求cos C .1.一些常见的错误结论:(1)若|a |=|b |,则a =b ;(2)若a 2=b 2,则a =b ;(3)若a ∥b ,b ∥c ,则a ∥c ;(4)若a·b =0,则a =0或b =0;(5)|a·b |=|a |·|b |;(6)(a·b )c =a (b·c );(7)若a·b =a·c ,则b =c .以上结论都是错误的,应用时要注意.2.平面向量的坐标表示与向量表示的比较:(1)要证AB =CD ,可转化证明AB →2=CD →2或|AB →|=|CD →|.(2)要证两线段AB ∥CD ,只要证存在唯一实数λ≠0,使等式AB →=λCD →成立即可.(3)要证两线段AB ⊥CD ,只需证AB →·CD →=0.一、选择题(每小题5分,共25分) 1.(2010·重庆)若向量a =(3,m ),b =(2,-1),a·b =0,则实数m 的值为 ( )A .-32 B.32C .2D .62.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为 ( )A .-6B .-3C .3D .63.已知△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于 ( )A .30°B .-150°C .150°D .30°或150° 4.(2010·湖南)若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为 ( ) A .30° B .60° C .120° D .150° 5.已知a =(2,3),b =(-4,7),则a 在b 上的投影为 ( )A.135B.655C.65D.136.(2010·湖南长沙一中月考)设a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π2,π,若a·b =25,则sin α=________. 7.(2010·广东金山中学高三第二次月考)若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为________.8.已知向量m =(1,1),向量n 与向量m 夹角为3π4,且m·n =-1,则向量n =__________________.三、解答题(共38分)9.(12分)已知OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.10.(12分)(2011·杭州调研)已知向量a =(cos(-θ),sin(-θ)),b =(cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ). (1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-k a +t b ,满足x ⊥y ,试求此时k +t 2t 的最小值.11.(14分)(2011·济南模拟)已知a =(1,2sin x ),b =⎝⎛⎭⎫2cos ⎝⎛⎭⎫x +π6,1,函数f (x )=a·b (x ∈R ).(1)求函数f (x )的单调递减区间;(2)若f (x )=85,求cos ⎝⎛⎭⎫2x -π3的值.答案1.(1)a·b =|a ||b |cos 〈a ,b 〉 (2)①|a |cos 〈a ,e 〉 ②a·b =0 ③|a |2 a·a ④a·b|a||b |⑤≤ 2.(1)b·a(2)a·c +b·c (3)λ(a ·b ) 3.(1)a 1b 1+a 2b 2 (2)a 1b 1+a 2b 2=0 (3)a 21+a 22 a 1b 1+a 2b 2a 21+a 22b 21+b 22(4)(x 2-x 1,y 2-y 1) (x 2-x 1)2+(y 2-y 1)22.B [|2a -b |=(2a -b )2=4a 2-4a·b +b 2=8=2 2.] 3.D [由(a +λb )·b =0得a·b +λ|b |2=0,∴1+2λ=0,∴λ=-12.]4.y 2=8x (x ≠0)解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 5.-2解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.课堂活动区例1 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61, ∴a·b =-6.∴cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)|a +b |=(a +b )2 =|a |2+2a·b +|b |2=16+2×(-6)+9=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3. 举一反三1 (1)C [∵|a |=|b |=1,a·b =0,展开(a -c )·(b -c )=0⇒|c |2=c·(a +b ) =|c |·|a +b |cos θ,∴|c |=|a +b |cos θ=2cos θ, ∴|c |的最大值是 2.](2)λ<12且λ≠-2解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.例2 解题思路 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 (1)由题意得,|a |=|b |=1, ∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直. (2)|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b . 由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b ,从而有,a ·b =1+k24k(k >0).(3)由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.举一反三2 (1)解 因为a 与b -2c 垂直, 所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .例3 解题思路 与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |,∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.举一反三3 解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A =12.AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010.