2020年上海市松江区高一下学期期中数学(附带详细解析)

合集下载

2020年上海市高一(下)期中数学试卷解析版

2020年上海市高一(下)期中数学试卷解析版

期中数学试卷题号一二三总分得分一、选择题(本大题共4小题,共12.0分)1.在△ABC中,“A>B”是“sin A>sin B”的( )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件2.一个半径为R的扇形,它的周长是4R,则这个扇形所含弓形的面积为( )A. B.C. D. (1-sin1cos1)R23.已知△ABC内接于单位圆,则长为sin A、sin B、sin C的三条线段( )A. 能构成一个三角形,其面积大于△ABC面积的一半B. 能构成一个三角形,其面积等于△ABC面积的一半C. 能构成一个三角形,其面积小于△ABC面积的一半D. 不一定能构成一个三角形4.已知函数,,则下列说法正确的是A.与的定义域都是B. 为奇函数,为偶函数C. 的值域为的值域为D.与都不是周期函数二、填空题(本大题共12小题,共36.0分)5.已知角α的终边在射线y=-x(x≤0)上,则cosα=______.6.若,则cos2α=______.7.已知tan(π-θ)=3,则=______.8.已知,则=______.9.已知,则cosα=______.10.函数的最小正周期为______.11.函数y=cos2x+2sin x-2的值域为______.12.下图为函数的部分图象,M、N是它与x轴的两个交点,D、C分别为它的最高点和最低点,E(0,1)是线段MD的中点,且△OMB为等腰直角三角形,则f(x)的解析式为f(x)=______.13.已知方程sin x+cos x=m+1在x∈[0,π]上有两个不相等的实数解,则实数m的取值范围是______.14.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,小区的两个出入口设置在点及点C处,且小区里从D沿DA 有一条平行于BO的小路CD,已知某人从C沿CD走到D用了10分钟,走到A用了6分钟,若此人步行的速度为每分钟50米,则该扇形的半径OA的长约为______(精确到1米).15.设α1,α2∈R,且,则tan(α1+α2)=______.16.已知函数f(x)=sin2ωx-2cos2ωx+1(ω>0),x∈R,若函数f(x)在区间内没有零点,则ω的取值范围为______.三、解答题(本大题共5小题,共48.0分)17.已知(1)求tanα的值;(2)求的值.18.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足.(1)求A的大小;(2)现给出三个条件:①a=2;②B=45°;③c=b试从中选出两个可以确定△ABC的条件,写出你的选择,并以此为依据求△ABC的面积(只需写出一个选定方案即可)19.如图,某园林单位准备绿化一块直径为BC的半圆形空,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花,若BC=1,∠ABC=,设△ABC的面积为S1,正方形的面积为S2.(1)用θ表示S1和S2;(2)当θ变化时,求的最小值,及此时角θ的大小.20.某种波的传播是由曲线f(x)=A sin(ωx+φ)(A>0)来实现的,我们把解析式f(x)=A sin(ωx+φ)称为“波”,把振幅都是A的波称为“A类波”,把两个波的解析式相加称为波的叠加.(1)已如“1类波”中的两个波,与加后是一个“A类波”,求A的值;(2)已知三个不同的“A类波”,从f1(x)=A sin(x+φ1),f2(x)=A sin(x+φ2),f3(x)=A sin(x+φ3)(其中φ1、φ2、φ3互不相同),三个波叠加后是“平波”y=0,即f1(x)+f2(x)+f3(x)=0,求cos(φ1-φ2)cos(φ2-φ3)cos(φ3-φ1)的值.21.某同学用“五点法”画函数在某一周期内的图象时,列表并填入的部分数据如表:x x1x2ωx+φ0π2πsin(ωx+φ)010-10f(x)00y20(1)请写出上表的x1、x2、y2,及函数f(x)的解析式;(2)将函数f(x)的图象向右平移个单位,再所得图象上各店的横坐标缩小为原来的,纵坐标不变,得到函数g(x)的图象,求g(x)的解析式及的单调递增区间;(3)在(2)的条件下,若在x∈(0,2019π)上恰有奇数个零点,求实数a与零点个数n的值.答案和解析1.【答案】A【解析】解:由正弦定理知=2R,∵sin A>sin B,∴a>b,∴A>B.反之,∵A>B,∴a>b,∵a=2R sin A,b=2R sin B,∴sin A>sin B故选:A.由正弦定理知,由sin A>sin B,知a>b,所以A>B,反之亦然,故可得结论.本题以三角形为载体,考查四种条件,解题的关键是正确运用正弦定理及变形.2.【答案】D【解析】解:l=4R-2R=2R,α===2,可得:S扇形=lR=×2R×R=R2,可得:S三角形=×2R sin1×R cos1=sin1•cos1•R2,可得:S弓形=S扇形-S三角形=R2-sin1•cos1•R2=(1-sin1cos1)R2.故选:D.通过扇形的周长,求出扇形的弧长,求出扇形的圆心角,然后求出扇形的面积,三角形的面积,即可得到这个扇形所含弓形的面积.本题是基础题,考查扇形的面积公式的应用,弓形面积的求法,考查计算能力,注意弓形面积的求法.3.【答案】C【解析】解:设△ABC的三边分别为a,b,c利用正弦定理可得,∴a=2sin A,b=2sin B,c=2sin C∵a,b,c为三角形的三边∴sin A,sin B,sin C也能构成三角形的边,面积为原来三角形面积故选:C.设△ABC的三边分别为a,b,c利用正弦定理可得,可得a=2sin A,b=2sin B,c=2sin C由a,b,c为三角形的三边判断即可本题主要考查了正弦定理的变形形式a=2R sin A,b=2R sin B,c=2R sin C(R为三角形外接圆的半径)的应用,属于中档试题.4.【答案】C【解析】解:A.f(x)与g(x)的定义域都是R,故A错误.B.f(-x)=cos(sin(-x))=cos(-sin x)=cos(sin x)=f(x),则f(x)是偶函数,故B错误.C.∵-1≤sin x≤1,-1≤cos x≤1,∴f(x)的值域为[cos1,1],g(x)的值域[-sin1,sin1],故C正确.D.f(x+2π)=cos(sin(x+2π))=cos(sin x)=f(x)则f(x)是周期函数,故D错误.故选:C.根据复合函数的性质结合三角函数的性质分别进行判断即可.本题主要考查命题的真假判断,结合复合函数性质之间的关系,利用三角函数的单调性,奇偶性和周期性的性质是解决本题的关键.5.【答案】【解析】解:∵角α的终边在射线y=-x(x≤0)上,在角α的终边上任意取一点(-1,1),则cosα==-,故答案为:-.由题意利用任意角的三角函数的定义,求得cosα的值.本题主要考查任意角的三角函数的定义,属于基础题.6.【答案】【解析】解:因为sinα=,所以cos2α=1-2sin2α=1-2×=.故答案为:.把所求的式子利用二倍角的余弦函数公式化为关于sinα的式子,将sinα的值代入即可求出值.通常,在高考题中,三角函数多会以解答题的形式出现在第一个解答题的位置,是基础分值的题目,学生在解答三角函数问题时,往往会出现,会而不对的状况.所以,在平时练习时,既要熟练掌握相关知识点,又要在解答时考虑更为全面.这样才能熟练驾驭三角函数题.7.【答案】【解析】解:∵tan(π-θ)=-tanθ=3,∴tanθ=-3,则=.故答案为:.由已知利用诱导公式求tanθ,再由同角三角函数基本关系式化弦为切求解.本题考查三角函数的恒等变换与化简求值,考查同角三角函数基本关系式的应用,是基础题.8.【答案】【解析】解:∵已知,∴cosα=-=-,则=sinαcos+cosαsin=-=,故答案为:.由题意利用同角三角函数的基本关系求得cosα的值,再利用两角和的正弦公式求得sin (α+)的值.本题主要考查同角三角函数的基本关系、两角和的正弦公式的应用,属于基础题.9.【答案】【解析】解:,所以:,解得:,所以:,整理得:,解得:(负值舍去),故=,故答案为:.直接利用三角函数关系式的变换和角的变换的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,角的变换的应用,主要考察学生的运算能力和转换能力,属于基础题型.10.【答案】2π【解析】解:函数的最小正周期是函数y=sin的周期的一半,而函数y=sin的周期为=4π,故函数的最小正周期是2π,故答案为:2π.利用y=|sinωx|的周期是y=sinωx的周期的一半,而y=sinωx的周期为,得出结论.本题主要考查三角偶函数的周期性,利用了y=|sinωx|的周期是y=sinωx的周期的一半,y=sinωx的周期为,属于基础题.11.【答案】[-4,0]【解析】解:y=cos2x+2sin x-2=-sin2x+2sin x-1=-(sin x-1)2,∵x∈R,∴sin x∈[-1,1],∴当sin x=1时,y max=0;当sin x=-1时,y min=-4,∴函数y的值域为[-4,0].故答案为:[-4,0].由y=cos2x+2sin x-2可得由y=-(sin x-1)2,再利用二次函数的相关性质求出最值即可.本题考查了函数的性质及其应用,考查了转化思想和整体思想,属基础题.12.【答案】2sin(x+)【解析】解:由已知点E(0,1)是线段MD的中点知A=2,根据△OMB为等腰直角三角形,可得M(-1,0),D(1,2),∴•=1-(-1),解得ω=;∴函数f(x)=2sin(x+φ),又由M(-1,0)是f(x)图象上的点,由正弦函数的图象与性质知,×(-1)+φ=0,可得φ=,∴f(x)=2sin(x+).故答案为:2sin(x+).由已知点E得出A的值,再根据△OMB为等腰直角三角形可得M、D的坐标,从而求得ω和φ的值.本题主要考查了正弦型函数的图象与性质应用问题,是基础题.13.【答案】【解析】【分析】本题考查三角函数的有解问题,三角函数的最值函数的图象的应用,考查分析问题解决问题的能力,属于基础题.通过两角和与差的三角函数化简左侧表达式,通过三角函数的图象与性质,分析求解m 的范围.【解答】解:m+1=sin x+cos x=2sin(x+),x∈[0,π],x+[],作出函数y=2sin(x+),x∈[0,π]的图象,如图:方程sin x+cos x=m+1在x∈[0,π]上有两个不相等的实数解,即函数y=2sin(x+),x∈[0,π]与直线y=m+1有两个交点,由图可得,m+1∈,可得m∈.故答案为:.14.【答案】445米【解析】解:法一:设该扇形的半径为r米,连接CO.由题意,得CD=500(米),DA=300(米),∠CDO=60°在△CDO中,CD2+OD2-2CD•OD•cos60°=OC2即,5002+(r-300)2-2×500×(r-300)×=r2解得r=≈445(米)答:该扇形的半径OA的长约为445米.法二:连接AC,作OH⊥AC,交AC于H,由题意,得CD=500(米),AD=300(米),∠CDA=120°在△CDO中,AC2=CD2+AD2-2•CD•AD•cos120°=5002+3002+2×500×300×=7002.∴AC=700(米).cos∠CAD==.在直角△HAO中,AH=350(米),cos∠HAO=,∴OA==≈445(米).答:该扇形的半径OA的长约为445米.故答案为:445米.法一:连接OC,由CD∥OB知∠CDO=60°,可由余弦定理得到OC的长度.法二:连接AC ,作OH⊥AC,交AC于H,由余弦定理可求AC,cos∠CAD,在直角△HAO中,利用三角函数的定义可求OA=的值.本题主要考查用余弦定理求三角形边长,考查了数形结合思想和转化思想,属于中档题.15.【答案】1【解析】解:∵α1,α2∈R,且,∴sinα1+2=1,2+sin(2α2)=1,求得sinα1=-1,sin(2α2)=-1,∴α1=2kπ-,且2α2=2nπ-,k、n∈Z,∴α2=nπ-,∴α1+α2=(2k+n)-,∴tan(α1+α2)=tan(-)=1,故答案为:1.由题意可得求得sinα1=-1,sin(2α2)=-1,求得α1和α2的值,可得tan(α1+α2)的值.本题主要考查三角函数的求值问题,属于基础题.16.【答案】【解析】解:f(x)=sin2ωx-2cos2ωx+1=sin2ωx-cos2ωx=sin(2ωx-),(ω>0),由f(x)=0得2ωx-=kπ,即x=+,k∈Z,∵函数f(x)在区间内没有零点,∴x=+∉(,π),若+∈(,π),则<+<π,得ω-<k<2ω-,若函数f(x)在区间内没有零点,等价为在(ω-,2ω-)内没有整数,则≥=,即0<ω≤1,若(ω-,2ω-)内有整数,则当k=0时,由ω-<0<2ω-,得,即<ω<,若当k=1时,由ω-<1<2ω-,得,即<ω<,此时<ω≤1,当k=2时,由ω-<2<2ω-,得,即<ω<,此时ω超出范围,即若(ω-,2ω-)内有整数,则<ω<或<ω≤1,则若(ω-,2ω-)内没有整数,则0<ω≤或≤ω≤,即ω的取值范围为(0,]∪[,],故答案为:(0,]∪[,]利用倍角公式以及辅助角公式进行化简,结合f(x)在区间内没有零点,建立不等式关系进行求解即可.本题主要考查函数零点的应用,利用辅助角公式进行化简,结合三角函数零点问题件转化是解决本题的关键.17.【答案】解:(1)由于,则有3tan2α+8tanα-3=0,解得或tanα=-3,∵,∴tanα=-3;(2)=-cos2α=-(cos2α-sin2α)====.【解析】(1)运用同角的倒数关系,解方程,即可得到;(2)运用诱导公式和二倍角的余弦公式及同角的平方关系和商数关系,计算即可得到.本题考查同角的平方关系和商数关系、倒数关系及诱导公式、二倍角的余弦公式,考查运算能力,属于基础题.18.【答案】解:(1)由2b cos A=c cos A+a cos C代入正弦定理得:2sin B cos A=sin C cos A+sin A cos C即2sin B cos A=sin(C+A)=sin B≠0∴cos A=又0<A<π∴A=(2)选①③由余弦定理:a2=b2+c2-2bc cos A∴b2+3b2-3b2=4∴b=2,c=2∴S=选①②由正弦定理得:又sin C=sin(A+B)=sin A cos B+cos A sin B=∴S=选②③这样的三角形不存在.【解析】(1)化简,利用正弦定理,推出关系式,然后求出A 的值.(2)选①③通过余弦定理,求出b,c,求出三角形的面积;选①②通过正弦定理求出的值,推出sin C的值,然后求出面积;选②③这样的三角形不存在.本题是基础题,考查正弦定理,余弦定理的应用,三角函数的化简求值,考查计算能力,逻辑推理能力.19.【答案】解:(1)∵BC是半圆的直径,A在半圆上,∴AB⊥AC,又BC=1,∴AB=cosθ,AC=sinθ,所以:S1=•AB•AC=sinθcosθ;设正方形的边长为x,则:BP=,AP=x cosθ,由BP+AP=AB,得:+x cosθ=cosθ,解得:x=,所以:S2=x2=()2.(2)===+sin2θ+1,令t=sin2θ,因为0<θ<,所以:0<2θ<π,则t=sin2θ∈(0,1],所以:=++1,令g(t)=++1(0<t≤1),则g′(t)=-+=<0,所以函数g(t)在(0,1]上递减,因此:当t=1时,g(t)取得最小值g(1)=1++1=,此时:sin2θ=1,解得θ=.所以:当θ=时,的值最小,最小值为.【解析】(1)据题三角形ABC为直角三角形,利用三角函数分别求出AC和AB,得出三角形ABC的面积S1,设正方形PQRS的边长为x,利用三角函数分别表示出BQ和RC ,由BQ+QR+RC=a列出方程求出x,算出S2,(2)化简比值,设t=sin2θ来化简求出S1与S2的比值,利用三角函数的增减性求出比值的最小值以及对应此时的θ.本题考查了根据实际问题选择合适的函数关系的能力,以及在实际问题中建立三角函数模型的能力,是综合题.20.【答案】解:(1)与加后是一个“A类波”,即:f1(x)+f2(x)=sin(x+)+sin(x+)=sin x cos+cos x sin+sin x cos+cos x sin=sin x+cos x=sin(x+);由定义解析式f(x)=A sin(ωx+φ)称为“波”,把振幅都是A的波称为“A类波”,所以:A=;(2)设f1(x)=A sin(x+φ1),f2(x)=A sin(x+φ2),f3(x)=A sin(x+φ3),由f1(x)+f2(x)+f3(x)=0恒成立,同(1)化简方法利用两角和差公式及辅助角公式,可解得:(cosφ1+cosφ2+cosφ3)sin x+(sinφ1+sinφ2+sinφ3)cos x=0,易得:cosφ1+cosφ2+cosφ3=0;①sinφ1+sinφ2+sinφ3=0;②由两式变型平方可得:cosφ1+cosφ2=-cosφ3;sinφ1+sinφ2=-sinφ3;两式左右完全平方相加可得:2+2cos(φ1-φ2)=1;cos(φ1-φ2)=-;同理可得:cos(φ2-φ3)=-;cos(φ3-φ1)=-;∴cos(φ1-φ2)cos(φ2-φ3)cos(φ3-φ1)=-.【解析】(1)根据定义可求得f1(x)+f2(x)=(cosφ1+cosφ2)sin x+(sinφ1+sinφ2)cos x ,由辅助角公式可求得A的值.(2)设f1(x)=A sin(x+φ1),f2(x)=A sin(x+φ2),f3(x)=A sin(x+φ3),由f1(x)+f2(x)+f3(x)=0恒成立,可解得:cosφ1+cosφ2+cosφ3=0;sinφ1+sinφ2+sinφ3=0;由两式变型平方可得结论.本题主要考查了两角和与差的正弦函数公式的应用,辅助角公式,考查了归纳推理的常用方法,综合性较强,考查了转化思想,属于中档题21.【答案】解:(1)由表格根据五点法作图的规律,可得+=x1-=x2-x1=-x2,解得x1=,x2=,A=,y2=-,f(x)=sin(x+).(2)将函数f(x))=sin(x+)的图象向右平移个单位,可得y=sin(x-+)=-sin x的图象;再所得图象上各店的横坐标缩小为原来的,纵坐标不变,得到函数g(x)=sin x的图象.函数=[sin x-],由sin x->0,可得sin x>,,要求函数的单调递增区间,即求y=sin x的减区间,而y=sin x的减区间为[,),故的单调递增区间为[,).(3)=3sin2x+a sin x-1,令F(x)=0,则a sin x=1-3sin2x,显然当sin x=0时,F(x)不存在零点,因此只需考虑sin x≠0时,F(x)的零点情况,令t=sin x(sin x≠0且0<x≤2π),则t∈[-1,0)∪(0,1],a=,则函数y=在[-1,0)和(0,1]上单调递减,且t=1时y=2,当t=-1时,y=-2∴当y∈(-2,2)时,y=t与y=有两个交点,此时方程a sin x=1-3sin2x存在4个实根,当y∈(-∞,-2)∪(2,+∞)时,y=t与y=有一个交点,此时方程a sin x=1-3sin2x存在2个实根,当y=2或y=-2时,y=t与y=有两个交点,此时方程a sin x=1-3sin2x存在3个实根.∵在x∈(0,2019π)上恰有奇数个零点,∴当x∈(2018π,2019π)时,F(x)只可能存在2个零点,因此只有a=2时符合条件,∴x∈(0,2019π)时F(x)的零点为:个.【解析】(1)根据表中的数据直接求解个值即可;(2)由条件得到g(x)的图象,然后在由求出单调区间;(3)令F(x)=0,则a sin x=1-3sin2x,显然当sin x=0时,F(x)不存在零点,因此只需考虑sin x≠0时,F(x)的零点情况,根据F(x)在(0,2π]上的零点情况,得到a 的值,然后在根据a的值求出零点的个数.本题考查了函数的图象与性质,考查了数形结合思想和转化思想,属中档题.。

