(小学奥数)1-3-5 换元法.教师版
小学解方程换元法练习题奥数
小学解方程换元法练习题奥数在小学解方程中,换元法是一种常用的解题方法。
通过巧妙地引入一个新的变量,可以将原方程转化为一个更简单的形式,从而得到方程的解。
本文将以奥数练习题为例,详细介绍小学解方程中的换元法。
首先,让我们来看一个例子:问题:某个数加上它的2倍等于18,求这个数。
解析:设这个数为x,根据题意,可以写出方程x + 2x = 18。
我们可以使用换元法来解决这个方程。
步骤一:引入新变量我们可以引入一个新变量y,假设y等于原方程中的x + 1。
因此,y = x + 1。
步骤二:转化方程在原方程中,将x + 2x替换为2y - 2。
因此,方程变为2y -2 = 18。
步骤三:求解新方程将方程2y - 2 = 18进行求解,可以得到y = 10。
步骤四:回代求解原方程将y = 10代入y = x + 1中,可以得到10 = x + 1,进一步解得x = 9。
因此,原方程的解为x = 9。
通过这个例子,我们可以看到,通过引入新的变量并转化方程,我们可以更加简单地解决原方程,并得到方程的解。
接下来,让我们继续探索更多的奥数练习题。
题目一:2倍数减去6的结果等于10,求这个数。
解析:设这个数为x,根据题意,可以写出方程2x - 6 = 10。
接下来,我们使用换元法来解决这个方程。
步骤一:引入新变量我们可以引入一个新变量y,假设y等于原方程中的x - 2。
因此,y = x - 2。
步骤二:转化方程在原方程中,将2x - 6替换为2(y + 2) - 6。
因此,方程变为2y - 2 = 10。
步骤三:求解新方程将方程2y - 2 = 10进行求解,可以得到y = 6。
步骤四:回代求解原方程将y = 6代入y = x - 2中,可以得到6 = x - 2,进一步解得x = 8。
因此,原方程的解为x = 8。
题目二:一个数加上10的一半再减去5等于15,求这个数。
解析:设这个数为x,根据题意,可以写出方程x + (10/2) - 5 = 15。
小学奥数教程-换元法.教师版 (10) 全国通用(含答案)
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,例题精讲教学目标换元法1-3-5.换元法.题库教师版page 1 of原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯= 【答案】9【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
小学思维数学:换元法-带答案解析
换元法对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+ 【考点】换元法 【难度】2星 【题型】计算【解析】 令1111246a +++=,111246b ++=,则:原式11()()66a b a b =-⨯-⨯-1166ab b ab a =--+1()6a b =-11166=⨯= 【答案】16【巩固】 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++ 【考点】换元法 【难度】2星 【题型】计算【解析】 设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)=【答案】15【巩固】 计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 令621739458126358947a ++=;739458358947b +=,原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯= 【答案】9【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++) 例题精讲教学目标【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
小学奥数精讲 换元法
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,原式378378207207a b a b⎛⎫⎛⎫=⨯+-+⨯⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b=-⨯=⨯=【答案】9例题精讲教学目标换元法【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
小学数学奥赛1-3-5 换元法.教师版
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,原式378378207207a b a b⎛⎫⎛⎫=⨯+-+⨯⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b=-⨯=⨯=【答案】9例题精讲教学目标换元法【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
小学数学 换元法.教师版
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,原式378378207207a b a b⎛⎫⎛⎫=⨯+-+⨯⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b=-⨯=⨯=【答案】9例题精讲教学目标换元法【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算【关键词】希望杯,2试【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -)10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
