李廉锟《结构力学》(上册)课后习题详解(5-7章)【圣才出品】
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(力 法)【圣才出品】
第7章力法7.1 复习笔记【知识框架】【重点难点归纳】一、超静定结构 超静定结构的定义 多余联系的描述超静定结构的概述 超静定结构类型:超静定梁、超静定桁架、超静定刚架等 求解超静定问题应考虑的条件:平衡条件、几何条件、物理条件 基本方法:力法(柔度法)、位移法(刚度法) 计算方法 其他演变方法:力矩分配法、混合法、矩阵位移法等 超静定次数的确定 超静定次数的定义力法的定义 确定方法力法的基本结构力法的基本概念 相关概念 力法的基本体系力法的基本方程力法的典型方程确定力法的基本体系建立力法典型方程力法的计算步骤 计算方程中的系数和自由项力法的求解步骤 解算典型方程求出多余未知力 力法的相关结论 由平衡条件或叠加法求得最后内力 对称结构的条件对称的类型:正对称、反对称对称性的利用 对称的特点未知力分组及荷载分组取一半结构计算:奇数跨对称刚架、偶数跨对称刚架 理论基础超静定结构的位移计算 方法步骤平衡条件的校核最后内力图的校核 位移条件的校核温度变化对超静定结构的影响温度变化时超静定结构的计算 温度变化时超静定结构内力分析支座位移对超静定结构的影响支座位移时超静定结构的计算 支座位移对超静定结构的影响拱轴线方程及截面变化规律弹性中心法计算无铰拱 无铰拱的力法计算的相关步骤及弹性中心法 无铰拱的一些结论两铰拱的相关概念和力法求解步骤两铰拱及系杆拱 系杆拱的相关概念和力法求解步骤系杆拱的其他情况及桁架拱的简单介绍外界变化的影响超静定的结构特性 内力的确定多余联系的影响 力法1.定义单靠平衡条件还不能确定全部反力和内力的结构,称为超静定结构,如图7-1-1(a)、7-1-2(b)所示。
图7-1-1图7-1-22.多余联系(1)定义在超静定结构(几何不变)中,对保持结构的几何不变性没有必要的联系称为多余联系。
(2)多余未知力多余联系中产生的力称为多余未知力,又称赘余力或冗力,如图7-1-1(b)、7-1-2(b)所示。
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(平面体系的机动分析)
第2章 平面体系的机动分析2.1 复习笔记【知识框架】【重点难点归纳】一、体系1.几何不变体系几何不变体系是指在任意载荷作用时,若不考虑材料的变形,则其几何形状与位置均能 几何不变体系 平面体系的概述 常变体系几何可变体系 瞬变体系自由度 自由度定义自由度个数平面体系的计算自由度 联系的定义联系 联系的分类:链杆、单铰、复铰多余联系 一般体系 计算自由度 计算自由度的公式 铰结链杆体系 自由度与体系是否几何不变的关系 三刚片规则 几何不变体系的基本组成规则 二元体规则两刚片规则 瞬变体系 瞬变体系的定义 三刚片规则中,三个铰在同一直线上的体系 瞬变体系 几种常见的瞬变体系 二元体的两杆共线的体系两刚片规则中,三根链杆交于同一点,且互不平行两刚片规则中,三根链杆全平行无穷远点的性质三刚片体系中虚铰在无穷远处的情况 一铰无穷远两铰无穷远三铰无穷远几何构造与静定性的关系 静定体系:体系几何不变且无多余联系超静定体系:体系几何不变,而且有多余联系 平面体系的机动分析保持不变的体系。
2.几何可变体系(1)定义几何可变体系是指在很小的荷载作用下,即使不考虑材料的变形,会发生机械运动而不能保持原有的几何形状或位置的体系。
(2)分类①常变体系;②瞬变体系。
二、平面体系的计算自由度1.自由度(1)自由度定义自由度是指体系运动时所具有的独立运动方式数目,也就是体系运动时可以独立变化的几何参数数目,或者说确定体系位置所需的独立坐标数目。
(2)自由度个数①平面内的一个点的自由度为2;②平面内的一个刚体的自由度为3;③机械中常用的机构是沿特定的一种轨迹运动,具有一个自由度;④几何不变体系不能发生任何运动,其自由度应等于零;⑤凡自由度大于零的体系都是几何可变体系。
2.联系(1)联系的定义联系是指限制运动的装置,也称为约束。
一个联系是指能减少一个自由度的装置。
(2)联系的分类①链杆一根链杆为一个联系。
②铰a.单铰单铰是指联结两个刚片的一个铰。
