高中数学-立体几何-线面角知识点
高三数学一轮复习立体几何系列之线面角(直线与平面夹角)
高三数学一轮复习 立体几何系列之线面角(直线与平面夹角)教学目标(1)掌握直线与平面夹角的几种求法; (2)掌握线面角问题的综合应用。
知识梳理直线与平面所成的角的定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和平面所成的角。
规定:(1)一条直线垂直于平面,它们所成的角是直角;(2)一条直线与平面平行或在平面内,它们所成的角是︒0角。
线面角的范围是[0,2π] 作法:作出直线和平面所成的角,关键是作垂线,找射影。
典例精讲例1.(★★★)在直三棱柱ABC-A 1B 1C 1中,∠AB C=90°, A B=BC=1. (1)求异面直线B 1C 1与AC 所成角的大小; (2)若直线A 1C 与平面ABC 所成角为45°, 求三棱锥A 1-ABC 的体积.【答案】:(1)因为11BC B C P ,所以∠BCA (或其补角)即为异面直线11B C 与AC 所成角∠AB C=90°, A B=BC=1,所以4BCA π∠=,即异面直线11B C 与AC 所成角大小为4π。
(2)直三棱柱ABC-A 1B 1C 1中,1A A ABC ⊥平面,所以1A CA ∠即为直线A 1C 与平面ABC 所成角,所以14ACA π∠=。
Rt ABC ∆中,AB=BC=1得到AC =,1Rt AA C ∆中,得到1AA AC =所以1136ABC ABC S AA -==V 1A V 例2.(★★★)在棱长为2的正方体1111D C B A ABCD -中,(如图)E 是棱11D C 的中点,F 是侧面D D AA 11的中心.(1) 求三棱锥EF D A 11-的体积;(2) 求EF 与底面1111D C B A 所成的角的大小.(结果用反三角函数表示) 【答案】:(1)3111311111=⋅⋅==--F D A E EF D A V V . (2)取11D A 的中点G ,所求的角的大小等于GEF ∠的大小,GEF Rt ∆中22tan =∠GEF ,所以EF 与底面1111D C B A 所成的角的大小是22arctan . 课堂检测1.(★★★)如图,在棱长为2的正方体1111ABCD A B C D -中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的大小(结果用反三角函数值表示).【答案】:过E 作EF ⊥BC ,交BC 于F ,连接DF . ∵ EF ⊥平面ABCD ,ABCD A 1B 1C 1FED 1∴ ∠ED F 是直线DE 与平面ABCD 所成的角 由题意,得EF =111.2CC = ∵11,2CF CB DF ==∴= ∵ EF ⊥DF , ∴tan 5EF EDF DF ∠== 故直线DE 与平面ABCD所成角的大小是arctan2.(★★★)如图,已知四棱锥P ABCD -的底面ABCD 是边长为1的正方形,PD ⊥底面ABCD ,且2PD =.(1) 若点E 、F 分别在棱PB 、AD 上,且4PE EB =u u u r u u u r ,4DF FA =u u u r u u u r,求证:EF ⊥平面PBC ;(2) 若点G 在线段PA 上,且三棱锥G PBC -的体积为14,试求线段PG 的长.【答案】:(1)以点D 为坐标原点,DA 为x 轴正方向,DC 为y 轴正方向建立空间直角坐标系.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,2P ,因为4PE EB =u u u r u u u r ,4DF FA =u u u r u u u r ,所以4,0,05F ⎛⎫ ⎪⎝⎭,442,,555E ⎛⎫⎪⎝⎭,则420,,55EF ⎛⎫=-- ⎪⎝⎭u u u r ,()1,0,0BC =-u u ur ,()1,1,2PB =--u u u r .0EF BC ⋅=u u u r u u u r ,0EF PB ⋅=u u u r u u u r,即EF 垂直于平面PBC 中两条相交直线,所以EF ⊥平面PBC .(2)()1,0,2PA =-u u u r ,可设()01PG PA λλ=≤≤u u u r u u u r,所以向量PG uuu r的坐标为(),0,2λλ-,平面PBC 的法向量为420,,55EF ⎛⎫=-- ⎪⎝⎭u u u r .点G 到平面PCE的距离4PG EFd EFλ⋅===u u u r u u u r u u u r. PBC ∆中,1BC =,PC =,PB =PBC S ∆=. 三棱锥G PBC -的体积11133234PBC V S d λ∆=⋅===,所以34λ=.此时向量PG uuu r 的坐标为33,0,42⎛⎫- ⎪⎝⎭,PG =u u u r PG回顾总结。