小学数学 换元法.教师版
【题型】计算
【解析】令1 1 1 1 a , 1 1 1 b ,则:
246
246
原式 (a 1) b a (b 1)
6
6
ab 1 b ab 1 a
6
6
1 (a b) 1 1 1
6
66
【答案】 1 6
【巩固】 (1 1 1 1) (1 1 1 1) (1 1 1 1 1) (1 1 1)
21 31 41
原式
a
b
1 51
a
1 51
b
ab 1 a ab 1 b
51
51
1 (a b) 1 1 1
51
51 11 561
【答案】 1 561
【巩固】计算(1 1 1 1 ) (1 1 1 1 ) (1 1 1 1 1 ) (1 1 1 ) 5 7 9 11 7 9 11 13 5 7 9 11 13 7 9 11
【巩固】计算下面的算式
( 7.88 6.77 5.66 ) ( 9.31 10.98 10 ) ( 7.88 6.77 5.66 10 ) ( 9.31 10.98 )
【考点】换元法
【难度】2 星
【题型】计算
【关键词】希望杯,2 试
【解析】换 元 的 思 想 即 “ 打 包 ” , 令 a 7.88 6.77 5.66 , b 9.31 10.98
378 207
621 126
378 207
9
【答案】 9
1
【巩固】计算:( 0.1 0.21 0.321 0.4321 ) ( 0.21 0.321 0.4321 0.54321 )
( 0.1 0.21 0.321 0.4321 0.54321 ) ( 0.21 0.321 0.4321 )
奥数换元法
单个换元
主要是根据方程的特点进行换元,换元后一般只留下单个未知数
换元法解方程:部分换元
系数对称方程换元
高次方程的平均值换元
解方程
换元法解方程(多元换元)
多元换元
解方程
分析:观察发现
换元法解方程(数字换元)
数字换元
例10.解方程
分析:这是三次方程,且系数中含有无理数,不易求解,若反过来看吧x看做已知数,把根号下3设为t,则方程就变为关于t的一元二次方程。
小学数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。
局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。
例如解不等式:4+2-2≥0,先变形为设2=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。
六年级下册小学奥数计算模块换元法、繁分数化简全国通用共28张
10
2 3 9
3 4
10
计算:
作业3
1
2
3
4
1 1 1
1
2020
1
1
3
4
1 1
1
1
1
1
2020
作业4
已知 1
2
1
1 x
1
1
8 ,求x的值. 11
4
计算:
作业5
2017 2015
2017 2017
2017 2015
7
5
3
1
2017 2017 2017 2017
1
3
5
7
2017
2 3
2014 2 2 3
2014 3 4
2014
b
1
2
2013
2
,求a
b的值.
2 3
2014
(小学奥数)换元法
對於六年級的同學來說,分數乘法算式的一些計算技巧必須開始掌握.這既與基礎課程進度結合,更是小學奧數經典內容.裂項、換元與通項歸納這三項內容,通稱“分數計算之三大絕招”.考察近年來的小升初計算部分,分數計算成為熱點.可以這麼說:“一道非常難的分數運算,要麼是裂項,要麼是換元,要麼是通項歸納.如果都不是,那它一定是比較簡單的分數小數混合運算.”三、換元思想解數學題時,把某個式子看成一個整體,用另一個量去代替它,從而使問題得到簡化,這叫換元法.換元的實質是轉化,將複雜的式子化繁為簡.【例 1】計算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++例題精講教學目標換元法【巩固】 計算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【巩固】 計算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【巩固】 計算下麵的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
【巩固】 計算:⑴ (10.450.56++)⨯(0.450.560.67++)-(10.450.560.67+++)⨯(0.450.56+) ⑵621739458739458378621739458378126358947358947207126358947207⎛⎫⎛⎫⎛⎫++⨯++-+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭739458358947⎛⎫+ ⎪⎝⎭【巩固】 計算: 573734573473()123217321713123217133217⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= 。
【小学奥数题库系统】1-3-2 多位数计算.教师版
⋅ ⋅ ⋅ 800 ⋅ ⋅ ⋅ 0 − 88 ⋅ ⋅ ⋅ 8) ÷ 3 = 88 ⋅ ⋅ ⋅ 8711 ⋅ ⋅ ⋅ 12 ÷ =( 88 = 3 296 ⋅ ⋅ ⋅ 296 ⋅ ⋅ ⋅ 037 2957 037 04