由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010.∴cos C =cos [π-(A +B )]=-1010.课后练习区 1.D [因为a·b =6-m =0,所以m =6.] 2.D [由(2a +3b )·(k a -4b )=0得2k -12=0,∴k =6.]3.C [∵S △ABC =12|a ||b |sin ∠BAC =154,∴sin ∠BAC =12.又a·b <0,∴∠BAC 为钝角.∴∠BAC =150°.] 4.C [由(2a +b )·b =0,得2a·b =-|b |2.cos 〈a ,b 〉=a·b|a||b |=-12|b |2|b |2=-12. ∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=120°.] 5.B [因为a·b =|a|·|b |·cos 〈a ,b 〉, 所以,a 在b 上的投影为|a |·cos 〈a ,b 〉=a·b |b |=21-842+72=1365=655.] 6.35解析 ∵a·b =cos 2α+2sin 2α-sin α=25,∴1-2sin 2α+2sin 2α-sin α=25,∴sin α=35.7.120°解析 设a 与b 的夹角为θ,∵c =a +b ,c ⊥a , ∴c·a =0,即(a +b )·a =0.∴a 2+a·b =0. 又|a |=1,|b |=2,∴1+2cos θ=0.∴cos θ=-12,θ∈[0°,180°]即θ=120°.8.(-1,0)或(0,-1)解析 设n =(x ,y ),由m·n =-1, 有x +y =-1.①由m 与n 夹角为3π4,有m·n =|m|·|n |cos 3π4,∴|n |=1,则x 2+y 2=1.②由①②解得⎩⎪⎨⎪⎧ x =-1y =0或⎩⎪⎨⎪⎧x =0y =-1,∴n =(-1,0)或n =(0,-1).9.解 设存在点M ,且OM →=λOC →=(6λ,3λ) (0≤λ≤1), MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).…………………………………………(4分) ∵MA →⊥MB →,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,………………………………………………(8分)即45λ2-48λ+11=0,解得λ=13或λ=1115.∴M 点坐标为(2,1)或⎝⎛⎭⎫225,115.故在线段OC 上存在点M ,使MA →⊥MB →,且点M 的坐标为(2,1)或(225,115).………(12分)10.(1)证明 ∵a·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin ()-θ·sin ⎝⎛⎭⎫π2-θ =sin θcos θ-sin θcos θ=0.∴a ⊥b .……………………………………………………(4分) (2)解 由x ⊥y 得,x·y =0,即[a +(t 2+3)b ]·(-k a +t b )=0, ∴-k a 2+(t 3+3t )b 2+[t -k (t 2+3)]a·b =0,∴-k |a |2+(t 3+3t )|b |2=0.………………………………………………………………(6分) 又|a |2=1,|b |2=1,∴-k +t 3+3t =0,∴k =t 3+3t .…………………………………………………………(8分) ∴k +t 2t =t 3+t 2+3t t =t 2+t +3=⎝⎛⎭⎫t +122+114.……………………………………………………………………………(10分) 故当t =-12时,k +t 2t 有最小值114.………………………………………………………(12分)11.解 (1)f (x )=a·b =2cos ⎝⎛⎭⎫x +π6+2sin x =2cos x cos π6-2sin x sin π6+2sin x=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3.…………………………………………………………(5分) 由π2+2k π≤x +π3≤3π2+2k π,k ∈Z , 得π6+2k π≤x ≤7π6+2k π,k ∈Z . 所以f (x )的单调递减区间是⎣⎡⎦⎤π6+2k π,7π6+2k π (k ∈Z ).……………………………………………………………(8分)(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π3. 又因为2sin ⎝⎛⎭⎫x +π3=85, 所以sin ⎝⎛⎭⎫x +π3=45,……………………………………………………………………(11分) 即sin ⎝⎛⎭⎫x +π3=cos ⎝⎛⎭⎫π6-x =cos ⎝⎛⎭⎫x -π6=45. 所以cos ⎝⎛⎭⎫2x -π3=2cos 2⎝⎛⎭⎫x -π6-1=725.………………………………………………(14分)。
2.4.1平面向量数量积及运算律

b
a
(2)( a ) b
(a
b
)
a
(b )
(3)(a b) c a c b c
其中,a、b、 c是 任意三个向量, R
(a b) c a (b c)
例 3:求证: (1)(a+b)2=a2+2a·b+b2;
(2)(a+b)·(a-b)=a2-b2.
证明:(1)(a+b)2=(a+b)·(a+b) =(a+b)·a+(a+b)·b =a·a+b·a+a·b+b·b =a2+2a·b+b2.
a·b=|a| |b| cosθ
规定:零向量与任一向量的数量积为0。 思(1)向量的加、减法的结果是向量还是数量? 考 数乘向量运算呢?向量的数量积运算呢?
(2)“a •b ”能不能写成“a b ”或a者b “ 记”法的“ a形·式b ”?中间的“· ”不可以省略,也不可
以用“ ”代替.
向量的数量积是一个数量,那么它什 么时候为正,什么时候为负?
-72
例3 已知︱a︱=3,︱b︱=4,且a与b
不共线.求当k为何值时,向量a+kb与
a-式:
1、若 | a || b | 1, a b且2a 3b与ka 4b也 互相垂直,求k的值。
K=6
练习三:
1、已知 a 8,e为单位向量,当它们的夹角为 时, 求a 在 e方向上的投影及 a • e、e • a ;4 3
=5×4×(-1/2)= -10
P书106.1.2
思考4:对于两个非零向
A
量a与b,设其夹角为θ,
a
那么︱a︱cosθ的几何意
义如何?