高中数学-立体几何-线面角知识点
立体几何知识点整理一.直线和平面的三种位宣关系:1. 线面平行2・线面相交3.线在面内二・平行关系:1. 线线平行:方法一:用线面平行实现。
l//a7 c/? >=>』//也a r\ fl = in方法二:用面面平行实现。
7^7方法三:用线面垂直实现。
若/丄QJ"丄G ,则/〃〃2。
方法四:用向量方法:若向量i和向量万共线且人山不重合,则/〃〃2。
2. 线面平行:方法一:用线线平行实现。
lUmnt u a 了 => IllaI <z a方法二:用面面平行实现。
all p/U0方法三:用平面法向量实现。
若“为平面&的一个法向量,八丄7且/cza,则///a。
3. 面面平行:方法一:用线线平行实现。
i//r化加u a且相交方法二:用线面平行实现。
Illamil a a II p/,加u 0且相交三・垂宜关系:1. 线面垂直:方法一:用线线垂直实现。
/丄AC/丄43"=> / 丄aACr^AB = AAC, ABu a方法二:用面面垂直实现。
a丄0Z=7n A I zD7mllm1A U 0且相交all卩/Y//~~7a r\ p = m => /丄a/ 丄mJ u p Z_72. 面面垂直:方法一:用线面垂直实现。
/丄a lu卩.方法二:计算所成二面角为直角。
3. 线线垂宜:方法一:用线面垂直实现。
/丄a ]> => / 丄mm u a方法二:三垂线定理及其逆定理。
PO丄a/ 丄04 (=>1丄PAI ua方法三:用向量方法:若向量i和向量〃;的数量积为o,贝M丄也。
三.夹角问题。
(一)异面直线所成的角:(1)X围:(0。
,90。
](2)求法:方法一:定义法。
步骤1:平移,便它们相交,找到夹角。
步骤2:解三角形求出角。
(常用到余荻定理)余荻定理:a2 +b2 -c2cos& = ------------------2ab(计算结果可能是其补角)方法二:向量法。
高中立体几何知识点总结
高中立体几何知识点总结高中立体几何知识点总结1点在线面用属于,线在面内用包含。
四个公理是基础,推证演算巧周旋。
空间之中两条线,平行相交和异面。
线线平行同方向,等角定理进空间。
判定线和面平行,面中找条平行线。
已知线与面平行,过线作面找交线。
要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。
已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。
判定线和面垂直,线垂面中两交线。
两线垂直同一面,相互平行共伸展。
两面垂直同一线,一面平行另一面。
要让面与面垂直,面过另面一垂线。
面面垂直成直角,线面垂直记心间。
一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。
空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。
引进向量新工具,计算证明开新篇。
空间建系求坐标,向量运算更简便。
知识创新无止境,学问思辨勇攀登。
多面体和旋转体,上述内容的延续。
扮演载体新角色,位置关系全在里。
算面积来求体积,基本公式是依据。
规则形体用公式,非规形体靠化归。
展开分割好办法,化难为易新天地。
高中立体几何知识点总结2三角函数。
注意归一公式、诱导公式的正确性数列题。
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
高中数学必修2立体几何专题-线面、面面垂直专题总结
∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.