1-3-2.多位数计算.题库
教师版Biblioteka page 1 of 8原式 = 88 ⋅ ⋅ ⋅ 8 × 99 ⋅⋅⋅9 ÷ 3 = 88 ⋅ ⋅ ⋅8× ⋅ ⋅ ⋅ 0 -1) ÷= 3 (88 ⋅ ⋅ ⋅ 800 ⋅ ⋅ ⋅ 0 - 88 ⋅ ⋅ ⋅ 8) ÷3 (1 00
2008个 9 2008个 9 2007 个 9 2007个0
原式 = 99 9800 01+199 9 = 100 0
2007 个 9 2007个0 2008个 9 4016 个 0
方法二: 观察一下你会发现, 两个乘数都非常大, 不便直接相乘, 其中 999 很接近 1 000 , 于是我们采用添项凑整,简化运算。 原式 =( = 99 ⋅ ⋅ ⋅ 9 00 ⋅ ⋅ ⋅ 0 − 99 ⋅ ⋅ ⋅ 9 + 100 ⋅ ⋅ ⋅ 0 + 99 ⋅⋅⋅9 100 0 −1 × 99 9 + 100 0 + 99 9 )
【题型】计算
2 2 999 9 2 = × 1000 0 − 1 2 × 222 222 2 × 222 2= × × 222 9 1998个9 1998个 2 9 1998个0 1998个 2 1998个 2 1998个 2 1 1 444 4 000 0 − 444 4 1000 0 − 1 4 = × × 444 = × 9 1998个 4 1998个0 9 1998个0 1998个 4 1998个 4 1 = × 444 43555 56 、 9 1997 个 4 1997 个 5
小学奥数—换元法
【巩固】计算:⑴ (1 0.45 0.56 ) ( 0.45 0.56 0.67 ) (1 0.45 0.56 0.67 ) ( 0.45 0.56 )
⑵
621 126
739 358
458 947
739 358
458 947
378 207
621 126
739 358
458 947
378 207
739 358
458 947
【巩固】 计算:
(5 12
7 32
3 17
)
7 32
3 17
4 13
5 12
7 32
3 17
4 13
7 32
3 17
=
。
【例 2】
计算:
1
1 2
1 2007
1 2
1 3
1 2008
1
1 2
1 2008
1 2
1 3
1 2007
【巩固】
1-3-5.换元法.题库
学生版
page 2 of 4
【巩固】 计算
1
1 2
1 3
1 4
1 5
1 2
1 3
1 4
1 51 61 Nhomakorabea1 2
1 3
1 4
1 5
1 6
1 2
1 3
1 4
1 5
【例 3】 计算:
1 2
2 3
3 4
9 10
2
1 2
2 3
3 4
9 10
1 2
1
1 2
2 3
9 10
三、换元思想
解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元 法.换元的实质是转化,将复杂的式子化繁为简.
小学三年级奥数等量代换解题思路
小学奥数等量代换解题思路(第5讲)“等量代换”的方法:两个相等的量,可以互相代换。
换元法也是采用的等量代换思想。
一只鸡=10个鸡蛋价格,1只羊=20只鸡的价格,那么一只羊等于多少只鸡的价格?1只羊=20×一只鸡的价,因为一只鸡等于10个鸡蛋,所以用10个鸡蛋替换一只鸡的价,这一步就是等量代换。
1只羊=20×10个鸡蛋价=200个鸡蛋价。
【例1】G老师买了6千克荔枝和8千克桂圆,共花了312元。
已知5千克荔枝的价钱等于2千克桂圆的价钱。
荔枝的单价是多少元?桂圆的单价是多少元?分析:找出题目中的等量关系,6千克荔枝+8千克桂圆=312元,5千克荔枝=2千克桂圆。
从分析中可以得到2千克桂圆=5千克荔枝,那么8千克桂圆等于多少荔枝呢?2千克桂圆×4=5千克荔枝×4;8千克桂圆=20千克荔枝;6千克荔枝+8千克桂圆=312元,采用等量代换,把8千克桂圆换成20千克荔枝:6千克荔枝+20千克荔枝=312元;1千克荔枝=12元;然后再求出1千克桂圆=30元。
【例2】如果鱼尾重4千克,鱼头重量等于鱼尾加上鱼身一半的重量,而鱼身重量等于鱼头加鱼尾的重量。
问这条鱼有多少千克?分析:一条鱼由鱼头、鱼身、鱼尾三部分组成。
找出题目中的等量关系,鱼头=鱼尾+0.5鱼身,鱼身=鱼头+鱼尾。
题目中已经告知了鱼尾=4千克,只需要分别找到鱼头与鱼尾、鱼身与鱼尾之间的等量关系即可。
鱼头=鱼尾+0.5鱼身,把鱼身=鱼头+鱼尾代入可得:鱼头=鱼尾+0.5×(鱼头+鱼尾);鱼头=3鱼尾;鱼身=4鱼尾;一条鱼=鱼头+鱼身+鱼尾=8鱼尾这条鱼=8×4=32千克。
当然也可以先分别算出鱼头、鱼身重量,之后相加也可得出答案。
人教版数学一上第三单元《1-5的认识和加减法》教案
人教版数学一上第三单元《1-5的认识和加减法》教案一、教学目标1.能够认识数字1至5。
2.能够掌握1至5的数位和数量的对应关系。
3.能够运用所学知识进行1至5的加法和减法运算。
4.能够培养学生的数学思维和逻辑推理能力。
二、教学重点1.熟练掌握数字1至5的认识。
2.能够准确地进行1至5的加法和减法运算。
三、教学内容1.认识数字1至5的写法及数量。
2.1至5的加法运算。
3.1至5的减法运算。
四、教学过程1. 认识数字1至5•让学生通过数课本上的图示和实物理解数字1至5的含义。
•给学生出示写有数字1至5的卡片,让学生辨认并练习写出来。
2. 1至5的加法运算•通过实物或图片让学生理解1至5的加法运算规则。
•给学生出示算术题,让他们进行1至5的加法运算练习。
3. 1至5的减法运算•同样通过实物或图片让学生理解1至5的减法运算规则。
•给学生出示算术题,让他们进行1至5的减法运算练习。