O
θ |a|cosθ A1
b
B
对于两个非零向量a与b,设其夹角为θ, ︱a︱cosθ叫做向量a在b方向上的投影. 那么该投影一定是正数吗?向量b在a方
人教版高中数学必修4课后习题答案详解

数学必修四答案详解第二章 平面向量2.1平面向量实际背景及基本概念 练习(P77)1、略.2、AB u u u r ,BA u u u r. 这两个向量长度相等,但它们不等.3、2AB =u u u r , 2.5CD =u u u r ,3EF =u u u r,GH =u u u r4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、(2). 3、与DE u u u r 相等的向量有:,AF FC u u u r u u u r ;与EF u u u r相等的向量有:,BD DA u u u r u u u r ; 与FD u u u r相等的向量有:,CE EB u u u r u u u r .4、与a r 相等的向量有:,,CO QP SR u u u r u u u r u u r ;与b r 相等的向量有:,PM DO u u u u r u u u r; 与c r 相等的向量有:,,DC RQ ST u u u r u u u r uu u r5、AD =u u u r .6、(1)×; (2)√; (3)√; (4)×.习题2.1 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM u u u u r同向的共有6对,与AM u u u u r 反向的也有6对;与AD u u u r 同向的共有3对,与AD u u u r反向的也有6的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA u u u r; (2)CB u u u r . 4、(1)c r ; (2)f u r ; (3)f u r ; (4)g u r . 练习(P87)1、图略.2、DB u u u r ,CA u u u r ,AC u u u r ,AD u u u r ,BA u u u r. 3、图略. 练习(P90) 1、图略.2、57AC AB =u u u r u u u r ,27BC AB =-u u u r u u u r .说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BCuuu r与AB u u u r反向.3、(1)2b a =r r ; (2)74b a =-r r ; (3)12b a =-r r; (4)89b a =r r .4、(1)共线; (2)共线.5、(1)32a b -rr ; (2)1112a -r r(3)2ya r . 6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB u u u r 表示船速,AD u u u r表示河水的流速,以AB 、AD 为邻边作□ABCD ,则 AC u u u r表示船实际航行的速度.在Rt △ABC 中,8AB =u u u r ,2AD =u u u r,所以AC ===u u u r 因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0r ; (2)AB u u u r ; (3)BA u u u r ; (4)0r ; (5)0r ; (6)CB u u u r ; (7)0r .5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥r r 时,a b a b +=-r r r r9、(1)22a b --r r ; (2)102210a b c -+r r r ; (3)132a b +r r ; (4)2()x y b -r .10、14a b e +=r r u r ,124a b e e -=-+r r u r u u r ,1232310a b e e -=-+r r u r u u r . 11、如图所示,OC a =-u u u r r ,OD b =-u u u r r,DC b a =-u u u r r r ,BC a b =--u u u r r r .12、14AE b =u u u r r ,BC b a =-u u u r r r ,1()4DE b a =-u u u r r r ,34DB a =u u u r r,34EC b =u u u r r ,1()8DN b a =-u u u r r r ,11()48AN AM a b ==+u u u r u u u u r r r .13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =u u u r u u u r ;同理,12HG AC =u u u r u u u r,所以EF HG =u u u r u u u r .习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b r r不共线时它们不相等.3、证明:因为MN AN AM =-u u u u r u u u r u u u u r ,而13AN AC =u u u r u u u r ,13AM AB =u u u u r u u u r,所以1111()3333MN AC AB AC AB BC =-=-=u u u u r u u u r u u u r u u u r u u u r u u u r.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =u u u r u u u r,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.(第11题)(第12题)EHGFC AB丙乙(第1题)(第4题(2))BCD证明:∵AB DC =u u u r u u u r,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =u u u r u u u r∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OB BA -=u u u r u u u r u u u r ,OD OC CD -=u u u r u u u r u u u r而OA OC OB OD +=+u u u r u u u r u u u r u u u r所以OA OB OD OC -=-u u u r u u u r u u u r u u u r 所以BA CD =u u u r u u u r,即∥.因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=r r ,(7,2)a b -=-r r ; (2)(1,11)a b +=r r ,(7,5)a b -=-r r;(3)(0,0)a b +=r r ,(4,6)a b -=r r ; (4)(3,4)a b +=r r ,(3,4)a b -=-r r. 2、24(6,8)a b -+=--r r ,43(12,5)a b +=r r.3、(1)(3,4)AB =u u u r ,(3,4)BA =--u u u r ; (2)(9,1)AB =-u u u r ,(9,1)BA =-u u u r; (3)(0,2)AB =u u u r ,(0,2)BA =-u u u r ; (4)(5,0)AB =u u u r ,(5,0)BA =-u u u r4、AB ∥CD . 证明:(1,1)AB =-u u u r ,(1,1)CD =-u u u r,所以AB CD =u u u r u u u r .所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =u u u r u u u r ,得32AP PB =-u u u r u u ur(,)(2,3)(2,3)AP x y x y =-=--u u u r ,(4,3)(,)(4,3)PB x y x y =--=---u u u r∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩(第4题(3))(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F ++=u u r u u r u u r3、解法一:(1,2)OA =--u u u r ,(53,6(1))(2,7)BC =---=u u u r 而AD BC =u u u r u u u r ,(1,5)OD OA AD OA BC =+=+=u u u r u u u r u u u r u u u r u u u r. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++u u u r,(53,6(1))(2,7)BC =---=u u u r由AD BC =u u u r u u u r 可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =u u u r ,(2,4)AB =-u u u r.1(1,2)2AC AB ==-u u u r u u u r ,2(4,8)AD AB ==-u u u r u u u r ,1(1,2)2AE AB =-=-u u u r u u ur .(0,3)OC OA AC =+=u u u r u u u r u u u r,所以,点C 的坐标为(0,3);(3,9)OD OA AD =+=-u u u r u u u r u u u r,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-u u u r u u u r u u u r,所以,点E 的坐标为(2,1)-. 5、由向量,a b r r 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-.6、(4,4)AB =u u u r ,(8,8)CD =--u u u r ,2CD AB =-u u u r u u u r ,所以AB u u u r 与CD uuur 共线. 7、2(2,4)OA OA '==u u u r u u u r ,所以点A '的坐标为(2,4); 3(3,9)OB OB '==-u u u r u u u r,所以点B '的坐标为(3,9)-; 故(3,9)(2,4)(5,5)A B ''=--=-u u u u r习题2.3 B 组(P101)1、(1,2)OA =u u u r ,(3,3)AB =u u u r.