2019-2020学年上海中学高一(下)期中数学试卷

2019-2020学年上海中学高一(下)期中数学试卷

2019-2020学年上海中学高一(下)期中数学试卷试题数:21.满分:01.(填空题.3分)已知点A(2.-1)在角α的终边上.则sinα=___ .2.(填空题.3分)函数y=sin(πx+2)的最小正周期是___ .3.(填空题.3分)设扇形半径为2cm.圆心角的弧度数为2.则扇形的面积为___ .4.(填空题.3分)已知函数f(x)=sinx(x∈[0.π])和函数g(x)= 12tanx的图象交于A.B.C三点.则△ABC的面积为___ .5.(填空题.3分)在平面直角坐标系xOy中.角α与角β均以Ox为始边.它们的终边关于y轴对称.若sinα= 13.则cos(α-β)=___ .6.(填空题.3分)已知sin(x- π4)= 35.则sin2x的值为 ___ .7.(填空题.3分)设x.y∈(0.π).且满足sin2x−cos2x+cos2xcos2y−sin2xsin2ysin(x+y)=1 .则x-y=___ .8.(填空题.3分)我国古代数学家秦九韶在《数学九章》中记述了“三斜求积术”.用现代式子表示即为:在△ABC中.∠A.∠B.∠C所对的边长分别为a.b.c.则△ABC的面积S=√1 4[(ab)2−(a2+b2−c22)2].根据此公式若acosB+(b+3c)cosA=0.且a2-b2-c2=2.则△ABC的面积为___ .9.(填空题.3分)若函数f(x)=2sin(2x+π6)+a−1(a∈R)在区间[0,π2]上有两个不同的零点x1.x2.则x1+x2-a的取值范围是___ .10.(填空题.3分)已知函数f(α)=m−sinαcosα在(0,π2)上单调递减.则实数m的取值范围是___ .11.(单选题.3分)已知cosα=k.k∈R.α∈(π2.π).则sin(π+α)=()A.- √1−k2B. √1−k2C.± √1−k2D.-k12.(单选题.3分)对任意的锐角α.β.下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ13.(单选题.3分)设函数f(x)=Asin(ωx+φ)(A.ω.φ是常数.A>0.ω>0.|φ|<π2).为了得到f(x)的图象.则只需将g(x)=cos2x的图象()A.向右平移π12个单位B.向右平移π6个单位C.向左平移π12个单位D.向左平移π6个单位14.(单选题.3分)若函数f(x)=sin(2x- π3)与 g(x)=cosx-sinx都在区间(a.b)(0<a <b<π)上单调递减.则b-a的最大值为()A. π6B. π3C. π2D. 5π1215.(单选题.3分)已知α.β为锐角且α+β>π2,x∈R,f(x)=(cosαsinβ)|x|+(cosβsinα)|x|.下列说法正确的是()A.f(x)在定义域上为递增函数B.f(x)在定义域上为递减函数C.f(x)在(-∞.0]上为增函数.在(0.+∞)上为减函数D.f(x)在(-∞.0]上为减函数.在(0.+∞)上为增函数16.(单选题.3分)在△ABC中.a.b.c分别为角A.B.C的对边的长.若a2+b2=2020c2.则2tanA•tanBtanC(tanA+tanB)的值为()A.1B.2018C.2019D.202017.(问答题.0分)化简:f(α)=sin(−α)cos(π+α)cos(π2−α)cos(π−α)sin(2π+α)tan(π+α).18.(问答题.0分)已知函数f(x)=√3cos2x−sin2x.(1)用五点法作出f(x)在一个周期内的图象.并写出f(x)的值域.最小正周期.对称轴方程(只需写出答案即可);(2)将f(x)的图象向左平移一个π4单位得到函数y=g(x)的图象.求y=g(x)的单调递增区间.19.(问答题.0分)如图.矩形ABCD中.E.F两点分别在边AB.BC上.∠DEF=90°.设∠ADE=α.∠EDF=β.(1)试用该图中提供的信息证明两角和的余弦公式;(2)若x∈(0,π4),y∈(π4,3π4) .且sin(3π4+x)= 513.cos(π4-y)= 45.求cos(x-y)的值.20.(问答题.0分)某公司要在一条笔直的道路边安装路灯.要求灯柱AB与地面垂直.灯杆BC 与灯柱AB所在的平面与道路垂直.路灯C采用锥形灯罩.射出的光线与平面ABC的部分截面如图中阴影部分所示.已知∠ABC= 23π.∠ACD= π3.路宽AD=24米.设∠BAC=θ (π12≤θ≤π6).(1)求灯柱AB的高h(用θ表示);(2)此公司应该如何设置θ的值才能使制造路灯灯柱AB与灯杆BC所用材料的总长度最小?最小值为多少?(结果精确到0.01米)21.(问答题.0分)设函数f(x)=5cosθsinx-5sin(x-θ)+(4tanθ-3)sinx-5sinθ为偶函数.(1)求tanθ的值;(2)若f(x)的最小值为-6.求f(x)的最大值及此时x的取值;(3)在(2)的条件下.设函数g(x)=λf(ωx)−f(ωx+π2) .其中λ>0.ω>0.已知y=g(x)在x=π6处取得最小值并且点(2π3,3−3λ)是其图象的一个对称中心.试求λ+ω的最小值.2019-2020学年上海中学高一(下)期中数学试卷参考答案与试题解析试题数:21.满分:01.(填空题.3分)已知点A(2.-1)在角α的终边上.则sinα=___ .【正确答案】:[1]- √55【解析】:根据三角函数的坐标法定义.直接计算即可.【解答】:解:设O为坐标原点.因为A(2.-1).由已知得|OA|=√22+(−1)2=√5 .∴ sinα=−1|OA|=−√55.故答案为:−√55.【点评】:本题考查三角函数的坐标法定义.以及学生的运算能力.属于基础题.2.(填空题.3分)函数y=sin(πx+2)的最小正周期是___ .【正确答案】:[1]2【解析】:由题意利用正弦函数的周期性.得出结论.【解答】:解:函数y=sin(πx+2)的最小正周期是2ππ=2.故答案为:2.【点评】:本题主要考查正弦函数的周期性.属于基础题.3.(填空题.3分)设扇形半径为2cm.圆心角的弧度数为2.则扇形的面积为___ .【正确答案】:[1]4cm2【解析】:由已知利用扇形的面积公式即可计算得解.【解答】:解:由已知可得:半径r为2cm.圆心角α的弧度数为2.则扇形的面积S= 12 r2α= 12×22×2 =4cm2.故答案为:4cm2.【点评】:本题主要考查了扇形的面积公式的应用.属于基础题.4.(填空题.3分)已知函数f(x)=sinx(x∈[0.π])和函数g(x)= 12tanx的图象交于A.B.C 三点.则△ABC的面积为___ .【正确答案】:[1] √3π4【解析】:画出两个函数的图象.求出三个点的坐标.然后求解三角形面积.【解答】:解:函数f(x)=sinx(x∈[0.π])和函数g(x)= 12tanx的图象.可得A(0.0).B(π.0).令sinx= 12 tanx.解得C(π3. √32).所以S△ABC= 12× π×√32= √3π4.故答案为:√3π4.【点评】:本题考查三角函数的图象以及三角形的面积的求法.考查转化思想以及计算能力.5.(填空题.3分)在平面直角坐标系xOy中.角α与角β均以Ox为始边.它们的终边关于y轴对称.若sinα= 13.则cos(α-β)=___ .【正确答案】:[1]- 79【解析】:方法一:根据教的对称得到sinα=sinβ= 13.cosα=-cosβ.以及两角差的余弦公式即可求出方法二:分α在第一象限.或第二象限.根据同角的三角函数的关系以及两角差的余弦公式即可求出【解答】:解:方法一:∵角α与角β均以Ox为始边.它们的终边关于y轴对称.∴sinα=sinβ= 13.cosα=-cosβ.∴cos(α-β)=cosαcosβ+sinαsinβ=-cos2α+sin2α=2sin2α-1= 29 -1=- 79方法二:∵sinα= 13.当α在第一象限时.cosα=2√23. ∵α.β角的终边关于y 轴对称.∴β在第二象限时.sinβ=sinα= 13.cosβ=-cosα=- 2√23. ∴cos (α-β)=cosαcosβ+sinαsinβ=- 2√23 × 2√23 + 13 × 13 =- 79:∵sinα= 13 .当α在第二象限时.cosα=-2√23. ∵α.β角的终边关于y 轴对称.∴β在第一象限时.sinβ=sinα= 13 .cosβ=-cosα= 2√23. ∴cos (α-β)=cosαcosβ+sinαsinβ=- 2√23 × 2√23 + 13 × 13 =- 79综上所述cos (α-β)=- 79 .方法三:∵α.β角的终边关于y 轴对称. ∴α+β=π+2kπ.k∈Z .∴cos (α-β)=cos (α-(π+2kπ-α))=cos (2α-π)=-cos2α=2sin²α-1=2×( 13 )²-1=- 79. 故答案为:- 79 .【点评】:本题考查了两角差的余弦公式.以及同角的三角函数的关系.需要分类讨论.属于基础题6.(填空题.3分)已知sin (x- π4 )= 35 .则sin2x 的值为 ___ . 【正确答案】:[1] 725【解析】:利用二倍角的正弦可求得 sin 2(x −π4) = 1−sin2x 2 = 925.从而可得sin2x 的值.【解答】:解:∵sin (x- π4 )= 35. ∴ sin 2(x −π4) = 1−cos[2(x−π4)]2 = 1−sin2x 2 = 925. ∴1-sin2x= 1825. ∴sin2x= 725 . 故答案为: 725 .【点评】:本题考查二倍角的正弦.考查诱导公式的应用.考查转化思想与运算能力.属于中档题.7.(填空题.3分)设x.y∈(0.π).且满足sin2x−cos2x+cos2xcos2y−sin2xsin2ysin(x+y)=1 .则x-y=___ .【正确答案】:[1] π2【解析】:结合已知条件.利用和差角公式.平方关系化简可得sin(x-y)=1.进而得到答案.【解答】:解:∵x.y∈(0.π).且-π<x-y<π.∴ sin2x−cos2x+cos2xcos2y−sin2xsin2ysin(x+y)=1⇒sin2x(1−sin2y)+cos2x(cos2y−1)sin(x+y)=1⇒sin2xcos2y−cos2xsin2ysin(x+y)=(sinxcosy+cosxsiny)(sinxcosy−cosxsiny)sin(x+y)=1⇒sin(x+y)sin(x−y)sin(x+y)=sin(x−y)=1⇒x−y=π2(由于-π<x-y<π).故答案为:π2.【点评】:本题主要考查三角函数的化简求值.考查和差角公式以及同角三角函数基本关系的运用.考查运算能力.属于基础题.8.(填空题.3分)我国古代数学家秦九韶在《数学九章》中记述了“三斜求积术”.用现代式子表示即为:在△ABC中.∠A.∠B.∠C所对的边长分别为a.b.c.则△ABC的面积S=√1 4[(ab)2−(a2+b2−c22)2].根据此公式若acosB+(b+3c)cosA=0.且a2-b2-c2=2.则△ABC的面积为___ .【正确答案】:[1] √2【解析】:直接利用三角函数关系式的恒等变换和余弦定理的应用求出结果.【解答】:解:由于acosB+(b+3c)cosA=0.整理得:acosB+bcosA=-3ccosA.故是sinAcosB+cosAsinB=-3sinCcosA.即sin(A+B)=sinC=-3sinCcosA.故:cosA=−13.由余弦定理得:b2+c2-a2=2bccosA=-2.整理得bc=3.所以:S=√14[(bc)2−(b2+c2−a22)2]=√2.故答案为:√2【点评】:本题考查的知识要点:三角函数关系式的恒等变换.余弦定理的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.9.(填空题.3分)若函数f(x)=2sin(2x+π6)+a−1(a∈R)在区间[0,π2]上有两个不同的零点x1.x2.则x1+x2-a的取值范围是___ .【正确答案】:[1] [π3,π3+1)【解析】:由题意将问题转化为y=2sin(2x+π6)与y=1-a在区间[0,π2]上有两个不同的交点的问题.作出两个函数的图象.可求解.【解答】:解:若函数f(x)=2sin(2x+π6)+a−1(a∈R)在区间[0,π2]上有两个不同的零点x1.x2.即2sin(2x+π6)=1−a在区间[0,π2]上有两个不同的零点x1.x2.也就是y=2sin(2x+π6)与y=1-a区间[0,π2]上有两个不同的交点.横坐标分别为x1.x2.数形结合可知. x1+x22=π6,1−a∈[1,2) .∴ x1+x2=π3,−a∈[0,1)∴ x1+x2−a∈[π3,π3+1).故答案为:[π3,π3+1).【点评】:本题考查三角函数的图象与性质.以及利用数形结合思想解决问题的能力.同时考查了学生的运算能力.属于中档题.10.(填空题.3分)已知函数f(α)=m−sinαcosα在(0,π2)上单调递减.则实数m的取值范围是___ .【正确答案】:[1](-∞.1]【解析】:根据题意.任取0<α<β<π2.由函数单调性的定义分析可得f(α)-f(β)=m(cosβ−cosα)−sin(α−β)cosαcosβ>0 .据此变形可得m<1+tanα2tanβ2tanα2+tanβ2.分析1+tanα2tanβ2tanα2+tanβ2的最小值.即可得答案.【解答】:解:根据题意.任取0<α<β<π2.若函数f(α)=m−sinαcosα在(0,π2)上单调递减.则有f(α)-f(β)>0.即f(α)-f(β)=m(cosβ−cosα)−sin(α−β)cosαcosβ>0则有m•2sinα+β2•sinα−β2>2sinα−β2cosα−β2可得m<cosα−β2sinα+β2=cosα2cosβ2+sinα2sinβ2sinα2cosβ2+cosα2sinβ2=1+tanα2tanβ2tanα2+tanβ2.又由0<α<β<π2 .则0<α2<β2<π4,0<tanα2<tanβ2<1从而1+tanα2tanβ2−(tanα2+tanβ2)=(1−tanα2)(1−tanβ2)>0 .变形可得1+tanα2tanβ2tanα2+tanβ2>1 .必有m≤1.即m的取值范围为(-∞.1];故答案为(-∞.1].【点评】:本题函数的单调性的性质.涉及三角函数的恒等变形以及和差公式的应用.属于基础题11.(单选题.3分)已知cosα=k.k∈R.α∈(π2.π).则sin(π+α)=()A.- √1−k2B. √1−k2C.± √1−k2D.-k【正确答案】:A【解析】:由已知及同角三角函数基本关系的运用可求sinα.从而由诱导公式即可得解.【解答】:解:∵cosα=k.k∈R.α∈(π2.π).∴sinα= √1−cos2α = √1−k2 .∴sin(π+α)=-sinα=- √1−k2.故选:A.【点评】:本题主要考查了同角三角函数基本关系的运用.运用诱导公式化简求值.属于基本知识的考查.12.(单选题.3分)对任意的锐角α.β.下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ【正确答案】:D【解析】:对于A.B中的α.β可以分别令为30°.60°验证即可.对于C中的α.β可以令他们都等于15°.验证即可.对于D我们可以用放缩法给出证明cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ【解答】:解:对于AB中的α.β可以分别令为30°.60°则知道A.B均不成立对于C中的α.β可以令他们都等于15°.则知道C不成立cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ故选:D.【点评】:本题考查了两角和与差的正余弦公式.同时也考查了放缩法对命题的证明.属于基础题.13.(单选题.3分)设函数f(x)=Asin(ωx+φ)(A.ω.φ是常数.A>0.ω>0.|φ|<π).为了2得到f(x)的图象.则只需将g(x)=cos2x的图象()个单位A.向右平移π12个单位B.向右平移π6C.向左平移π个单位12个单位D.向左平移π6【正确答案】:A【解析】:由函数的图象的顶点坐标求出A.由周期求出ω.由五点法作图求出φ的值.可得f(x)的解析式.再根据函数y=Asin(ωx+φ)的图象变换规律.得出结论.【解答】:解:利用函数f(x)=Asin(ωx+φ)(A.ω.φ是常数.A>0.ω>0.|φ|<π2)的图象.可得A=1. 14•2πω= π3- π12.∴ω=2.再根据五点法作图.可得2× π12+φ= π2.∴φ= π3.故f(x)=sin(2x+ π3).将g(x)=cos2x=sin(2x+ π2)的图象向右平移π12个单位.可得y=sin(2x- π6 + π2)=sin(2x+ π3)=f(x)的图象.故选:A.【点评】:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式.由函数的图象的顶点坐标求出A.由周期求出ω.由五点法作图求出φ的值.函数y=Asin(ωx+φ)的图象变换规律.属于基础题.14.(单选题.3分)若函数f(x)=sin(2x- π3)与 g(x)=cosx-sinx都在区间(a.b)(0<a <b<π)上单调递减.则b-a的最大值为()A. π6B. π3C. π2D. 5π12【正确答案】:B【解析】:求出函数f(x)、g(x)在(0.π)上的单调递减区间.从而求得b-a的最大值.【解答】:解:函数f(x)=sin(2x- π3)在(0. 5π12)上单调递增.在(5π12 . 11π12)上单调递减.在(11π12.π)上单调递减;函数g(x)=cosx-sinx= √2 cos(x+ π4)在(0. 3π4)上单调递减.在(3π4.π)上单调递增;∴f(x)、g(x)都在区间(5π12 . 3π4)上单调递减.∴b-a的最大值为3π4 - 5π12= π3.故选:B.【点评】:本题考查了三角函数在某一区间上的单调性问题.是中档题.15.(单选题.3分)已知α.β为锐角且α+β>π2,x∈R,f(x)=(cosαsinβ)|x|+(cosβsinα)|x|.下列说法正确的是()A.f(x)在定义域上为递增函数B.f(x)在定义域上为递减函数C.f(x)在(-∞.0]上为增函数.在(0.+∞)上为减函数D.f(x)在(-∞.0]上为减函数.在(0.+∞)上为增函数【正确答案】:C【解析】:先利用α.β为锐角且α+β>π2结合三角函数的单调性得出cosαsinβ. cosβsinα的取值范围.再对x的值分类讨论.结合指数函数的单调性即可得出答案.【解答】:解:∵α.β为锐角且α+β>π2 .∴ π2>α>π2-β>0.∴cosα<cos(π2 -β).sinα>sin(π2-β).即0<cosα<sinβ.sinα>cosβ>0.∴0<cosαsinβ<1.0<cosβsinα<1.∴在(-∞.0]上. f(x)=(cosαsinβ)−x+(cosβsinα)−x为增函数.在(0.+∞)上. f(x)=(cosαsinβ)x+(cosβsinα)x为减函数.故选:C.【点评】:本题主要考查了指数函数的单调性与特殊点.考查了三角函数的性质.属于基础题.16.(单选题.3分)在△ABC中.a.b.c分别为角A.B.C的对边的长.若a2+b2=2020c2.则2tanA•tanBtanC(tanA+tanB)的值为()A.1B.2018C.2019D.2020【正确答案】:C【解析】:直接利用三角函数关系式的恒等变换和正弦定理余弦定理的应用求出结果.【解答】:解:由于△ABC中.a.b.c分别为角A.B.C的对边的长.若a2+b2=2020c2.所以a2+b2-c2=2019c2.则:2tanA•tanBtanC(tanA+tanB)=2sinAcosAsinBcosBsinCcosC(sinAcosA+sinBcosB).= 2sinAsinBcosCsinC(sinAcosB+cosAsinB)=2sinAsinBcosCsin2C.= 2abcosCc2=a2+b2−c2c2=2019故选:C.【点评】:本题考查的知识要点:三角函数关系式的恒等变换.正弦定理余弦定理和三角形面积公式的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.17.(问答题.0分)化简:f(α)=sin(−α)cos(π+α)cos(π2−α)cos(π−α)sin(2π+α)tan(π+α).【正确答案】:【解析】:利用诱导公式化简要求的式子.再利用同角三角函数的基本关系化简到最简形式.【解答】:解:f(α)=sin(−α)cos(π+α)cos(π2−α)cos(π−α)sin(2π+α)tan(π+α)= (−sinα)(−cosα)sinα(−cosα)sinαtanα=−cosα.【点评】:本题考查同角三角函数的基本关系.诱导公式的应用.要特别注意公式中的符号.18.(问答题.0分)已知函数f(x)=√3cos2x−sin2x.(1)用五点法作出f(x)在一个周期内的图象.并写出f(x)的值域.最小正周期.对称轴方程(只需写出答案即可);(2)将f(x)的图象向左平移一个π4单位得到函数y=g(x)的图象.求y=g(x)的单调递增区间.【正确答案】:【解析】:(1)用五点作图法即可作出函数在一个周期上的图象.利用余弦函数的性质即可求解其值域.最小正周期.对称轴方程.(2)由条件利用y=Asin(ωx+φ)的图象变换规律和正弦函数的图象和性质即可求解y=g (x)的单调递增区间.【解答】:解:(1)f(x)=√3cos2x−sin2x =2cos(2x+ π6).列表如下:2x+ π6π2π3π22πx - π12π65π122π311π12y 2 -2 2 作图:可得:f(x)的值域为[-2.2].最小正周期为π.对称轴方程为x=kπ2−π12,k∈Z.(2)将f(x)=2cos(2x+ π6)的图象向左平移一个π4单位得到函数y=g(x)=2cos(2x+ π2+ π6)=-2sin(2x+ π6)的图象.令2kπ+ π2≤2x+ π6≤2kπ+ 3π2.k∈Z.解得kπ+ π6≤x≤kπ+ 2π3.k∈Z.可得函数的单调递增区间为:[kπ+π6,kπ+2π3],k∈Z.【点评】:本题主要考查用五点法作函数y=Asin(ωx+φ)在一个周期上的图象.y=Asin (ωx+φ)的图象变换规律.考查正弦函数的性质.属于基础题.19.(问答题.0分)如图.矩形ABCD中.E.F两点分别在边AB.BC上.∠DEF=90°.设∠ADE=α.∠EDF=β.(1)试用该图中提供的信息证明两角和的余弦公式;(2)若x∈(0,π4),y∈(π4,3π4) .且sin(3π4+x)= 513.cos(π4-y)= 45.求cos(x-y)的值.【正确答案】:【解析】:(1)根据题意利用直角三角形的边角关系.即可证明cos(α+β)=cosαcosβ-sinαsinβ;(2)利用三角恒等变换化简求值即可.【解答】:解:(1)由已知∠ADE=∠BEF=α.所以cos(α+β)=cos∠DFC= CFDF = BC−BFDF= ADDE• DEDF- BFEF• EFDF=cosαcosβ-sinαsinβ;(2)由已知3π4+x∈(3π4,π),π4−y∈(−π2,0) .从而cos(3π4+x)=−√1−sin2(3π4+x)=−1213.sin(π4−y)=−√1−cos2(π4−y)=−35.所以cos(x−y)=−cos(x−y+π)=−cos[(3π4+x)+(π4−y)]= sin(3π4+x)sin(π4−y)−cos(3π4+x)cos(π4−y)=513•(−35)−(−1213)•45=3365.【点评】:本题考查了直角三角形边角关系应用问题.也考查了三角函数化简求值问题.是中档题.20.(问答题.0分)某公司要在一条笔直的道路边安装路灯.要求灯柱AB与地面垂直.灯杆BC 与灯柱AB所在的平面与道路垂直.路灯C采用锥形灯罩.射出的光线与平面ABC的部分截面如图中阴影部分所示.已知∠ABC= 23π.∠ACD= π3.路宽AD=24米.设∠BAC=θ (π12≤θ≤π6).(1)求灯柱AB的高h(用θ表示);(2)此公司应该如何设置θ的值才能使制造路灯灯柱AB与灯杆BC所用材料的总长度最小?最小值为多少?(结果精确到0.01米)【正确答案】:【解析】:(1)在△ACD中与在△ABC中.分别利用正弦定理即可得出;(2)△ABC中.利用正弦定理可得:BC.再利用和差公式即可得出.【解答】:解:(1)在△ACD中. ∠CDA=θ+π6.由ADsin∠ACD =ACsin∠CDA.得AC=AD•sin∠CDAsin∠ACD=16√3sin(θ+π6) .在△ABC中. ∠ACB=π3−θ .由ABsin∠ACB =ACsin∠ABC.得ℎ=AC•sin∠ACBsin∠ABC=32sin(θ+π6)sin(π3−θ)(π12≤θ≤π6).(2)△ABC中.由BCsin∠BAC =ACsin∠ABC.得BC=AC•sin∠BACsin∠ABC=32sin(θ+π6)sinθ .∴ AB+BC=32sin(θ+π6)sin(π3−θ)+32sin(θ+π6)sinθ = 16sin2θ+8√3 .∵ π12≤θ≤π6.∴ π6≤2θ≤π3.∴当θ=π12时.AB+BC取得最小值8+8√3≈21.86.故制造路灯灯柱AB与灯杆BC所用材料的总长度最小.最小值约为21.86米.【点评】:本题考查了正弦定理余弦定理、和差公式、三角函数求值.考查了推理能力与计算能力.属于中档题.21.(问答题.0分)设函数f(x)=5cosθsinx-5sin(x-θ)+(4tanθ-3)sinx-5sinθ为偶函数.(1)求tanθ的值;(2)若f(x)的最小值为-6.求f(x)的最大值及此时x的取值;(3)在(2)的条件下.设函数g(x)=λf(ωx)−f(ωx+π2) .其中λ>0.ω>0.已知y=g(x)在x=π6处取得最小值并且点(2π3,3−3λ)是其图象的一个对称中心.试求λ+ω的最小值.【正确答案】:【解析】:(1)利用三角函数关系式的恒等变换和函数的性质的应用求出结果.(2)利用函数的关系式的变换和三角函数的性质的应用求出结果.(3)利用分类讨论思想的应用和关系式的变换的应用求出参数的值.【解答】:解:(1)f(x)=5cosxsinθ+(4tanθ-3)sinx-5sinθ.f(x)是偶函数. ∴(4ta nθ-3)sinx=0对一切x∈R恒成立.∴ tanθ=34(2)f(x)=5sinθ(cosx-1).其最小值为-6.此时sinθ=35,cosx=−1 .∴f(x)=3(cosx-1).从而f(x)的最大值为0.此时x的取值为x=2kπ.k∈Z;(3)g(x)=λf(ωx)−f(ωx+π2)=3λcosωx−3λ−3cos(ωx+π2)+3=3λcosωx-3λ+3sinωx+3由g(x)在x=π6处取最小值.知g(x)的图象关于x=π6对称.有g(−π3)=g(2π3)=3−3λ故3λcos(−ωπ3)+3sin(−ωπ3)=0 .且3λcos2ωπ3+3sin2ωπ3=0 .从而λ=tanωπ3=−tan2ωπ3=tan(kπ−2ωπ3) .则ωπ3=kπ−2ωπ3.即ω=k(k∈Z)又ω>0.则ω是正整数.∵λ>0.ω是正整数.∴ ω=3l−2(l∈N∗),λ=√3 .当ω=1时. g(x)=3√3cosx+3sinx+3−3√3显然.g(x)在x=π6处有最大值.而不是最小值.矛盾.当ω=4时. g(x)=3√3cos4x+3sin4x+3−3√3 .显然.g(x)在x=π6处有最大值.而不是最小值.矛盾.当ω=7时. g(x)=3√3cos7x+3sin7x+3−3√3 .显然.g(x)g(x)在x=π6处有最小值.且y=g(x)的图象关于点(2π3,3−3√3)中心对称.∴λ+ω的最小值为√3+7.【点评】:本题考查的知识要点:三角函数关系式的恒等变换.正弦型函数的性质的应用.分类讨论思想的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.。