4. 综合练习•给学生出综合性的练习题,要求他们在理解1至5的基础上进行加减法运算。
五、教学评估1.日常观察评估:观察学生在课堂上的参与度和学习情况。
2.练习评估:布置小练习进行评估学生对1至5认识和运算的掌握情况。
3.课堂表现评估:评价学生在课堂上的表现和回答问题的能力。
六、教学反思通过此次教学,发现学生对1至5的认识和加减法运算的掌握程度不同,需要继续加强课后练习和复习,以提高学生的数学能力和逻辑思维能力。
以上就是本次数学一上第三单元《1-5的认识和加减法》教案的具体内容,希望能够帮助学生更好地掌握1至5的认识和运算。
奥数五六年级知识点总结第八讲凑整法基准法换元法
第八讲凑整法基准法换元法问题引入:一、一、问题引入:正如上一讲中介绍的,对于一些特殊形式的算式,我们可以进行裂项计算。
那么对于无法进行裂项的算式,特别是那些含有复杂的分数和小数的算式来说,要如何进行巧算呢?这一讲中就为大家介绍三种计算题中常用的方法:凑整法、基准法、换元法。
同时这四种方法也是四种思想,这四种思想不仅可以应用到计算以外的奥数领域,更可以应用到我们的日常生活中。
知识总结:二、二、知识总结:1、凑整思想:所谓凑整思想,就是将合适的两个事物配对到一起。
具体到计算题中,我们的计算经验告诉我们,整数的计算比小数和分数的计算简单,末位为0的整数的计算比末位不为0的整数的计算简单,因此,我们在计算过程中,尽量把能凑成整数的两个小数或分数放在一起计算,把能凑成末位为零的整数的两个数放在一起计算。
例如加减法运算3.46+2.37+1.54+5.63,如果直接按顺序计算很麻烦,观察后我们可以发现3.46与1.54的和为5, 2.37与5.63的和为8,所以我们将3.46与1.54配对,2.37与5.63配对,原式可写成(3.46+1.54)+(2.37+5.63),答案就显而易见为5+8=13。
再如乘除法运算2.25×5×3.2×4,观察后发现2.25×4=9,5×3.2=16,原式可以写成(2.25×4)×(3.2×5)=9×16=144。
除了凑整之外,其他的一些非凑整的凑数技巧也会经常用到,最常见的就是7×11×13=1001。
比如计算234×7×11×13,如果记住了上述规律,则可以直接写出答案234234。
2、基准思想基准思想就是为一组水平参差不齐的事物找一个标准线,这些事物都与这个标准型比较,从而更显著的看出这组事物的差异。
具体到计算题中,如果一组数都接近于某个整数,那么就以这个整数为标准,看看这些数与这个整数差多少。
第一讲 巧算 教师版
第一讲 巧算下面这些公式是小学奥数中常见的计算公式,同学们一定要熟练掌握,这可是小升初考试中计算的好帮手。
同时也希望同学们在做题时能够对一些规律性比较强的数字的计算自己进行归纳。
【题型一】分数,小数的混合计算【例1】计算:(7518-61115)÷[21415+(4-21425)÷1.35]北京市第十届“迎春杯”决赛第一题第2题解:原式=491411721190152520⎡⎤÷+÷⎢⎥⎣⎦=4914121901515⎡⎤÷+⎢⎥⎣⎦=49490÷=493601、等差数列求和公式: (1)1232n n n ⨯+++++=; 2、重复数字多位数: 1001abcabc abc =⨯;10101ababab ab ab =⨯=;n 个数字重复m 次=这n 个数字110101010010011001m n n n ---⨯ 个个个个; 3、裂项公式:()()()()1111111112[](1)(2)(1)(1)(2)211113[](1)(2)(3)(1)(2)(1)(2)(3)3n n m m n n m n n n n n n n n n n n n n n n n n ⎛⎫=- ⎪++⎝⎭=-⨯+++++=-⨯++++++++〖变式1〗计算:223615323340(5.64)5÷+⨯⨯- 北京市第八届“迎春杯”决赛第一题第2题解:原式=1101112315340 1.2⨯+⨯⨯=88948⨯=1154【例2】计算:59193 5.2219930.4 1.6910()52719950.51995196 5.22950+-⨯÷+⨯-+第五届“华杯赛”复赛第1题解:原式=519 1.329519 1.329--÷19930.40.819950.5⨯+⨯=1÷0.4(19932)19950.5⨯+⨯=1÷45=54〖变式2〗计算:221411713313151)199511286651176(++÷+北京市第十一届“迎春杯”刊赛第24题解:原式=1332211463199514221199519951463142216911995146314=+⨯=⨯=÷ 【题型二】庞大数字的运算【例3】计算:(1998+19981998+199819981998+ (19981998)个199819981998)÷(1999+19991999+199919991999 (19981999)个199919991999)×1999解:原式=1998(1+10001+100010001+ (19981001)个100110011001)÷[1999×(1+10001+100010001+ (19981001)个100110011001)]×1999=1998÷1999×1999=1998. 〖变式3〗1202505051313131321212121212121212121+++解:原式=121015101011310101011251312121101211010121101010121212121⨯⨯⨯+++=+++=⨯⨯⨯ 【例4】9999 9个9×99999个9有结果有多少个奇数,多少个偶数?〖变式4〗求3333333×6666666乘积的各位数字之和。