高考数学立体几何中与角有关的四大定理及其证明
则 cosθ = cos2β + cos2γ - 2cosαcosβcosγ sinα
证明:设 ∠HAC = θ1,∠HAB = θ2 ⇒ α = θ1 + θ2,
由三余弦定理得:
cos β cosγ
= =
cosθ cosθ
cosθ1 cosθ2
① ②
由①和②得 cosθ = cosβ = cosγ ③ cosθ1 cosθ2
α
Aβ
γ
P α : 线面角 β : 斜线角 γ : 射影角 则 cosβ = cosαcosγ ⇒ β > α,β > γ
Q
B
证明:cosβ =
AB PA
,cosα =
QA PA
,cosγ =
AB QA
⇒ cosβ = cosαcosγ
·1·
3. 三夹角公式
P
θ
Aβ
γ
α
C H
B
若 θ 为 PA 与平面 ABC 的夹角
⋅
HO BO
AH AO
⋅
BH BO
= cosθ - cosθ1cosθ2 sinθ1sinθ2
注:若 φ =
π 2
,
则该定理退化为三余弦定理
·3·
立体几何中与角有关的四大定理及其证明
1. 三正弦定理
β α
A
γ
B
P
α : 线面角 β : 线棱角 γ : 二面角 则 sinα = sinβsinγ Q ⇒ α ≤ β,α ≤ γ
证明:sinα =
PQ PA
,sinβ =
PB PA
,sinγ =
PQ PB
⇒ sinα = sinβsinγ
线线角、线面角,二面角[高考立体几何法宝]
1A 1B 1C 1D BCD E FG线线角、线面角、二面角的求法1.空间向量的直角坐标运算律:⑴两个非零向量与垂直的充要条件是1122330a b a b a b a b ⊥⇔++=⑵两个非零向量a 与b 平行的充要条件是·=±||||2.向量的数量积公式若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a ·b =|a ||b | cos θ(2)模长公式:则212||a a a a a =⋅=++2||b b b b =⋅=+ (3)夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB ==,A Bd =①两条异面直线a 、b 间夹角0,2πα⎛⎫∈ ⎪⎝⎭在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4πPBCAC .510arccosD .2π (向量法,传统法)例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.解:(1)向量法(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中,即tan PDDBA DB∠==. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -②直线a 与平面α所成的角0,2πθ⎛⎤∈ ⎥⎝⎦(重点讲述平行与垂直的证明)可转化成用向量→a 与平面α的法向量→n 的夹角ω表示,由向量平移得:若ππππ平面α的法向量→n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:图1-图1-图1-1D 1B 1C P DBCA(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =(3)根据法向量的定义建立关于x,y,z的方程组(0a <(4)解方程组,取其中的一组解,即得法向量。
高中数学立体几何知识点归纳总结
高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
立体几何知识点
高一上学期立体几何知识点一、点、线(直线、射线、线段)、平面1平面的表示方法平行四边形(平面a平面ABCD,平面AC)或三角形二、立体图形的画法斜二测1、x不变、y一半、夹角45度2、斜二测和原图形的面积比为f42直观图2-1直观图的定义:是观察者站在某一点观察一个空间几何体而画出的图形,直观图通常是在平行投影下画出的空间图形。
2-2斜二测法做空间几何体的直观图⑴在已知图形中取互相垂直的轴Ox、Oy,即取/xOy=90°;⑵画直观图时,把它画成对应的轴O‘x‘、O'y,取/x‘O‘y'=45°或135°,它们确定的平面表示水平平面;⑶在坐标系x‘o'y‘中画直观图时,已知图形中平行于数轴的线段保持平行性不变;平行于x轴的线段保持长度不变;平行于y轴的线段长度减半。
结论:采用2斜二测法作出的直观图的面积是原平面图形的—4看不到的线用虚线(或者不画)需要有立体感。
(想垂直就垂直,想在里就在里,想在外就在外。
)三、立体图形之间的关系。