2020年上海市高一(下)期中数学试卷解析版

2020年上海市高一(下)期中数学试卷解析版

期中数学试卷题号一二三总分得分一、选择题(本大题共4小题,共12.0分)1.下列命题正确的是( )A. 第一象限的角都是锐角B. 小于的角是锐角C. 2019°是第三象限的角D. 2019°是第四象限的角2.“sinα=sinβ”是“α=β”的________条件( )A. 充分非必要B. 必要非充分C. 充要D. 既非充分又非必要3.在△ABC中,内角A、B满足sin2A=sin2B,则△ABC的形状是( )A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰或直角三角形4.设MP与OM分别是角的正弦线和余弦线,则( )A. MP<OM<0B. MP<0<OMC. OM<MP<0D. OM<0<MP二、填空题(本大题共12小题,共36.0分)5.与终边相同的角的集合是______.6.若tanθ<0且sinθ<0,则θ是第______象限的角.7.已知角α的终边经过点(-3,4),则sinα+cosα=______.8.已知,且α是第四象限的角,则cscα=______,9.若sin x+cos x=,则sin2x=______.10.把化成A sin(α+ϕ)(A>0)的形式______(注:ϕ不唯一).11.若cosα=-,α∈(,π),则sin(α+)=______.12.=______.13.化简:=______.14.若且,则sin2α=______.15.已知且,则=______.16.在△ABC中,a=4,A=30°,请给出一个b值______,使该三角形有两解.三、解答题(本大题共5小题,共60.0分)17.已知一个扇形的周长为20cm,当它的圆心角为多大时,该扇形的面积最大?并求面积的最大值.18.已知tanθ=a,(a>1),求的值.19.修建铁路时要在一个大山体上开挖一隧道,需要测量隧道口D、E之间的距离,测量人员在山的一侧选取点C,因有障碍物,无法测得CE、CD的距离,现测得CA=482.80米,CB=631.50米,∠ACB=56.3°,又测得A、B两点到隧道口的距离分别是80.13米、40.24米(A、D、E、B在同一条直线上),求隧道DE的长(精确到1米).20.已知,求x+2y的值.21.在△ABC中,已知边,角B=45°,面积.求:(1)边c;(2)角C.答案和解析1.【答案】C【解析】解:A.当α=390°时,位于第一象限,但α=390°不是锐角,故A错误,B.α=-<,但α不是锐角,故B错误,C.2019°=5×360°+210°,∵210°是第三象限角,∴2019°是第三象限的角,故C正确,D.由C知2019°是第三象限的角,不是第四象限角,故D错误,故选:C.结合象限角的定义分别进行判断即可.本题主要考查与象限角有关的命题的真假判断,结合象限角的定义是解决本题的关键.2.【答案】B【解析】解:“sinα=sinβ”时,由正弦函数的图象和性质可知:α=β+2kπ,k∈Z,或α=π-β+2kπ,k∈Z,∴“sinα=sinβ”不能推出“α=β”所以:“sinα=sinβ”是“α=β”的非充分条件.当“α=β”时,一定推出“sinα=sinβ”,所以:“α=β”是“sinα=sinβ”的充分条件.“sinα=sinβ”是“α=β”的必要条件.综上:“sinα=sinβ”是“α=β”的必要不充分条件.故选:B.根据充分条件和必要条件的定义分别进行判断即可.本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.是基础题3.【答案】D【解析】解:法1:∵sin2A=sin2B,∴sin2A-sin2B=cos(A+B)sin(A-B)=0,∴cos(A+B)=0或sin(A-B)=0,∴A+B=90°或A=B,则△ABC一定是直角三角形或等腰三角形.法2:∵sin2A=sin2B,且A和B为三角形的内角,∴2A=2B或2A+2B=180°,即A=B或A+B=90°,则△ABC一定是等腰或直角三角形.故选:D.解法1:利用题设等式,根据和差化积公式整理求得cos(A+B)=0或sin(A-B)=0,推断出A+B=90°或A=B,即可判断出三角形的形状.解法2:由两角的正弦值相等及A和B为三角形的内角,得到两角2A和2B相等或互补,即A与B相等或互余,进而确定出三角形的形状.此题考查了三角形形状的判断,涉及的知识有:正弦、余弦函数的图象与性质,积化和差公式,以及等腰三角形的判定,解题的关键是挖掘题设信息,借助三角函数的基本公式和基本性质找到边与边或角与角之间的关系.4.【答案】D【解析】解:作出单位圆,以及角的正弦线和余弦线,则由图象知,OM<0<MP,故选:D.作出单位圆,利用正弦线和余弦线的定义判断即可.本题主要考查三角函数线的大小判断,结合三角线的定义是解决本题的关键.5.【答案】{α|α=2kπ+,k∈Z}【解析】解:与终边相同的角的集合为{α|α=2kπ+,k∈Z},故答案为:{α|α=2kπ+,k∈Z}根据终边相同角的定义进行求解即可.本题主要考查终边相同角的求解,结合终边相同角的定义是解决本题的关键.6.【答案】四【解析】解:∵tanθ<0,∴θ位于第二象限或第四象限,∵sinθ<0,∴θ位于第三象限或第四象限或y轴的非正半轴,综上θ位于第四象限,故答案为:四结合三角函数值的符号和象限之间的关系进行判断即可.本题主要考查角的象限的判断,结合三角函数的符号和象限之间的关系是解决本题的关键.7.【答案】【解析】解:∵角α的终边经过点(-3,4),∴x=-3,y=4,r==5∴sinα=,cosα=-∴sinα+cosα=-=故答案为:利用三角函数的定义,求出sinα、cosα,即可得到结论.本题考查三角函数的定义,考查学生的计算能力,属于基础题.8.【答案】-【解析】解:∵,且α是第四象限的角,∴sinα=-=-,∴cscα==-.故答案为:-.由已知利用同角三角函数基本关系式即可计算得解.本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.9.【答案】-【解析】解:已知等式两边平方得:(sin x+cos x)2=1+2sin x cosx=1+sin2x=,则sin2x=-.故答案为:-已知等式两边平方,利用二倍角的正弦函数公式化简即可求出sin2x的值.此题考查了二倍角的正弦,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.10.【答案】2sin(α+)【解析】解:∵=2(sinα+cosα)=2sin(α+),故答案为:2sin(α+).由题意利用辅助角公式,求得结果.本题主要考查辅助角公式的应用,属于基础题.11.【答案】【解析】解:由α∈(,π),cosα=-,得到sinα==,则sin(α+)=sinαcos+cosαsin=×-×=.故答案为:根据α的范围,由cosα的值,利用同角三角函数间的基本关系求出sinα的值,然后把所求的式子利用两角和的正弦函数公式及特殊角的三角函数值化简后,把sinα和cosα的值代入即可求出值.此题考查学生灵活运用同角三角函数间的基本关系及两角和的正弦函数公式化简求值,是一道基础题.学生做题时应注意α的取值范围.12.【答案】1【解析】解:由于:==2,故:=log22=1.故答案为:1直接利用三角函数关系式的变换和对数的运算的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,对数的运算的应用,主要考察学生的运算能力和转换能力,属于基础题型.13.【答案】1【解析】解:==1.故答案为:1.利用诱导公式,同角三角函数基本关系式即可化简求值得解.本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.14.【答案】【解析】解:由于且,则:cos,所以:sin2=故答案为:直接利用三角函数关系式的变换求出结果.本题考查的知识要点:三角函数关系式的恒等变换,主要考察学生的运算能力和转换能力,属于基础题.15.【答案】【解析】解:∵,可得:<<,可得:>0,又∵=1-2sin2,∴解得:=.故答案为:.由已知可求<<,可得>0,根据已知利用二倍角的余弦函数公式即可计算得解.本题主要考查了二倍角的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.16.【答案】(4,8)【解析】解:由正弦定理有:∴,∵△ABC有两解,∴B>A,∴,即,∴4<b<8所以b的取值范围为:(4,8).故答案为:(4,8).利用正弦定理求出sin B,然后根据三角形有两解得到sin B<1,b>a即可.本题考查了正弦定理和三角形解得个数问题,属基础题.17.【答案】解:设扇形的半径为r,则扇形的弧长l=20-2r,∴S扇形=lr=(20-r)=-r2+10r=25-(r-5)2,∴当r=5时,扇形的面积最大值为25cm2,∴此时扇形的圆心角α===2.【解析】设扇形的半径为r,由题意可求扇形的弧长l=20-2r,利用扇形的面积公式及配方法可得S扇形=25-(r-5)2,即可得解.本题主要考查了扇形的弧长公式,面积公式的应用,考查了配方法的应用,属于基础题.18.【答案】解:原式===.即:=.【解析】利用两角和与差的正弦函数,以及二倍角的正切,化简,代入tanθ=a,求出结果即可.本题是基础题,考查弦切互化,二倍角的正切,考查计算能力,常考题型.19.【答案】解:根据题意,如图:△ABC中,CA=482.80米,CB=631.50米,∠ACB=56.3°,则AB2=CB2+CA2-2CB•CA cos∠ACB=293557.0525,则AB≈541.81,则DE=AB-AD-BE≈421米;故隧道DE的长约421米.【解析】根据题意,由余弦定理求出AB的长,又由DE=AB-AD-BE,计算即可得答案.本题考查余弦定理的应用,关键是掌握余弦定理的形式,属于基础题.20.【答案】解:∵已知,∴cos y==,∴tan y==,∴tan2y==>0,故2y仍为锐角.∴tan(x+2y)==1,∴x+2y=,【解析】利用同角三角函数的基系求得tan y的值,利用二倍角的正切公式求得tan2y的值,可得2y为锐角,利用两角和的正切公式求得tan(x+2y)的值,可得x+2y的值.本题主要考查同角三角函数的基系,二倍角的正切公式,两角和的正切公式的应用,属于基础题.21.【答案】解:(1)根据题意,△ABC中,,B=45°,面积,则有ac sin B=3+,则c=+;(2)根据题意,b2=a2+c2-2ac cos B=(2)2+(+)2-2×2(+)cos45°=8,则b=2,则cos A==,则A=60°,C=180°-A-B=75°.【解析】(1)根据题意,由三角形面积公式可得ac sin B=3+,解可得c的值,即可得答案;(2)根据题意,由余弦定理可得b的值,进而由余弦定理求出cos A的值,即可得A的大小,由三角形内角和定理分析可得答案.本题考查三角形中的几何计算,涉及余弦定理、正弦定理的应用,属于基础题.。