当1t =时,(4,5)OP OA AB OB =+==u u u r u u u r u u u r u u u r,所以(4,5)P ;当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=u u u r u u u r u u u r ,所以57(,)22P ;当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--u u u r u u u r u u u r,所以(5,4)P --;当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=u u u r u u u r u u u r,所以(7,8)P .2、(1)因为(4,6)AB =--u u u r ,(1,1.5)AC =u u u r,所以4AB AC =-u u u r u u u r ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-u u u r ,(6,8)PR =-u u u r ,所以4PR PQ =u u u r u u u r,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--u u u r ,(1,0.5)EG =--u u u r,所以8EF EG =u u u r u u u r ,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=u r u u r r ,得2121e e λλ=-u r uu r .所以12,e e u r u u r 是共线向量,与已知12,e e u r u u r是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)OP =u u u r (2)对于任意向量12OP xe ye =+u u u r u r u u r,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=u r r u r r u r r .2、当0a b ⋅<r r 时,ABC ∆为钝角三角形;当0a b ⋅=r r时,ABC ∆为直角三角形.3、投影分别为0,-图略练习(P107)1、5a ==r ,b ==r 35427a b ⋅=-⨯+⨯=-r r .2、8a b ⋅=r r ,()()7a b a b +-=-r r r r ,()0a b c ⋅+=r r r ,2()49a b +=r r .3、1a b ⋅=r r ,a =r b =r88θ≈︒.习题2.4 A 组(P108)1、a b ⋅=-r r 222()225a b a a b b +=+⋅+=-r r r r r r a b +=r r2、BC uuu r 与CA u u u r 的夹角为120°,20BC CA ⋅=-u u u r u u u r.3、a b +==r r a b -==r r .4、证法一:设a r 与b r的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λr 与b r ,a r 与b λr的夹角都为θ,所以()cos cos a b a b a b λλθλθ⋅==r r r r r r()cos a b a b λλθ⋅=r r r r()cos cos a b a b a b λλθλθ⋅==r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;(3)当0λ<时,a λr 与b r ,a r 与b λr的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r()cos cos a b a b a b λλθλθ⋅==-r r r r r r()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r所以()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r ; 综上所述,等式成立.证法二:设11(,)a x y =r ,22(,)b x y =r,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+r r11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--u u u r ,(3,4)(5,2)(2,2)BC =-=-u u u r∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r ,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=u u u r ,(1,6)(2,3)(1,3)AC =-----=-u u u r∴2117(3)0AB AC ⋅=⨯+⨯-=u u u r u u u r∴AB AC ⊥u u u r u u u r ,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-u u u r ,(10,7)(5,2)(5,5)BC =-=u u u r∴35350BA BC ⋅=-⨯+⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r ,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=r r r r r r r r ,于是可得6a b ⋅=-r r ,1cos 2a b a bθ⋅==-r r r r ,所以120θ=︒. 8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-u u u r ,(8,4)(5,2)(3,6)BC =--=u u u r , (8,4)(4,6)(4,2)DC =-=-u u u r∴AB DC =u u u r u u u r ,43(2)60AB BC ⋅=⨯+-⨯=u u u r u u u r∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =r , 则2292x y y x ⎧+=⎪⎨=⎪⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩.于是(55a=r或(55a=--r.11、解:设与ar垂直的单位向量(,)e x y=r,则221420x yx y⎧+=⎨+=⎩,解得5xy⎧=⎪⎪⎨⎪=⎪⎩或5xy⎧=-⎪⎪⎨⎪=⎪⎩.于是,55e=-r或(55e=-r.习题2.4 B组(P108)1、证法一:0()0()a b a c a b a c a b c a b c⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-r r r r r r r r r r r r r r证法二:设11(,)a x y=r,22(,)b x y=r,33(,)c x y=r.先证()a b a c a b c⋅=⋅⇒⊥-r r r r r r r1212a b x x y y⋅=+r r,1313a c x x y y⋅=+r r由a b a c⋅=⋅r r r r得12121313x x y y x x y y+=+,即123123()()0x x x y y y-+-=而2323(,)b c x x y y-=--r r,所以()0a b c⋅-=r r r再证()a b c a b a c⊥-⇒⋅=⋅r r r r r r r由()0a b c⋅-=r r r得123123()()0x x x y y y-+-=,即12121313x x y y x x y y+=+,因此a b a c⋅=⋅r r r r2、cos cos cos sin sinOA OBAOBOA OBαβαβ⋅∠==+u u u r u u u ru u u r u u u r.3、证明:构造向量(,)u a b=r,(,)v c d=r.cos,u v u v u v⋅=<>r r r r r r,所以,ac bd u v+=<>r r ∴2222222222()()()cos,()()ac bd a b c d u v a b c d+=++<>≤++r r4、AB AC⋅u u u r u u u r的值只与弦AB的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =u u u u r u u u r 又cos AB AC AB AC BAC ⋅=∠u u u r u u u r u u u r u u u r ,而AM BAC AC∠=u u u u r u u u r 所以212AB AC AB AM AB ⋅==u u u r u u u r u u u r u u u u r u u u r 5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=u u u r u u u r u u u r证明:∵AB CB CA =-u u u r u u u r u u u r∴2222()2AB CB CA CB CA CB CA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r .由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅=u u u r u u u r ∴222CA CB AB +=u u u r u u u r u u u r(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+u u u r u u u r u u u r ,,DB AB AD =-u u u r u u u r u u u r∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=u u u r u u u r∴0AC DB ⋅=u u u r u u u r ,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=u u u r u u u r∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴22()()AB AD AB AD +=-u u u r u u u r u u u r u u u r ,所以22AC BD =u u u r u u u r ,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题2.5 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--u u u r ,(,)(1,0)(1,0)AP x y x =-=-u u u r由2RA AP =u u u r u u u r 得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =.2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+u u u r u u u r u u u r u u u r r r r r r r (2)因为1()2AE a b =+u u u r r r 所以23AO AE =u u u r u u u r ,因此,,A O E 三点共线,而且2AO OE= 同理可知:2,2BO CO OF OD ==,所以2AO BO CO OE OF OD === 3、解:(1)(2,7)B A v v v =-=-r u u r u u r ;(2)v r 在A v u u r 方向上的投影为135A Av v v ⋅=r u u r u u r . 4、解:设1F u u r ,2F u u r 的合力为F u r ,F u r 与1F u u r 的夹角为θ, 则31F =+u r ,30θ=︒; 331F =+u u r ,3F u u r 与1F u u r 的夹角为150°.