初一数学正数及负数学习知识点解析新人教版本.docx
人教版七年级数学上册:1.1《正数和负数》说课稿3
人教版七年级数学上册:1.1《正数和负数》说课稿3一. 教材分析《正数和负数》是人教版七年级数学上册的第一课时内容,本节课主要介绍正数和负数的概念,以及它们的性质。
通过本节课的学习,学生能够理解正数和负数的含义,掌握它们的表示方法,以及会进行简单的正负数运算。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的概念已经有了一定的认识。
但是,对于正数和负数的概念以及性质可能还比较陌生,需要通过本节课的学习来逐步理解和掌握。
三. 说教学目标1.知识与技能目标:学生能够理解正数和负数的概念,掌握它们的性质,以及会进行简单的正负数运算。
2.过程与方法目标:通过观察、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 说教学重难点1.教学重点:正数和负数的概念,以及它们的性质。
2.教学难点:正负数的运算方法,以及如何解决实际问题中的正负数问题。
五. 说教学方法与手段本节课采用讲授法、讨论法、探究法等多种教学方法,结合多媒体教学手段,引导学生主动参与,积极思考,通过观察、实践、交流等方式,培养学生的抽象思维能力和解决问题的能力。
六. 说教学过程1.导入:通过生活中的实例,如温度、海拔等,引出正数和负数的概念,激发学生的学习兴趣。
2.新课导入:讲解正数和负数的概念,以及它们的性质,通过例题和练习,让学生理解和掌握。
3.课堂练习:进行一些简单的正负数运算,让学生巩固所学知识。
4.应用拓展:通过解决实际问题,让学生运用所学知识,提高学生的应用能力。
5.课堂小结:总结本节课的主要内容,强调正数和负数的性质和运算方法。
6.布置作业:布置一些相关的练习题,让学生进一步巩固所学知识。
七. 说板书设计板书设计要简洁明了,能够突出本节课的主要内容。
可以设计成两个部分,一部分是正数和负数的概念和性质,另一部分是正负数的运算方法。
人教版七年级数学上册第一章 有理数 正数和负数
探究新知
问题1:说一说上面用到的各数的含义.
(1)天气预报中的3,电梯按钮中的1~10,新闻报道中的
1.8%;
(2)天气预报中的-3,电梯按钮中的-1,-2,新闻
报道中的-2.7%.
问题2:上面这两类数,分别属于什么数?
探究新知
像1、2、3、1.8%这样大于0的数
叫做正数.
A. 0℃表示没有温度
B. 0表示什么也没有
C. 0是非正数
D. 0既可以看作是正数又可
以看作是负数
巩固练习
解释图中的正数和负数的含义.
10℃表示白天温度为零上10℃
-5℃表示晚上温度为零下5℃
它们以什么为基准?
0℃
巩固练习
下面是某存折中记录的支出、存入信息,试着说说其中“
支出或存入”那一栏的数字表示什么含义.
存折中的正数表示存入,反
之,负数表示支出.
连接中考
1. 如果把收入100元记作+100元,那么支出80元记作( D )
A.+20元
B.+100元 C.+80元 D.﹣80
元
2. 如果电梯上升5层记为+5.那么电梯下降2层应记为
(
)
A.+2
B.﹣2
C.+5
D.﹣5
B
课堂检测
示一个物体向西运动4米,那么+2米表示什么?物
体原地不动记为什么?
+2米表示一个物体向东运动2米;
物体原地不动记为0米.
探究新知
例2(1)一个月内,小明体重增加2kg,小华体重减
少1kg,小强体重无变化,写出他们这个月的体重增长
值;
初一数学《正数和负数》知识点解析新人教版
初一数学《正数和负数》知识点解析新人教版第一篇:初一数学《正数和负数》知识点解析新人教版初一数学《正数和负数》知识点解析新人教版正数、负数和零的概念正数:像1、2、48等大于零的数叫正数。
负数:-1、-2、-48等在正数前面加上负号“-”小于零的数叫负数。
零:0叫做零,0既不是正数也不是负数。
正数与负数概念的理解1、对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?答案是不一定。
因为字母a可以表示任意的数,若a表示正数时,-a是负数;当a表示0时,-a就在0的前面加一个负号,仍是0,0不分正负;当a 表示负数时,-a就不是负数了,它是一个正数。
2、引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-,-4,-2,1,3,…3、到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但通常把有理数分为三类:正数、0、负数。
4、通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
正数负数的判断方法具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。
含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。
0的含义①0表示起点。
②0表示没有。
③0表示一种温度。
④0表示编号的位数。
⑤0表示精确度。
⑥0表示正负数的分界。
⑦0表示海拔平均高度。
正负数的作用在同一问题中,用正负数表示的量具有相反的意义。
如果一个问题中出现相反意义的量,我们可以用正数和负数分别表示它们。
1、相反意义的量包含两个含义:一是相反意义,二是在相反意义的基础上要有量,但量的大小可以不一样。
2、习惯上把向东、盈利、运进、增加记为正的,把与它们意义相反的量记为负的。
七年级正数与负数的知识点
七年级正数与负数的知识点数学是一门让很多人头疼的学科,但是它也是一个让人思维活跃的学科。
七年级正数与负数是数学中的基础知识,虽然它看上去简单,但是我们在平时生活和学习中都需要用到。
那么,接下来让我们一起来学习一下七年级正数与负数的知识点。
1. 正数与负数的概念在学习正数与负数之前,我们需要先了解一下数轴的概念。
数轴是一个直线,它的左侧是负数,右侧是正数,中间是0。
每一个点都对应一个数。
此时,我们可以把数轴看作一个房子,0是门,左侧是负的房间,右侧是正的房间。
正数是大于0的数,它在数轴的右侧,比如1,2,3等。
负数是小于0的数,它在数轴的左侧,比如-1,-2,-3等。
2. 正数与负数的比较方法(1) 同号相比较当两个数的符号相同时,我们只需要比较它们的大小即可,比如:5和2,那么5就比2大;-5和-2,那么-5就比-2小。
(2) 异号相比较当两个不同符号的数做比较时,我们需要首先比较它们的绝对值,绝对值大的数就是大数,符号就是绝对值大的数的符号。
比如:|-5|比|2|大,所以-5比2小。
3. 正数和负数的加减法(1) 正数加正数当两个正数相加时,我们直接把它们的和作为结果,比如:3+4=7,5+2=7。
(2) 负数加负数当两个负数相加时,我们需要首先计算它们的绝对值之和,然后把结果变成负数,比如:-3+(-4)=-(3+4)=-7,-5+(-2)=-(5+2)=-7。
(3) 正数加负数当一个正数和一个负数相加时,我们需要先比较它们的大小,绝对值大的数减去绝对值小的数,然后结果的符号就是绝对值大的数的符号,比如:3+(-4)=3-4=-1,-5+2=2-5=-3。
(4) 正数减正数当一个正数减去另外一个正数时,我们直接计算它们的差值即可,比如:5-2=3,9-3=6。
(5) 负数减负数当一个负数减去另外一个负数时,我们需要把它们的减法转化成加法,即第二个数变成相反数,变成第一个数加上第二个数的相反数,比如:-3-(-4)=-3+4=1,-5-(-2)=-5+2=-3。
正数和负数人教版七年级数学上册课件
正数和负数人教版七年级数学上册课 件
“不大于”表示“小于或等于”,“不小于”表示 “大于或等于”
正数和负数人教版七年级数学上册课 件
正数和负数人教版七年级数学上册课 件
例1 下列结论正确的是( C ) A.不大于0的数一定是负数 B.海拔高度是0米表示没有高度 C.0是正数与负数的分界 D.不是正数的数一定是负数
3 如果水位升高3 m时水位变化记作+ 3 m ,那么水 位下 降3 m时水位变化记作__-_3___m, 水位不升 不降时水位 变化记作___0___m.