上海市2020〖人教版〗高一数学下册复习试卷第二学期期中考试高一数学试题

上海市2020〖人教版〗高一数学下册复习试卷第二学期期中考试高一数学试题

上海市2020年〖人教版〗高一数学下册复习试卷第二学期期中考试高一数学试题创作人:百里安娜 创作日期:202X.04.01 审核人: 北堂王会创作单位: 明德智语学校第Ⅰ卷一、 选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. sin120的值为( )A .32B .12C .12-D .32-2.下列角中终边与 330°相同的角是( )A. 30°B. - 30°C. 630°D.- 630° 3.如果αα αα cos 5sin 3cos 2sin +-= - 5,那么tan α的值为( )A.-2B. 2C. 1623D.-16234.设0ω>,函数sin()23y x πω=++的图像向右平移32π个单位后与原图像重合,则ω的最小值是( )(A )23 (B )43 (C ) 32(D ) 35.在ABC △中,.,b AC c AB ==若点D 满足2BD DC =,则AD =( )A .3132+ B .3235-C .3132-D .3231+6.三棱柱的直观图和三视图(主视图和俯视图是正方形,左视图是等腰直角三角形)如图所示, 则这个三棱柱的全面积等于 ( ) A .1242+ B .622+ C .842+ D .4 7.已知函数(21,x f x a c =-<,且()()()f a f c f b >>,则下列结论中,必成立的是( )A .0,0,0a b c <<<B .0,0,0a b c <≥>C .222a c +<D .22a c -< 8.集合{}{},|),(,,|),(a y x y x M R y R x y x U <+=∈∈={},)(|),(x f y y x P ==现给出下列函数:①x a y =,②x y a log =,③()sin y x a =+,④cos y ax =,若10<<a 时,恒有,P M C P U = 则所有满足条件的函数)(x f 的编号是.A ①② B ①②③ C ④ D ①②④第Ⅱ卷二、填空题(本大题共6个小题,每小题5分,共30分) 9、过点(1,2)且与直线210x y --=平行的直线方程为.10、若函数()()()2213f x a x a x =-+-+是偶函数,则函数()f x 的单调递减区间为. 11、若212a y a x-=⋅是幂函数,则该函数的值域是__________.12、已知2,1==b a ,a 与b 的夹角为3π,那么b a b a -⋅+=13、在ABC ∆中,,45,2,0===B b x a 若三角形有两解,则x 的取值范围是 14、对于函数()f x ,在使()f x M ≥恒成立的所有常数M 中,我们把M 的最大值称为()f x 的"下确界",则函数x x x x f cos sin 32cos 2)(2+=的"下确界"等于_________.22主视图左视图 俯视图2三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15、(本题满分12分)已知向量=( )cos ,sin αα, =( )cos ,sin ββ.(1)当2,65πβπα-==时,求b a ⋅的值。

上海高一数学下期中试卷及详解(20200509131252).pdf

上海高一数学下期中试卷及详解(20200509131252).pdf
班级
期中考试高一数学试题
姓名
学号
成绩 2013.4.
一 . 填空题 (本题满分 44 分 , 每小题 4 分)
1. 化简 1 2sin2cos2 的结果是

2. 如果 tan sin 0,且 0 sin cos 1, 那么 的终边在第
象限。
3. 若
k 360o 30o, k Z ,则其中在 720o : 720o之间的角有
AM 2 AN 2 2AM AN cos( 1 1 ) .
方案二:①需要测量的数据有:
7
1
,则
sin 2x
1,
2
6
66
2
6
2a 2asin 2x
a,
6
3a b 1
由题意得
2a 2a b 5
a 2, b 5.
当 a 0时,有 a 2asin 2x 6
2a ,
3a b 5
由题意得
2a 2a b 1
a 2, b 1.
( 2)当 x
时, f x 取得最大值 .
12
(3) 当 a 0 时, f x
A . 充分条件但非必要条件
B . 必要条件但非充分条件
C . 充分必要条件
D . 既非充分条件又非必要条件
三、解答题 ( 本题满分 44 分)
D. ab 2
()


16. (本题满分 8 分)已知一扇形的圆心角是
,所在的圆的半径为 r 。
( 1)若 60 ,r 10cm ,求扇形的弧长;
( 2)若扇形的周长是一定值 c c 0 ,当扇形的圆心角为多少时,该扇形的面积最大。
( 2)若 sin
5 ,求 cos 的值。

2020-2021学年上海市实验学校高一(下)期中数学试卷(解析版)

2020-2021学年上海市实验学校高一(下)期中数学试卷(解析版)

2020-2021学年上海市实验学校高一(下)期中数学试卷一、填空题(共10小题).1.终边在x轴上的角的全体用集合表示是.2.若扇形的弧长和半径都为2,则此扇形的面积为.3.已知角α的终边位于函数y=﹣3x的图象上,则cos2α的值为.4.可以写成2sin(x+φ)的形式,其中0≤φ<2π,则φ=.5.在△ABC中,已知a=4,b=5,c=6,则角A的正弦值为.6.已知tanθ=2,则sin2θ+sec2θ的值为.7.已知函数y=A sin(ωx+φ),其中A>0,ω>0,|φ|≤π.在一个周期内,当时,函数取得最大值2;当时,函数取得最小值﹣2,该函数的解析式为.8.已知函数既存在最大值M,又存在最小值m,则M+m的值为.9.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AC的中点,点E在BC 上,分别连接BD,AE,交点为F,若∠BFE=45°,则CE=.10.若x∈[﹣π,π],则函数的值域为.二、选择题(本大题满分16分,共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,否则一律得零分。

)11.如果,那么sinα﹣sinβ的值恒等于()A.B.C.D.12.sin2x=2sin x的一个充要条件是()A.sin x=0B.cos x=0C.sin x=1D.cos x=113.函数y=sin|x|()A.是奇函数,也是周期函数B.是奇函数,不是周期函数C.是偶函数,也是周期函数D.是偶函数,不是周期函数14.设函数f(x)=sin(ωx+φ),其中ω>0,,已知f(x)在[0,2π]上有且仅有4个零点,则下列ω的值中满足条件的是()A.B.C.D.三、解答题(本大题满分44分,共有4题,解答下列各题必须写出必要的步骤)15.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).①求sinα的值;②若角β满足sin(α+β)=,求cosβ的值.16.求函数的定义域、值域及单调增区间.17.某体育馆拟用运动场的边角地建一个矩形的健身室,如图所示,ABCD是一块边长为100m的正方形地皮,扇形CEF是运动场的一部分,其半径是80m.矩形AGHM就是拟建的健身室,其中G、M分别在AB和AD上,H在上.设矩形AGHM的面积为S,∠HCF=θ,(1)将S表示为θ的函数;(2)求健身室面积的最大值,并指出此时的点H在的何处?18.在△ABC中,a2+c2=b2+ac.(1)求角B的大小;(2)求cos A+cos C的最大值;(3)若b=4,求△ABC面积的最大值与周长的范围.四、附加题19.设x≥y≥z≥,且x+y+z=,求乘积cos x sin y cos z的最大值和最小值.20.求实数a的取值范围,使得对任意实数x和任意θ∈[0,],恒有(x+3+2sinθcosθ)2+(x+a sinθ+a cosθ)2≥.参考答案一、填空题(本大题满分40分,共有10题,只要求直接填写结果,每题填对得4分,否则一律得零分)1.终边在x轴上的角的全体用集合表示是{θ|θ=kπ,k∈Z}.解:终边落在x轴正半轴上的角的集合为{θ|θ=2kπ,k∈Z},终边落在x轴负半轴上的角的集合为{θ|θ=π+2kπ=(2k+1)π,k∈Z},所以终边在x轴上的角的全体用集合表示是{θ|θ=kπ,k∈Z}.故答案为:{θ|θ=kπ,k∈Z}.2.若扇形的弧长和半径都为2,则此扇形的面积为2.解:∵扇形的弧长和半径都为2,∴S扇形=lr=×2×2=2,故答案为:2.3.已知角α的终边位于函数y=﹣3x的图象上,则cos2α的值为﹣.解:设点的坐标为(a,﹣3a),则r=|a|,a>0,sinα=﹣,cosα=,cos2α=cos2α﹣sin2α=﹣;a<0,sinα=,cosα=﹣,cos2α=cos2α﹣sin2α=﹣.综上,cos2α的值为﹣.故答案为:﹣.4.可以写成2sin(x+φ)的形式,其中0≤φ<2π,则φ=.解:sin x﹣cos x=2(sin x﹣cos x),∵0≤φ<2π,∴cosφ=,sinφ=﹣,得φ=,故答案为:5.在△ABC中,已知a=4,b=5,c=6,则角A的正弦值为.解:在△ABC中,由a=4,b=5,c=6,得cos A=,∴sin A=.故答案为:.6.已知tanθ=2,则sin2θ+sec2θ的值为.解:因为tanθ=2,所以sin2θ=,并且sec2θ=1+tan2θ=1+4=5,所以sin2θ+sec2θ=.故答案为:.7.已知函数y=A sin(ωx+φ),其中A>0,ω>0,|φ|≤π.在一个周期内,当时,函数取得最大值2;当时,函数取得最小值﹣2,该函数的解析式为y=2sin (2x+).解:由题意可得A=2,•=﹣,求得ω=2.再根据2sin(2•+φ)=2,可得2•+φ=2kπ+,k∈Z,解得:φ=2kπ+,k∈Z,因为|φ|≤π,可得φ=,∴函数的解析式为:y=2sin(2x+).故答案为:y=2sin(2x+).8.已知函数既存在最大值M,又存在最小值m,则M+m的值为4.解:,由于函数g(x)=为奇函数,故可知f(x)关于(0,2)对称,根据对称性质可得,即M+m=4.故答案为:4.9.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AC的中点,点E在BC 上,分别连接BD,AE,交点为F,若∠BFE=45°,则CE=.解:如图,设CE=x,∠CBD=α,∠CAE=β,根据题意可得∠CDB=90°﹣α=45°+β,整理可得α+β=45°,所以tan(α+β)=1,所以,在Rt△BCD中,,在Rt△ACE中,,将代入,解得,所以.故答案为:.10.若x∈[﹣π,π],则函数的值域为.解:是奇函数,则求出最大值即可知最小值.令,则,由于,当时,k>0,此时从而,所以函数的值域为.二、选择题(本大题满分16分,共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,否则一律得零分。

上海市2020学年高一数学下学期期中试题(含解析)

上海市2020学年高一数学下学期期中试题(含解析)

高一数学下学期期中试题(含解析)一. 填空题1.求值:arccos0=________【答案】2π【解析】【分析】设arccos0=x,x∈[0,]π,直接利用反三角函数求解. 【详解】设arccos0=x,x∈[0,]π,所以cos0,2x xπ=∴=. 故答案为:2π【点睛】本题主要考查反三角函数求值,意在考查学生对该知识的理解掌握水平,属于基础题.2.一个扇形的弧长和面积都是5,则这个扇形的圆心角大小是________弧度【答案】52【解析】【分析】设扇形的半径为R,圆心角是α,再根据已知得方程组,解方程组即得解. 【详解】设扇形的半径为R,圆心角是α,所以15=5 25RRα⎧⋅⋅⎪⎪⎨⎪=⎪⎩,所以5 =2α.故答案为:5 2【点睛】本题主要考查扇形的面积和圆心角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3.函数arcsin tan 2y x x =+的定义域是________ 【答案】[1,)(,)(,1]4444ππππ---U U 【解析】【分析】 解不等式11,2,2x x k k Z ππ-≤≤⎧⎪⎨≠+∈⎪⎩即得解. 【详解】由题得11,2,2x x k k Z ππ-≤≤⎧⎪⎨≠+∈⎪⎩所以x ∈[1,)(,)(,1]4444ππππ---U U . 故函数的定义域为[1,)(,)(,1]4444ππππ---U U 故答案为:[1,)(,)(,1]4444ππππ---U U 【点睛】本题主要考查函数定义域的求法,考查反三角函数和正切函数的定义域,意在考查学生对这些知识的理解掌握水平,属于基础题.4.函数tan()3y x π=-的周期为________ 【答案】π【解析】【分析】 由题得函数tan()3y x π=-的最小正周期为π,再利用图像得到函数tan()3y x π=-的周期. 【详解】由题得函数tan()3y x π=-的最小正周期为π, 函数tan()3y x π=-就是把函数tan()3y x π=-的图像在x 轴上的保持不变,把x 轴下方的图像对称地翻折到x 轴上方,如图,所以函数tan()3y x π=-的周期为π.故答案为:π 【点睛】本题主要考查函数的周期,意在考查学生对该知识的理解掌握水平,属于基础题.5.函数sin()y A x ωϕ=+(0A >,0>ω)的振幅是3,最小正周期是25π,初相是2,则它的解析式为________【答案】3sin(52)y x =+【解析】【分析】根据函数的性质求出,,A w ϕ,即得函数的解析式.【详解】因为函数sin()y A x ωϕ=+(0A >,0>ω)的振幅是3,所以A=3. 因为函数的最小正周期是25π,所以22=,55w wππ∴=. 因为函数的初相是2,所以=2ϕ.所以函数的解析式为3sin(52)y x =+.故答案为:3sin(52)y x =+【点睛】本题主要考查三角函数解析式的求法和三角函数的图像性质,意在考查学生对这些知识的理解掌握水平,属于基础题.6.某数学大会会徽的主体图案是由一连串直角三角形演化而成的(如图),其中11223781OA A A A A A A ===⋯==,记1OA ,2OA ,3OA ,…,8OA 的长度构成的数列为{}()*,8n a n N n ∈≤,则{}n a 的通项公式n a =__________.()*,8n N n ∈≤【答案】n a n 【解析】根据题意:OA 1=A 1A 2=A 2A 3=…=A 7A 8=1∴2211n n a a -=+,∴{}2n a 是以1为首项,以1为公差的等差数列 ∴2,n n a n a n =点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.7.已知数列{}n a 中,12a =,25a =,212n n n a a a +++=,则100a =________【答案】299【解析】【分析】由212n n n a a a +++=得数列是等差数列,再求出等差数列的通项公式,再求解.【详解】因为212n n n a a a +++=,所以数列{}n a 是等差数列,因为12a =,25a =,所以公差3d =.所以2(1)331n a n n =+-=-,所以1003001299a =-=.故答案为:299【点睛】本题主要考查等差数列的判断和通项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.8.在ABC ∆中,3,3sin 2sin AC A B ==,且1cos 4C =,则AB =____________【解析】【分析】根据正弦定理求出BC ,再利用余弦定理求出AB . 【详解】由正弦定理可知:sin sin AC BC B A=,又3sin 2sin A B = sin 22sin 3AC A BC AC B ⋅⇒=== 由余弦定理可知:22212cos 94232104AB AC BC AC BC C =+-⋅=+-⨯⨯⨯=AB ∴=【点睛】本题考查利用正弦定理、余弦定理解三角形问题,属于基础题.9.关于x 的方程(sin 1)(cos 1)0x x m ++-=恒有实数解,则m 的取值范围是________【答案】 【解析】先化简原方程得sin cos sin cos =1x x x x m ++-,再换元得到22121==122t t t t m -+-+-,再利用方程有解得到m 的取值范围.【详解】由题得sin cos sin cos 10x x x x m +++-=,所以sin cos sin cos =1x x x x m ++-,设sin cos ),[4x x x t t π+=+=∈ 所以21sin cos 2t x x -=, 所以22121==122t t t t m -+-+-,由题得221,[2t t y t +-=∈的值域为1[1,]2+-, 因为关于x 的方程(sin 1)(cos 1)0x x m ++-=恒有实数解,所以1112m -≤-≤,所以0m ≤≤.故答案为:3[0,2+ 【点睛】本题主要考查方程的解的问题,考查同角的正弦余弦的关系和三角函数的值域的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.10.中国古代数学名著《九章算术》中“竹九节”问题曰:“今有竹九节,下三节容量四升,上四节容量三升,问中间两节欲均容各多少?”其意为:“现有一根9节的竹子,自上而下的容积成等差数列,下面3节容量为4升,上面4节容积为3升,问中间2节各多少容积?”则中间2节容积合计________升 【答案】4722【分析】根据题意题意设九节竹至下而上各节的容量分别为1a ,2a ,⋯,n a ,公差为d ,利用等差数列的前n 项和公式和通项公式列出方程组,求得首项和公差,再计算中间两节4a 、5a 的值,再求中间2节总容积.【详解】根据题意,九节竹的每一节容量变化均匀,即其每一节的容量成等差数列, 设至下而上各节的容量分别为1a ,2a ,⋯,n a ,公差为d ,分析可得:123678943a a a a a a a ++=⎧⎨+++=⎩, 解可得19566a =,766d =-, 则49574831666666a d =+==(升), 59567141666666a d =+==(升). 故中间两节的总容积为813471+1=2=66662222. 故答案为:4722【点睛】本题考查等差数列的前n 项和的计算,解题时要认真审题,注意等差数列的性质的合理运用.二. 选择题题11.已知数列{}n a 是等差数列,数列{}n b 分别满足下列各式,其中数列{}n b 必为等差数列的是( )A. ||n n b a =B. 2n n b a =C. 1n n b a =D.2n n a b =- 【答案】D【解析】【分析】对每一个选项逐一分析判断得解.【详解】设数列{}n a 的公差为d ,选项A,B,C,都不满足1n n b b --=同一常数,所以三个选项都是错误的;对于选项D ,1112222n n n n n n a a a a d b b -----=-+==-, 所以数列{}n b 必为等差数列.故选:D【点睛】本题主要考查等差数列的判定和性质,意在考查学生对这些知识的理解掌握水平,属于基础题.12.下列等式中正确的是( ) A. cos(arccos )33ππ= B. 1arccos()1202-= C. arcsin(sin)33ππ=D. arctan 24π= 【答案】C【解析】 【分析】 利用反三角函数对每一个选项逐一分析判断得解.【详解】选项A,cos arc x 中x [1,1]∈-,而cos3arc π是错误的,所以该选项错误; 选项B, 12arccos()23π-=,所以该选项是错误的; 选项C,arcsin(sin ),33ππ==,所以该选项是正确的; 选项D, arctan144ππ=≠,反正切函数是定义域上的单调函数,所以该选项是错误的. 故选:C【点睛】本题主要考查反三角函数,意在考查学生对该知识的理解掌握水平,属于基础题.13.若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为 A. 16 B. 14 C. 13 D. 12【答案】D【解析】函数tan()(0)4y x πωω=+>的图像向右平移6π个单位得tan[()]tan()6464y x x ππωππωω=-+=-+,所以,646k k Z ωππππ-+=+∈ 16,2k k Z ω=-+∈,所以ω得最小值为12。