李廉锟《结构力学》(上册)配套题库【课后习题】(静定梁与静定刚架)【圣才出品】
第3章静定梁与静定刚架复习思考题1.用叠加法作弯矩图时,为什么是竖标的叠加,而不是图形的拼合?答:因为有时叠加弯矩图时的基线与杆轴不重合,如果用图形拼合,不能完全保证叠加后弯矩值是实际同一点的两个弯矩相加后的值。
2.为什么直杆上任一区段的弯矩图都可以用简支梁叠加法来作?其步骤如何?答:(1)因为根据内力分析可以求出直杆任一区段两端的内力,所以直杆任一区段两端均可以看成两端有外力(集中力或集中力偶)的简支梁。
(2)设有直杆任一区段简支梁AB,具体步骤如下①分解作用区段AB上的荷载;②分别作出分解荷载下的弯矩图;③求解出区段AB两端的弯矩M A和M B;④将两端弯矩M A和M B绘出并连以直线(虚线);⑤以步骤④中的虚线为基线叠加各个分解荷载下的弯矩图(竖标叠加),得最终弯矩图。
3.试判断图3-1所示刚架中截面A、B、C的弯矩受拉边和剪力、轴力的正负号。
图3-1答:轴力以受压为负,受拉为正;剪力以使截面顺时针旋转为正。
(1)截面A:左边受拉,剪力为负,轴力为负;(2)截面B:右边受拉,剪力为正,轴力为正;(3)截面C:左边受拉,剪力为正,轴力为正。
4.怎样根据静定结构的几何构造情况(与地基按两刚片、三刚片规则组成,或具有基本部分与附属部分等)来确定计算反力的顺序和方法?答:(1)与地基按两刚片,例如简支梁,支座反力只有三个,对某一端点取矩直接解除约束反力。
(2)与地基按三刚片规则组成,例如三铰刚架,支座反力有四个,考虑结构整体的三个平衡方程外,还需再取刚架的左半部(或右半部,一般取外荷载较少部分)为隔离体建立一个平衡方程方可求出全部反力。
(3)具有基本部分与附属部分时,按先附属后基本的计算顺序,求解支座反力。
5.当不求或少求反力而迅速作出弯矩图时,有哪些规律可以利用?答:当不求或少求反力而迅速作出弯矩图时,如下规律可以利用(1)结构上若有悬臂部分及简支梁部分(含两端铰接直杆承受横向荷载)弯矩图可先行绘制出;(2)直杆的无荷区段弯矩图为直线和铰处弯矩为零;(3)刚结点的力矩平衡条件;(4)外力与杆轴重合时不产生弯矩;(5)外力与杆轴平行及外力偶产生的弯矩为常数;(6)对称性的合理利用;(7)区段叠加法作弯矩图。
李廉锟《结构力学》(上册)配套题库【课后习题】(矩阵位移法)【圣才出品】
第10章矩阵位移法复习思考题1.矩阵位移法的基本思路是什么?答:矩阵位移法的基本思路:(1)单元分析单元分析是指将结构先分解为有限个较小的单元,即离散化,在较小的范围内分析单元的内力与位移之间的关系,建立单元刚度矩阵或单元柔度矩阵。
(2)整体分析整体分析将将单元分析中的各单元集合成原来的结构,要求各单元满足原结构的几何条件(包括支承条件、结点处的变形连续条件)和平衡条件,建立整个结构的刚度方程或柔度方程,以求解原结构的内力和位移。
(3)支承条件引入支承条件,修改结构原始刚度方程。
(4)求解解算结构刚度方程,求出结点位移,计算各单元杆端力。
2.试述矩阵位移法与传统位移法的异同。
答:矩阵位移法与传统位移法的异同点:(1)相同点传统位移法的基本原理,是以在小变形的基础的结构体系中,内力是可以叠加的,位移也是可以叠加的,而矩阵位移法是按传统位移法的基本原理运用矩阵计算内力和位移的方法。
因此矩阵位移法和传统位移法的基本原理在实质上是一致的。
(2)不同点①矩阵位移法中一般考虑杆件轴向变形的影响,传统位移法忽略杆件的轴向变形;②矩阵位移法一般在计算机上进行计算,可以解决大型复杂问题;传统位移法的计算手段一般是手算,只用来解决简单问题。
3.矩阵位移法中,杆端力、杆端位移和结点力、结点位移的正负号是如何规定的?答:杆端力沿局部坐标系的、的正方向为正,杆端弯矩逆时针为正;杆端位移的正负同杆端力和弯矩。
结点力沿整体坐标系x、y的正方向为正,结点力偶逆时针为正;结点位移的正负同结点力和力偶。
4.为何用矩阵位移法分析时,要建立两种坐标系?答:因为单元刚度矩阵是建立在杆件的局部坐标系上的,但对于整体结构,各单元的局部坐标系可能不尽相同,在研究结构的几何条件和平衡条件时,需要选定一个统一的坐标系即为整体坐标系,另外按局部坐标系建立的单元刚度矩阵可以通过坐标转换到整体坐标系中,从而得到整体坐标系中的单元刚度矩阵。