1点和线的位置关系(点在线上,点在线外)2点和面的位置关系(点在面上,点在面外)3线和线的位置关系(平行、相交、异面)4线和面的位置关系(线在面上,线面平行,线面相交(线面垂直))5面和面的位置关系(平行、相交(重合))四、各种角的范围1、异面直线所成的角的取值范围是2、直线与平面所成的角的取值范围是3、斜线与平面所成的角的取值范围4、二面角的大小用它的平面角来度量;取值范围是五、射影定理㈠空间几何体的类型1多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
棱柱多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三六、角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱ABCDEF-A'B‘C‘D‘E'F‘或棱柱A’D.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.斜棱柱直棱称正棱柱平行六面体七、直平行六面体1棱柱的结构特征1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
立体几何-线面角及线线角
10.8线面角与线线角【知识网络】1、异面直线所成的角:〔1〕X 围:(0,]2πθ∈;〔2〕求法;2、直线和平面所成的角:〔1〕定义:〔2〕X 围:[0,90];〔3〕求法;3、一些常见模型中的角之间的关系。
【典型例题】例1:〔1〕在正方体1111ABCD A BC D -中,以下几种说法正确的选项是 〔 〕 A 、11AC AD ⊥ B 、11DC AB ⊥ C 、1AC 与DC 成45角 D 、11AC 与1BC 成60角 答案:D 。
解析:A 1C 1与AD 成45°,D 1C 1与AB 平行,AC 1与DC 所成角的正切为22。
〔2〕在正方体AC 1中,过它的任意两条棱作平面,那么能作得与A 1B 成300角的平面的个数为〔〕A 、2个B 、4个C 、6个D 、8个答案:B 。
解析:平面A 1ACC 1,平面BB 1D 1D ,平面ABC 1D 1,平面A 1D 1CC 1。
〔3〕正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是12侧面对角线E 1D 与BC 1所成的角是〔 〕A .90ºB .60ºC .45ºD .30º答案:B 。
解析将BC 1平移到E 1F 即可。
〔4〕在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是。
答案:AC ⊥BD 。
解析:过A 作AH ⊥平面BCD ,垂足为H ,因为CD ⊥AB ,BC ⊥AD ,所以CD ⊥BH ,BC ⊥DH ,故H 为△BCD 的垂心,从而BD ⊥CH ,可得BD ⊥AC 。
〔5〕点AB 到平面α距离距离分别为12,20,假设斜线AB 与α成030的角,那么AB的长等于_____.答案:16或64。
解析:分A 、B 在平面α的同侧和异侧进展讨论。
例2:.如图:直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。
高考理科数学必考——几何证明与利用空间向量求线面角、面面角
高考理科数学必考——几何证明与利用空间向量求线面角、面
面角
时间过的飞快,距离高考的时间就只剩76天了,同学和老师也越来越紧张了,有些地方欠缺的同学开始寝食难安,老师也赶快奉献点干货来帮助几何证明欠缺的学生。
立体几何其实难度不大,只要你会空间向量,会建系,一切就自然而然水到渠成了。
在这先分析这些立体几何的解题思路。
在立体几何中,第一问一般会让你证明线面平行、线面垂直、面面平行、面面垂直
1、证明线面平行的方法1、平移的方法,找到直线与平面内一条直线平行
2、利用面面平行、证明线面平行
2、证明线面垂直的方法1、证明直线与平面内相交的两直线垂直
3、证明面面平行的方法1、证明一个平面内两相交的直线与另一个平面内两相交的直线互相平行
2、证明平面内两相交的直线分别平行另一个平面
4、证明面面垂直的方法1、先证明一条直线垂直于一个平面,这条直线还在另一个平面内
利用这些方法第一问就可以轻松解决了。
在立体几何第二中,会求线面角、面面角,在第二步中,利用空间向量解决就可以
利用空间向量解决第二问的步骤1、找三垂,建立空间直角坐标系
2、写出各个点的坐标
3、求出直线向量、面的法向量
4、利用夹角公式算出余弦值
下面通过两个例题说明一下这个空间几何。
高中数学必考知识点归纳整理
高中数学必考知识点归纳整理(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中数学必考知识点归纳整理有很多的同学是非常想知道,高中必考数学知识点有哪些,下面本店铺给大家带来一些高中数学必考知识点,希望对大家有所帮助。
2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)