习题2.5 B 组(P113)1、解:设0v u u r 在水平方向的速度大小为x v u u r ,竖直方向的速度的大小为y v u u r ,则0cos x v v θ=u u r u u r ,0sin y v v θ=u u r u u r .设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩u u r u u r 为重力加速度 所以,最大高度为220sin 2v g θu u r ,最大投掷距离为20sin 2v g θu u r . 2、解:设1v u r 与2v u u r 夹角为θ,合速度为v r ,2v u u r 与v r夹角为α,行驶距离为d .则1sin 10sin sin v v v θθα==u r r r ,0.5sin 20sin v d αθ==r . ∴120sin d v θ=r . 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)-O DF E A B C (第2题) (第4题)解:设(,)P x y ,则(1,2)AP x y =--u u u r . (2,22)AB =-u u u r . 将AB u u u r 绕点A 沿顺时针方向旋转4π到AP u u u r ,相当于沿逆时针方向旋转74π到AP u u u r , 于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--u u u r 所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==- (2)32y x=- 解:设曲线C 上任一点P 的坐标为(,)x y ,OP u u u r 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos 44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩ 又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x =- 第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-u u u r r r ,1()2AD a b =+u u u r r r 4、略解:2133DE BA MA MB a b ==-=-+u u u r u u u r u u u r u u u r r r 2233AD a b =+u u u r r r ,1133BC a b =+u u u r r r 1133EF a b =--u u u r r r ,1233FA DC a b ==-u u u r u u u r r r 1233CD a b =-+u u u r r r ,2133AB a b =-u u u r r r CE a b =-+u u u r r r5、(1)(8,8)AB =-u u u r ,82AB =u u u r ;(2)(2,16)OC =-u u u r ,(8,8)OD =-u u u r ; (3)33OA OB ⋅=u u u r u u u r . (第4题)6、AB u u u r 与CD u u u r 共线.证明:因为(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r . 所以AB u u u r 与CD u u u r 共线.7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C === 11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=r u r u r r u r u r ,所以(2)n m m -⊥r u r u r . 12、1λ=-. 13、13a b +=r r ,1a b -=r r . 14、519cos ,cos 820θβ== 第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-r r r r r r .222()2a b a b a b a b +=+=++⋅r r r r r r r r ,222()2a b a b a b a b -=-=+-⋅r r r r r r r r .因为a b ⊥r r ,所以0a b ⋅=r r ,于是22a b a b a b +=+=-r r r r r r . 再证a b a b a b +=-⇒⊥r r r r r r .由于222a b a a b b +=+⋅+r r r r r r ,222a b a a b b -=-⋅+r r r r r r由a b a b +=-r r r r 可得0a b ⋅=r r ,于是a b ⊥r r所以a b a b a b +=-⇔⊥r r r r r r . 【几何意义是矩形两条对角线相等】3、证明:先证a b c d =⇒⊥r r r u r22()()c d a b a b a b ⋅=+⋅-=-r u r r r r r r r又a b =r r ,所以0c d ⋅=r u r ,所以c d ⊥r u r再证c d a b ⊥⇒=r u r r r .由c d ⊥r u r 得0c d ⋅=r u r ,即22()()0a b a b a b +⋅-=-=r r r r r r 所以a b =r r 【几何意义为菱形对角线互相垂直,如图所示】(第3题)(第6题)4、12AD AB BC CD a b =++=+u u u r u u u r u u u r u u u r r r ,1142AE a b =+u u u r r r 而34EF a =u u u r r ,14EM a =u u u u r r ,所以1111(4242AM AE EM a b a =+=++=u u u u r u u u r u u u u r r r r 5、证明:如图所示,12OD OP OP =+u u u r u u u r u u u u r ,由于1230OP OP OP ++=u u u r u u u u r u u u r r ,所以3OP OD =-u u u r u u u r ,1OD =u u u r 所以11OD OP PD ==u u u r u u u r u u u r 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒ 所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,22MN AB b ==-u u u u r u u u r r 7、(18=(千米/时),沿与水流方向成60°的方向前进;(2)实际前进速度大小为千米/时,沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅u u u r u u u r u u u r u u u r ,所以()0OB OA OC ⋅-=u u u r u u u r u u u r ,所以0OB CA ⋅=u u u r u u u r同理,0OA BC ⋅=u u u r u u u r ,0OC AB ⋅=u u u r u u u r ,所以点O 是ABC ∆的垂心.9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=; (4)d =第三章 三角恒等变换P 2(第5题)3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=. cos(2)cos2cos sin 2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=. 4、解:由23sin ,(,)32πααπ=-∈,得cos α==; 又由33cos ,(,2)42πββπ=∈,得sin β== 所以32cos()cos cos sin sin (()43βαβαβα-=+=⨯⨯-=. 练习(P131) 1、(1; (2) (3(4)22、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ==;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=. 3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-; 所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4); (5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-; (6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+; (2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+; (3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-; (4)原式=12(cos )cos sin sin ))2333x x x x x πππ=-=+. 7、解:由已知得3sin()cos cos()sin 5αβααβα---=, 即3sin[()]5αβα--=,3sin()5β-= 所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-. 因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=练习(P135)1、解:因为812παπ<<,所以382αππ<< 又由4cos 85α=-,得3sin 85α=-,3sin 385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-= 2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---= 2232tan 23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--= 3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α==,所以sintan (2)cos ααα==-=4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题3.1 A 组(P137) 1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-; (2)33sin()sin cos 1cos 0sin cos22ππαααααα-=-=-⨯-⨯=-; (3)cos()cos cos sin 1cos 0sin cos παπαααα-=+-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α===又由33cos ,(,)42πββπ=-∈,得sin β===, 所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin 7α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+===所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-⨯6、(1) (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α===又由3cos 4β=-,β是第三象限角,得sin β===.