故建立两种坐标系使矩阵位移法的思路更清晰,物理意义更明确,且不会影响计算结果。
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(静定拱)【圣才出品】
第4章 静定拱4.1 复习笔记【知识框架】【重点难点归纳】一、拱的基本概念1.拱的定义拱是指轴线(截面形心的连线)为曲线并且在竖向荷载作用下会产生水平反力的结构。
2.拱的分类(1)按铰点数①三铰拱;②两铰拱;③无铰拱。
拱的定义 按铰点数:三铰拱、两铰拱、无铰拱 拱的分类 按铰趾位置:平拱、斜拱拱的基本概念 拱的特点拱式结构消除推力对支撑结构影响的方法拱各部分的名称:拱轴线、拱趾、拱的跨度、起拱线、拱顶、拱高等 反力个数 支座反力的计算 计算方法 计算公式三铰拱的计算 反力值影响因素内力的计算:弯矩、剪力、轴力斜拱支座反力计算三铰拱的合理拱轴线 合理拱轴线的定义拱轴线的计算方法 静定拱图4-1-1(2)按铰趾位置①平拱平拱是指两拱趾在同一水平线上的拱。
②斜拱斜拱是指不在同一水平线上的拱。
3.拱的特点(1)优点①与梁相比,拱在竖向荷载作用下会产生水平反力。
推力的存在与否是区别拱与梁的主要标志。
②由于推力的存在,拱的弯矩常比跨度、荷载相同的梁的弯矩小得多,使得拱截面上的应力分布较为均匀。
③主要承受压力,可利用抗拉性能较差而抗压较强的材料如砖、石、混凝土等来建造,更能发挥材料的作用。
(2)缺点拱支座要承受水平推力,因而要求比梁具有更坚固的地基或支承结构(墙、柱、墩、台等)。
4.拱式结构拱式结构是指在竖向荷载作用下会产生水平反力的结构,也称为推力结构。
如三铰刚架、拱式桁架等。
5.消除推力对支撑结构影响的方法在拱的两支座间设置拉杆来代替支座承受水平推力,使其成为带拉杆的拱(图4-1-2(a))。
为了使拱下获得较大的净空,有时也将拉杆做成折线形的(图4-1-2(b))。
图4-1-26.拱的各部分名称(1)拱轴线拱轴线是指拱身各横截面形心的连线。
(2)拱趾拱趾是指拱的两端支座的位置。
(3)拱的跨度l拱的跨度是指两拱趾间的水平距离。
(4)起拱线起拱线是指两拱趾的连线称为起拱线。
(5)拱顶拱顶是指拱轴上距起拱线最远的一点。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第7章 力 法【圣才出品】
第7章 力 法
7.1 复习笔记【知识框架】
【重点难点归纳】
一、概述(见表7-1-1) ★★
表7-1-1 概述
二、超静定次数的确定(见表7-1-2) ★★★★
表7-1-2 超静定次数的确定
三、力法的基本概念(见表7-1-3) ★★★
力法的基本概念,包括基本未知量、基本体系、基本结构以及基本方程见表7-1-3,此外,表中还归纳了超静定结构的力法分析步骤。
表7-1-3 力法的基本未知量、基本体系和基本方程
四、力法的典型方程(见表7-1-4) ★★★
表7-1-4 力法的典型方程
五、对称性的利用 ★★★★
1.对称结构及作用荷载的对称性(表7-1-5)
表7-1-5 对称结构及作用荷载的对称性
2.非对称荷载的处理(表7-1-6)
表7-1-6 非对称荷载的处理。
李廉锟《结构力学》(第5版)(上册)配套模拟试题及详解【圣才出品】
李廉锟《结构力学》(第5版)(上册)配套模拟试题及详解一、单项选择题(本大题共5小题,每题3分,共15分;在每小题列出的四个选项中只有一个是符合题目要求的,错选、多选或未选均无分)1.如图1所示的结构中,桁架杆件的零杆个数为()。
A.4B.5C.6D.7图1【答案】D【解析】此对称结构的荷载为反对称,因此DE杆轴力必为零。
再由零杆判别法则,可知DF、AF、FG、HI、EI、BI六杆也为零杆,总共此结构有7根零杆。
2.如图2所示结构,A支座发生沉降∆后,则()。
A.AB杆无内力,BD杆有内力B.AB杆有内力,BD杆无内力C.AB、BD杆均无内力产生D.AB、BD杆均有内力产生图2【答案】C【解析】AB为静定梁,支座移动不引起内力,因此铰B对AB杆的约束力为零,对BD 杆的约束力也为零。
BD杆上又无其他荷载,其内力也等于零。
3.如图3所示结构为对称抛物线三铰拱,铰C右侧截面的轴力(受压为正)为()。
图3A.64kN B .32kN C .24kN D .16kN 【答案】C【解析】由于该结构为对称抛物线拱,截面的轴力必是水平方向,其等于支座的水平反力F H 。