专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
这是空间向量求解的巨大优点,也是缺点,就这么共存着。
其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。
方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
高中数学立体几何线面角公式
高中数学立体几何线面角公式
一、高中立体几何线面角的概念
在高中立体几何中,线面角是指一条直线与一个平面所成的最小角。
这个概念帮助我们更好地理解空间中线与面的关系,以及如何计算它们之间的角度。
二、线面角公式及其推导
1.线面角公式
线面角公式如下:
α= β + γ
其中,α表示线面角,β 表示直线与平面内的直线所成的角度,γ 表示平面内的直线与平面所成的角度。
2.推导
根据空间几何中的知识,我们知道:
β+ γ = 180°
因此,
α= 180° - γ
这样,我们就得到了线面角的计算公式。
三、线面角公式的应用
线面角公式在解决立体几何问题时非常有用,例如:
1.判断直线与平面是否垂直:若线面角为90°,则直线与平面垂直。
2.计算线面角的大小:根据线面角公式,求得线面角α的值。
3.求解空间几何中的角度和:利用线面角公式,可以计算出空间中多个角度之和。
四、总结与练习
线面角公式是高中立体几何中的重要知识点,理解和掌握这个公式,能够帮助我们更好地解决实际问题。
通过下面的练习,巩固所学知识:
1.已知直线l与平面α所成角为30°,直线l与平面β所成角为45°,求直线l与平面α、β的夹角。
2.一平面与直线l垂直,直线l与另一平面β成60°,求平面α与β之间的夹角。
高中立体几何专题:线面角与线线角
线面角与线线角1、异面直线所成的角:(1)范围:(0,]2πθ∈;(2)求法;2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( )A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45o 角D 、11AC 与1B C 成60o 角答案:D 。
解析:A 1C 1与AD 成45°,D 1C 1与AB 平行,AC 1与DC。
(2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( )A 、2个B 、4个C 、6个D 、8个答案:B 。
解析:平面A 1ACC 1,平面BB 1D 1D ,平面ABC 1D 1,平面A 1D 1CC 1。
(3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1面对角线E 1D 与BC 1所成的角是 ( )A .90ºB .60ºC .45ºD .30º答案:B 。
解析将BC 1平移到E 1F 即可。
(4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。
答案:AC ⊥BD 。
解析:过A 作AH ⊥平面BCD ,垂足为H ,因为CD ⊥AB ,BC ⊥AD ,所以CD ⊥BH ,BC ⊥DH ,故H 为△BCD 的垂心,从而BD ⊥CH ,可得BD ⊥AC 。
(5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___.答案:16或64。
解析:分A 、B 在平面α的同侧和异侧进行讨论。
例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD.(Ⅰ) 证明:BC ⊥侧面PAB;(Ⅱ) 证明: 侧面PAD ⊥侧面PAB;(Ⅲ) 求侧棱PC 与底面ABCD 所成角的大小;答案: (Ⅰ)证: ∵侧面PAB ⊥底面ABCD, 且侧面PAB 与底面ABCD 的交线是AB, 在矩形ABCD 中, BC ⊥AB ,.∴BC ⊥侧面PAB.(Ⅱ)证: 在矩形ABCD 中, AD ∥BC, BC ⊥侧面PAB, ∴AD ⊥侧面PAB. 又AD ⊂平面PAD, ∴侧面PAD ⊥侧面PAB.(Ⅲ)解: 在侧面PAB 内, 过点P 做PE ⊥AB, 垂足为E, 连结EC, ∵侧面PAB 与底面ABCD 的交线是AB, PE ⊥AB, ∴PE ⊥底面ABCD. 于是EC 为PC 在底面ABCD 内的射影.A BC D PAB C H S M ∴∠PCE 为侧棱PC 与底面ABCD 所成的角. 在△PAB 和△BEC 中, 易求得PE=3, EC=3.在Rt △PEC 中, ∠PCE=45°.例4:设△ABC 内接于⊙O ,其中AB 为⊙O 的直径,PA ⊥平面ABC 。
高考数学专题—立体几何(空间向量求空间角与空间距离)