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((34=⨯--⨯=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒(第12题)13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(47sin()12x π-; (5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cossin ((3ϕϕϕ=-=-=- sin 2tan 2(3)cos 23ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sin3α==-∴1sin 22sin cos 2(ααα==⨯⨯=222217cos2cos sin ()(39ααα=-=-=-∴7cos(2)cos2cos sin 2sin (4449πππααα+=-=-=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题3.1 B 组(P138) 1、略. 2、解:∵tan ,tan A B 是x 方程2(1)10x p x +++=,即210x px p +++=两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题3.2 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===----1tan tan1142131tan tan 1()142πθπθ+-+===-⋅--⨯∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题3.2 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=,又因为tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-= 由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+. 在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)(第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4) 提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒ =2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒-=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅=2cos50sin50cos10︒=︒⋅=︒6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π,最大值为21+;(2)()f x 在[,]22ππ-12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 44450πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得sin()4πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.sin(2)4πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++= 可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin 2sin 2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示三角函数式值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。
数学(2.4.1平面向量数量积的物理背景及其含义)

功率等于功与作用时间的比值。平面向量数量积可以用来描述功率,即功率等于功向量与时间向量的 模的比值。
03
平面向量数量积的应用
速度与加速度的研究
速度
速度是描述物体运动快慢的物理量, 等于位移与时间的比值。在平面向量 中,速度可以表示为向量,其模即为 线段长度与时间的比值。
加速度
加速度是描述物体速度变化快慢的物 理量,等于速度的变化量与时间的比 值。在平面向量中,加速度可以表示 为速度向量的变化率,其模即为速度 变化量与时间的比值。
详细描述
根据数乘的定义,实数k与向量a的数乘记作 ka,其模长为|ka|=|k||a|。设向量a与向量b的
夹角为θ,则有k(a·b)=k(|a||b|cosθ), (ka)·b=|ka||b|cosθ=k(|a||b|cosθ),
a·(kb)=|a||kb|cosθ=k(|a||b|cosθ)。这说明数 乘律成立,即k(a·b)=(ka)·b=a·(kb)。
几何意义
总结词
平面向量数量积表示两个向量在方向上的相似性和夹角关系。
详细描述
平面向量数量积的几何意义在于表示两个向量在方向上的相似性和夹角关系。当两个向量的夹角为锐角时,数量 积大于0,表示两个向量方向相同;当夹角为钝角时,数量积小于0,表示两个向量方向相反;当夹角为0或180 度时,数量积为0,表示两个向量垂直或反向。
动量与冲量
动量
物体的动量等于物体的质量与速 度的乘积。平面向量数量积可以 用来描述动量,即物体的动量等 于质量与速度向量的模的乘积。
冲量
冲量等于力的作用时间与力的乘 积。平面向量数量积可以用来描 述冲量,即冲量等于力向量与时 间向量的模的乘积。
功与功率
功
高一数学《2.4.2平面向量数量积的坐标表示、模、夹角》

2.4.2平面向量数量积的坐标表示、模、夹角教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用教学过程:一、复习引入:1.平面向量数量积(内积)的定义:2.两个向量的数量积的性质: 设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ a 与b 同向时,a ⋅b = |a ||b |; a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ; 5︒|a ⋅b | ≤ |a ||b | 3.练习: (1)已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45°(2)已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12二、讲解新课:探究:已知两个非零向量),(11y x a =,),(22y x b =,怎样用a 和b 的坐标表示b a ⋅?.1、平面两向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式(1)设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x , 那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)3. 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x4. 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=二、讲解范例:例1 已知A (1, 2),B (2, 3),C (-2, 5),试判断△ABC 的形状,并给出证明.例2 设a = (5, -7),b = (-6, -4),求a ·b 及a 、b 间的夹角θ(精确到1o )分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值.例3 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少?评述:已知三角形函数值求角时,应注重角的范围的确定.三、课堂练习:1、P107面1、2、3题2、已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 四、小结: 1、b a ⋅2121y y x x +=2、平面内两点间的距离公式 221221)()(||y y x x a -+-=3、向量垂直的判定:设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x五、课后作业:作业二十四。
必修四 2.4平面向量数量积导学案 导学案

2.4.1平面向量数量积的物理背景及其含义【课标要求】1、掌握平面向量数量积的意义,体会数量积与投影的关系。
2、平面向量积的重要性质及运算律。
【考纲要求】1、能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
2、会用向量方法解决某些简单的平面几何问题。
【学习目标叙写】1、知道平面向量数量积的物理意义,记住其含义;2、会用向量数量积的公式解决相关问题;3、记住数量积的几个重要性质。
4、【使用说明与学法指导】先阅读教材P103-P105.在理解物理学中作“功”的实例引出数量积的几何概念之后,学习向量数量积的性质与运算律。
【预习案】1.____________________叫做a b r r与的夹角。
2.已知两个____向量a b r r 与,我们把_________叫a b r r与的数量积。
(或______)记作_________即a b ⋅r r =_________________其中θ是a b r r与的夹角。
___________叫做向量a b r r在方向上__。
3.零向量与任意向量的数量积为_________。
4.平面向量数量积的性质:设a b r r与均为非零向量:①a b ⊥⇔r r ___________②当a b r r 与同向时,a b •r r =_____ 当a b r r与反向时,a b •r r =_____,特别地,a b •r r =________或a =r_________。
③cos =θ_________ ④a b ⋅r r_____________ 5. a b •r r的几何意义:______________ _____ 6.向量的数量积满足下列运算律已知向量a b c r r r ,,与实数λ。
①a b ⋅r r=__ _ (___律)②()a b λ⋅r r=___ __ __③()a+b c ⋅r r r=_____ __【探究案】例1.已知a =4,b =2a b r r r r且与的夹角为120º,则a b=•r r例2.已知ABC V 中,AB =AC =4AB AC=8•u u u r u u u v u u u v且,则这三角形的形状为______________。
2.4.2平面向量数量积的坐标表示教学课件

[研一题]
[例 2] 平面直角坐标系 xOy 中,O
是原点(如图).已知点 A(16,12)、B(-5,15).