2019-2020学年上海中学高一下学期期中数学试卷(有解析)

2019-2020学年上海中学高一下学期期中数学试卷(有解析)

2019-2020学年上海中学高一下学期期中数学试卷一、单选题(本大题共6小题,共18.0分)1.若sin(π+α)=√53且α∈(−π2,0),则cos(π−α)=()A. −23B. −√53C. 23D. ±232.若sinαsinβ=1,则cos(α+β)=()A. 1B. −1C. 0D. 0或−13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π2)的部分图象如图所示,则f(x)的解析式是()A. f(x)=2sin(2x+π3)B. f(x)=2sin(x+π3)C. f(x)=2sin(2x+π6)D. f(x)=2sin(x+π6)4.函数f(x)=cos(π6−x)的单调递减区间是()A. [2kπ+π6,2kπ+7π6],k∈Z B. [2kπ−5π6,2kπ+π6],k∈ZC. [2kπ+7π6,2kπ+13π6],k∈Z D. [2kπ,2kπ+π],k∈Z5.求满足2x(2sinx−√3)≥0,x∈(0,2π)的角α的集合()A. (0,π3) B. [π3,2π3] C. [π3,π2] D. [π2,2π3]6.在△ABC中,角A、B、C的对边分别为a,b,c,且ctanC=√3acosB+√3bcosA,若c=√7,a=2,则b的值为()A. 3B. 1C. 2D. √2二、单空题(本大题共10小题,共30.0分)7.点P是角α的终边上的一点,且P(3,−4),则sinα−cosα=______ .8.函数y=3sin(π2x+3)的最小正周期为________。

9.在单位圆中,面积等于1的扇形所对的圆心角的弧度数为____.10.已知(x0,0)是函数f(x)=3sin(x+π6)图象的一个对称中心,则tan(5π+x0)=.11.已知α,β∈(0,π2),sin(α−β)=35,cosβ=1213,则sinα=______.12.已知,则的值为_________.13.若,则的值为__________.14.在△ABC中,角A,B,C所对边长分别为a,b,c,若b2+c2=4a2,则cos A的最小值为______.15.函数y=2sin(3x+π3)在区间[−π6,π3]上的最小值为__________.16.函数y=x+5x−a在(−1,+∞)上是单调递减函数,则实数a的取值范围是____.三、解答题(本大题共5小题,共60.0分)17.已知α为第三象限角,f(α)=sin(α−π2)cos(3π2+α)tan(π−α)tan(−α−π)sin(−α−π).(1)化简f(α);(2)若f(α)=45,求tanα18.设函数的最小正周期为.(1)若f(α2+3π8)=2425,且α∈(−π2,π2),求tanα的值.(2)“五点法”画出函数y=f(x)在区间[0,π]上的简图.(3)y=f(x)的图象经过怎样的图象变换,可以得到y=sinx的图象.y=f(x)→ _____________ →y=sinx19.已知sinα=23,α∈(π2,π),cosβ=−35,β∈(π,3π2),求sin(α+β)的值.20.如图所示,在斜度一定的山坡上的一点A测得山顶上一建筑物顶端C对于山坡的斜度为15°,向山顶前进100米后到达点B,又从点B 测得斜度为45°,建筑物的高CD为50米.求此山对于地平面的倾斜角θ的余弦值.21.已知函数f(x)=2√3sin(x+π4)cos(x+π4)+sin2x+a的最大值为1.(1)求实数a的值;(2)若将f(x)的图象向左平移π6个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π2]上的最小值.【答案与解析】1.答案:A解析:解:∵sin(π+α)=√53,∴sinα=−√53,且α∈(−π2,0),∴cosα=√1−sin 2α=23,则cos(π−α)=−cosα=−23. 故选:A .已知等式利用诱导公式化简求出sinα的值,根据α的范围,利用同角三角函数间基本关系求出cosα的值,所求式子利用诱导公式化简后将cosα的值代入计算即可求出值. 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.2.答案:B解析:解:由sinαsinβ=1,得cosαcosβ=0, ∴cos(α+β)=cosαcosβ−sinαsinβ=−1. 故选:B .由sinαsinβ=1,得cosαcosβ=0,利用两角和的余弦函数公式可得答案. 本题考查两角和与差的余弦公式,考查学生的运算能力,属基础题.3.答案:B解析:本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,属于基础题.由函数的图象的顶点坐标求出A ,由周期求出ω,由f (76π)=−2结合0<φ<π2求出φ的值. 解:由函数过点(2π3,0),(7π6,−2) 可得A =2,14T =π2ω=7π6−2π3=π2则ω=1,即f (x )=2sin (x +φ),又f(76π)=−2,即sin(76π+φ)=−1,所以76π+φ=32π+2kπ(k∈Z),又0<φ<π2,所以φ=π3,所以函数f(x)=2sin(x+π3).故选B.4.答案:A解析:本题考查了余弦函数的单调性,属于基础题.先根据余弦函数的单调性判断出单调递减时x−π6的范围,进而求得x的范围,求得函数的单调递减区间.解:对于函数,∵y=cosx的单调减区间为[2kπ,2kπ+π],k∈Z,∴2kπ≤x−π6≤2kπ+π,k∈Z,解得2kπ+π6≤x≤2kπ+7π6,k∈Z,故函数f(x)的单调减区间为[2kπ+π6,2kπ+7π6],k∈Z故选A.5.答案:B解析:解:∵满足2x(2sinx−√3)≥0,2x>0.∴sinx≥√32,∵x∈(0,2π),∴π3≤x≤2π3,故选:B.满足2x(2sinx−√3)≥0,化为sinx≥√32,由于x∈(0,2π),利用正弦函数的单调性即可得出.本题考查了指数函数的单调性、正弦函数的单调性,属于基础题.6.答案:A解析:本题主要考查了正弦定理,两角和的正弦函数公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.由正弦定理,两角和的正弦函数公式化简已知等式可得sinCtanC =√3sinC ,结合sinC ≠0,可求得tanC =√3,结合范围C ∈(0,π),可求C ,进而根据余弦定理b 2−2b −3=0,解方程可求b 的值. 解:∵ctanC =√3acosB +√3bcosA ,∴由正弦定理可得:sinCtanC =√3(sinAcosB +sinBcosA)=√3sin(A +B)=√3sinC , ∵sinC ≠0, ∴可得tanC =√3, ∵C ∈(0,π), ∴C =π3, ∵c =√7,a =2,∴由余弦定理c 2=a 2+b 2−2abcosC ,可得7=4+b 2−2×2×b ×12,可得b 2−2b −3=0, ∴解得b =3,或b =−1(负值舍去). 故选A .7.答案:−73解析:解:∵|OP|=√32+(−4)2=5, ∴sinα=−45,cosα=35. ∴sinα−cosα=−45−35=−75.故答案为:−75.利用三角函数的定义即可得出.本题考查了三角函数的定义,属于基础题.8.答案:4解析:本题考查三角函数的周期公式.依题意,最小正周期为2ππ2=4,即可得到结果.解:因为y=3sin(π2x+3),所以最小正周期为2ππ2=4,故答案为4.9.答案:2解析:本题考查了扇形的面积公式应用问题,根据扇形的面积公式,计算该扇形的圆心角弧度数即可,是基础题.解:由题意可知扇形的半径为r=1,面积为S=1,则S=12α⋅r2=12α=1,α=2,∴该扇形的圆心角α的弧度数是2.故答案为2.10.答案:−√33解析:本题主要考查正弦函数的图像及性质和正切的诱导公式及周期,属于基础题.首先根据正弦函数的图像和性质求出x0,然后利用诱导公式求正切即可.解:因为(x0,0)是函数f(x)=3sin(x+π6)图象的一个对称中心,所以x0+π6=kπ(k∈Z),即x0=kπ−π6(k∈Z),所以tan(5π+x0)=tanx0=tan(kπ−π6)=−tanπ6=−√33.11.答案:5665解析:解:α,β∈(0,π2),sin(α−β)=35,cosβ=1213,可得cos(α−β)=√1−sin2(α−β)=45,sinβ=√1−cos2β=513,sinα=sin(α−β+β)=sin(α−β)cosβ+cos(α−β)sinα=35×1213+45×513=5665.故答案为:5665.利用同角三角函数基本关系式以及两角和与差的正弦函数化简求解即可.本题考查同角三角函数基本关系式以及两角和与差的三角函数,考查计算能力.12.答案:78解析:题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,属于基础题.由诱导公式,二倍角的余弦函数公式化简所求,结合已知即可计算求值.解:,,∴sin2x=cos(π2−2x)=1−2sin2(π4−x)=78.故答案为78.13.答案:解析:,则14.答案:34解析:本题考查了余弦定理和基本不等式的应用问题,是基础题.利用余弦定理和基本不等式,即可求得cos A的最小值.解:△ABC中,b2+c2=4a2,则a2=14(b2+c2),由余弦定理得,cosA=b2+c2−a22bc=b2+c2−14(b2+c2)2bc=3(b2+c2)8bc ≥3×2bc8bc=34,当且仅当b=c时取等号,∴cosA的最小值为34.故答案为:34.15.答案:−√3解析:因为x∈[−π6,π3],所以3x+π3∈[−π6,4π3],所以当3x+π3=4π3时,函数y=2sin(3x+π3)有最小值−√3...16.答案:(−5,−1]解析:本题以分式函数为例,考查了函数的单调性的判断与证明,属于基础题.题中的分式函数与反比例函数有关,因此用反比例函数的图象研究比较恰当.根据题意,将题中的函数分离常数,变形为y=1+a+5x−a ,进而研究反比例函数y=a+5x在区间(0,+∞)上是一个单调减的函数,从而得出实数a的取值范围.解:函数y=x+5x−a =1+a+5x−a函数的图象可由函数y=a+5x的图象先向右平移a个单位,再向上平移1个单位而得,∵函数在(−1,+∞)上单调递减,∴{a +5>0a ≤−1,可得−5<a ≤−1, 故答案为(−5,−1].17.答案:解:(1)由f(α)=sin(α−π2)cos(3π2+α)tan(π−α)tan(−α−π)sin(−α−π)=−cosαsinα⋅(−tanα)−tanα⋅sinα=−cosα. (2)∵f(α)=45,即cosα=−45,α为第三象限角,那么:sinα=−√1−cos 2α=−35可得tanα=sinαcosα=34.解析:(1)根据诱导公式化简可得f(α);(2)利用同角三角函数关系式即可得解.本题主要考察了同角三角函数关系式和诱导公式的应用,属于基本知识的考查.18.答案:解:(1)∵函数的最小正周期为, ∴2πω=π,∴ ω=2.可知f(x)=sin(2x −3π4) , 由f(α2+3π8)=2425得:sinα=2425, ∵−π2<α<π2, ∴cosα=725,∴tanα=247.(2)由(1)知f(x)=sin(2x −3π4),于是有: x 0 π8 5π8π y −√22−1 0 1 0 −√22描点,连线,函数y =f(x)在区间[0,π]上的图象如下:(3)把y =f(x)=sin(2x −3π4)图象上点的横坐标变为原来的2倍, 可得函数y =sin(x −3π4)的图象; 再把图象向左平移3π4个单位长度,可得函数y =sinx 的图象.解析:本题主要考查正弦函数的性质,用五点法作函数y =Asin(ωx +φ)在一个周期上的简图,函数y =Asin(ωx +φ)的图象变换规律,属于中档题.(1)由周期可得:f(x)=sin(2x −3π4),然后利用已知结合α的取值范围求解.(2)用五点法作函数y =Asin(ωx +φ)在一个周期上的简图.(3)根据函数y =Asin(ωx +φ)的图象变换规律,可得结论.19.答案:解:∵sinα=23,α∈(π2,π),cosβ=−35,β∈(π,3π2),∴cosα=−√1−sin 2α=−√53,sinβ=−√1−cos 2β=−45, ∴sin(α+β)=sinαcosβ+cosαsinβ=23×(−35)+(−√53)×(−45)=4√5−615. 解析:由已知利用同角三角函数基本关系式可求cosα,sinβ的值,进而利用两角和的正弦函数公式即可计算得解sin(α+β)的值.本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了转化思想和计算能力,属于基础题.20.答案:解:在△ABC 中,∠BAC =15°,AB =100米,∠ACB =45°−15°=30°. (3分)根据正弦定理有100sin30∘=BC sin15∘,∴BC =100sin15°sin30∘. (6分)又在△BCD 中,∵CD =50,BC =100sin15°sin30∘,∠CBD =45°,∠CDB =90°+θ,根据正弦定理有50sin45∘=100sin15°sin30∘sin(90∘+θ).(10分)解得cosθ=√3−1(12分)解析:在△ABC中,根据正弦定理求出BC,在△BCD中,推出∠CDB=90°+θ,通过正弦定理转化求解即可.本题考查正弦定理的实际应用,解三角形的方法,考查计算能力.21.答案:解:(1)∵函数f(x)=2√3sin(x+π4)cos(x+π4)+sin2x+a=√3cos2x+sin2x+a=2sin(2x+π3)+a≤2+a=1,∴a=−1;(2)将f(x)的图象向左平移π6个单位,得到函数g(x)的图象,∴g(x)=f(x+π6 )=2sin[2(x+π6)+π3]−1=2sin(2x+2π3)−1.当x∈[0,π2]时,2x+2π3∈[2π3,5π3],故当2x+2π3=3π2时,sin (2x+2π3)=−1,函数g(x)取得最小值为−2−1=−3.解析:本题主要考查三角函数的恒等变换及化简求值,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图像和性质,属于中档题.(1)由条件利用三角恒等变换化简函数的解析式为函数f(x)=2sin(2x+π3)+a,可得a=−1.(2)根据函数y=Asin(ωx+φ)的图象变换规律,可得g(x)=2sin(2x+2π3)−1.再根据x∈[0,π2],利用正弦函数的图像和性质求得函数g(x)的最小值.。