小学数学培优之换元法
1-3-5.换元法.题库 学生版 page 1 of 对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.” 三、换元思想 解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+【巩固】 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++【巩固】 计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-例题精讲教学目标换元法(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
【巩固】 计算:⑴ (10.450.56++)⨯(0.450.560.67++)-(10.450.560.67+++)⨯(0.450.56+)⑵621739458739458378621739458378126358947358947207126358947207⎛⎫⎛⎫⎛⎫++⨯++-+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭739458358947⎛⎫+ ⎪⎝⎭【巩固】 计算: 573734573473()123217321713123217133217⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= 。
换元法
某些计算求值问题,有这样得特点:相同得部分重复出现两次或多次,整个算式不适合用裂项去处理、这时候我们应该考虑用换元法。
什么就是换元法呢?就就是用字母或者符号替代算式中重复出现得部分,将算式改写成更简洁得形式,然后再计算、初学换元法应先学会找到重复出现得项,观察这些项出现得位置。
例如: )98.1031.9()1066.577.688.7()1098.1031.9()66.577.688.7(+⨯+++-++⨯++ 这个算式中有5个不同得小数,各出现两次,非常适合用换元法来解。
设这样就完成了换元。
例1分析与解:1111)1()1(1)1()1(120112009201020102222222==+-+-=+-+⨯-=++⨯-=+⨯=aa a a a a a a a a a a a a ,则原式可以变形为:设例2)23.012.0()34.023.012.01()34.023.012.0()23.012.01(+⨯+++-++⨯++ 分析与解:34.034.034.034.0)34.01()34.0()1()23.012.0()34.023.012.01()34.023.012.0()23.012.01(23.012.022=---+++=⨯++-+⨯+=+⨯+++-++⨯+++=aa a a a a aa a a a ,则原式可变形为:设例3分析与解:61616161)611()61()1()4121()6141211()614121()41211(412122=---+++=⨯++-+⨯+=+⨯+++-++⨯+++=a a a a a a a a a a a ,则原式可变形为:设例4)2010...432()2011...4321()2011...432()2010...4321(+++++++++-+++++++++⨯⨯ 分析与解:例5 就是不就是平方数?分析与解:题目出现四个连续自然数,考虑将平均数进行换元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,原式378378207207a b a b⎛⎫⎛⎫=⨯+-+⨯⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b=-⨯=⨯=例题精讲教学目标换元法【答案】9【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,六年级,二试 【解析】 设0.120.23a +=,0.120.230.34b ++= 原式()()110.34a b b a b a =+⨯-+⨯=-=【答案】0.34【巩固】 计算:⑴ (10.450.56++)⨯(0.450.560.67++)-(10.450.560.67+++)⨯(0.450.56+)⑵621739458739458378621739458378126358947358947207126358947207⎛⎫⎛⎫⎛⎫++⨯++-+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭739458358947⎛⎫+ ⎪⎝⎭【考点】换元法 【难度】2星 【题型】计算 【关键词】迎春杯 【解析】 ⑴ 该题相对简单,尽量凑相同的部分,即能简化运算.设0.450.56a =+,0.450.560.67b =++,有原式=(1a +)b ⨯-(1b +)0.67a b ab a ab b a ⨯=+--=-=⑵ 设621739458126358947a ⎛⎫=++ ⎪⎝⎭,739458358947b ⎛⎫=+ ⎪⎝⎭ 原式378378378621378()9207207207126207a b a b a b ⎛⎫⎛⎫=⨯+-+⨯=-⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【答案】⑴0.67 ⑵9【巩固】 计算: 573734573473()123217321713123217133217⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= 。