求得F VA =10kN ,F H =24kN ,因此,'24NC H F F kN ==。
4.如图4所示结构,各杆为矩形截面,在温度变化t 1>t 2时,其轴力为( )。
图4【答案】C【解析】因为当温度变化时,AB杆、DC杆可自由伸缩,故F NAB=F NCD=0。
由于BC 杆在B、C结点处有轴向约束,且,故其轴线伸长受阻,则必有F NBC<O,为压力。
5.如图5所示结构为对称刚架,利用对称性简化后的计算简图为()。
图5【答案】A【解析】刚架有两个对称轴AB、AD,此刚架纵横均为两跨,可以取四分之一结构BCD 计算,由于荷载对称,因此,B、D两处有弯矩,无转角和线位移,AB、AD杆无弯矩。
二、填空题(本大题共5小题,每题3分,共15分)1.如图6(a)所示体系的几何组成为______。
《结构力学》习题解答(内含解答图)
解:将固定铰支座换为单铰,如图(b),由于与基础的约束多余三个,故基础作为刚片Ⅰ。铰结BF为刚片Ⅱ,铰结△CDE为刚片Ⅲ。刚片Ⅰ与刚片Ⅱ是由杆AB和支撑杆F相连,虚铰在无穷远处,刚片Ⅰ与刚片Ⅲ是由杆AC和支撑杆E相连,虚铰在两杆的延长线的交点处,而刚片Ⅱ与刚片Ⅲ是由杆BC和杆FD相连,虚铰在两杆的延长线的交点处。此时,三铰不共线,该体系为几何不变体,且无多余约束。
所以,体系是几何不变得,且无多余约束。
习题2-2试对图示体系进行几何组成分析。
解:从图2-15(b)可知,杆件CD和链杆3及铰D构成二元体,可以去掉;取杆件CB为刚片Ⅰ,基础作为刚片Ⅱ,根据规则一,两刚片是通过杆AB、链杆1、2组成几何不变体。所以,整个体系为几何不变体系,且无多余约束。
习题2-2图习题2-2解答图
习题2-10试对图示体系进行几何组成分析。
习题2-10图习题2-10解答图
解:由于与基础的约束多余三个,故基础作为刚片Ⅰ。铰结△ABF为刚片Ⅱ,铰结△BCD为刚片Ⅲ。刚片Ⅰ与刚片Ⅱ是由杆EA和支撑杆F相连,虚铰在两杆的延长线的交点处,刚片Ⅰ与刚片Ⅲ是由杆EC和支撑杆D相连,虚铰在两杆的延长线的交点处,而刚片Ⅱ与刚片Ⅲ是铰B相连。此时,三铰不共线,该体系为几何不变体,且无多余约束。
习题2-26图习题2-26解答图
解:将链杆截断,截断一处,去掉一个约束,共去掉四个约束;再将刚性联结杆截断,截断一处,去掉三个约束,共去掉十二个约束,如图(b)。此时,体系变成与基础独立相连的三个单一杆件,见图(b)。所以,该体系具有十六个多余约束的几何不变体。
2.3.2提高题
提高题2-1 试对图示体系作几何组成分析。
所以,由规则一知,体系是几何不变体,且无多余约束。
李廉锟《结构力学》(上册)配套题库【课后习题】(渐近法)【圣才出品】
第9章 渐近法复习思考题1.什么是劲度系数(转动刚度)?什么是分配系数?为什么一刚结点处各杆端的分配系数之和等于1?答:(1)劲度系数(转动刚度)的定义杆端的劲度系数是指当杆件的近端转动单位角时,在该近端产生的弯矩。
(2)分配系数的定义分配系数是指结点某一杆端的劲度系数与该结点处所有杆端的劲度系数的比值。
(3)一刚结点处各杆端的分配系数之和等于1的原因因为分配系数的计算公式111jj j S S μ=∑,在刚节点处各杆端分配系数之和应为111j j S Sμ==∑∑2.单跨超静定梁的劲度系数和传递系数与杆件的线刚度有何关系?答:单跨超静定梁的劲度系数不仅与杆件线刚度EI i l=相关,而且与杆件另一端(又称远端)的支承情况有关;传递系数与杆件的线刚度无关,只与远端支承形式有关。
3.图9-1所示三个单跨梁,仅B 端约束不同。
它们的劲度系数S AB 和传递系数C AB 是否相同,为什么?图9-1答:不考虑杆件轴向变形,(a)、(b)、(c)三个图的劲度系数均相同,即S AB=4i,其中i为杆件的线刚度;(a)、(b)、(c)三个图的传递系数均相同,即C AB=0.5。
因为虽然B 端约束表面上形式各异,但在不考虑杆件轴向变形的条件下,(a)、(b)、(c)三个图在B 端的最终约束效果上均可以当成固定端来处理。
4.什么是不平衡力矩?如何计算不平衡力矩?为什么要将它反号才能进行分配?答:(1)不平衡力矩的定义不平衡力矩是指在附加约束结点处各固端弯矩所不能平衡的差额。