2023年上海松江二中高一下期中数学试卷及答案

2023年上海松江二中高一下期中数学试卷及答案

松江二中2022学年第二学期期中考试高一数学考生注意:1.试卷共有21道题,满分150分,考试时间120分钟;2.本考试分设试卷和答题纸,试卷包括三部分;3.答题前,务必在答题纸上填写姓名、班级和考号.作答必须涂或写在答题纸上,在试卷上作答一律不得分.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.半径为2且周长为6的扇形的面积是__________.2.设集合{}12|A x x =<<-,{}|B x x a =<,若A B ⋂≠∅,则a 的取值范围是________.3.已知向量1(4,3)e =- ,2(2,1)e m m =+- ,且12//e e,则实数m 的值为_____.4.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos a B b A =,则ABC 的形状是________三角形.5.若πcos 0,,tan 22sin αααα⎛⎫∈=⎪⎝⎭,则α=__________.6.方程π12x ⎛⎫-= ⎪⎝⎭,π,π2x ⎛⎫∈ ⎪⎝⎭的解为_______.7.不等式3lg 3xx +≤的解集是__________.8.函数ππ()2sin()0,0,22f x x A ωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图像如图所示,则⋅=ωϕ____.9.菱形ABCD 的边长为4,30BAD ∠=︒,若N 为菱形内任意一点(含边界),则AB AN ⋅的最大值为______.10.若函数()cos ,[0,2]f x x x π=∈与()tan g x x =的图象交于,M N 两点,则OM ON +=_______.11.设平面向量a ,b ,c 满足:3a = ,b c= ,1a b -= ,b c ⊥ ,则b c - 的取值范围是__________.12.记()(){|sin A f x x θωθ==+为偶函数,ω是正整数},()(){|10}B x x a x a =---<,对任意实数a ,满足A B ⋂中的元素不超过两个,且存在实数a 使A B ⋂中含有两个元素,则ω的值是__________.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.下列函数在其定义域内既是严格增函数,又是奇函数的是()A.sin y x =B.2log y x =C.cos y x x =-D.e e x xy -=-14.若π3π,22⎛⎫∈⎪⎝⎭α,且π3cos 2cos 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α可以为()A.6-B.89C.18-D.1718-15.已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足112663OP OB OC =++,则△ACO 与△CBP 面积比为()A.5:6B.3:4C.2:3D.1:216.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅ ,若平面向量,a b 满足0≥> a b ,,a b 的夹角π0,4θ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合|Z 2n n ⎧⎫∈⎨⎬⎩⎭中,则a b =()A.12B.1C.32D.52三、解答题(本大题共有5题,满分78分)解答下列各题必须写出必要的步骤.17.已知O 是坐标原点,(2,3),(1,4)OA OB ==,(1)求向量OB 在OA方向上的投影向量的坐标和数量投影;(2)若3OC OA = ,3OD OB = ,2OE OA OB =+,请判断C 、D 、E 三点是否共线,并说明理由.18.已知π02α<<,π02β-<<,tan 7α=,sin 5β=-.(1)求()cos αβ-的值;(2)求tan(2)αβ-的值,并确定2αβ-的大小.19.如图,某避暑山庄为吸引游客,准备在门前两条小路OA 和OB 之间修建一处弓形花园,已知π6AOB ∠=,弓形花园的弦长||AB =,记弓形花园的顶点为M ,π6MAB MBA ∠=∠=,设OBA θ∠=.(1)将OA 、OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何设计OA 、OB 的长度,使得喷泉M 与山庄O 的距离最大?喷㬌M 与山庄O 的距离最大?20.已知函数()sin cos sin cos 1(,,R)f x a x b x c x x a b c =+++∈.(1)当0a b ==,1c =时,求函数()y f x =的单调增区间;(2)当1a =,0c =时,设()()1g x f x =-,且函数()g x 的图像关于直线π6x =对称,将函数()y g x =的图像向右平移π6个单位,得到函数()y h x =,求解不等式()1h x ≥;(3)当3a =,2b =,0c =时,若实数m ,n ,p 使得()()1mf x nf x p +-=对任意实数x 恒成立,求cos 2023pm n+的值.21.已知函数()()sin cos 4sin29f x a x x x =+++,且π134f ⎛⎫=-⎪⎝⎭.(1)求a 的值,并求出()y f x =的最小正周期(不需要说明理由);(2)若π0,2x ⎡⎤∈⎢⎥⎣⎦,求()y f x =的值域;(3)是否存在正整数n ,使得()y f x =在区间[]0,πn 内恰有2025个零点,若存在,求由n 的值;若不存在,说明理由.松江二中2022学年第二学期期中考试高一数学考生注意:1.试卷共有21道题,满分150分,考试时间120分钟;2.本考试分设试卷和答题纸,试卷包括三部分;3.答题前,务必在答题纸上填写姓名、班级和考号.作答必须涂或写在答题纸上,在试卷上作答一律不得分.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.半径为2且周长为6的扇形的面积是__________.【答案】2【解析】【分析】根据题意求得弧长2l =,结合扇形的面积公式,即可求解.【详解】设扇形的弧长为l ,由题意可得226l ++=,即2l =,又由扇形面积公式,可得扇形的面积为1122222S lr ==⨯⨯=.故答案为:22.设集合{}12|A x x =<<-,{}|B x x a =<,若A B ⋂≠∅,则a 的取值范围是________.【答案】()1,-+∞【解析】【分析】A B ⋂≠∅,故1a >-,得到答案.【详解】{}12|A x x =<<-,{}|B x x a =<,A B ⋂≠∅,故1a >-.故答案为:()1,-+∞3.已知向量1(4,3)e =- ,2(2,1)e m m =+- ,且12//e e,则实数m 的值为_____.【答案】10【解析】【分析】根据平面向量平行的坐标表示,即可求解【详解】解:因为12//e e,所以()()4132m m -=-+,即3644m m --=-,解得10m =,故答案为:10.4.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos a B b A =,则ABC 的形状是________三角形.【答案】等腰【解析】【分析】由cos cos a B b A =结合正弦定理可得sin cos sin cos A B B A =,即in 0()s A B -=,结合A 、B 范围即可得到答案.【详解】因为cos cos a B b A =,由正弦定理,得sin cos sin cos A B B A =,即in 0()s A B -=,又(0,)A π∈,(0,)B π∈,所以(,)A B ππ-∈-,所以0A B -=,即A B =,所以ABC 是等腰三角形.故答案为:等腰【点睛】本题考查正弦定理判断三角形形状,涉及到两角差的正弦公式,考查学生的逻辑推理能力,数学运算能力,是一道容易题.5.若πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,则α=__________.【答案】π6##1π6【解析】【分析】根据二倍角公式、同角三角函数的基本关系式求得正确答案.【详解】依题意,πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,所以2222tan 1,2tan 1tan 1tan tan ααααα==--,21tan 3α=,而α为锐角,所以3πtan ,36αα==.故答案为:π66.方程π12x ⎛⎫-= ⎪⎝⎭,π,π2x ⎛⎫∈ ⎪⎝⎭的解为_______.【答案】3π4x =【分析】根据给定条件,利用诱导公式,结合特殊角的三角函数值求解作答.【详解】依题意,π2cos(22x -=,而π(,π)2x ∈,即ππ(0,)22x -∈,因此ππ24x -=,解得3π4x =,所以所求方程的解为3π4x =.故答案为:3π4x =7.不等式3lg 3xx +≤的解集是__________.【答案】(]0,1【解析】【分析】设()3lg x f x x =+,判断其单调性,根据函数的单调性即可求得不等式.的解集.【详解】由题意可设()3lg x f x x =+,定义域为(0,)+∞,由于3,lg x y y x ==在(0,)+∞都单调递增,故()3lg x f x x =+在(0,)+∞上单调递增,且(1)3f =,故不等式3lg 3x x +≤的解集是(]0,1,故答案为:(]0,18.函数ππ()2sin()0,0,22f x x A ωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图像如图所示,则⋅=ωϕ____.【答案】2π3-【解析】【分析】由函数()f x 的图象,求得πT =,得到2πT ω=,再由5π(212f =,求得π3ϕ=-,【详解】由函数()y f x =的图象,可得111π5ππ212122T =-=,即πT =,所以2π2Tω==,即()2sin(2)f x x ϕ=+,又由5π()212f =,可得5π5πsin(2)sin()1126ϕϕ⨯+=+=,解得5ππ2π,Z 62k k ϕ+=+∈,可得π2π,Z 3k k ϕ=-+∈,因为22ππϕ-<<,所以π3ϕ=-,所以ππ3322()ωϕ⋅-=⨯=-.故答案为:2π3-.9.菱形ABCD 的边长为4,30BAD ∠=︒,若N 为菱形内任意一点(含边界),则AB AN ⋅的最大值为______.【答案】16+##16+【解析】【分析】设(01,01)AN xAB y AD x y =+≤≤≤≤,根据数量积的运算律得到16A x B AN =⋅+,即可得解.【详解】设(01,01)AN xAB y AD x y =+≤≤≤≤,则()AB AN AB x AB y AD ⋅=⋅+ 2xAB y AB AD=+⋅ 2cos x AB y AB A BA D D=∠+⋅2164cos3016x y x =+⨯⨯︒=+,所以当1x =,1y =时,AB AN ⋅取得最大值16+.故答案为:16+.10.若函数()cos ,[0,2]f x x x π=∈与()tan g x x =的图象交于,M N 两点,则OM ON +=_______.【答案】π【解析】【分析】画出()cos f x x =与()tan g x x =图像,可得M 与N 关于点,02π⎛⎫⎪⎝⎭对称,进而求解即可【详解】由题,画出()cos f x x =与()tan g x x =的图像,如图所示,则M 与N 关于点,02π⎛⎫⎪⎝⎭对称,所以(),0OM ON π+=,所以||OM ON π+=,故答案为:π【点睛】本题考查余弦函数与正切函数的图像的应用,考查向量的模,考查数形结合思想11.设平面向量a ,b ,c满足:3a = ,b c = ,1a b -= ,b c ⊥ ,则b c - 的取值范围是__________.【答案】⎡⎣【解析】【分析】根据题设条件,设出,,a b c的坐标,利用坐标运算进行求解【详解】依题意,设(3cos ,3sin )a θθ=,(,0),(0,)b t c t == ,R t ∈.根据1a b -=r r ,即(3cos ,3sin )1t θθ-=,即()223cos (3sin )1t θθ-+=,整理得286cos t t θ+=.显然0t ≠,否则(0,0)0b ==,1a b a -==r r r ,与已知矛盾,故286cos t t θ+=可得28cos 6t tθ+=.由28cos 16t t θ+=≤,即2680t t -+≤,故()()240t t --≤,解得24t ≤≤.故(),b c t t ⎡-=-=∈⎣.故答案为:⎡⎣12.记()(){|sin A f x x θωθ==+为偶函数,ω是正整数},()(){|10}B x x a x a =---<,对任意实数a ,满足A B ⋂中的元素不超过两个,且存在实数a 使A B ⋂中含有两个元素,则ω的值是__________.【答案】4、5、6【解析】【分析】根据()()sin f x x ωθ=+偶函数,ω是正整数,推断出θ的取值范围,相邻的两个θ的距离是22πω,依照题意列不等式组,求出ω的值.【详解】由题意得{}|1B x a x a =<<+.∵()(){|sin A f x x θωθ==+为偶函数,ω是正整数},∴21{|,,*}{|,,*}22k A k k Z N k Z N πθωθπωθθπωω+==+∈∈==∈∈,∵对任意实数a ,满足A B ⋂中的元素不超过两个,且存在实数a 使A B ⋂中含有两个元素,∴A 中任意相邻的两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1.∴212{2212πωπω<⨯≥,解得2πωπ<≤,又*N ω∈,∴4,5,6ω=.答案:4,5,6.【点睛】本题考查了正弦函数的奇偶性和周期性,以及根据集合的运算关系,求参数的值,关键是理解212{2212πωπω<⨯≥的意义,强调抽象思维与灵活应变的能力.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.下列函数在其定义域内既是严格增函数,又是奇函数的是()A.sin y x =B.2log y x =C.cos y x x =-D.e e x xy -=-【答案】D 【解析】【分析】根据初等函数的单调性和奇偶性的判定方法,逐项判定,即可求解.【详解】对于A 中,函数sin y x =在定义域R 上不是严格的单调函数,不符合题意;对于B 中,函数2log y x =的定义域为(0,)+∞,所以为非奇非偶函数,不符合题意;对于C 中,函数()cos f x x x =-,可得()()cos()cos f x x x x x f x -=---=--≠,所以函数()f x 不是奇函数,不符合题意;对于D 中,函数()1e ee exxx x f x -=-=-,在定义域R 上严格的单调递增函数,且()()()e e e e xx x x f x f x ---=-=--=-,所以函数()f x 为奇函数,符合题意.故选:D.14.若π3π,22⎛⎫∈ ⎪⎝⎭α,且π3cos 2cos 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α可以为()A.6-B.89C.18-D.1718-【答案】D 【解析】【分析】利用两角和的余弦公式及二倍角公式得到()2223cos sin sin )2αααα-=-,即可得到cos sin 6αα+=或cos sin 0αα-=,再将上式平方即可得解;【详解】因为π3cos 2cos 4αα⎛⎫=+⎪⎝⎭,所以()2243cos sin cos co c ππ4ssin os αααα-=-,所以()2223cos sin (cos sin )2αααα-=-,即()()3cos sin cos sin (cos sin )2αααααα-+=-,解得2cos sin 6αα+=或cos sin 0αα-=,当2cos sin 6αα+=时,()281cos sin 1αα+=,2281cos 2cos sin sin 1αααα++=,即11sin 218α+=,解得17sin 218α=-;当cos sin 0αα-=时,()2cos sin 0αα-=,22cos 2cos sin sin 0αααα-+=,即1sin 20α-=,解得sin 21α=.故选:D15.已知A 、B 、C 是平面上不共线的三点,O 是△ABC 的重心,点P 满足112663OP OB OC =++,则△ACO 与△CBP 面积比为()A.5:6B.3:4C.2:3D.1:2【答案】D 【解析】【分析】利用重心的性质和已知线性关系可得2OP OA =,故P 为OA 中点,进而可得面积比.【详解】由O 是△ABC 的重心,得0OA OB OC ++=,而112663OP OB OC =++,则64OB OC OP OA +=- ,故2OP OA =,所以点P 为OA 中点,即点P 、点O 为BC 边中线的两个三等分点,所以211323ACO ABC ABC S S S =⨯= ,23CBP ABC S S = ,所以△ACO 与△CBP 面积比为1:2.故选:D16.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅,若平面向量,a b 满足0≥> a b ,,a b 的夹角π0,4θ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合|Z 2n n ⎧⎫∈⎨⎬⎩⎭中,则a b =()A.12B.1C.32D.52【答案】C 【解析】【分析】由题意可可设m ∈Z ,Z t ∈,2m a b = ,2t b a = ,得21cos ,142mt θ⎛⎫=∈ ⎪⎝⎭,对m ,t 进行赋值即可得出m ,t 的值,进而得出结论.【详解】解:2cos |Z 2a a b n a b n b b θ⋅⎧⎫==∈∈⎨⎬⎩⎭ ,故cos |Z 2b n b a n a θ⎧⎫=∈∈⎨⎬⎩⎭.又由||||0a b >,可设m ∈Z ,Z t ∈,令2m a b = ,2t b a = ,且0m t ≥>又夹角π0,4θ⎛⎫∈ ⎪⎝⎭,所以21cos ,142mt θ⎛⎫=∈ ⎪⎝⎭,对m ,t 进行赋值即可得出3,1m t ==所以322m a b == .故选:C .三、解答题(本大题共有5题,满分78分)解答下列各题必须写出必要的步骤.17.已知O 是坐标原点,(2,3),(1,4)OA OB ==,(1)求向量OB 在OA方向上的投影向量的坐标和数量投影;(2)若3OC OA = ,3OD OB = ,2OE OA OB =+,请判断C 、D 、E 三点是否共线,并说明理由.【答案】(1)坐标2842,1313⎛⎫⎪⎝⎭,数量投影是141313(2)共线,理由见解析【解析】【分析】(1)根据投影向量和投影的公式,准确计算,即可求解;(2)根据平面向量的共线的坐标表示,得到3CD CE =,即可求解.【小问1详解】解:由向量(2,3),(1,4)OA OB ==,可得213414OA OA OB =⋅=⨯+⨯= 则投影向量的坐标是||cos OB OA < ,2842,1313||||||OA OA OB OA OB OA OA OA ⋅⎛⎫>⋅=⋅= ⎪⎝⎭,数量投影是||cos OB OA <,13||OA OB OB OA ⋅>== ,即向量OB 在OA 方向上的数量投影是141313.【小问2详解】解:C 、D 、E 三点共线,理由:向量(2,3),(1,4)OA OB ==,因为3OC OA = ,3OD OB = ,2OE OA OB =+,可得(6,9)OC = ,(3,12)OD = ,(5,10)OE =,所以(3,3)CD OD OC =-=- ,(1,1)CE OE OC =-=-,可得3CD CE =,所以C 、D 、E 三点共线.18.已知π02α<<,π02β-<<,tan 7α=,5sin 5β=-.(1)求()cos αβ-的值;(2)求tan(2)αβ-的值,并确定2αβ-的大小.【答案】(1)10(2)1-,3π4【解析】【分析】(1)由tan α解得sin ,cos αα,由sin β求出cos β,利用两角差的余弦公式求解()cos αβ-的值;(2)由sin β,cos β求出tan β,再求tan 2β,利用两角差的正切公式计算tan(2)αβ-的值,并得到2αβ-的大小.【小问1详解】π02α<< ,由22sin tan 7cos sin cos 1ααααα⎧==⎪⎨⎪+=⎩,72sin 10α∴=,2cos 10α=,又π02β-<<,sin 5β=-,cos β∴=,25257210cos()cos cos sin sin 51051010αβαβαβ∴-=+=⨯-=-.【小问2详解】由(1)可知,1tan 2β=-,22tan 4tan 231tan βββ∴==--,tan tan 2tan(2)11tan tan 2αβαβαβ-∴-==-+,3π022αβ<-<,3π24αβ∴-=.19.如图,某避暑山庄为吸引游客,准备在门前两条小路OA 和OB 之间修建一处弓形花园,已知π6AOB ∠=,弓形花园的弦长||AB =,记弓形花园的顶点为M ,π6MAB MBA ∠=∠=,设OBA θ∠=.(1)将OA 、OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何设计OA 、OB 的长度,使得喷泉M 与山庄O 的距离最大?喷㬌M 与山庄O 的距离最大?【答案】(1)||OA θ=,π||6OB θ⎛⎫=+ ⎪⎝⎭.(2)当||||OA OB ==+OM 的最大值4+.【解析】【分析】(1)根据题意和正弦定理,即可求得||OA θ=,π||6OB θ⎛⎫=+ ⎪⎝⎭;(2)在OMB △中,由余弦定理化简得到22π||2283OM θ⎛⎫=-++ ⎪⎝⎭,结合三角函数的图像与性质,即可求解.【小问1详解】解:在OAB 中,由正弦定理得||||||sin sin sin OA OB AB OAB AOBθ==∠∠,因为6AOB π∠=,||AB =,所以56OAB πθ∠=-,所以||OA θ=,5ππ||66OB θθ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭.【小问2详解】解:因为||AB =,π6MAB MBA ∠=∠=,所以||||2AM BM ==,在OMB △中,由余弦定理易知222π||||||2||||cos 6OM OB BM OB BM θ⎛⎫=+-⋅⋅⋅+⎪⎝⎭,即22πππ||48sin 4cos 666OM θθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2ππ48sin 2428263θθ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭ππ24cos 222833θθ⎛⎫⎛⎫=-+-++ ⎪ ⎪⎝⎭⎝⎭3π1πcos 2sin 2282323θθ⎤⎛⎫⎛⎫=-++++⎥ ⎪ ⎪⎝⎭⎝⎭⎦2π2283θ⎛⎫=-++ ⎪⎝⎭,因为5π0,6θ⎛⎫∈ ⎪⎝⎭,所以2π2π7π2,333θ⎛⎫+∈ ⎪⎝⎭,π23sin 21,32θ⎡⎫⎛⎫+∈-⎪⎢ ⎪⎪⎝⎭⎣⎭,当2πsin 213θ⎛⎫+=- ⎪⎝⎭,即5π12θ=时,2||OM取最大值28+即OM取最大值4+此时5πππ||1264OA ⎛⎫==+=+ ⎪⎝⎭5ππππ||12643OB ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,故当||||OA OB ==+OM取最大值4+.20.已知函数()sin cos sin cos 1(,,R)f x a x b x c x x a b c =+++∈.(1)当0a b ==,1c =时,求函数()y f x =的单调增区间;(2)当1a =,0c =时,设()()1g x f x =-,且函数()g x 的图像关于直线π6x =对称,将函数()y g x =的图像向右平移π6个单位,得到函数()y h x =,求解不等式()1h x ≥;(3)当3a =,2b =,0c =时,若实数m ,n ,p 使得()()1mf x nf x p +-=对任意实数x 恒成立,求cos 2023pm n +的值.【答案】(1)πππ,π,Z 44k k k ⎡⎤-+∈⎢⎥⎣⎦(2)22π,π2π,Z 3k k k ⎡⎤+∈⎢⎥⎣⎦(3)11012-【解析】【分析】(1)根据题意得到1()sin 212f x x =+,结合正弦型函数的性质,即可求解;(2)根据题意得到1322b +=b =,得到π()2sin 3g x x ⎛⎫=+ ⎪⎝⎭,结合图象的变换求得()2sin π6h x x ⎛⎫=+⎪⎝⎭,由不等式()1h x ≥,即π1sin 62x ⎛⎫+≥ ⎪⎝⎭,即可求解;(3)化简得到())1f x x ϕ=++,求得())1f x p x p ϕ-=+-+,转化为cos )sin()sin cos()(1)0m n p x p x m n ϕϕ++-+++-=,得到方程组,分类讨论,即可求解.【小问1详解】解:当0a b ==,1c =时,可得函数1()sin cos 1sin 212f x x x x =+=+,令ππ2π22π,Z 22k x k k -≤≤+∈,所以单调增区间为πππ,π,Z 44k k k ⎡⎤-+∈⎢⎥⎣⎦;【小问2详解】解:当1a =,0c =时,可得sin cos ()()1)x b x x g x f x θ=-=+=+,其中tan b θ=,因为()g x 关于直线π6x =对称,可得max π()6g x g ⎛⎫==⎪⎝⎭1322b +=b =,所以π()sin 2sin 3g x x x x ⎛⎫==+ ⎪⎝⎭,将函数()y g x =的图像向右平移π6个单位,得到函数()2sin π6h x x ⎛⎫=+ ⎪⎝⎭,由()1h x ≥,即π1sin 62x ⎛⎫+≥ ⎪⎝⎭,则ππ52ππ2π,Z 666k x k k +≤+≤+∈解得22ππ2π,Z 3k x k k ≤≤+∈,所以不等式的解集为()22π,π2πZ 3k k k ⎡⎤+∈⎢⎥⎣⎦;【小问3详解】解:当3a =,2b =,0c =时,则()3sin 2cos 1f x x x =++,可得())1f x x ϕ=++,则())1f x p x p ϕ-=+-+,其中π02ϕ<<且2tan 3ϕ=,于是()()1mf x nf x p +-=,sin()sin()1x x p m n ϕϕ+++-++=,sin()sin()cos sin cos()(1)0x x p p x m n ϕϕϕ+++-+++-=,cos )sin()sin cos()(1)0m n p x p x m n ϕϕ++-+++-=.由已知条件,上式对任意x ∈R 恒成立,故必有cos 0(1)sin 0(2)10(3)m n p n p m n +=⎧⎪=⎨⎪+-=⎩,若0n =,则由(1)知0m =,显然不满足(3)式,故0n ≠,所以由(2)知sin 0p =,故ππ2p k =+或π2Z ,p k k =∈,当2πp k =时,cos 1p =,则(1)、(3)两式矛盾,故2,Z p k k ππ=+∈,cos 1p =-由(1)、(3)知12m n ==,所以cos 120231012p m n =-+.21.已知函数()()sin cos 4sin29f x a x x x =+++,且π134f ⎛⎫=-⎪⎝⎭.(1)求a 的值,并求出()y f x =的最小正周期(不需要说明理由);(2)若π0,2x ⎡⎤∈⎢⎥⎣⎦,求()y f x =的值域;(3)是否存在正整数n ,使得()y f x =在区间[]0,πn 内恰有2025个零点,若存在,求由n 的值;若不存在,说明理由.【答案】(1)9a =-,函数()f x 的最小正周期为πT =(2)1,1316⎡--⎢⎣(3)存在正整数506n =,理由见解析【解析】【分析】(1)根据π134f ⎛⎫=-⎪⎝⎭代入即可求解a 的值.因为sin cos sin 2x x x 、、的周期是都π,故得函数()f x 的最小正周期;(2)根据π0,2x ⎡⎤∈⎢⎥⎣⎦,得到()()9sin cos 4sin29f x x x x =-+++,设πsin cos4x x x t ⎛⎫+=+= ⎪⎝⎭,t ⎡∈⎣,转化为二次函数求解;(3)分类讨论π0,2x ⎡⎤∈⎢⎥⎣⎦和π,π2x ⎛⎫∈ ⎪⎝⎭时,将()y f x =转化为二次函数,从而求得其零点个数,进而得解.【小问1详解】函数()()sin cos 4sin 29f x a x x x =+++,∵π134f ⎛⎫=-⎪⎝⎭,∴πππsincos 4sin 913442a ⎛⎫+++=- ⎪⎝⎭9a =-,所以()()9sin cos 4sin29f x x x x =-+++,因为sin cos sin 2x x x 、、的周期是都π,又周期成倍数关系的两个函数之和,其周期为这两个函数的周期的最小公倍数,所以函数()f x 的最小正周期为πT =.【小问2详解】若π0,2x ⎡⎤∈⎢⎥⎣⎦,则()()9sin cos 4sin29f x x x x =-+++,设πsin cos 4x x x t ⎛⎫+=+= ⎪⎝⎭,则t ⎡∈⎣,则2sin22sin cos 1x x x t ==-,所以()()2495,f x g t t t t ⎡==-+∈⎣,所以其值域为1,1316⎡--⎢⎣;【小问3详解】存在正整数506n =,使得()0f x =在区间[]0,πn 内恰有2025个零点.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()()9sin cos 4sin29f x x x x =-+++.设πsin cos ,4t x x x t ⎛⎫⎡=+=+∈ ⎪⎣⎝⎭,则2sin22sin cos 1x x x t ==-,于是()()29sin cos 4sin29495f x x x x t t =-+++=-+,令24950t t -+=,得1t =或54t ⎡=∈⎣,此时π0,2x =,或00π04x x x ⎛⎫=<< ⎪⎝⎭或0π2x x =-,其中0π52sin 48x ⎛⎫+= ⎪⎝⎭,当π,π2x ⎛⎫∈⎪⎝⎭时,()()9sin cos 4sin29f x x x x =--++.设(πsin cos ,4t x x x t ⎛⎫=-=-∈ ⎪⎝⎭,则2sin22sin cos 1x x x t ==-,于是()()29sin cos 4sin294913f x x x x t t =--++=--+,令249130t t --+=,解得1t =或(134t =-∉,故()f x 在π,π2x ⎛⎫∈⎪⎝⎭没有实根.综上,()0f x =在[)0,π上有4个零点,又()f x 的最小正周期为πT =,而202545061=⨯+,所以函数在[]0,506π有2025个零点.。