正数和负数人教版七年级数学上册课 件
正数和负数人教版七年级数学上册课 件
3 相反意义的量
正数和负数人教版七年级数学上册课 件
正数和负数人教版七年级数学上册课 件
1.定义:在生活中存在各种各样的量,其中有一种量, 它们的属性相同(即同类量),但表示的意义却相反, 我们把这样的量叫做相反意义的量.
2.表示法:为了表示具有相反意义的量,我们把其中一 种意义的量规定为正,把另一种与之意义相反的量规 定为负.
正数和负数人教版七年级数学上册课 件
正数和负数人教版七年级数学上册课 件
例题1 :四个数-3.14,0,1,2中为负数的
是( A )
A.-3.14 B.0 C.1
D.2
正数和负数人教版七年级数学上册课 件
正数和负数人教版七年级数学上册课 件
2 下列各组数,都是正数或都是负数的是( B )
A.8,4,-2
B.2,5,4,
C.-6,0.5,0
D.0,6,9
正数和负数人教版七年级数学上册课 件
正数和负数人教版七年级数学上册课 件
人教版初一数学(上册)知识点
人教版初一数学(上册) 知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数,0是正数和负数的分界,是唯一的中性数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3. 0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
③整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分有理数0(0不能忽视)负整数分数负有理数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数想一想:零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数。
新人教版_七年级数学上册总复习
5、分配律: a(b c) ab ac
有理数混合运算的运算顺序 先算乘方,再算乘除,最后算加减。 如果有括号就先算括号里面的。
同级运算从左到右进行。
(4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是
整数数位只有一位的数,n是比原整数数位小1的正整数), 如236000000=2.36×108;-2450000=-2.45×106
• 2、根据题意找出能够表示应用题全部含义的一个 相等关系;(关键的一步)
• 3、根据相等关系,正确列出方程,即所列的方程 应满足两边的量要相等;方程两边的代数式的单位 要相同;题中条件应充分利用;
• 4、求出所列方程的解; • 5、检验后明确地、完整地写出答案(注意单位)
这里要求的检验应是,检验所求出的解既能使方程 成立,又能使应用题有意义。
⑷交点:当两条不同的直线有一个公共点时,我们 就称这两条直线相交,这个公共点叫做它们的交点。
6、射线:把线段向一方无限延伸的图形叫做射线。 ①表示方法:端点字母必须写在前 ②射线可以看做是直线的一部分,识别射线是否相同---端点相同、延伸方向也相同。
7.线段:直线上两个点和它们之间的部分叫做线段,这两个 点叫做线段的端点。
新人教版_七年级数学上册总复习
新人教版 七年级数学上册 (各章知识点课件)
第一章 有理数
1.1正数和负数
(1)正数:大于零的数叫做正数。如:1,0.25,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 整数:正数、0、负数
(2)用正负数表示两个意义相反的量。
一个正数的绝对值是 是它本身 ,一个负数的绝对值是
七年级数学上册第一章有理数1-1正数和负数课件新版新人教版
特别提醒 用正数和负数表示具有相反意义的量时,关键要明
确“基准”及具有相反意义的量的规定.还原用正数、 负数表示的数,关键就是依据“基准点”.
方 法 4 利用正数、负数表示指定位置的数(归纳法)
例 8 观察下面按次序排列的两组数,探究它们各自的变化规律 ,完成填空并分别在最后的横线上写出第2024个数. (1)1,2,-3,-4,5,6,-7,-8,______,______ ,…,______; (2)1,-12 ,3,-14 ,5,-16 ,7,-18 ,______,______ ,…,______.
知2-练
知2-练
解题秘方:利用0 的几种不同方面的意义,用排除法 •••
解题.
解:选项A 中“不大于0”表示的是“小于或等于0”, 也就是负数和0;选项B 中“海拔0 米”表示的是 “与• 海• 平• 面• 一• 样• 高• ”;选项D 中“不是正数的数” 就是负数或0 . 答案:C
2-1.下列关于“0”的叙述,正确的有( C ) ① 0 是正数与负数的分界; ② 0 是整数; ③ 0 只表示没有; ④ 0 常用来表示某些量的基准数. A. 1个 B. 2 个 C. 3 个 D. 4 个
:15记为-1,上午10:45记为1,那么上午7:45应记为
()
A. 3
B. -3
C. -2.15
D. -7.45
思路引导:
解:如图1.1-2,可知上午7:45应记为-3. 答案:B
特别提醒 1. 本例用直线上的点表示时间及与之对应的数,直观、
巧妙地将时间和与之对应的数联系起来,便于帮助理解问 题的内在联系.
易 错 点 对正数、负数的定义理解有误
例 9 下列说法正确的有(
)
专题01第一讲11正数与负数【暑假辅导班】2021年新七年级数学暑假精品课程(人教版)(解析版)
第一讲 1.1正数和负数【学习目标】1.通过生活实例认识正数和负数。
2.会用正数、负数表示相反意义的量。
【基础知识】一、正数与负数的概念我们知道,像3,1.8%,3.5这样大于0的数叫做正数.像-2,-2.7%,-4.5,-1.2这样在正数前加上符号“-”(负)的数叫做负数.0既不是正数,也不是负数.注意:1.形式:符号+数字;2.判断的时候只和符号有关,和数字的形式无关;3.注意“0”是独立的,既不是正数也不是负数.二、用正数与负数表示相反意义的量把0以外的数分为正数和负数,它们表示具有相反意义的量.随着对正数、负数意义认识的加深,正数和负数在实践中得到了广泛应用.在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0m),通常用正数表示高于海平面的某地的海拔高度,用负数表示低于海平面的某地的海拔高度.注意:1.0是正数与负数的分界.0℃是一个确定的温度,海拔0m表示海平面的平均高度0的意义已不仅是表示“没有”。
2.常见的具有相反意义的量:运进、运出;收入、支出;增加、减少;上升、下降;高于、低于;向东、向西;向北、向南;零上、零下等;3.注意“单位”问题,视具体题目定加不加单位。
【考点剖析】考点一:正数、负数的概念辨析例1.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C .零既是正数也是负数D .不是正数的数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A 、C 错误,B 正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D 错误,故选B .考点二:正数、负数的分类例2.下列各数:23-,101.1-,13,13-,0.1-,2.8,38,0,1+,其中正数有________,负数有_______. 【答案】1,2.8,38,13+ 123,101.1,,0.13----【分析】根据正数和负数的定义分别进行解答即可,正数都大于0,负数都小于0.【详解】 正数有1,2.8,38,13+; 负数有123,101.1,,0.13----.故答案为:①1,2.8,38,13+;②123,101.1,,0.13----.【点睛】此题考查了正数和负数,掌握正数和负数的定义是本题的关键,正数都大于0,负数都小于0,0既不是正数也不是负数.考点三:正数、负数表示相反意义的量例3.下列各组数中,不是互为相反意义的量的是( )A .收入200元与支出20元B .上升10米和下降7米C .超过0.05mm 与不足0.03mD .增大2岁与减少2升【答案】D【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.