(2)其计算值等于汇交于该结点处的各杆端固端弯矩的代数和。
(3)用反号进行分配才能平衡掉附加约束结点处产生的不平衡力矩,满足平衡条件,与该结点未加约束时的受力状态吻合。
5.什么叫传递弯矩和传递系数?答:(1)传递弯矩的定义传递弯矩是指将各近端的分配弯矩以传递系数的比例传到各远端,即近端的分配弯矩与传递系数的乘积。
(2)传递系数的定义传递系数是指当杆件近端有转角时,远端弯矩与近端弯矩的比值。
李廉锟《结构力学》(上册)课后习题详解(1-4章)【圣才出品】
第1章绪论复习思考题1.结构力学的研究对象和具体任务是什么?答:(1)结构力学的研究对象结构力学研究的主要对象是杆系结构。
(2)结构力学的具体任务①研究结构在荷载等因素作用下的内力和位移的计算。
在此基础上,即可利用后续相关专业课程知识进行结构设计或结构验算;②研究结构的稳定计算,以及动力荷载作用下结构的动力反应;③研究结构的组成规则和合理形式等问题。
2.什么是荷载?结构主要承受哪些荷载?如何区分静力荷载和动力荷载?答:(1)荷载的定义荷载是指作用在结构上的主动力。
(2)荷载的分类①按作用时间分为:恒载和活载。
②按荷载的作用位置是否变化分为:固定荷载和移动荷载。
③按荷载对结构所产生的动力效应大小分为:静力荷载和动力荷载。
(3)静力荷载和动力荷载的主要区别荷载是否使结构产生不可忽略的加速度,即是否可以略去惯性力的影响。
若可忽略加速度(惯性力),则为静荷载;若不可忽略加速度(惯性力),则为动荷载。
3.什么是结构的计算简图?如何确定结构的计算简图?答:(1)计算简图的定义结构的计算简图是指略去次要因素,用一个简化图形来代替实际结构的图形。
(2)确定计算简图的方法①杆件的简化,常以其轴线代表。
②支座和结点的简化。
③荷载的简化,常简化为集中荷载及线分布荷载。
④体系的简化,将空间结构简化为平面结构。
4.结构的计算简图中有哪些常用的支座和结点?答:结构的计算简图中常用的支座和结点分别有:(1)常用的支座:活动铰支座、固定铰支座、固定支座、滑动支座。
(2)常用的结点:铰结点、刚结点、组合结点。
5.哪些结构属于杆系结构?它们有哪些受力特征?答:(1)杆系结构的定义杆系结构是指长度远大于其他两个尺度(即截面的高度和宽度)的杆件组成的结构。
杆系结构包括:梁、拱、刚架、桁架、组合结构、悬索结构。
(2)各种杆系结构的受力特征①梁。
梁是一种受弯杆件,其轴线通常为直线,当荷载垂直于梁轴线时,横截面上的内力只有弯矩和剪力,没有轴力。
李廉锟《结构力学》(上册)配套题库【章节题库】(静定梁与静定刚架)【圣才出品】
第3章静定梁与静定刚架一、填空题1.如图3-1所示结构中截面K的弯矩值M K=______。
图3-1【答案】M K=0【解析】由整体∑M B,得M B=0;自B向K,可得M K。
2.如图3-2所示结构中K截面的弯矩值为______。
图3-2【答案】M K=80kN·m(下边受拉)【解析】由整体∑X=0,得X A=40kN(水平向左);自A向K,可得M K。
3.如图3-3所示结构中截面K的弯矩值M K=______。
图3-3【答案】(下边受拉)【解析】(上边受拉);叠加法,得M K。
4.如图3-4所示结构中截面K的剪力值Q K=______。
图3-4【答案】【解析】利用对称,,可得Q K。
5.如图3-5所示结构中截面K的弯矩值M K=______;剪力值Q K=______;轴力值N K =______。
图3-5【答案】M K=0;Q K=1.5P;N K=-1.5P【解析】由整体∑M A=0,得;自BKC,由∑M C=0,得拉杆轴力,自B向K,可得M K、Q K、N K。
二、判断题1.直杆无荷载区段的弯矩图为直线。
()【答案】对【解析】无荷载区段,由Q与q(q=0)的微分关系,Q为常数;再由M与Q的微分关系,可知命题正确。
2.如图3-6(a)所示结构的弯矩图如图3-6(b)所示。
()图3-6【答案】对【解析】因为R A=0,AC段无弯矩。
3.如图3-7所示结构的弯矩图是正确的。
()图3-7【答案】错【解析】结点上弯矩不平衡,横梁有弯矩。
4.如图3-8所示结构的弯矩图是正确的。
()图3-8【答案】对【解析】梁右端截面弯矩为M,铰处为零,连斜直线,柱无剪力,Q为常数。
5.如图3-9所示结构的弯矩图是正确的。