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
高中数学立体几何版块之线、面角的计算
线、面角的计算(讲义)知识点睛一、在几何体中求点到平面的距离的处理思路1. 作点到面的垂线,点到垂足的距离即为点到平面的距离; 2. 在三棱锥中用等体积法求解.例:求点S 到平面ABC 的距离,即求SO , 利用S ABC B SAC V V --=进行求解.二、在几何体中线面角的处理思路 定义法(1)找斜线上一点,过该点作与平面垂直的直线;(2)连接垂足和斜足,得到斜线在平面内的射影,斜线与其射影所成的锐角即为所求角;(3)把该角放在三角形中,解直角三角形,求角.注:垂足一般都是特殊点,比如中心、垂心、重心等. 例:直线SB 与平面ABC 所成的夹角θ即为∠SBO ,其中SO ⊥底面ABC .三、在几何体中二面角的处理思路1.定义法方法一:直接在二面角的棱上取一特殊点,过该点分别在两个半平面中作棱的垂线,得到平面角;例:图1中二面角P -AD -B 的平面角为∠EOF .(O 为特殊点)方法二:由其中一个面的某一特殊点作棱的垂线,过垂足作棱的在另一个平面内的垂线,得到平面角.例:图2中二面角P -AD -B 的平面角为∠POM .(P 为特殊点)2.三垂线法过其中一个面的某一特殊点作另一个平面的垂线,过垂足作相交棱的在另一个平面的垂线. 例:图3中二面角P -AD -B 的平面角为∠PON .(P 为特殊点,PN ⊥平面ABCD ) 突破口:研究两个半平面的图形特征,抓等腰三角形、直角三角形等特征.精讲精练1. 如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,∠BCD =90°,求点A 到平面PBC 的距离.θS C BAOM O A B C D P 图1E F 图2P D C B A O N O A BCD P 图3DCBAP2. 如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,AB=,BC =1,P A =2,E 为PD 的中点,求直线BE 与平面ABCD 所成角的正切值.EPD CBA3. 如图,在空间四边形ABCD 中,平面ABD ⊥平面BCD ,∠BAD =90°,∠BCD =90°,且AB =AD ,求AC 与平面BCD 所成角的大小.DCB4. 如图,在正方体ABCD -A 1B 1C 1D 1中,求BB 1与平面ACD 1所成角的余弦值.ABCD A 1C 1D 1B 15. 如图,已知正四面体ABCD 的棱长为a ,E 为AD 的中点,连接CE . (1)求证:顶点A 在底面BCD 内的射影是△BCD 的外心; (2)求AD 与底面BCD 所成角的余弦值; (3)求CE 与底面BCD 所成角的正弦值.EBDC6.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥底面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面F角F-BD-C的正切值.ECD7. 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥AB ,P A =AB =2,AC =1. (1)求证:PC ⊥AB ; (2)求二面角A -PC -B 的正弦值.8. 如图,在直三棱柱ABC -A 1B 1C 1中,112AC BC AA ==,D 是棱AA 1的中点,DC 1⊥BD .(1)求证:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.PCBAC 1A 1B 1ABC D9.如图所示,直三棱柱ABC-A1B1C1的底面是边长为2的正三角,D是AC的中点.(1)求二面角A1-BD-A的大小;(2)求直线AB1与平面A1BD所成角的正弦值.10.如图,在三棱锥P-ABC中,∠APB=90°,∠P AB=60°,AB=BC=CA,平面P AB⊥平面ABC.(1)求直线PC与平面ABC所成角的正弦值;(2)求二面角B-AP-C的正切值.PCBAPCB AA BCA1B1C1D回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________ 【参考答案】12.133.45° 4.35.(1)略;(2(3)36.(1)略;(2)27.(1)略;(28.(1)略;(2)30°9.(1)60°;(210.(1(2)2线、面角的计算(随堂测试)11.如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,PO⊥AD,O为BC的中点.(1)求证:PO⊥平面ABCD;(2)求二面角P-AD-B的正切值;(3)求直线PB与平面P AD所成角的大小.DCB AOPD CB AOPD CB AO P【参考答案】1.