岁与升不能比较.【详解】解:A. 收入200元与支出20元,是互为相反意义的量;B. 上升10米和下降7米,是互为相反意义的量;C. 超过0.05mm 与不足0.03m ,是互为相反意义的量;D. 增大2岁与减少2升不是互为相反意义的量.故选:D .【点睛】此题主要考查有理数的意义,解题的关键是熟知正数、负数的意义.考点四:正数、负数在生活实际中的运用例题4.一种食用盐包装袋上标有(500±5)g ,表示这种食用盐的质量不超过________,不少于________.【答案】(1)505 g ; (2)495 g【解析】分析:根据“(500±5)g 表示这袋食用盐的质量最多比500g 多5g ,最少比500g 少5g”进行分析解答即可.详解:∵这种食用盐包装袋上标有(500±5)g ,∵这袋食用盐的质量不超过:500+5=505(g ),这种食用盐的质量不少于:500-5=495(g ).故答案为:(1)505g ;(2)495g.点睛:知道:“表示物体质量的标识()a b g ±的意义是:表示这种物体的质量最多不超过()a b g +,质量最少不低于()a b g -.”是解答本题的关键.【真题演练】1.下列语句正确的是( )A .“+15米”表示向东走15米B .0℃表示没有温度C.﹣a可以表示正数D.0既是正数也是负数【答案】C【分析】根据正负数的意义进行选择即可.【详解】A、“+15米”不一定表示向东走15米,原说法错误,故这个选项不符合题意;B、0∵不是没有温度,而是表示零上温度和零下温度的分界点,原说法错误,故这个选项不符合题意;C、﹣a可以表示正数,也可以表示负数,原说法正确,故这个选项符合题意;D、0 既不是正数也不是负数,原说法错误,故这个选项不符合题意;故选C.【点睛】本题考查的是正数及负数的定义,正确的理解正负数的定义是关键.2.下列各组量中,不具有相反意义的是()A.向东走5米和向西走2米B.收入100元和支出20元C.上升7米和下降5米D.长大一岁和减少2千克【答案】D【分析】利用“具有相反意义的量:用相反意义表示的量”,即可解答.【详解】A. 向东走5米和向西走2米,具有相反意义;B. 收入100元和支出20元,具有相反意义;C. 上升7米和下降5米,具有相反意义;D. 长大一岁和减少2千克,不具有相反意义;故选D【点睛】本题考查具有相反意义的量,难度低,熟练掌握该知识点是解题关键.3.在下列各数中:-(+5),-12,(13-)2,-234,(-1)2007,-|-3|;负数的个数有()A.2个B.3个C.4个D.5个【答案】D【分析】根据正数和负数的定义进行求解.【详解】-(+5)=-5<0,-12=-1<0,(13-)2=19>0,-234=-94<0,(-1)2007=-1<0,-|-3|=-3<0,∵分数有:-(+5),-12,-234,(-1)2007,-|-3|,共5个,故选D.【点睛】此题主要考查正数和负数的概念,比0大的数是正数,比0小的数是负数,0即不是正数,也不是负数. 4.如果零上15℃记作+15℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.﹣12℃D.12℃【答案】A【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:∵零上15∵记作+15∵,∵零下3∵可记作﹣3∵.故选:A.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.5.下列说法:①带正号的数是正数,带负号的数是负数;②任意一个正数,前面加上负号就是一个负数;③0是最小的正数;④大于0的数是正数;⑤0只表示没有.其中正确的是()A.①②B.②④C.①②④D.③⑤【答案】B【分析】根据正负数的意义可判断①②④,根据0的意义可判断③⑤,进而可得答案.【详解】解:带正号的数不一定是正数,带负号的数也不一定是负数,所以①错误;任意一个正数,前面加上负号就是一个负数,所以②正确;0既不是正数,也不是负数,所以③错误;大于0的数是正数,所以④正确;0可以表示没有,也可以表示某种量的基准,所以⑤错误.故选:B.【点睛】本题考查了正数和负数,明确正数大于0、负数小于0,0既不是正数又不是负数是关键.6.如果“收入500元”记作“ +500元”,那么“支出100元”记作________元.【答案】-100【解析】试题分析:因为“收入500元”记作“+500元”,即“收入”用正数表示,所以“收入”的相反意义“支出”用负数表示,所以“支出100元”记作-100元,故答案为-100.点睛:本题考查了用正负数表示具有相反意义的量,若规定的一个意义的量用正数表示,则它的相反意义用负数表示.7.某袋装牛奶的标准质量为100克,现抽取5袋进行检测,质量超过标准的克数记为正数,不足的克数记为负数,结果如下表所示:其中质量最接近标准的是__________(填序号),最大质量的那袋牛奶比最小质量的那袋牛奶重________克.【答案】④ 15【分析】先求出每袋牛奶的质量,再找出最接近标准质量的和差距最大的即可.【详解】由题意知①的质量是95克,②的质量是103克,③的质量是109克,④的质量是99克,⑤的质量是94克,所以最接近100克的是④,-=(克).最大质量的那袋牛奶比最小质量的那袋牛奶重1099415【点睛】此题主要考查了正数与负数,正确理解正负数的意义是解题关键.8.某粮店出售三种品牌的大米,袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,其中任意拿出两袋,它们最多相差____________________kg.【答案】0.6【分析】先根据题意得出两袋大米的最高质量和最低质量,相减即可得出答案.【详解】由题意可得,大米的最高质量为25+0.3=25.3kg,大米的最低质量为25-0.3=24.7kg,所以最多相差=25.3-24.7=0.6kg,故答案为0.6.【点睛】本题考查的是正负数的应用,比较简单,解题关键是需要理解正负数在实际题目中的意义.9.潜水艇的高度是海面下50米,记作-50米,一鲨鱼在潜水艇上方10米处,则鲨鱼的高度应记作________.【答案】-40米【解析】【分析】已知一潜水艇在高度为-50米,一条鲨鱼在潜水艇上方10米处,要求鲨鱼所在的高度,用加法计算,列式为:-50+10,计算即可.【详解】-50+10=-40(米);故答案是:-40.【点睛】考查正数与负数的运算,运算时要注意运算符号.10.判断下列各数哪些是正数,哪些是负数.2-,123+,0,135,204,-0.02,+3.65,157-,-8%,227-,3.14,2019.正数:________________________________;负数:________________________________.【答案】123+,135,204,+3.65,3.14,2019;-2,-0.02,157-,-8%,227-.【解析】【分析】根据正数和负数的定义进行分类即可.【详解】解:大于0的数是正数,∵正数有:123+,135,204,+3.65,3.14,2019;小于0的数是负数。
【最新】人教版七年级数学上册第一节正数和负数含答案.doc
第一节正数和负数一、教学内容:1、了解正数和负数是怎样产生的,什么是相反意义的量;2、知道什么是正数和负数;3、理解数0表示的量的意义;4、有理数的概念及分类.二. 知识要点:1、负数产生的原因:(1)生活和生产的需要,对实际生活中出现的相反意义的量,如卖出与买入、盈利与亏损、上升与下降、增加与减少、前进与后退等,无法用自然数表示,为了解决这些问题人们引进了负数;(2)数学本身的需要,如对较小的数减去较大的数的问题的解决,需要引进负数.2、像3,2,1.8%这样大于0的数叫做正数;3、像-3,-2,-2.7%这样在正数前面加上负号“-”的数叫做负数.4、数0既不是正数,也不是负数;5、正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.6、有理数也可以这样:有理数注:掌握分类的标准是关键,不同的标准就有不同的分法.三. 重点难点1、重点:①正数、负数、有理数的概念;②数0表示的量的意义;③有理数的分类.2、难点:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法.【考点分析】数是数学知识的基础,也是其他学科的工具,在近年来各地的中考试题中经常出现.全国大多数省市中考试题对数的概念单独命题,试题难度为低、中档次,题量约占总量的1%,题型以填空题、选择题居多.【典型例题】例1 用正数和负数表示下列具有相反意义的量.(1)温度上升3℃和下降5℃;(2)盈利5万元和亏损8千元;(3)向东10米和向西6米;(4)运进50箱和运出100箱.分析:本题中的上升和下降,盈利和亏损,向东和向西,运进和运出都是相反意义的量,如果我们规定上升、盈利、向东、运进为正,那么下降、亏损、向西、运出就为负.解:(1)+3℃,-5℃(2)+5万元,-8千元(3)+10米,-6米(4)+50箱,-100箱评析:用正负数表示相反意义的量,并不是固定不变的.我们只是习惯把向东、上升、盈利、增加、收入规定为正,把其相反意义的量规定为负.通过本题同学们要体会数学符号与对应的思想,学会用正、负数表示具有相反意义的量的符号化方法.例2 下列各数哪些是正数,哪些是负数?分析:首先确定我们熟悉的大于0的数,即正数,然后再观察带有“-”号的数,看“-”号后的部分是否大于0,因为“正数的前面加上负号便是负数”.特别注意:0不是正数,也不是负数.解:正数有:负数有:评析:分类要做到“不重复,不遗漏”.例3 给出一对数+2和-3,请赋予它们实际的意义.分析:此题为开放题,考查相反意义的量在实际生活中的作用,解题的关键是给“+”和“-”赋予生活中一组相反的意义,例如:收入和支出,前进和后退等.解:+2表示收入2元,-3表示支出3元+2表示前进2米,-3表示后退3米等.评析:对于两种具有相反意义的量,究竟哪一种意义的量为正的,哪一种意义的量为负的,并不是固定的,而是在实际的生活和生产中人们根据实际情况的要求人为规定的.例4 (2007年武汉)下表是我国几个城市某年一月份的平均气温.城市北京武汉广州哈尔滨平均气温(单位:℃)-4.6 3.8 13.1 -19.4 其中气温最低的城市是()A、北京B、武汉C、广州D、哈尔滨分析:根据生活经验和正、负数的意义我们知道,表示零下的负数温度比正数温度低,负数温度中负号后面的数值越大温度越低.显然,气温最低的城市是哈尔滨.解:D评析:这四个城市平均气温从高到低的顺序是:广州→武汉→北京→哈尔滨,它们对应的温度顺序是:13.1℃>3.8℃>-4.6℃>-19.4℃.通过本题同学们要初步理解这种将实际问题转化为数学问题的方法.思考:从这四个有理数的大小关系中你可以得出哪些结论?例 5 如图所示,某化肥厂生产的颗粒磷肥外包装袋上标有净重:50±0.5kg,请你说说这是什么意思?分析:本题考查正、负数表示量的实际意义,以标准重量为基准:+0.5kg表示多出0.5kg,-0.5kg 表示少0.5kg,这都属于正常范围,因为实际生活中不能做到绝对准确的50kg,只能尽量减小误差.解:50±0.5kg表示这袋化肥的净重可能比50kg多,但不会超过50+0.5=50.5kg,可能比50kg 少,但不会少于50-0.5=49.5kg.评析:在生产中,产品可能与标准规格有差异,也就是会产生误差.但误差不能太大,产品可略有不足或略有超出,即误差应在一个允许的范围内.不足用负数表示,超出用正数表示,这个范围就可以用正负数表示出来了.例6 下列说法正确的是()A、整数、分数和负数统称为有理数B、有理数包括正数和负数C、正整数都是整数、整数都是正整数D、0是整数,也是自然数分析:A分类时有重复,应改为整数和分数统称有理数,B有遗漏,应改为有理数包括:正有理数、0、负有理数.在C中正整数和整数在有理数系中属不同的等级,不是两个相同的概念,应改为:正整数都是整数,但整数不是正整数.只有D是正确的.解:D评析:数的范围扩大到有理数后,注意数的分类方法,特别是0的归属.0既不是正数,也不是负数;整数包括正整数、0、负整数,所以0是整数,当然也是有理数.【方法总结】通过本节的学习我们要掌握整数、分数、正数、负数、有理数的区分方法,体会符号化在数学问题中的重大意义,理解把实际问题转化为数学问题来解决的转化思想.【模拟试题】(答题时间:50分钟)一、选择题1、有五个数为其中正数的个数是()A、1个B、2个C、3个D、4个2、2008年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是()城市温州上海北京哈尔滨广州平均气温6 0-9-15 15A、广州B、哈尔滨C、北京D、上海3、正整数集合和负整数集合合在一起,构成数的集合是()A、整数集合B、有理数集合C、自然数集合D、非零整数集合4、规定正常水位为0m,高于正常水位0.5m时,记作+0.5米,下列说法错误的是()A、高于正常水位 1.5m记作+1.5mB、低于正常水位 1.5m记作-1.5mC、-1m表示比正常水位低1mD、+2m表示比正常水位低2m5、如果收入200元记作+200元,那么支出150元记作()A、+150元B、-150元C、+50元D、-50元6、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向东走了-60m,此时小明的位置在()A、文具店B、玩具店C、文具店西边20mD、玩具店东边-60m7、下面是关于有理数的叙述:①有理数分为正有理数和负有理数两部分;②有理数分为整数和分数两部分;③有理数分为正数、负数和零三部分;④有理数分为正分数、负分数、正整数、负整数和零五部分;⑤有理数分为正整数、负整数和零三部分.其中正确的有()A、1个B、2个C、3个D、4个8、一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A、11℃B、4℃C、18℃D、-11℃二、填空题9、如果把顺时针转60°记作+60°,那么逆时针转30°记作__________.10、在电视上看到的天气预报中,绵阳王朗国家级自然保护区某天的气温为“-5℃”,表示的意思是__________.11、孔子诞生在公元前551年9月28日,则2007年9月28日是孔子诞辰__________周年.(注:不存在公元0年)12、把下列各数分别填入相应的括号:(1)整数集:{…};(2)正整数集:{…};(3)负整数集:{…};(4)分数集:{…};(5)正分数集:{…};(6)负分数集:{…};(7)有理数集:{…};(8)正有理数集:{…};(9)负有理数集:{…};13、工商部门抽查了一些500g包装的白糖,检查的记录如下:10,-15,13,-20,-18,15,-31,24,-25,-5,-14,-9.你估计这里的正、负数表示什么?从这些数据中,你能获得哪些信息?14、用正、负数表示下面各组具有相反意义的量,并指出它们的分界点.(1)零上10℃与零下5℃;(2)高出海平面100m与低于海平面200m;(3)收入8元,支出6元.15、观察下列各数,找出规律后填空:(1)-1,2,-4,8,-16,32,……,第10个数是__________.(2)1,-3,5,-7,…,第15个数是__________.(3)1,-4,7,-10,13,…,第100个数是__________.【试题答案】1、B2、B3、D4、D5、B6、A7、B8、B二、填空题9、-30°10、零下5摄氏度11、255712、(1)整数集:{20,-3,0,-1,+5…};(2)正整数集:{20,+5…};(3)负整数集:{-3,-1…};(4)分数集:(5)正分数集:{4.5,3.14…};(6)负分数集:(7)有理数集:(8)正有理数集:{20,4.5,3.14,+5…};(9)负有理数集:三、解答题13、正数表示包装超过500g,负数表示包装少于500g.一共抽查了12包白糖,其中不足500g的有8包,超过500g的只有4包,不足秤的约占67%,且个别不足秤的达到31g,是严重的短斤少两现象.14、(1)+10℃,-5℃,它们的分界点是0℃(2)+100m,-200m,分界点是海平面,用0表示(3)+8元,-6元,它们的分界点是不收入也不支出,用0表示.15、(1)512(2)29(3)-298。
新人教版七年级数学上册知识点汇总
第一章 有理数一、知识框架:二、知识概念:1.正数与负数:大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.2.有理数: ⑴凡能写成(),0qp q p p≠为整数,且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;a -不一定是负数,a +也不一定是正数;π不是有理数. ⑵有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 3.数轴:数轴是规定了原点、正方向、单位长度的一条直线.4.相反数:⑴只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵相反数的和为00a b a b ⇔+=⇔、互为相反数.5.绝对值:⑴正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数.注意:绝对值的意义是数轴上表示某数的点离原点的距离;⑵绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0()0(a a a a a ;绝对值的问题经常分类讨论. 6.有理数比大小:⑴正数大于0,0大于负数,正数大于负数; ⑵两个负数比较,绝对值大的反而小.7.倒数:乘积为1的两个数互为倒数.注意:0没有倒数;若0a ≠,那么a 的倒数是1a;若1,ab a b =⇔互为倒数;若1,ab a b =-⇔互为负倒数. 8.有理数加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加;⑵异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝 对值;⑶一个数与0相加,仍得这个数. 9.有理数加法的运算律:⑴加法的交换律:a b b a +=+;⑵加法的结合律:()()a b c a b a ++=++. 10.有理数减法法则:减去一个数,等于加上这个数的相反数;即()a b a b -=+-. 11.有理数乘法法则:⑴两数相乘,同号为正,异号为负,并把绝对值相乘; ⑵任何数同零相乘都得零;⑶几个数相乘,有一个因数为零,积为零;各个因数都不为零,积的符号 由负因数的个数决定:负因数个数为偶数,积为正数;负因数个数为奇数,积为负数.12.有理数乘法的运算律:⑴乘法的交换律:ab ba =; ⑵乘法的结合律:()()ab c a bc =; ⑶乘法的分配律:()a b c ab ac +=+.13.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a. 14.乘方的定义:⑴求相同因数积的运算,叫做乘方;⑵乘方中,相同的因数叫做底数,相同因数的个数叫做指数,乘方的结 果叫做幂.即na 中,a 为底数,n 为指数,na 的结果为幂. 15.有理数乘方的法则: ⑴正数的任何次幂都是正数;⑵负数的奇次幂是负数;负数的偶次幂是正数.16.科学记数法:把一个大于10的数记成10na ⨯的形式,其中a 是整数数位只有一位的数,110a ≤<,这种记数法叫科学记数法.17.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.18.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.19.混合运算法则:先乘方,后乘除,最后加减,有括号先算括号里的.第二章 整式的加减一、知识框架:二、知识概念:1.单项式:单独由数和字母的积构成的式子叫做单项式,单独一个数或式子也是单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数.5.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.6.合并同类项:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.7.去括号法则:⑴如果括号外面的因数是正数,去括号后原括号内各项的符号与原来的符号相同.⑵如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反.第三章一元一次方程一、知识框架:二.知识概念:1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.等式的性质:⑴等式两边加(或减)同一个数(或式子),结果仍相等.⑵等式两边乘同一个数(或式子),或除以同一个不为0的数(或式子),结果仍相等.3.一元一次方程的标准形式:0ax b+=(x是未知数,a b、是已知数,且0a≠).4.一元一次方程解法的一般步骤:整理方程→去分母→去括号→移项→合并同类项→系数化为1 →(检验方程的解).5.列一元一次方程解应用题:⑴读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.⑵画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.6.列方程解应用题的常用公式:⑴行程问题: 距离=速度×时间 时间距离速度=速度距离时间=; ⑵工程问题: 工作量=工效×工时 工时工作量工效= 工效工作量工时=;⑶比率问题: 部分=全体×比率 全体部分比率=比率部分全体=; ⑷顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;⑸商品价格问题: 售价=定价×折×101,利润=售价-成本, %100⨯-=成本成本售价利润率;⑹周长、面积、体积问题:C 2r π=圆,()C 2b a =+长方形,C 4a =正方形:2S r π=圆,S ab =长方形,2S a =正方形,()22S R r π=-环形;V abc =长方体,3V a =正方体,2V h r π=圆柱 21V h 3r π=圆锥.第四章 图形的认识初步一、知识框架:二.知识概念:1.立体图形:各部分不都在同一平面内的图形叫做立体图形.2.平面图形:各部分都在同一平面内的图形叫做平面图形.3.点、线、面、体:几何体简称为体,包围着体的是面,面与面相交的地方叫线,线与线相交的地方叫点.4.直线的性质:经过两点有一条直线,并且只有一条直线;简称:两点确定一直线.5.线段的性质:两点之间,线段最短;连接两点间的线段的长度,叫做这两点的距离.6.角平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的角平分线.7.余角:如果两个角的和等于90°,就说这两个角互为余角;同角(等角)的余角相等.8.补角:如果两个角的和等于180°,就说这两个角互为补角;同角(等角)的补角相等.。
数学人教版七年级上册正数、负数.1正数和负数
我反思
我的收获: 我的疑问:
回味
无穷
1、掌握正数和负数的概念,能用正、负数正确表示 具有相反意义的量. 2、相反意义的量需满足: (1)两个量所表示的属性相同(即单位相同); (2)两个量所表示的意义相反. 3、注意: (1)0既不是正数也不是负数; (2)用正、负数表示具有相反意义的量时, 应注意规定“正、负”的相对性; (3)正数前面的正号往往可以省略不写,但 负数前面的“-”就不能省略.
4.如果把顺时针旋转 记作+ ,那么逆时针旋 转 记作____. 5.甲、乙两厂本月产值与上月相比,甲厂增长
3%可记作____;乙厂减产1.2%可记作____.
6.若一架飞机在高于海平面1000米的地方飞行
记作+1000米,那么,一艘潜水艇在海平面以
下50米处航行,应记作 .
7.如果水库的水位高于标准水位3米时,记作+3米,那 么低于标准水位2米时,记作 米. 8.如果-200元表示亏本200元,那么400元表示 ______. 9.某食品包装袋上标有“净含量385克±5克”.则这包 食品的合格净含量范围是 克~390克. 10.对于“0”的说法正确的有( ) (1)0是正数与负数的分界; (2)0℃是一个确定的温度; (3)0为正数; (4)0是自然数. A. 1个 B. 2个 C. 3个 D. 4个
我评价
1.小明的姐姐在银行工作,她把存入3万元记作 +3万元,那么支取2万元应记作____,-4万元表 示____. 2.已知下列各数:-5, ,3.14,+3065, 0, -239.则正数有____;负数有____;既不是正 数也不是负数的数是____. 3.零下15℃表示为____,比O℃低4℃的温度是 _____.
「教案」七年级上《正数和负数》重要考点详解
正数和负数是数学中的基本概念之一,在初中数学学习中,正数和负数的概念及其运算是必须学习掌握的内容。
而在教学中,教案则是教师对于教学过程中的具体安排和措施的规划,它对于提高课堂教学效果至关重要。
本文将结合七年级上《正数和负数》这一授课内容,对于教学中的关键考点进行分析和总结,为广大教师提供参考。
一、正数和负数的基本概念正数和负数是数学中的基本概念之一,其概念的正确掌握是后续学习的基础。
正数是指大于零的实数,用正号“+”表示;负数是指小于零的实数,用负号“-”表示。
数轴是应用最广泛的数学工具之一,数轴上每一个点都表示一个实数,将正数表示为右移,负数表示为左移,零点则在数轴的中央位置。
二、正数和负数的运算除了概念的了解,正数和负数的运算也是初中数学必须掌握的知识点。
其中,加法是最基础的运算,也是数学学习的必修内容。
加法遵循的是“先化异为同,再按同类相加”的规则,对于正数和负数运算的基本规律是:(1)同号相加,数值相加,符号不变;(2)异号相加,绝对值相减,符号由数值大的数决定。
在加法运算中,需要注意的是,符号要和数值连在一起,不能单独存在;同时,运算的顺序也是十分重要的,要根据括号内的运算顺序进行计算,遵循从左到右的原则。
除了加法运算外,减法和乘法也是正数和负数运算中的必修内容。
对于减法,可以通过将减法转化为加法来进行计算;对于乘法,正数与正数相乘结果为正数,负数与负数相乘结果也为正数,而正数与负数相乘的结果则为负数。
三、应用题的拆解与解析在数学学习中,应用题的解题思路和方法同样重要。
对于应用题,教师可以通过拆解问题、列式子、运算计算等方式,帮助学生准确理解问题,并进行正确解答。
例如,一道较为简单的应用题:若有一个负数与一个正数相加,其和为正数,请问这两个数是什么数?解题思路如下:由于负数与正数相加结果为正数,可推断这个负数的绝对值肯定比这个正数的绝对值小,且符号相反。
设该正数为x,负数的绝对值为y,则有:y+x=-z(其中z为正数)根据等式可解得负数为-z-x,从而可得两个数为-z-x和x。
专题1.1正数和负数七年级数学上册讲义(原卷版)(人教版)
专题1.1 正数和负数目标导航⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,a是负数;当a表示负数时,a是正数;当a表示0时,a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
考点精讲考点1:正数与负数典例:下列说法正确的个数是()①加正号的数是正数,加负号的数是负数;②任意一个正数,前面加上“-”,就是一个负数;③0是最小的正数;④大于零的数是正数;⑤字母a既是正数,又是负数.A .0B .1C .2D .3巩固练习1.(2022·贵州贵阳·中考真题)下列各数为负数的是( )A .2-B .0C .3D 2.(2022·安徽宿州·模拟预测)在1-,1,0,(2)--这四个数中,是负数的是( ) A .1-B .1C .0D .(2)--3.(2022·内蒙古·呼和浩特市回民区教育局教科研室一模)有如下一些数:3, 3.14-,0, 2.3+,2-,其中负数有( ) A .2个B .3个C .4个D .5个4.(2022·全国·七年级)下列各数是负分数的是( ) A .7-B .12C . 1.5-D .05.(2022·广东深圳·二模)在2,0,1-,13四个数中,负数是( )A .2B .0C .1-D .13考点2:相反意义的量典例:(2022·黑龙江·哈尔滨工业大学附属中学校期中)如果向东走6米记作+6米,那么向西走5米记作______米. 巩固练习1.(2021·广西·平乐县教育局教研室二模)如果收入3元记作+3元,那么支出5元记作( ) A .+5元B .﹣5元C .+3元D .﹣3元2.(2022·云南·盈江县教育体育局教育科研中心模拟预测)挂起来的水银温度计上,水银柱从0℃位置升高一段距离后温度为+5℃,则水银柱从0℃位置下降相同距离后温度为( ) A .-5℃B .-10℃C .0℃D .+10℃3.(2022·新疆·伊宁市教育教学研究室一模)中国是最早采用正负数表示相反意义的量的国家.某仓库运进小麦6吨,记为 +6吨,那么仓库运出小麦8吨应记为( )吨. A .+8B .8C .±8D .24.(2022·广西柳州·模拟预测)如果盈利100元记为100+元,那么80-元表示( ) A .亏损80元B .盈利80元C .亏损20元D .盈利20元5.(2021·全国·七年级单元测试)如果增加15%记作15%+,那么减少8%记作( )A .8%-B .15%-C .15%+D .8%+考点3:正负数在实际生活中的应用典例:(2022·全国·七年级课时练习)聪聪和慧慧为了合理计划自己的开支,每天坚持记录自己当天的收支情况如下表,是她们上周各天收支情况(记收入为正,单位:元)根据上表回答下列问题:(1)分别说出聪聪这一行中10,0,-2各数的实际意义. (2)把上表补充完整. 巩固练习1.(2022·全国·七年级课时练习)小明积极配合小区进行垃圾分类,并把可回收物拿到废品收购站回收换钱,这样既保护了环境,又可以为自己积攒一些零花钱.下表是他12月份的部分收支情况(单位:元).其中表格中“ 2.5-”表示的意思是( )A .卖可回收物换回的钱 B .买书的钱C .买书时妈妈代付的钱D .买书的钱与妈妈代付的钱之和2.(2021·辽宁·沈阳市光明初级中学七年级阶段练习)有四包洗衣粉,每包以标准克数(500克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ). A .+6B .7C .4D .+93.(2022·湖南株洲·七年级期末)如表是某微信用户的零钱明细,按照这种表示方法,“+60”表示的是( )A .微信红包发出60元B .微信红包收入60元C .微信余额60元D .微信扫描二维码付款60元4.(2022·全国·七年级)图纸上一个零件的标注为0.020.0230+-Φ,表示这个零件直径的标准尺寸是30mm ,实际合格产品的直径最小可以是29.98mm ,最大可以是_____mm ,现有另一零件的标注为Φ℃0.40.6+-其零件直径的标准尺寸有些模糊,已知该零件的七个合格产品,直径尺寸分别为73.1mm .72.7mm ,72.8mm ,73.2mm ,72.9mm ,73.3mm ,72.6mm ,则该零件的标准尺寸可能是_____mm (写出一个满足条件的尺寸,结果保留一位小数). 5.(2022·全国·七年级课时练习)某超市2021年上半年的营业额与2020年同月营业额相比的增长率如下表所示.请根据表格信息回答下列问题:(1)该超市2021年上半年的营业额与2020年同月营业额相比,哪几个月是增长的? (2)2021年1月和4月比上年同月增长率是负数表示什么意思?(3)2021年上半年与2020年上半年同月相比,营业额没有增长的是哪几个月? 考点4:古典文化中的正数与负数典例:(2022·河南南阳·三模)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的算式是(2)(2)++-,根据这种表示法,可推算出图2所表示的算式是_______.方法或规律点拨本题考查正负数的意义,解题的关键是理解题意表示出红色、黑色所代表的数字. 巩固练习1.(2022·广东·普宁市教育局教研室二模)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入200元记作200+元,那么80-元表示( ) A .支出20元B .收入20元C .支出80元D .收入80元2.(2022·四川乐山·七年级期末)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若向东走9米记作9+米,则5-米表示( ) A .向东走5米B .向西走5米C .向东走4米D .向西走4米3.(2022·河南·郑州外国语中学三模)我国在数的发展史上有辉煌的成就,早在东汉初,我国著名的数学专著《九章算术》明确提出了“正负术”.如果盈利100元记为100+元,那么80-元表示( ) A .亏损80元B .盈利80元C .亏损20元D .盈利20元4.(2021·福建·晋江市季延中学七年级期中)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果收入100元记作100+,那么60-表示为( ) A .收入40元B .支出40元C .收入60元D .支出60元5.(2021·北京师范大学实验华夏女子中学七年级期中)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.比如顺时针转5圈记作+5,那么逆时针转8圈记作( ) A .5-B .5+C .8-D .8+5.(2022·广西·中考真题)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作______米.一、单选题(每题3分)1.(2022·广西桂林·中考真题)在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km”,那么向西走1km 应记做( ) A .﹣2kmB .﹣1kmC .1kmD .+2km2.(2022·云南·昆明八中模拟预测)中老铁路是与中国铁路网直接连通的国际铁路,线路北起中国西南地区的昆明市,南向到达老挝首都万象市,是“一带一路”上最成功的样板工程.从长期看将会使老挝每年的总收入提升21%,若21%+表示提升21%,则10%-表示( ) A .提升10%B .提升31%C .下降10%D .下降10%-3.(2022·贵州遵义·二模)游泳时为了避免抽筋,最合适的水温是( ) A .50℃B .28℃C .20℃D .10℃能力提升4.(2022·四川乐山·七年级期末)为庆祝建党100周年,某党支部制作了精美的纪念章,其质量要求是“500.20±克”,则下列纪念章质量符合标准的是( ) A .49.70克B .50.30克C .50.25克D .49.85克5.(2022·全国·七年级课时练习)中国人很早就开始使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放着表示正数,斜放着表示负数,如图(1)表示(2)(2)++-.按照这种表示法,如图(2)表示的是( )A .(3)(6)+++B .(3)(6)-+-C .(3)(6)-++D .(3)(6)++-6.(2022·内蒙古呼和浩特·三模)2020年,中尼两国领导人共同宣布珠穆朗玛峰最新高程——8848.86米.2022年5月4日,我国科考队员成功在珠峰海拔8830米处架设自动气象观测站,这是全世界海拔最高的自动气象观测站.若将自动气象观测站作为基准,记珠峰山顶为+18.86米,则海平面应记为( ) A .-8830米B .0米C .-8848.86米D .+8830米二、填空题(每题3分)7.(2022·黑龙江·哈尔滨市第四十七中学七年级期中)如果向东80米记作+80米,那么向西60米记作___________米.8.(2022·江苏南通·七年级期末)某书店举行图书促销活动,每位促销人员以销售50本为基准,超过记为正,不足记为负,其中5名促销人员的销售结果如下(单位:本):4,2,1,6,3,这5名销售人员共销售图书 _____本.9.(2022·四川成都·七年级期末)等高线指的是地形图上高程相等的相邻各点所连成的闭合曲线,在等高线上标注的数字为该等高线的海拔.如图,吐鲁番盆地的等高线标注为﹣155m ,表示此处的高度 _____海平面155米(填高于或低于).10.(2022·宁夏银川·七年级期末)下表是某市汽油价格调整情况:与上一年年底相比,11月9日的汽油价格是___________(填“上升”或“下降”)了___________元; 11.(2022·江苏无锡·七年级期末)桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_________次能使所有硬币都反面朝上.12.(2021·广西·河池市宜州区教育局教学研究室七年级期中)某种零件,标明要求是φ200.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,该零件______(填“合格”或“不合格”). 三、解答题(13题5分,14题6分,15题7分)13.(2021·广东广州·七年级期中)体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.(1)求这个小组男生百米测试的达标率是多少? (2)求这个小组8名男生的平均成绩是多少?14.(2020·贵州·清镇市卫城中学七年级期中)小明是“环保小卫士”,他经常关心环境天气的变化,最近他了解到这周白天的平均气温如下表(“+”表示比前一天升高,“”表示比前一天下降,单位:℃) 已知上周周日平均气温是16.9℃,解答下列问题:(1)计算这周每天的平均气温.(2)这周周几白天的平均气温最高?最高是多少?(3)小明了解到本地的平均气温同期历史最高气温是17.2℃,最低气温是4.2℃,用一句话概括本地的气温变化.15.(2021·山西晋中·七年级期中)中秋节时,小雨陪妈妈一起去购买月饼,妈妈买了一盒某品牌月饼(共计6枚).回家后他仔细地看了标签和包装盒上的有关说明,然后把6枚月饼的质量称重后统计列表如下(单位:克):(1)小雨为了简化运算,选取了一个恰当的标准质量,依据这个标准质量,他把超出的部分记为正,不足的部分记为负,列出下表(不完整).请把下列表格补充完整:(2)小雨看到包装说明上标记的总质量为(420±2)克,他告诉妈妈买的月饼在总质量上是合格的你知道为什么吗?请通过计算说明.。
1.1 正数和负数课件(22张PPT)人教版数学七年级上册
A.运进货物3 t与运出货物2 t B.增加100 t与减少200 t C. 升温与降温 D.胜3局与负4局
随堂训练
2.下列说法中,正确的是( C )
A.加正号的数是正数,加负号的数是负数 B.0是最小的正数 C.字母a既可以是正数,也可以是负数,也可以是0 D.任意一个数,不是正数就是负数
(2)如果一个数不是正数就是负数,对吗? 不对.0既不是正数,也不是负数. 0是正数与负数的分界.
知识讲解
2.用正数、负数表示具有相反意义的量
汽车先向东行驶3km, 超市早上购进苹果100kg,
然后又向西行驶1km.
中午售出苹果20kg.
它们都表示相反的意义. 你会用正数、负数来表示它们吗?
知识讲解
正数集合:{ 20,4,0.21,25%,3.141,0.62 …};
负数集合:{ -27, 3 , 3 1 , -3.7% …}.
5
2
随堂训练
7.某银行一天内接待了四笔业务,存款30000元,取款5000元,存 款30万元,取款70万元.若存款为正,请你用正、负数表示这四笔 款项. 解:﹢30 000元,﹣5 000元,﹢30万元,﹣70 万元
1.0是正数与负数的分界; 2.温度中的0℃; 3.海平面的高度; 4.标准水位; 5.表示起点; ……
0可以用来表示基准, 一般地,高于基准的 量用正数表示,低于 基准的量用负数表示
知识讲解
例4:某女排队员的平均身高为187厘米,如果以平均身 高为标准,超过部分记为正数,不足部分记为负数,有5名队 员分别记为+10,-5,0,+7,-2,则她们的实际身高应是 _1_9_7_厘米、_1_8_2_厘__米__、187厘米 、19_4_厘_米__、__1_8_5_厘__米___.