(1)求| OA|,| AB|;
(2[[[[自)自 自 自求主主 主 主∠解O解 解 解A答答 答 答B.]]]] ((((1111))))由由 由 由OOOOAAAA== = =((((11116666,,,,11112222)))),, , , AAAABBBB== = =((((-- - -5555-- - -11116666,,,,11115555-- - -11112222))))== = =((((-- - -22221111,,,,3333)))),, , ,得得 得 得 ||||OOOOAAAA||||== = = 111166662222++ + +111122222222== = =22220000,, , , ||||AAAABBBB||||== = = -- - -222211112222++ + +33332222== = =11115555 2222....
y A(x1,y1)
B(x2,y2)
a
bj
oi x
b 设两个非零向量 a =(x1,y1), =(x2,y2),则
aaaaaaaa==bb==bb====xx======xx11==xxxx11iixx((xx11i11i(x(x++11xxxx11x+x+xx1xx12222yy11ii2222yyiiii++11++ii22++11++j2j2++yy,,jjyy+y+,y,yy1111xx1yy111xjjxyy11j))j221yy1))22yybb22((bb2(2x(xii==xxii22==22jjiixxjjii++xx++22++++22iixxyyiixxy++y2222++2y2y22jjyyyyj))11jyy)212)1ii22iijj,,jjjj,,jj++++yyyy111yy1yy2222jjjj2222
高中数学第二章平面向量2-4平面向量的数量积第2课时教学课件新人教A版必修4

(2)坐标表示下的运算.
若 a=(x,y),则 a·a=a2=|a|2=x2+y2,于是有|a|= x2+y2.
【互动探究】 本例中将“a∥b”改为“a·b=10”,求a的坐 标.解:设 a 的坐标为(x,y),由题意得x+x22+y=y2=101,0,
1.已知向量a与b同向,b=(1,2),a·b=10, 求:
(1)向量a的坐标; (2)若c=(2,-1),求(a·c)·b.
解:(1)∵a与b同向,且b=(1,2), ∴a=λb=(λ,2λ)(λ>0). 又∵a·b=10,∴λ+4λ=10.∴λ=2.∴a= (2,4). (2)∵a·c=2×2+(-1)×4=0,
与向量模有关的问题
已知|a|=10,b=(1,2),且a∥b,求a 的坐标.
思路点拨:
解:设 a 的坐标为(x,y),由题意得2xx-2+y=y2=0,10, 解得
x=2 y=4
5, 5
或xy= =- -24
5, 5,
所以 a=(2 5,4 5)或 a=(-2 5,-4 5).
求向量的模的两种基本策略
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=1,|b|=1,a·b=-12cos
α+
3 2 sin
α.
则
cos
θ
= |aa|·|bb|
=
-12cos α+ 1×1
3 2+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
(3)(a·b)·c. 思路点拨:首先求解相关向量的坐标,再代入 坐标运算表达式求解.