(1)略;(2;(3)45°线、面角的计算(作业)例1:在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD的中点,求直线AD与平面MBC所成角的正弦值.【思路分析】(1)利用面面垂直的性质定理可得AB⊥平面BCD,进而得到AB⊥CD;(2)思路一:考虑作D到平面的垂线,分析线面间的垂直关系,得到垂线,进而得到线面角,在直角三角形中研究边角关系,求解;思路二:转化为求点D到平面的距离,利用三棱锥的等体积法,建立等式,求解.【解题过程】(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊥BD,∴AB⊥平面BCD,又CD ⊂平面BCD,∴AB⊥CD.(2)由(1)可得CD⊥平面ABD,∴CD⊥BM,CD⊥AD,在Rt△ABD中,AB=BD,M为AD的中点,∴BM⊥AD,∴BM⊥平面CDM,方法一:如图,过点D作DE⊥CM于点E,∵DE⊂平面CDM,∴BM⊥DE,又DE⊥CM,∴DE⊥平面BCM,则∠DMC即为直线AD与平面MBC所成的角,在Rt△CDM中,CD=1,DM=2,∴CMsin∠DMC=3==CDCM,EMDCBAMDCBA即直线AD与平面MBC方法二:利用等体积法D BCM M BCD V V --=求解,令点D 到平面BCM 的距离为d ,直线AD 与平面MBC 所成的角为θ,如图,取BD 的中点F ,连接MF ,则MF ∥AB ,12MF =, ∵AB ⊥平面BCD , ∴MF ⊥平面BCD ,在Rt △BCD 中,BD =CD =1,∴BC,111122∆=⨯⨯=BCD S ,在Rt △ABD 中,AB =BD =1,M 为AD 的中点, ∴BM, 由BM ⊥平面CDM 得,BM ⊥CM , 在Rt △BCM 中,BM =DMBC, ∴CM122BCMS =⨯=, ∵D BCM M BCD V V --=,∴11113322d ⨯=⨯⨯,解得=d , 则sin θ=32==d DM , 即直线AD 与平面MBC所成角的正弦值为3FA BCD M例2: 如图,直三棱柱ABC -A 1B 1C 1的底面是等腰直角三角形,∠ACB =90°,AC =1,AA 1,连接A 1B ,A 1C ,求二面角A -A 1B -C 的正切值.【思路分析】观察此二面角,点C 到平面AA 1B 的垂线很明显,利用三垂线法,先找到垂足D ,再过垂足作棱A 1B 的垂线DE ,连接CE ,即得二面角的平面角为∠CED ,进而研究相关的三角形,在直角三角形中求解. 【解题过程】在Rt △AA 1B 中,AB =AA 1A 1BA =45°, 在Rt △BDE 中,BD =2,∴DE =12, B 1BABC A 1C 1B 112.如图,正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,求AB1与侧面ACC1A1所成角的正弦值.13.如图,在三棱锥O-ABC中,三条棱OA、OB、OC两两垂直,且OA=OB=OC,M是AB边的中点,求OM与平面ABC所成的角的正切值.14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=PD=CD=2.(1)求证:平面PDC⊥平面ABCD;AB CA1B1C1MCB AOP(2)求直线PB与平面ABCD所成角的正弦值.15.如图,在三棱锥P-ABC中,PB⊥平面ABC,△ABC是直角三角形,∠ABC=90°,AB=BC=2,∠P AB=45°,点D,E,F 分别为AC,AB,BC的中点.(1)求证:EF⊥PD;(2)求直线PF与平面PBD所成角的正弦值.16.如图,在△ABC中,∠ABC =90°,SA⊥平面ABC,若SA=AB=BC,求二面角B-SC-A的大小.PFEDC BAS17. 如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =1,∠BAC =90°,且异面直线A 1B 与B 1C 1所成的角等于60°,设AA 1=a . (1)求a 的值;(2)求平面A 1BC 1与平面B 1BC 1所成的锐二面角的大小.18. 如图,在直棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中 点,AA 1=AC =CB=2AB . (1)求证:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.A B CA 1C 1B 1B 1C 1A 119.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BCD=90°,AB=BC=PC=1,PB,CD=2,AB⊥PC.(1)求证:PC⊥平面ABCD;(2)求P A与平面ABCD所成角的正切值;(3)求二面角B-PD-C的余弦值.B1C1 A1ABCDEPD CB【参考答案】123.(1)略;(24.(1)略;(25.60°6.(1)1;(2)60°PD CBPD CB7.(1)略;(28.(1)略;(2;(3)23。