【考点】换元法 【难度】2星 【题型】计算 【关键词】走美杯,初赛,六年级【解析】 设573123217a =++、733217b =+,则有441313444()131313455131239a b a ba b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭=-=-=⨯=原式【答案】539【例 2】 计算:1111111111112200723200822008232007⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-+++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】3星 【题型】计算【解析】 令111232007a =+++,111232008b =+++,原式()()1112008a b b a b ab a ab b a =+⨯-+⨯=+--=-=【答案】12008【巩固】 111111111111111111213141213141511121314151213141⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-++++⨯++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 设111111213141a +++=,111213141b ++=,原式115151a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭115151ab a ab b =+--1()51a b =-1115111561=⨯=【答案】1561【巩固】 计算1111111111111111())()5791179111357911137911+++⨯+++-++++⨯++()(【考点】换元法 【难度】2星 【题型】计算 【关键词】清华附中【解析】 设111157911A +++=,1117911B ++=,原式111313A B A B ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭111313A B A A B B =⨯+-⨯- ()113A B =-11113565=⨯= 【答案】165【巩固】 计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫++++⨯++++-+++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 设111112345A ++++=,11112345B +++=原式=1166A B A B ⎛⎫⎛⎫⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭=1166A B A A B B ⨯+⨯-⨯-⨯=1166A B ⨯-⨯ 16=⨯(A B -)16=【答案】16【例 3】 计算:212391239112923912341023410223103410⎛⎫⎛⎫⎛⎫⎛⎫+++++++++⨯-++++⨯+++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算 【关键词】迎春杯【解析】 设123923410t =++++,则有22211111(1)222222t t t t t t t t t ⎛⎫⎛⎫+⨯-+-=+-+--= ⎪ ⎪⎝⎭⎝⎭【答案】【例 4】 计算11112111311143114120092009++++++++++【考点】换元法 【难度】4星 【题型】计算 【解析】 设3N =+11412009++. 原式=112N++11111N++=121N N ++111N N ++ =112121N N N N ++=++. 【答案】1【例 5】 计算:22222811811811111118118118811⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-+÷++⨯-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎣⎦【考点】换元法 【难度】3星 【题型】计算 【解析】 (法一)设811x =,则原式2211881111288x x x x x x x x +--==⎛⎫⎛⎫++⨯-+⨯⎪ ⎪⎝⎭⎝⎭. (法二)设811118x =+,那么222228112118x =++,所以222228112118x +=-.而2222211112811811111228118118118118888x x ⨯⨯⎛⎫⎛⎫⎛⎫-=+-=+-⨯=+-⨯ ⎪ ⎪ ⎪⨯⎝⎭⎝⎭⎝⎭. 这样原式转化为()()222228888121288x x x x x x x x ----=⨯=--+-⨯.在这里需要老师对于()()()()a b c d a b c a b d ac bc ad bd+⨯+=+⨯++⨯=+++的计算进行简单的说明.【答案】88【例 6】计算:22010 200920111⨯+【考点】换元法【难度】2星【题型】计算【解析】设a=2009,原式2221)211 +2121a a aa a a a+++===+++(()【答案】1【巩固】计算200820092007 200820091+⨯⨯-(4级)【考点】换元法【难度】2星【题型】计算【解析】设2008a=原式(1)(1)(1)1a a aa a++-=+-22111a aa a+-=+-=【答案】1。