()图3-9【答案】错【解析】考虑B、C部分,由∑M C=0,得R B=P(↑);由整体可得M A=3Pl(右拉)。
6.根据荷载与内力的微分关系,作出如图3-10所示内力图是正确的。
()图3-10【答案】错【解析】悬臂段BC,弯矩图为平线,无剪力图。
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(渐近法)【圣才出品】
第9章 渐近法9.1 复习笔记【知识框架】【重点难点归纳】 一、力矩分配法 1.定义 (1)劲度系数当杆件AB (图9-1-1)的A 端(又称近端)转动单位角时,A 端的弯矩称为该杆端的劲度系数,用表示。
它标志着该杆端抵抗转动能力的大小,故又称为转动刚度,其值不仅与杆件的线刚度有关,而且与杆件另一端(又称远端)的支承情况有关。
(2)传递系数当A 端转动时,B 端也产生一定的弯矩,将B 端弯矩与A 端弯矩之比称为由A 端向B力矩分配法的相关定义 劲度系数渐进法的概述 传递系数 力矩分配法的基本原理及举例分析应用力矩分配法计算无侧移刚架和连续梁 适用的对象无剪力分配法的举例分析 无剪力分配法 无剪力分配法的定义 无剪力分配法解多层无侧移刚架无剪力分配法应用于有侧移刚架 适用对象剪力分配法的举例分析 剪力分配法 剪力分配法的定义 剪力分配法的其他情况 剪力分配法的实用举例渐进法端的传递系数,用来表示,即。
图9-1-1等截面直杆的劲度系数和传递系数见表9-1-1。
当B端为自由或为一根轴向支承链杆时,A端转动时杆件将毫无抵抗,其劲度系数为零。
表9-1-1 等截面直杆的劲度系数和传递系数2.应用(单个结点转角)力矩分配法其结点角位移、杆端力的符号规定均与位移法相同,非常适用于连续梁和无结点线位移刚架的计算。
(1)举例①原结构如图9-1-2(a)所示刚架。
②典型方程只有一个基本未知量即结点转角,其典型方程为:。
图9-1-2③绘出M p、M1图如图9-1-2(b)、(c)所示。
④求自由项a.求(9-1)式中,为结点固定时附加刚臂上的反力偶,可称为刚臂反力偶,它等于汇交于结点1的各杆端固端弯矩的代数和,即各固端弯矩所不能平衡的差额,故又称结点上的不平衡力矩。
b.求(9-2)式中,为汇交于结点1的各杆端劲度系数的总和。
⑤解典型方程⑥最终弯矩图按叠加法计算各杆端的最后弯矩a.近端弯矩各杆汇交于结点1的一端为近端,另一端为远端。
李廉锟《结构力学》(上册)笔记和课后习题(含考研真题)详解(位移法)【圣才出品】
第8章 位移法8.1 复习笔记【知识框架】位移法的定义 位移法的假设位移法的基本概念 位移法与力法的异同点 相同点:都是两种基本方法 基本未知量不同不同点 分析超静定结构步骤不同 位移法需要解决的问题 适用范围不同 由支座位移引起的杆端弯矩由载荷及温度变化等外因引起的杆端弯矩 等截面直杆的转角位移方程 两端固定等截面梁的转角位移方程一端铰支另一端固定的转角位移方程 等截面单跨超静定梁的固端弯矩和剪力 基本未知量分类:角位移和线位移基本未知量数目:角位移数目和线位移数目 位移法的基本未知量和基本结构 位移法基本结构位移法基本体系特殊结构的未知量数目无侧移结构位移法计算有侧移结构位移法计算 位移法的典型方程及计算步骤 n 个独立结点位移结构的位移法典型方程 加入附加联系得基本结构 建立位移法典型方程 位移法的计算步骤 求出各项系数及自由项 求出基本未知量(位移) 直接法建立平衡方程 叠加法绘制最后弯矩图 对称性的利用 对称结构简化原则利用对称性解题技巧有侧移的斜柱刚架的定义有侧移的斜柱刚架 位移法求解该结构的难点作结点位移线图 典型方程中的自由项需考虑温度的影响温度变化时的计算难点 温度变化时不能忽略杆的轴向变形 温度变化时的计算 温度变化时位移法的解题步骤 位移法【重点难点归纳】一、位移法基本概念1.位移法的定义确定原结构基本未知量,加入附加联系而得基本结构,令各附加联系发生与结构相同的结点位移,根据在载荷等外因和个结点位移共同作用下,各附加联系上的反力偶或反力均等于零的条件,建立方程,首先求出未知位移,然后再求出结构反力和内力的方法,称为位移法。
2.位移法假设忽略受弯杆件的轴向变形,并设弯曲变形也是微小的,于是可以认为受弯直杆两端之间的距离在变形后仍保持不变。