上海市上海师范大学附属中学2019_2020学年高一数学下学期期中试题含解析

上海市上海师范大学附属中学2019_2020学年高一数学下学期期中试题含解析

上海市上海师范大学附属中学2019-2020学年高一数学下学期期中试题(含解析)一.填空题1.已知集合{}{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =_________.【答案】{}3,9 【解析】 【分析】根据集合的交集运算定义可得.【详解】因为{}{}1,3,5,7,9,0,3,6,9,12A B ==, 所以AB ={3,9}.故答案为: {}3,9【点睛】本题考查了集合的交集运算,属于基础题.2.函数()()02f x x =+-的定义域为______.【答案】{|1x x ≥-且}2x ≠ 【解析】 【分析】由中根式内部的代数式大于等于0,0指数幂的底数不为0,联立不等式组求解. 【详解】由1020x x +≥⎧⎨-≠⎩,解得1x ≥-且x≠2.∴函数()()02f x x =+-的定义域是】{|1x x ≥-且}2x ≠.即答案为】{|1x x ≥-且}2x ≠【点睛】本题考查函数的定义域及其求法,是基础题.3.已知函数()1(1)3(1)x f x x x >=-+≤⎪⎩,则()5f f -=⎡⎤⎣⎦__________.【答案】3 【解析】【分析】先计算(5)8f -=,再计算(8)3f =.【详解】因为()31(1)3(1)x x f x x x ⎧+>⎪=⎨-+≤⎪⎩,所以(5)(5)38f -=--+=, 所以3(8)813f =+=. 故答案为:3【点睛】本题考查了分段函数的求值,属于基础题. 4.“24x >”是“2x >”的________条件. 【答案】必要非充分 【解析】 【分析】解不等式24x >,利用集合的包含关系判断即可. 【详解】解不等式24x >得2x <-或2x >,{2x x <-或}2x >{}2x x >,因此,“24x>”是“2x >”的必要非充分条件.故答案为:必要非充分.【点睛】本题考查必要非充分条件的判断,同时也考查了一元二次不等式的求解,考查计算能力与推理能力,属于基础题. 5.不等式11x≤的解集为__________ 【答案】(-∞,0)∪[1,+∞) 【解析】【详解】11x≤变形为10x x -≥, 等价于()100x x x ⎧-≥⎨≠⎩,解得1x ≥或0x <,即不等式的解集为(-∞,0)∪[1,+∞). 6.已知1x >,则41x x +-的取值范围是__________.【答案】[5,)+∞ 【解析】 【分析】化成积为定值的形式后,利用基本不等式可得. 【详解】因为1x >,所以10x ->,所以41x x +-411151x x =-++≥=-,当且仅当411x x -=-,即3x =时取等号.故答案为:[5,)+∞.【点睛】本题考查了基本不等式求最小值,属于基础题.7.不等式()2212(1)10a x a x ----<的解集为R ,则实数a 的取值范围为________. 【答案】01a <≤ 【解析】 【分析】讨论2x 项的系数,根据二次函数的图象和性质列不等式组可解得答案. 【详解】当1a =时,不等式化为:10-<,符合题意; 当1a =-时,不等式化为:410x -<,解得14x <,不符合题意; 当1a ≠±时,要使不等式()2212(1)10a x a x ----<的解集为R, 必有224(1)4(1)0a a -+-<且210a -<,解得01a <<, 综上所述: 实数a 的取值范围为:01a <≤. 故答案为 01a <≤【点睛】本题考查了分类讨论思想,二次函数的图象和性质,属于基础题.8.已知{(,)|1},{(,|},{(,)|,}M x y y x N x y y x U x y x R y R =≠+=≠-=∈∈,则()U C M N =________. 【答案】11{(,)}22-【解析】 【分析】根据摩根律()()()U U U C M N C M C N ⋃=⋂计算可得答案.【详解】因为{(,)|1},{(,|},{(,)|,}M x y y x N x y y x U x y x R y R =≠+=≠-=∈∈, 所以{(,)|1}U C M x y y x ==+,{(,)|}U C N x y y x ==-, 所以()()()U U U C M N C M C N ⋃=⋂=1{(,)|}y x x y y x=+⎧⎨=-⎩11{(,)}22=-.故答案为: 11{(,)}22-【点睛】本题考查了集合的交集和补集运算,属于基础题. 9.已知函数()f x 为定义在R 上的奇函数,当0x ≥时,()22(x f x x m m =++为常数),则()f m 的值为__________.【答案】3- 【解析】 【分析】根据奇函数的定义域中有0,可得(0)0f =,根据0x ≥时的解析式求得(0)1f m =+,从而可求得1m =-,再根据奇函数可得(1)(1)f f -=-,根据解析式可求得.【详解】因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以(0)0f =, 又0(0)220f m =+⨯+,所以10m +=,所以1m =-, 所以()221x f x x ,所以1()(1)(1)(2211)3f m f f =-=-=-+⨯-=-, 故答案为:-3【点睛】本题考查了奇函数的定义,利用奇函数求函数值,属于基础题.10.设集合A ,B 是R 中两个子集,对于x ∈R ,定义: 0,,0,1,,1,x A x B m n x A x B ⎧∉∉⎧==⎨⎨∈∈⎩⎩.①若A B ⊆;则对任意(),10x R m n ∈-=;②若对任意,0x R mn ∈=,则A B φ⋂=;③若对任意,1x R m n ∈+=,则A ,B 的关系为R A C B =.上述命题正确的序号是______. (请填写所有正确命题的序号) 【答案】①②③ 【解析】 【分析】对于①,按照x A ∈和x A ∉两种情况讨论,可得①正确;对于②,根据,m n 不可能都为1,可得x 不可能既属于A ,又属于B 可得②正确;对于③,根据,m n 中的一个为0,另一个为1,可得x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,由此可知③正确.【详解】对于①,因为A B ⊆,所以当x A ∉时,根据定义可得0m =,所以(1)0m n -=, 当x A ∈,则必有x B ∈,根据定义有1n =,所以(1)0m n -=, 故对于任意x ∈R ,都有(1)0m n -=,故①正确;对于②,因为对任意,0x R mn ∈=,所以,m n 中不可能都为1,即x A ∈和x B ∈不可能同时成立,所以A B φ⋂=,故②正确;对于③,因为对任意,1x R m n ∈+=,所以,m n 中的一个为0,另一个为1,即x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,所以R A C B =,故③正确.综上所述: 所有正确命题的序号为:①②③. 故答案为①②③【点睛】本题考查了元素与集合,集合与集合之间的关系,对新定义的理解能力,属于中档题. 11.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________. 【答案】32a = 【解析】 【详解】当时,代入题中不等式显然不成立当时,令,,都过定点考查函数,令,则与轴的交点为时,均有也过点解得或(舍去),故12.设关于x 的不等式()()222222224704547x a x a a x a a x a a ++-+-<++--+-的解集是一些区间的并集, 且这些区间的长度和(规定:(),a b 的长度为b a -)不小于12,则a 的取值范围为__________. 【答案】1a ≤-或5a ≥. 【解析】 【分析】 设222(22)470x a x a a ++-+-= 的根为:()1212,x x x x <,()22245470x a a x a a ++--+-=的根为: ()3434,x x x x <,根据根与系数的关系,分析可知1324x x x x <<<,再用1234,,,x x x x 表示不等式的解集,根据这些区间的长度和不小于12列不等式可解得.【详解】设222(22)470x a x a a ++-+-= 的根为: ()1212,x x x x <,()22245470x a a x a a ++--+-=的根为: ()3434,x x x x <,则()212212220470x x a x x a a ⎧+=-+<⎪⎨=-+-<⎪⎩,所以1200x x <⎧⎨>⎩,且()23423445470x x a a x x a a ⎧+=-+-⎪⎨=-+-<⎪⎩,所以3400x x <⎧⎨>⎩,又()()()()22234124522470x x x x a a a a a +-+=-+-++=-+>,且22123447(2)30x x x x a a a ==-+-=---<,所以1234,,,x x x x 的大小关系为:1324x x x x <<<, 由()()()()()()22212222342247004547x a x a a x x x x x x x x x a a x a a ++-+---<⇒<--++--+-,故由数轴穿根法得原不等式的解集是: ()()1324,,x x x x ⋃,由题意可得()()()()()()22314234124522x x x x x x x x a a a -+-=+-+=-+-++2247124501a a a a a =-+≥⇒--≥⇒≤-或 5a ≥.故答案为: 1a ≤-或5a ≥.【点睛】本题考查了根与系数的关系,一元二次不等式,高次不等式的解法,分式不等式的解法,属于中档题. 二.选择题13.A , B , C 三个学生参加了一次考试,已知命题p :若及格分高于70分,则A , B , C 都没有及格.则下列四个命题中为p 的逆否命题的是( ) A. 若及格分不高于70分,则A ,B , C 都及格 B. 若A ,B , C 都及格,则及格分不高于70分 C. 若A ,B , C 至少有一人及格,则及格分不高于70分 D. 若A , B , C 至少有一人及格,则及格分高于70分 【答案】C 【解析】 【分析】根据逆否命题的定义,直接写出命题p 的逆否命题即可. 【详解】根据原命题与它的逆否命题之间的关系知, 命题p :若及格分高于70分,则A , B , C 都没有及格,则p 的逆否命题是:若,,A B C 至少有一人及格,则及格分不低于70分. 故选C【点睛】本题考查了由原命题写其逆否命题,属于基础题. 14.下列各组不等式中解集相同的是( )A. 22311x x x x -<--与223x x -<B. (3)(1)01x x x -+>+与30x ->C. 5x <与221153232x x x x x +<+-+-+D.(3)(1)03x x x -+>-与10x +> 【答案】B 【解析】 【分析】对各组不等式中的不等式求解可知答案.【详解】对于A ,根据分母不为0,可知22311x x x x -<--的解集中没有元素1,而223x x -<的解集中有元素1,故A 不正确; 对于B ,由(3)(1)01x x x -+>+得30x ->且1x ≠-,即3x >,由30x ->得3x >,故选项B 正确; 对于C ,由221153232x x x x x +<+-+-+整理得5x <且2320x x -+≠,即5x <且1x ≠且2x ≠,故选项C 不正确; 对于D ,由(3)(1)03x x x -+>-得10x +>且30x -≠,即1x >-且3x ≠,故D 不正确.故选:B【点睛】本题考查了分式不等式的解法,属于基础题.15.观察下列四个函数的图象,其中值域为[]0,4的函数是( )A. B.C. D. 【答案】D 【解析】【分析】根据函数的值域的定义,观察图象可知选D. 【详解】对于A,由图象观察可知,值域为(0,4],故A不正确; 对于B,观察图象可知,值域不是[0,4],故B不正确; 对于C,观察图象可知,值域不是[0,4],故C不正确; 对于D,观察图象可知,值域是[0,4],故D正确; 故选:D 【点睛】本题考查了函数的值域的定义,属于基础题. 16.已知非空集合,A B满足以下两个条件:(ⅰ){}1,2,3,4,5,6A B =,A B=∅;(ⅱ)A的元素个数不是A中的元素,B的元素个数不是B中的元素,,A B的个数为()则有序集合对()A. 10B. 12C. 14D. 16【答案】A【解析】【分析】根据条件:A的元素个数不是A中的元素,B的元素个数不是B中的元素,分别讨论集合A、B中元素的个数,列举所有可能,即可得到结果.【详解】根据条件:A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素1、当集合A 只有一个元素时,集合B 中有5个元素,1A ∉且5B ∉,此时仅有一种结果{5}A =,{1,2,3,4,6}B =;2、当集合A 有两个元素时,集合B 中有4个元素,2A ∉且4B ∉,此时集合A 中必有一个元素为4,集合B 中必有一个元素为2,故有如下可能结果:(1){1,4}A =,{2,3,5,6}B =;(2){3,4}A =,{}1,2,5,6B =;(3){}5,4A =,{}1,2,3,6B =;(4){}6,4A =,{}1,2,3,5B =.共计4种可能.3、可以推测集合A 中不可能有3个元素;4、当集合A 中的4个元素时,集合B 中的2个元素,此情况与2情况相同,只需A 、B 互换即可.共计4种可能.5、当集合A 中的5个元素时,集合B 中的1个元素,此情况与1情况相同,只需A 、B 互换即可.共1种可能.综上所述,有序集合对(A ,B )的个数为10.答案选A .【点睛】本题主要考查排列组合的应用,根据元素关系分别进行讨论是解决本题的关键. 三.解答题17.已知集合{|A x y ==,集合{}2|7120B x x x =--->,集合{|121}C x m x m =+≤≤-.(1)求AB ;(2) 若A C A ⋃=,求实数m 的取值范围. 【答案】(1) ()4,3--; (2) 2m <或6m ≥. 【解析】 【分析】(1) 根据定义域求得集合A ,解一元二次不等式求得集合B ,再根据数轴求交集;(2) 先将条件转化为集合包含关系: C ⊆A ,再根据空集进行讨论,最后根据数轴研究两集合包含关系. 【详解】(1)25140x x --≥,2x ∴≤-或7x ≥,即(,2][7,)A =-∞-⋃+∞,227120,7120,x x x x --->++<所以43x -<<-即(4,3)B =--,(4,3)A B ∴⋂=--(2) A C A ⋃=,所以 C ⊆A ,当211m m -<+时,即2m <时,C 为空集满足条件:2m <,当211m m -≥+,即2m ≥时,212m -≤-或17m +≥, 解得12m ≤-,或6m ≥, 又2m ≥,所以6m ≥,综上2m <或6m ≥.【点睛】本题考查了一元二次不等式的解法,子集关系,分类讨论思想,容易遗漏空集,属于基础题.18.记关于x 的不等式30ax x a -≤+的解集为P . (1)若1a =,求P ;(2)若1P ∉,求实数a 的取值范围.【答案】(1){|13}P x x =-<≤;(2) (,1](3,)-∞-⋃+∞.【解析】【分析】(1)解分式不等式可得,注意分母不为0;(2) 1P ∉转化为301a a->+或10a +=后可解得. 【详解】(1)当1a =时,30ax x a -≤+化为301x x -≤+,即(3)(1)0x x -+≤且10x +≠, 所以13x -<≤,故{|13}P x x =-<≤.(2)因为1P ∉,所以301a a->+或10a +=,解得1a <-或3a >或1a =-,故实数a 的取值范围是(,1](3,)-∞-⋃+∞.【点睛】本题考查了一元二次不等式以及分式不等式的解法,注意分母不为0,属于基础题. 19.2019年10月1日为庆祝中国人民共和国成立70周年在北京天安门广场举行了盛大的阅兵仪式,共有580台(套)装备、160余架各型飞机接受检阅,受阅装备均为中国国产现役主战装备,其中包括部分首次公开亮相的新型装备.例如,在无人作战第三方队中就包括了两型侦察干扰无人机,可以在遥控设备或自备程序控制操纵的情况下执行任务,进行对敌方通讯设施的电磁压制和干扰,甚至压制敌人的防空系统.某作战部门对某处的战场实施“电磁干扰”实验,据测定,该处的“干扰指数”与无人机干扰源的强度和距离之比成正比,比例系数为常数k (0k >),现已知相距36km 的A 、B 两处配置两架无人机干扰源,其对敌干扰的强度分别为1和a (0a >),它们连线段上任意一点C 处的干扰指数y 等于两机对该处的干扰指数之和,设AC x =(km ).(1)试将y 表示为x 的函数,指出其定义域;(2)当25a =,1k =时,试确定“干扰指数”最小时C 所处位置.【答案】(1)36k ka y x x =+-,(036x <<);(2)距离A 点6公里处 【解析】【分析】(1)根据干扰指数”与无人机干扰源的强度和距离之比成正比,比例系数为常数k ,以及AC x =,分别得到C 受A 干扰指数,点C 受B 干扰指数,再求和即可.(2)根据036x <<,将函数转化为()125112536363636y x x x x x x ⎛⎫=+=+-+ ⎪--⎝⎭再变形,利用基本不等式求解.【详解】(1)根据题意,点C 受A 干扰指数为k y x =,点C 受B 干扰指数为36ka y x =-, 所以点C 处干扰指数为:(),03636k ka y x x x=+<<-. (2)因为036x <<, 所以()125112536363636y x x x x x x ⎛⎫=+=+-+ ⎪--⎝⎭,136251125261363636x x x x ⎛-⎛⎫=+++≥+= ⎪ -⎝⎭⎝当且仅当362536x x x-=-,即6x =时,取等号, 所以“干扰指数”最小时C 所处位置在距A 点6公里处.【点睛】本题主要考查函数的实际应用以及基本不等式的应用,还考查了运算求解的能力,属于中档题.20.已知函数()1()||3,,0m f x x m R x x-=+-∈≠. (1)判断函数()y f x =的奇偶性,并说明理由;(2)若对于任意的[]()1,4,1x f x ∈≥-恒成立,求满足条件的实数m 的最小值M .(3)对于(2)中的M ,正数a ,b 满足22a b M +=,证明: 2a b ab +≥.【答案】(1) 当1m =时,()f x 为偶函数, 当1m ≠时,既不是奇函数也不是偶函数,理由见解析;(2)2;(3) 证明见解析.【解析】【分析】(1)对m 分类讨论,结合奇偶性的定义进行判断可得;(2)将不等式转化为212m x x -≥-+对任意的[1,4]x ∈都成立,再构造函数,利用单调性求出最大值即可得到答案;(3)由(2)知2M =,所以1ab ≤,2a b +≤变形可证. 【详解】(1)(i)当m=1时,()||3f x x =-,(,0)(0,)x ∈-∞⋃+∞,因为()||3||3()f x x x f x -=--=-=,所以()f x 为偶函数;(ii)当1m ≠时,(1)3f m =-,(1)1f m -=-,(1)(1)f f ≠-,(1)(1)f f ≠--,所以既不是奇函数也不是偶函数.(2) 对于任意的[]()1,4,1x f x ∈≥-,即131m x x-+-≥-恒成立, 所以212m x x -≥-+对任意的[1,4]x ∈都成立,设2()2,[1,4]g x x x x =-+∈,则()g x 为[1,4]上的递减函数,所以1x =时,()g x 取得最大值1,所以11m -≥,即2m ≥.所以2M =.(3)证明: 由(2)知2M =, 222a b ab +≥,所以22ab ≥,1ab ∴≤,1≤,当且仅当a b =时取等号,①又1,22a b ab a b +≤∴≤+ 2ab a b ∴≤+,当且仅当a b =时取等号,② 由①②得,12ab a b ≤+, 所以2a b ab +≥,【点睛】本题考查了函数奇偶性的讨论,不等式恒成立问题,不等式的证明问题,属于中档题.21.符号[]x 表示不大于x 的最大整数()x R ∈,例如:[][][]1.31,22, 1.22==-=-.(1)解下列两个方程[][]3,23x x ==-; (2)设方程: [|||1|]3x x +-=的解集为A ,集合{}22|211150B x x kx k =-+≥,A B R =,求实数k 的取值范围;(3)求方程2440[]510x x -+=的实数解.【答案】(1)[3,4),3,12⎡⎫--⎪⎢⎣⎭;(2) 1245,{0},2556k ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦;(3) x =;2x =;x =x =. 【解析】【分析】(1)根据对符号[]x 的定义理解可得答案;(2)将[|||1|]3x x +-=化为3|||1|4x x ≤+-<,再分三种情况去绝对值解不等式可得集合A ,然后对k 分类讨论解得集合B ,再根据A B R =,列式可求得k 的范围;(3)先判断出[]0x ≥,再将[][]1x x x ≤<+平方得222([])([]1)x x x ≤<+,再结合方程2440[]510x x -+=可得不等式224([])40[]514([]1)x x x ≤-<+,解不等式可得[]2x =或[]6x =或[]7x =或[]8x =,分别代入方程2440[]510x x -+=可解得答案.【详解】(1) []3,[3,4)x x =∴∈3[2]3,2[3,2),,12x x x ⎡⎫=-∴∈--∴∈--⎪⎢⎣⎭, (2) [|||1|]3x x +-=,3|||1|4x x ≤+-<,当1x ≥时,有314x x ≤+-<,解得 522x ≤<, 当01x <<时,有314x x ≤+-<,[|||1|]3x x +-=无解,当0x ≤时,有314x x ≤--+<,解得: 312x -<≤- 综上所述:35,12,22A ⎛⎤⎡⎫=-- ⎪⎥⎢⎝⎦⎣⎭. 因为{|(25)(3)0}B x x k x k =--≥当0k >时,5,[3,)2k B k ⎛⎤=-∞⋃+∞ ⎥⎝⎦ 因为A B R =,所以552322k k ≤<≤,解得4556k ≤≤; 当k 0<时,5(,3],2k B k ⎡⎫=-∞⋃+∞⎪⎢⎣⎭, 因为A B R =,所以353122k k -≤<≤-,解得: 1225k -≤≤-, 当0k =时,B R =,A B R =成立,综上: 实数k 的取值范围1245,{0},2556⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦. (3)因[][]1x x x ≤<+, 又[]0x <时,方程2440[]510x x -+=不成立,所以[]0x ≥,所以222([])([]1)x x x ≤<+,所以224([])40[]514([]1)x x x ≤-<+, 224([]1)40[]5104[]40[]510x x x x ⎧+-+>∴⎨-+≤⎩, 所以224[]32[]5504[]40[]510x x x x ⎧-+>⎨-+≤⎩所以(2[]5)(2[]11)0(2[]3)(2[]17)0x x x x -->⎧⎨--≤⎩, 所以11[]2x >或5[]2x <且317[]22x ≤≤, 所以35[]22x ≤< 或1117[]22x <≤, 所以[]2x =或[]6x =或[]7x =或[]8x =,当[]2x =时,原方程化为24290x -=,所以2x =,当[]6x =时,原方程化为241890x -=,所以2x ==,当[]7x =时,原方程化为242290,x x -==,当[]8x =时,原方程化为242690,x x -==, 经检验知,这四个值都是原方程的解.故方程2440[]510x x -+=的实数解为:2x =或2x =或2x =或2x =. 【点睛】本题考查了对新定义的理解,一元二次不等式的解法,属于难题.。