第二章 2.4 2.4.2 平面向量数量积的坐标表示、模、夹角

2.4.2平面向量数量积的坐标表示、模、夹角1.两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.数量积两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2向量垂直a⊥b⇔x1x2+y1y2=0[点睛]记忆口诀:数量积的坐标表示可简记为“对应相乘计算和”.2.与向量的模、夹角相关的三个重要公式(1)向量的模:设a=(x,y),则|a|=x2+y2.(2)两点间的距离公式:若A(x1,y1),B(x2,y2),则|AB|=(x1-x2)2+(y1-y2)2.(3)向量的夹角公式:设两非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,则cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.平面向量数量积的坐标运算[典例](1)向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1 D.2(2)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,AB=(1,-2),AD =(2,1),则AD·AC=()A.5 B.4C.3 D.2[活学活用]已知向量a与b同向,b=(1,2),a·b=10.(1)求向量a的坐标;(2)若c=(2,-1),求(b·c)·a.向量的模的问题[典例] (1)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5D .10(2)已知点A (1,-2),若向量AB 与a =(2,3)同向,|AB |=213,则点B 的坐标是________.[活学活用]1.已知向量a =(cos θ,sin θ),向量b =(3,0),则|2a -b |的最大值为________.2.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________.向量的夹角和垂直问题[典例] (1)已知a =(3,2),b =(-1,2),(a +λb )⊥b ,则实数λ=________.(2)已知a =(2,1),b =(-1,-1),c =a +kb ,d =a +b ,c 与d 的夹角为π4,则实数k 的值为________.[活学活用]已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且a ∥b ,a ⊥c . (1)求b 与c ;(2)若m =2a -b ,n =a +c ,求向量m ,n 的夹角的大小.求解平面向量的数量积[典例] 已知点A ,B ,C 满足|AB |=3,|BC |=4,|CA |=5,求AB ·BC +BC ·CA +CA ·AB 的值.[活学活用]如果正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,那么cos ∠DOE 的值为________.层级一 学业水平达标1.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为( ) A.3 B .3 C .- 3D .-32.设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( ) A. 5 B.10 C .2 5D .103.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6 D .12 4.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( )A .865B .-865C .1665D .-16655.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形6.设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a|=________. 7.已知向量a =(1,3),2a +b =(-1,3),a 与2a +b 的夹角为θ,则θ=________. 8.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a·b =3,则向量b 的坐标为________.9.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R. (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.10.在平面直角坐标系xOy 中,已知点A (1,4),B (-2,3),C (2,-1). (1)求AB ·AC 及|AB +AC |;(2)设实数t 满足(AB -t OC )⊥OC ,求t 的值.层级二 应试能力达标1.设向量a =(1,0),b =⎝⎛⎭⎫12,12,则下列结论中正确的是( ) A .|a |=|b | B .a ·b =22C .a -b 与b 垂直D .a ∥b2.已知向量OA =(2,2),OB =(4,1),在x 轴上有一点P ,使AP ·BP 有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0) 3.若a =(x,2),b =(-3,5),且a 与b 的夹角是钝角,则实数x 的取值范围是( )A.⎝⎛⎭⎫-∞,103 B.⎝⎛⎦⎤-∞,103 C.⎝⎛⎭⎫103,+∞D.⎣⎡⎭⎫103,+∞4.已知OA =(-3,1),OB =(0,5),且AC ∥OB ,BC ⊥AB (O 为坐标原点),则点C 的坐标是( )A.⎝⎛⎭⎫-3,-294 B.⎝⎛⎭⎫-3,294 C.⎝⎛⎭⎫3,294 D.⎝⎛⎭⎫3,-294 5.平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.6.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ·CB 的值为______;DE ·DC 的最大值为______.7.已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|c |=25,且c ∥a ,求c 的坐标; (2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ.8.已知OA=(4,0),OB=(2,23),OC=(1-λ)OA+λOB(λ2≠λ).(1)求OA·OB及OA在OB上的投影;(2)证明A,B,C三点共线,且当AB=BC时,求λ的值;(3)求|OC|的最小值.。
平面向量数量积课件-高一下学期数学人教A版(2019)必修第二册

量,符号由cosθ的符号确定。
2、在数量积中 ,若
a
b
0
,且
a0
,
不能推出 b 0 。因为其中cosθ有可能为0
3得、.但已是知有实数aba,bb,cc(不b 能0)得aab
bc
c
则有a
c
4、在实数中 (a
但 (a
bb))cc
a(b a(b
c) c)
,
2
b
2
例2
已知
a
5,
b
4
,a与
b的夹角为120°,求
a
b
例3
已知
a
求 a
2b6 ,
b
a
3b4 ,
a
与b的夹角为60°,
.
3 例4
量
a
已知
a
kb 与
3, b
a
4
且a
与b
不共线.求当k为何值时,向
kb 互相垂直?
4
练习:
求(1)已(a 知 2|ba)|(a3,| b3b|),4,|且a a与b|,b|的a 夹b角| θ 150o ,
θ O
a cos
A
b
B A1
投影是向量还是数?投影与什么有关系?
2.数量积的几何意义
根据投影的概念数量积 的几何意义如何?
a b = | a || b | cos
B
O
θ b c os
B1
A
数量积
a
b等于
的a 模
与a 在
影上的a 投cob影sθ的b 乘积的,乘或积等,于a
的模
cob |
|2 或
| a |
数学(2.4.2平面向量数量积的坐标表示、模、夹角)

方向性
向量的模只与向量的长度有关, 与其方向无关。
模的计算方法
定义法
根据定义直接计算向量的模 。
勾股定理法
如果向量在直角坐标系中的 坐标已知,可以使用勾股定 理计算模。
向量分解法
将向量分解为两个互相垂直 的分量,然后分别求出分量 的模,再求和。
模的性质
共线性质
如果两个向量共线,那么它们的模相等或互为相反数。
05
实例分析
数量积的坐标表示实例
要点一
总结词
通过具体例题,展示如何利用坐标表示计算平面向量的数 量积。
要点二
详细描述
假设有两个向量$overset{longrightarrow}{a} = (x_{1}, y_{1})$和$overset{longrightarrow}{b} = (x_{2}, y_{2})$, 它们的数量积为$overset{longrightarrow}{a} cdot overset{longrightarrow}{b} = x_{1}x_{2} + y_{1}y_{2}$。 通过具体例题,展示如何利用坐标表示计算平面向量的数量 积。
平面向量的模
定义与性质
定义
平面向量$vec{a}$的模定义为 $left|vec{a}right| = sqrt{a_1^2 + a_2^2}$,其中$a_1$和$a_2$ 分别是向量$vec{a}$模总是非负的,即 $left|vec{a}right| geq 0$。
数量积与夹角的关系
数量积与夹角余弦值的关系
向量的数量积等于两个向量模的乘积乘以它们夹角的余弦值,即$mathbf{A} cdot mathbf{B} = |mathbf{A}| times |mathbf{B}| times costheta$。