3.位移法与力法异同点(1)相同点力法和位移法是分析超静定结构的两种基本方法。
(2)不同点①基本未知量不同a.位移法是以某些结点位移作为基本未知量;b.力法是以多余未知力作为基本未知量。
李廉锟《结构力学》(上册)配套题库【课后习题】(平面体系的机动分析)【圣才出品】
第2章平面体系的机动分析复习思考题1.为什么计算自由度W≤0的体系不一定就是几何不变的?试举例说明。
答:因为W≤0只是体系为几何不变的必要条件并非充分条件。
一个体系尽管联系数目足够多甚至还有多余,但约束布置不当,体系便仍是几何可变的。
如图2-1所示。
图2-12.什么是刚片?什么是链杆?链杆能否作为刚片?刚片能否当作链杆?答:(1)刚片的定义刚片是指在平面体系中,由于不考虑材料的变形,可以看作刚体的一根杆件或已判明是几何不变的部分。
(2)链杆的定义链杆是指能使体系减少一个自由度的联结装置(约束)。
(3)链杆可以看作刚片。
一根链杆是几何不变的,在结构分析中可看做刚片。
(4)刚片不一定能看作链杆。
将刚片看作链杆后,结构可能无法保持几何不变。
3.何谓单铰、复铰、虚铰?体系中的任何两根链杆是否都相当于在其交点处的一个虚铰?答:(1)单铰、复铰、虚铰的定义分别是①单铰是指联结两个刚片的一个铰。
②复铰是指同时联结两个以上刚片的一个铰。
③虚铰是指联结两个刚片的两根链杆延长线的交点处的位置随链杆的转动而改变的铰。
(2)体系中不是任何两根链杆都相当于在其交点处的一个虚铰。
因为虚铰的位置随链杆的转动而改变,一般的实铰则没有这个特征,所以不是任何两根链杆都相当于虚铰。
4.试述几何不变体系的三个基本组成规则,为什么说它们实质上只是同一个规则?答:(1)几何不变体系的三个基本组成规则①三刚片规则三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
②二元体规则在一个刚片上增加一个二元体,仍为几何不变体系,而且没有多余联系。
③两刚片规则两个刚片用一个铰和一根不通过此铰的链杆相联或两个刚片用三根不全平行也不交于同一点的链杆相联,为几何不变体系,而且没有多余联系。
(2)基本组成规则都可以看作三刚片规则因为链杆可以看作刚片,例如二元体规则中,二元体的两根链杆均可以看作刚片,即相当于三刚片规则。
同理,两刚片规则中链杆仍然可以看作一个刚片。
李廉锟《结构力学》(上册)配套题库【章节题库】(静定平面桁架)【圣才出品】
第5章静定平面桁架一、填空题1.如图5-1所示桁架中杆1的轴力值N1=_____;杆2的轴力值N2=_____。
图5-1【答案】N1=-2P;N2=3P【解析】利用截面法投影、取矩求得。
2.如图5-2所示桁架中,杆1的轴力值N1=_____。
图5-2【答案】【解析】先以A点取矩求得B处支座反力,再利用截面法取矩求杆1轴力。
3.如图5-3所示结构中,杆1的轴力值N1=_____;杆2的轴力值N2=_____。
图5-3【答案】N1=P;N2=-2P【解析】取上半部分分析,对右上角的结点取矩得出N2,再求出支座反力即可求出N1。
二、判断题1.如图5-4所示桁架中杆1的轴力为1kN。
()图5-4【答案】对【解析】用截面法、取矩。
2.如图5-5所示桁架中杆1的轴力为零。
()图5-5【答案】对【解析】左右支座竖向反力均为向上的P,用截面法,由∑Y=0即可得出。
3.如图5-6所示桁架中杆1的轴力为P。
()图5-6 【答案】错【解析】反对称荷载,对称杆轴为零。
4.如图5-7所示桁架中杆1的轴力为2P。
()图5-7 【答案】错【解析】截面法,三、选择题1.如图5-8所示桁架中零杆(含零支杆)个数为()。
A.0根B.1根C.2根D.3根图5-8【答案】D【解析】利用对称性可知,水平支杆和内部的两根杆为零杆。
2.如图5-9所示桁架中杆1的轴力值N1为()。
A.-pB.-2pC.D.-1.414p图5-9【答案】C【解析】先结点A后结点B,两次用结点法可求得。
3.如图5-10所示结构中杆1的轴力值N0为()。
A.0B.1.414PC.-1.414PD.0.707P图5-10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章静定平面桁架
复习思考题
1.桁架的计算简图作了哪些假设?它与实际的桁架有哪些差别?