上海市松江区2020-2021学年高一数学下学期期末考试数学试题含解析

上海市松江区2020-2021学年高一数学下学期期末考试数学试题含解析

上海市松江区2020-2021学年高一数学下学期期末考试试题(含解析)一、填空题(共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.计算:i2021=(i为虚数单位).2.已知向量,,若,则实数x的值是.3.复数z=(m﹣2)+(m+1)i为纯虚数(i为虚数单位),其中m∈R,则|z|=.4.已知tanα=4,则=.5.已知一扇形的弧所对的圆心角为60°,半径r=20cm,则扇形的周长为cm.6.化简:=.7.在△ABC中,若c=2a cos B,则△ABC的形状是三角形.8.函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|≤)的部分图象如图所示,则f (x)=.9.已知x∈〖0,π〗,向量=(sin x,1),=(2,cos x),当取到最大值时,x的值是.10.已知、满足||=4,在方向上的数量投影为﹣2,则|﹣3|的最小值为.11.如图,O是线段AB外一点,|OA|=3,|OB|=2,P是线段AB的垂直平分线l上的动点,则•的值为.12.已知函数f(x)=4sin(2x﹣),x∈〖0,〗,若F(x)=f(x)﹣3的所有零点依次记为x1,x2,x3,…,x n,且x1<x2<x3<…<x n,则x1+2x2+2x3+…+2x n﹣1+x n =.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置将代表正确选项的小方格涂黑.13.若tanα<0,则()A.sinα<0 B.cosα<0 C.sin2α<0 D.cos2α<0 14.要得到函数y=sin(2x﹣)的图象,只需要将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位15.欧拉公式e ix=cos x+i sin x(i为虚数单位,x∈R,e为自然对数的底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,现有以下两个结论:①e iπ+1=0;②(cos+i sin)(cos+i sin)....(cos)=i.其中所有正确结论的编号是()A.①②均正确B.①②均错误C.①对②错D.①错②对16.设函数y=cos2x(x≥0)和函数y=cos10x(x≥0)的图象公共点的横坐标从小到大依次为x1,x2,x3,…,x n,若tan(x3﹣α)=cos x4,则sin2α的值为()A.B.C.D.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写岀必要的步骤.17.(1)已知角α终边上有一点P的坐标是(3a,﹣4a),其中a>0,求2sinα+cosα的值;(2)证明恒等式:=.18.已知复数z1=a+2+(a2﹣3)i,z2=2﹣(3a+1)i(a∈R,i是虚数单位).(1)若复数z1﹣在复平面上对应点落在第一象限,求实数a的取值范围;(2)若虚数z1是实系数一元二次方程x2﹣6x+m=0的根,求实数m的值.19.东西向的铁路上有两个道口A、B,铁路两侧的公路分布如图,C位于A的南偏西15°,且位于B的南偏东15°方向,D位于A的正北方向,AC=AD=2km,C处一辆救护车欲通过道口前往D处的医院送病人,发现北偏东45°方向的E处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要1分钟,救护车和火车的速度均为60km/h.(1)判断救护车通过道口A是否会受火车影响,并说明理由;(2)为了尽快将病人送到医院,救护车应选择A、B中的哪个道口?通过计算说明.20.(16分)已知函数f(x)=sin2x+2cos2x+2,x∈〖0,〗.(1)求函数y=f(x)的值域;(2)求函数y=f(x)单调递减区间;(3)若不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.21.(18分)已知O是线段AB外一点,若=,=.(1)设点G是△OAB的重心,证明:=(+);(2)设点A1、A2是线段AB的三等分点,△OAA1、△QA1A2及△OA2B的重心依次为G1、G2、G3,试用向量、表示++;(3)如果在线段AB上有若干个等分点,请你写出一个正确的结论?(不必证明)▁▃▅▇█参 *考 *答 *案█▇▅▃▁一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.
【解析】
【分析】
由题可知 恒成立.再分情况讨论即可.
【详解】
由题可知 恒成立.当 时成立.当 时, .
当 时,不等式不恒成立.
故实数k的取值范围是 .
故答案为:
【点睛】
本题主要考查了对数的定义域以及二次函数恒成立问题.属于中等题型.
【点睛】
本题主要考查了正切函数的定义求值.属于基础题型.
6.
【解析】
【分析】
根据对数函数的单调性分析即可.
【详解】
由题, .故实数a的取值范围为 .
故答案为:
【点睛】
本题主要考查了对数函数的单调性.属于基础题型.
7.4
【解析】
【分析】
先由扇形的弧长公式 可得: ,再结合扇形的面积公式 求解即可.
【详解】
11.
【解析】
【分析】
将所给式子平方,找到 与 的关系.
【详解】
平方得
∴ .
【点睛】
与 的关系: ;
12.- .
【解析】
【分析】
根据单位圆定义及题意可求得点 的坐标.将求的式子根据诱导公式化简为 .由同三角函数定义可得 .结合二倍角公式化简即可求得 .
【详解】
因为锐角 的终边与单位圆相交于点 ,且点 的横坐标为
则纵坐标为 ,则 的坐标为
由三角函数的定义可知
由正切二倍角公式可知
化简得
解方程可得
因为 为锐角
则 ,所以

故答案为:
【点睛】
本题考查了三角函数的定义,正切二倍角公式的应用,诱导公式化简三角函数式,属于基础题.
13.
【解析】
【分析】
只要令1﹣x=1即可,求出函数经过的定点,利用反函数的对称性求解即可.
A. B. C. D.
2.“ ”是“ ”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3.在 中,已知 , ,则 的值为()
A. B. C. D. 或 [来
4.函数y= 的图象关于 ( )
A.x轴对称B.y轴对称C.原点对称D.直线y=x对称
第II卷(非选择题)
请点击修改第II卷的文字说明
=sin(α ),
故选:A.
【点睛】
本题考查三角函数的化简,注意运用两角和的正弦公式,考查运算能力,属于基础题.
2.A
【解析】
【详解】
因为 ,所以 .
又因 ,所以 ,
因此“ ”是“ ”的充分不必要条件.故选A.
考点:充分性、必要性问题.
3.A
【解析】
试题分析: ,所以 ,因为 ,所以 , ,所以 ,当 时, 此时 ,所以舍去,所以当 ,代入上式,算得 .
11.已知 ,则 _____.
12.在平面直角坐标系 中,以 轴为始边作锐角 ,它的终边与单位圆相交于点 ,且点 的横坐标为 ,则 的值为____________.
13.若函数 的反函数图像都经过定点 ,则点 的坐标是__________.
14.已知α为锐角,且cos(α+ )= ,则sinα=________.
9.
【解析】
【分析】
将 , 分别平方再求和即可.
【详解】
由题, ,
.
两式相加得 .
故 .即 .
故答案为:
【点睛】
本题主要考查了三角函数恒等变换.属于中等题型.
10.【解析】【源自析】利用降幂公式与诱导公式和差角公式求解即可.
【详解】
.
故答案为:
【点睛】
本题主要考查了三角函数的和差角公式与降幂公式,属于中等题型.
考点:1.两角和的三角函数;2.解三角形.
4.C
【解析】
【分析】
先化简函数,然后求出 进行判定
【详解】
函数

函数关于原点对称
故选
【点睛】
本题考查了函数图像的对称性,在判定时先化简函数解析式,然后得出关于原点对称,较为基础。
5.0
【解析】
【分析】
根据正切函数的定义求解即可.
【详解】
由题 .
故答案为:0
【详解】
根据题意函数f(x)=loga(1﹣x)﹣3,令1﹣x=1,
∴x=0,此时y=﹣3,函数f(x)=loga(1﹣x)﹣3(a>0且a≠1)的函数图象恒过定点坐标是(0,﹣3).
函数f(x)=loga(1﹣x)﹣3(a>0且a≠1)的反函数图象都经过定点P,则点P的坐标是(﹣3,0)
故答案为:(﹣3,0).
解:由扇形的弧长公式 可得: ,
由扇形的面积公式 可得:这个圆心角所在的扇形面积为 ,
故答案为:4.
【点睛】
本题考查了扇形的弧长公式,重点考查了扇形的面积公式,属基础题.
8.
【解析】
【分析】
利用对数的运算法则求解即可.
【详解】
.故 .
故答案为:
【点睛】
本题主要考查了对数函数的基本运算,属于基础题型.
20.记函数 定义域为A, 的定义域为B,若 ,求实数m的取值范围.
21.设函数 ( ).
(1)当 时,解不等式 ;
(2)若 ,且方程 在闭区间 上有实数解,求实数 的取值范围;
参考答案
1.A
【解析】
【分析】
由两角和的正弦公式,注意条件A>0,0<β<2π,即可得到所求结论.
【详解】
由A>0,0<β<2π, cosα sinα=sin cosα+cos sinα
【点睛】
本题主要考查对数函数的图象和性质,反函数的应用,在研究和应用时一定要注意一些细节,如图象的分布,关键线,关键点等.
14.
【解析】

点睛:本题考查三角恒等关系的应用.本题中整体思想的应用,将 转化成 ,然后正弦的和差展开后,求得 ,代入计算即可.本题关键就是考查三角函数中的整体思想应用,遵循角度统一原则.
绝密★启用前
2020年上海市松江区高一下学期期中数学试题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号



总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、单选题
1.将 化成 的形式,以下式子正确的是()
评卷人
得分
二、填空题
5.若角 的终边经过点 ,则 ______.
6.若函数 在定义域上是减函数,则实数a的取值范围为:______
7.若2弧度的圆心角所对的弧长是4 cm,则这个圆心角所在的扇形面积________ .
8.已知 ,用含t的代数式表示 ______.
9.若 , ,则 ______.
10. 的值是______.
15.若函数 的定义域是R,则实数k的取值范围是______.
16.若关于 的方程 在区间 上有解,则实数 的取值范围是________
17.已知 ,求:
(1)
(2)
评卷人
得分
三、解答题
18.解下列方程:
(1)
(2)
19.(1)己知角 的终边上有一点 ( )。求 的值;
(2)已知角 的终边在直线 上,用三角比的定义求 的值.
相关文档
最新文档