高中数学立体几何知识点归纳总结材料
高中数学立体几何知识点归纳总结一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩L底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱底面为平行四边形侧棱垂直于底面底面为矩形底面为正方形侧棱与底面边长相等1.3棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA=++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高)2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高)3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BAm
a
d
n
方法二:直接计算公垂线段的长度。
c
m'
D
b
方法三:公式法。
C
如图,AD是直线m和n的公垂线段,m∥m`,则异面直线m和n的距离为
d
2a2b2ab
c2
cos
2.线面平行:
方法一:用线线平行实现。
l//m
ml//
l
方法二:用面面平行实现。
l
β
//
l //
α
l
方法三:用平面法向量实现。nl
若n为平面的一个法向量,nl且l,则l//。
α
2.面面平行:
方法一:用线线平行实现。
l
//
//
,m
',
m
l
l
且相交
且相交
//
α
l
βm
l'
m'
方法二:用线面平行实现。
l
//
步骤2:解三角形,求出二面角的平面角。
方法二:截面法。
步骤1:如图,若平面POA同时垂直于平面和,则交线(射线)AP和AO的夹角就是二面
角。
βP
步骤2:解三角形,求出二面角。
θ
A
Oα
方法三:坐标法(计算结果可能与二面角互补)。
步骤一:计算
cos
nn
12
nn
12
nn
12
θ
n1
n2
步骤二:判断与
nn的关系,可能相等或者互补。
θ
AO
α
方法一:定义法。
步骤1:
(三)二面角及其平面角
(1)定义:在棱l上取一点P,两个半平面内分别作l的垂线(射线)m、n,则射线m和
n的夹角为二面角—l—的平面角。
m(2)范围:[0,180]
l P
n
(3)求法:
方法一:定义法。
步骤1:作出二面角的平面角(三垂线定理),并证明。
P
PO
lOAlPA
l
AO
l
α
方法三:用向量方法:
若向量l和向量m的数量积为0,则lm。
三.夹角问题。
(一)异面直线所成的角:
(1)范围:(0,90]
(2)求法:
方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。(常用到余弦定理)
余弦定理:
a
c
cos
2
a
2
b
2ab
2
c
θ
b
(计算结果可能是其补角)
//
m
//
β
l
m
l,m
且相交
α
三.垂直关系:
3.线面垂直:
方法一:用线线垂直实现。
lAC
l
l
AC
AC,
A
l
A
α
C
B
方法二:用面面垂直实现。
β
l
ml
m
lm,l
α
3. 面面垂直:
方法一:用线面垂直实现。
l
β
l
C
θ
l
α
AB
方法二:计算所成二面角为直角。
4.线线垂直:
方法一:用线面垂直实现。
l
l
m
lm
α
m
方法二:三垂线定理及其逆定理。
12
四.距离问题。
P
1.点面距。
AO方法一:几何法。
步骤1:过点P作PO于O,线段PO即为所求。
步骤2:计算线段PO的长度。(直接解三角形;等体积法和等面积法;换点法)
m
2.线面距、面面距均可转化为点面距。
n
3.异面直线之间的距离
方法一:转化为线面距离。
如图,m和n为两条异面直线,n且m//,则异面直线m和n之间的距离可转
立体几何知识点整理
一.直线和平面的三种位置关系:
1.线面平行2.线面相交3.线在面内
l
l
Alαα
α
二.平行关系:
1.线线平行:
方法一:用线面平行实现。
l
l//
ll//m
m
m
方法二:用面面平行实现。
//
l
ll//mβ
mγ
mα
方法三:用线面垂直实现。
若l,m,则l//m。
方法四:用向量方法:
若向量l和向量m共线且l、m不重合,则l//m。
方法二:向量法。转化为向量的夹角
(计算结果可能是其补角):P
n
cos
AB
AB
AC
AC
AθO
α
(二)线面角
(1)定义:直线l上任取一点P(交点除外),作PO于O,连结AO,则AO为斜线PA
在面内的射影,PAO(图中)为直线l与面所成的角。
P(2)范围:[0,90]
当0时,l或l//;当90时,l
(3)求法: