物理奥赛辅导第十八章真空的恒定磁场
高级中学物理竞赛辅导参备考资料之九真空的磁场
第十八章 真空的恒定磁场一、基本要求1、确切理解磁感应强度的概念,明确磁感应强度的矢量性和迭加性;2、掌握毕奥一萨伐尔一拉普拉斯定律,并熟练地运用该定律来计算几何形状比较规则的载流导线所产生的磁场;3、掌握磁场的高斯定理和安培环路定理,并能熟练地运用安培环路定理来计算具有一定对称性分布的磁场的磁感应强度;4、掌握洛仑兹公式和安培定律,掌握计算洛仑兹力、安培力(或磁力矩)的方法。
二、基本概念和规律 1.磁感应强度磁场中某点的磁感应强度的大小定义为V q F B 0max / ,即在磁场中某点磁感应强度的大小等于运动试验电荷在该点所受的最大的力F max 与其所带电量q 0和速度的乘积之比值,的方向为置于该点的小磁针北极所指的方向。
应该指出:1)磁感应强度是描写磁场对运动电荷(或电流)施以作用力—磁场力的性质。
它是表征磁场本身性质的物理量。
既与在该点上的运动试验电荷所带的电量和速度无关,又与该点上有无运动试验电荷无关。
2)将磁感应强度和电场强度的定义进行比较,磁感应强度大小不能定义为运动试验电荷在磁场中所受的力与其所带电量和速度乘积之比值,否则的大小不确定;同样,磁感应强度的方向也不能定义为运动试验电荷所受磁场力的方向,不然,的方向亦不确定。
2、毕奥—萨伐尔—拉普拉定律真空中 304rId d ⨯=πμ 应该指出:1)注意电流元→l Id 、矢径→r 方向的规定,→B d 与→l Id 和→r 成右手定则关系。
2)当→l Id 与→r 之间的夹角为零或π,则dB =0,亦即在电流元→l Id 延长线上各点,电流元→l Id 并不产生磁场。
3)磁感应强度的迭加原理载流导线在磁场中某点产生的磁感应强度等于该载流导线上各电流元在该点所产生的磁感应强度的矢量和,即304rrl Id B d B L L⨯==⎰⎰πμ 4)运动电荷所产生的磁感应强度为304r q ⨯=πμ式中q 为运动电荷所带的电量,为其速度。
2020年高中物理竞赛辅导课件:电磁学(真空中的磁场)01磁现象(共19张PPT)
I
dB
Idl
r
dB
0 4
Idl
r
r3
——毕奥-萨伐尔定律
Idl ——电流元
0=410-7Tm/A——真空磁导率
(permeability of vacuum)
Note:
由毕-萨定律可导出运动电荷产生的
磁场:
v
q
r
B
B
0
qv r
4 r3
[推导] 载流导线:
q v S
v
电流:I=qnvS
[讨论] ①半无限长直导线
I orP
B 0I 4r
②无限长直导线
I orP
B 0I 2r
[例3-2] 圆电流轴线上的磁场
Idl
R
Io
x
dB
X
对称性
dBx
0 4
B
Idl 3
i
s
dBx
in
B
i04Isin2
dl
L
i04Isin2
2 R
0IR 2
2(R2 x2 )3/ 2
i
NS
⒉电流 磁铁
I
⒊电流 电流 I
I
磁现象的本质:
磁场1 运动电荷1
磁场2
磁场的描述:B, wm
运动电荷2
Байду номын сангаас
磁感应强度 磁能密度
§3.2毕奥-萨伐尔定律及其应用 (Biot-Savart Law and Its Application)
1.磁感应强度(magnetic field)
实验:
F
q vB
[例3-1]
一段直线电流的磁场
P点:各 dB方向相同()
2020年南师附中高中物理竞赛辅导课件(电磁学篇)11真空中的恒定磁场(E磁场对载流导线的作用安培定律)
解:在环 上取 电流 元Idl,所受 磁力
d F Ild B
由对称性知,磁力水
dFz
dF Z
dF//
平分量矢量和为零
I
F
ldFz
dFsin
l
2RIBsindl 0
2 Rs IB in方向竖直向上
真空中的恒定磁场C
THE END 祝大家竞赛顺利、学业有成
谢谢观看!
y
取电流元
Idl
所受安培力大小
A
IR
Idl dFyddFFx
B
dFIBdl 0 x
方向沿径向向外
由对称性知,合力方向沿y轴正向
F
LdFy
dFsin IBdsiln
L
L
0IBsRind
y
2IBR方向向上
矢量式:
F 2IB jRA IR d
B
0 x
问题:A到B载流直导线结果如何?
Fx
ldFx
IB
yBdy
yA
0
Fy
矢量式:
lF dFyIIB B jxL xAB dxIBL
问题:从A到B的载流直 I
导线结果如何?
A
B
讨论: 1.对任意形状的导线,在任意方向的
均匀场中,可用等效直导线方法 计算所受磁力
2.闭合电流回路在均匀磁场中所受磁 力为零
[例3]如图的导线,通有电流I,放在
一个与均匀磁场垂直的平面上,求
此导线受到的磁力 y b
解 : 设 想 添 加 da 直导线构成闭合 回路abcda
a
xI
l
cl '
0R
d
建立坐 标系 F a F b b F c c d F d a 0
-稳恒磁场复习
真空中的恒定磁场
磁感应强度 磁场的高斯定理
一、磁感应强度
B=
Fm qv
二、磁感应线: 直线电流、圆电流、螺线管
三、磁通量 高斯定理
Φm = s B . dS = 0 无源场
毕奥
萨伐尔定律
B
=
μ
4π
o
I dl × r3
r
dB
=
μo
4π
I dl sina
r2
毕奥
萨伐尔定律的应用
1. 载流直导线的磁场
有旋、非保守场
1.长直通电导线外的磁场
B =μ2π0I r
2.长直通电螺线管内的磁场
B =μ 0n I
3. 环形螺线管内的磁场
B =μ2π0NrI
4. 均匀通电直长圆柱体的磁场
B
=
μ
I
0
r
2π R 2
B
B
=
μ 0I
2π r
O
R
r
1: 如图,一无限长薄平板导体,宽为a ,通有电 流I,求和导体共面的距导体 一边距离为d的P点 的磁感应强度。
中通有电流 I=αt,( α 为常数), I 与其共面有一正方形线圈 ABCD ,L 为已知。求:(1) 通 过线圈 ABCD 的磁通量;(2) 互 感系数;(3)矩形线圈 ABCD 中
A
B
a
x
D
C
LL
的感生电动势。
d Bds
I
2l
ldx, d
Il ln 2
2 x
l
q
=
N R
(Φ 1
Φ2 )
感生电动势、 动生电动势
一、感生电动势
高二物理竞赛课件:真空中磁场的安培环路定理
安培环路定理揭示磁场是非保守场(无势场,涡旋场)
规定:与L绕向成右旋关系 Ii > 0, 答案对吗? 与L绕向成左旋关系 Ii < 0。 结论正确!