答:(1)桁架的计算简图假设
①各结点都是无摩擦的理想铰;
②各杆轴都是直线,并在同一平面内且通过铰的中心;
③荷载只作用在结点上并在桁架的平面内。
(2)桁架的计算简图与实际桁架的差别
①结点的刚性。
②各杆轴线不可能绝对平直,在结点处也不可能准确交于一点。
③非结点荷载(例如杆件自重、风荷载等)。
④结构的空间作用,等等。
2.如何根据桁架的几何构造特点来选择计算顺序?
答:根据桁架的几何构造特点来选择计算顺序的方法
(1)找出零杆
根据节点的几何特征和外部受力特点判断出零杆。
(2)选择合适的方法求解桁架
①用节点法解简单桁架时,在求出支座反力后,可按与几何组成相反的顺序,从最后的结点开始,依次倒算回去,便能顺利地用结点法求出所有杆件的内力。
②求解联合桁架时,用结点法将会遇到未知力超过两个的结点,可以先用截面法将联合杆件的内力求出,再用结点法求解其它杆件的内力。
③求解复杂桁架时,根据桁架的几何构造特点看,可先算出截面单杆的内力,再选择合适的计算方法求解剩余杆的内力。
3.在结点法和截面法中,怎样尽量避免解联立方程?
答:在结点法和截面法中,尽量避免解联立方程的方法:
(1)采用结点法时,为避免解联立方程,可改选投影轴方向或者改用力矩平衡方程(向力的汇交点取矩)。
(2)采用截面法时,使用力矩法的关键在于选取合理的力矩中心,因此应尽量选取多力汇交点作为力矩中心;使用投影法的过程中,应尽量选择多个力所在方向作为力分解的坐标轴。
4.零杆既然不受力,为何在实际结构中不把它去掉?
答:在实际结构中不把零杆去掉的原因:
(1)在实际结构中,工况更复杂,荷载不是一成不变的,荷载改变后,“零杆”可能变为非零杆。
因此,为了保证结构的几何形状在任何载荷作用下都不会改变,零杆不能从桁架中除去。
(2)在理想桁架(做了诸多假设)中“零杆”才是零杆,而实际结构中,零杆的内力也不是零,只是较小而已。
5.怎样识别组合结构中的链杆(二力杆)和受弯杆?组合结构的计算与桁架有何不同
之处?
答:(1)组合结构中的链杆是指杆身上无荷载、只受轴力作用的两铰直杆;而受弯杆则同时还受弯矩和剪力的作用。
(2)组合结构的计算与桁架不同点
①在用结点法分析时,不能考虑组合结点,因为组合结点两端为受弯杆件,不仅仅有轴力,还有剪力和弯矩。
②在用截面法求解组合结构时时,若截到受弯杆件,则求解时截面上的未知力过多,不易解答,故应尽量避免截断受弯杆件。
6.在图5-1(a)中,能否将G视为T形结点而判断GE为零杆?结点G是怎样平衡的?又对于结点A,既然F AV=5kN(↑),为什么AD杆的竖向分力不等于5kN?
答:(1)不能将G视为T形结点而判断GE为零杆,因为G点是组合结点而非铰接点。
(2)结点G处竖向荷载有EG杆的轴力、CG部分的剪力、GB部分的剪力。
(3)对于结点A,AC杆为受弯杆件,所以在AC杆的A端要考虑剪力的作用,故在A 结点处,竖向力包括F AV、链杆AD的竖向分量、受弯杆AC在A端剪力,故AD杆的竖向分力不等于F AV=5kN。
图5-1
习题
5-1~5 试用结点法计算图示桁架各杆的内力。
图5-2(题5-1)
图5-3(题5-1解图)
5-1 解:结点法计算图示各杆内力。
由∑M A =0,则
A E D C B
F G H
F B·32-60×24-60×16=0 算得
F B=75kN
由∑F y=0,得
F Ay=120-75=45kN。
对B结点进行受力分析,如图5-3所示。
由比例关系可以求得
F yBH=75kN
同理
由∑F x=0,可得
F NBC=F xBH=-100kN
图5-4
然后,依次取结点H、C、D、G、E、F、A,每次只有两个未知力,故不难求解。
而计算到结点A时,各杆轴力均可求出,故A结点可作为平衡是否满足的校核条件。
各杆轴力如图5-5所示。
图5-5
图5-6(题5)。