完整版正数和负数的教材内容分析
正数和负数的教材内容分析人教版七年级(上册)、教材背景正数和负数是人教版九年制义务教育七年级上册第一章第一节的内容,分课时完成。
1、知识的发生发展过程本节课是初中生学习有理数的第一节内容,当我们在生产、生活、科研中遇到数的表示和数的运算的问题时,我们在小学阶段所学的数无法满足生产和生活的需要,于是自然地要求进行数的扩充,依据互为相反意义的量引我们入了负数的概念,把数系扩充到了有理数的范围。
2、与其他知识的联系本节知识是在学生学习了自然数、分数和小数的基础上学习的。
是自然数和分数到有理数的衔接和过渡,也为后面学习数轴表示数和有理数的运算做铺垫。
3、在生产、生活以及科技的应用在日常生活中,天气预报中气温的升降、某些公司中每个月的收入和支出、农产品的增产与减产等等,我们都可以用正数和负数来表示互为相反意义的量。
二、功能分析总的来说可以培养学生的观察、归纳和概括能力,激发学生学好数学的热情。
1、从科学性的角度分析教学中一定要具有科学性,要确保其科学性,要求我们老师首先正确理解正数和负数。
小升初的第一节课,由于初中生正经历有形象思维转向抽象思维的过渡阶段,因此,要通过大量的实例来介绍正数和负数:如在课本引言中提到的北京某一天的气温;我国花生产量增幅等等,让学生体会到我们在小学阶段学的数已经不够用了必须要引进新的数,来培养学生的抽象思维。
2、从教学性和教育性的角度分析在生产和生活中我们要表示像升高、降低、收入、支出、增加、减少等,我们用语言表示是很繁琐的,怎么样能用数字和符号来表示这些数的意义因此引进了正数和负数来表示意义相反的量,让学生体会到数学无处不在,而且还让学生经历了古人由打结计数人产生的自然数,后由分物测量产生的分数这个过程,再通过现实生活中海平面以上或海平面以下;冰箱冷藏室和冷冻室的温度比较直观后归纳出所有相反意义的量都可以用正数和负数来表示。
感知相反意义的量,并用“ +”,“-”来表示。
使其更好地从形象思维过渡到抽象 思维,培养符号意识,让学生感受到数学的奥妙以及与我们人类生产和生活的关 系,培养起对数学的兴趣。
初一上册数学正数和负数知识点
为⼤家整理的初⼀上册数学正数和负数知识点的⽂章,供⼤家学习参考!更多最新信息请点击
1、正数:像⼩学学过的⼤于0的数叫做正数。
2、负数:在正数前⾯加上负号“-”的数叫做负数。
3、正数负数的判断⽅法:
⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。
⑵含字母的数:如-a要看a本⾝的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。
4、 0的含义:①0表⽰起点。
②0表⽰没有。
③0表⽰⼀种温度。
④0表⽰编号的位数。
⑤0表⽰精确度。
⑥0表⽰正负数的分界。
⑦0表⽰海拔平均⾼度。
5、具有相反意义的量;
6、正负数的作⽤:在同⼀问题中,⽤正负数表⽰的量具有相反的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《正数和负数》知识点解析新人教
版
正数、数和零的概念
正数:像 1、 2.5 、 48 等大于零的数叫正数。
数: -1 、-2.5 、-48 等在正数前面加上号“- ”小于零的数叫数。
零: 0 叫做零, 0 既不是正数也不是数。
正数与数概念的理解
于正数和数的概念,不能的理解:“+”号的数是正数,“- ”号的数是数。
例如:-a一定是数?答案是不一定。
因字母 a 可以表示任意的数,若a 表示正数, -a 是数;当 a 表示 0 , -a 就在 0 的前面
加一个号,仍是0,0 不分正;当 a 表示数, -a 就
不是数了,它是一个正数。
引入数后,数的范大有理数,奇数和偶数的外
延也由自然数大整数,整数也可以分奇数和偶数两
,能被 2 整除的数是偶数,如⋯ -6 ,-4 ,-2 ,0,2,4,6⋯,不能被 2 整除的数是奇数,如⋯ -5 ,-4 , -2 ,1, 3, 5⋯
到在止,我学的数分有五:正整数、正分数、 0、整数、
分数,但通常把有理数分三:正数、0、数。
通常把正数和0 统称为非负数,负数和 0 统称为非正数,正整数和 0 称为非负整数;负整数和0 统称为非正整数。
正数负数的判断方法
具体的数:看是否有负号“- ”,如果有“ - ”就是负数,否则是正数。
含字母的数:如 -a 要看 a 本身的符号,如 a 是负的,则 -a 是正数,如 a 是正的则 -a 是负数,如 a 是 0 则-a 是 0。
0的含义
①0 表示起点。
② 0 表示没有。
③ 0 表示一种温度。
④0表示编号的位数。
⑤0 表示精确度。
⑥0 表示正负数的分界。
⑦0表示海拔平均高度。
正负数的作用
在同一问题中,用正负数表示的量具有相反的意义。
如
果一个问题中出现相反意义的量,我们可以用正数和
负数分别表示它们。
相反意义的量包含两个含义:一是相反意义,二是在相
反意义的基础上要有量,但量的大小可以不一样。
习惯上把向东、盈利、运进、增加记为正的,把与它们
意义相反的量记为负的。
具有相反意义的量必须是同类量,如盈利1000 元与出口1000 包就不是相反意义的量,不具有相反意义的量不能
用正负数来表示。
不具有相反意义的量不能用正、负数来表示,如向东走
10 米记作 +10 米,但是向南走20 米就不能记作 -20 米。
例题讲解:某面包包装上印有“350± 5”,它的含义是什么 ?若此袋面包的实际质量是354 克,则它是合格产品吗?若是 349 克呢 ?
分析:“± 5”表示的是允许误差,即最多可超出标准
质量 5 克,最低可低于标准质量 5 克,看指定的产品质量是
否在此范围内。
解:“ 350±5”的含义是:这袋面包的标准质量为350克,在克 - 克的范围内,它都是合格的,即质量在 345 克 ~355克之间都是合格的。
若此袋面包的实际质量是354 克,则是合格的;若为 344克,则是不合格的。
同步练习题
一、练习题
既不是正数,也不是负数。
非负数包括和;非正数包括
和。
解析:本题主要考查的知识点是“ 0”的特殊性,这是学
生的易错点。
0 既不是正数,也不是负数
答案: 0; 0、正数; 0、负数。
温度上升 -5 ℃的实际意义是。
解析:本题主要考查的知识点是相反意义的量分别用正
数和负数表示。
答案:温度下降5℃。
一种零件的内径尺寸在图纸上是10± 0.05 ,表示这种零
件的标准尺寸是 10 毫米,加工要求最大不超过标准尺寸,最
小不小于标准尺寸。
解析:本题考查的知识点是相反意义的量分别用正数和
负数表示。
答案: 0.05 毫米 0.05 毫米。
二、选择题
下面是关于0 的一些说法,其中正确说法的个数是。
①0 既不是正数也不是负数;②0 是最小的自然数;③
是最小的正数;④0 是最小的非负数;⑤0 既不是奇数也不
是偶数。
A.0B.1c.2D.3
解析:本题主要考查”0”的特殊性。
①是对的。
②是
对的。
③是错的,由①可得。
④是对的,非负数就是正数和
0。
⑤是错的, 0 是偶数。
答案: D
文具店、书店和玩具店依次座落在一条东西走向的大街
上,文具店在书店西边20 米处,玩具店位于书店东边100
米处,小明从书店沿街向东走了40 米,接着又向东走了-60
米,此时小明的位置在。
A. 文具店
B. 玩具店 c. 文具店西40 米处 D.玩具店西60米处
解析:本题考查的知识点是用正负数来表示一对相反意
义的量,并需要通过找到一个基准点和简单的图形来解决问
题。
以书店为基准,沿街向东走了40 米,接着又向东走了
-60 米,说明此时在书店以西20 米,即在文具店。
答案: A。