例如:
I2
I3
I1
L
I4
L
I i
I1
I2
I3
L
I i
I1
2I2
电流是指与闭合路径互相套链的电流
安培环路定理的应用 基本步骤:
1. 分析电流磁场分布的对称性,选取适当安培环 路,使 B 能从积分号内提出来。
线L的线积分(环流),等于链接在闭合曲线上各电流代数
和的0倍 。
B l
dl
0
Ii
I1 l
I3
1:成右螺旋方向关系取正,反之取负。 I2
2:不与积分曲线链接的电流不计。
例:如图
B dl
l
0(I1
I2 )
安培环路定理(Ampere circuital theorem)的验证
验证的假定条件: • 电流是无限长直电流。
解:建立如图所示的坐标系
ab
x处磁场为 B 0I
2πx
I
l
面积元
dS ldx
O x dx
x
元通量 dΦm B dS
dΦm
BdS
0 I
2π x
ldx
Φm
SdΦm
0 Il
2π
ab 1 dx 0 Il ln a b
ax
2π b
安培环路定理
在真空的恒定磁场中,磁感强度 B 矢量沿任意闭合曲
B
d
r
dl
• 环路为平面环路,且平面与电流的流向垂直。
奥林匹克竞赛物理讲座 稳恒磁场
1 2
1
sin
sin2 sin1
2.磁感应强度
线电流中的一段电流元Il 在I0l0处产生的磁场为B
F I0l0 B sin
得到:
B
0
Il sin
4 r 2
由叠加原理,有:
B 0
4
Il sin 0
r2
4
Il r2
【例】无限长直线电流I,在距I为r0处一点P1的磁场。
【解】
S S
S
aF
I
F
b a
I
B 0 F 4a
Ia
B 0 F 2b2
B ? 0
【例】载流螺线管轴线上的磁场,单位长度上的匝数为 n。
Bx
0
2
(a2
a2I x2 )3/2
Z处圆电流Inz在Z1处 产生的磁感应强度
R cos r0 , z cos R ,
B
0
2
Inr02z R3
B
B
Fl
Fi
k
2I 2 d
li
k
2I 2l d
二、磁感应强度
试探电流元: I0l ,引入不改变空间的 磁场分布,类似于试探点电荷,但困难 是并不存在这样的电流元。
磁感应强度B:反映磁场本身的特性 的物理量,磁场是矢量场。
F0 F0
I0l qE,
B sin , (试探电流元在磁场中)
(试探点电荷在电场中)
B
0 4
Il r2
B
B 0I 4
l r2
作辅助线,即以P点为中心,r0为半径,画一圆, 直线上电流元两端分别与P点相连,在圆上截得 一弧元,长为l’,有几何关系:
l
真空中的恒定磁场B
Fm I
Fe
V
2
霍耳电势差: 2
UH U1 U2 1 EH
dl
2
(v
B)
dl
1
2
1 vBdl vBb
I nevbd
U H
1 ne
IB d
EH
B1
I
V
2
比较可得
1
RH
ne
对正电荷载流子:
B1
UH
U2 (1vU 2B)
dl
EH
FmvI
Fe
1
2
数和,或理解为穿过以回路为边界的 任意曲面的电流代数和;
b.电流流向与积分路径绕行方向满足 右手螺旋法则时,电流为正;相反 时电流为负;
c.献回,路但外回面路的上电各流点对的B的却环B是流由没回有路贡
内外所有电流决定的;
d.安培环路定律反映了磁场是非保守 场。
[例11]试求一均匀载流 I
的无限长圆柱导体内外 的磁场分布。设圆柱导
B1
1.霍耳效应
霍耳效应:载流 导体薄板放入与 板面垂直的磁场 中,板上下端面
间产生电势差UH
的现象。
b
I
V
2
实验表明
UH
RH
IB d
RH:霍耳系数,
与材料有关。
2.机理分析
设度F导为m 体v,板单e内v位自体B由积电内F子e自的由平电eE均子H定数向为速n
平衡时:
evEHBevEH
B
0
B1
EHv
任意闭合回路为积分路径L
B
L
dl B L
L Bdl//
(dl// dl)
2 0I rd 0 2r
高中物理竞赛《磁场》内容讲解
磁 场一、恒定电流的磁场1、直线电流的磁场通有电流强度为I 的无限长直导线,距导线为R 处的磁感应强度为:RIB πμ20=;如下图距通有电流强度为I 的有限长直导线为R 处的P 点的磁感应强度为:)cos (cos 40βαπμ+=RIB ----------------------------------①若P 点在通电直导线的延长线上,则R=0 α=0 β=π 无法直接应用上述式子计算,可进行如下变换lR d d 21)sin(2121=+βα 上式中1d 、2d 分别为P 点到A 、B 的距离,l 为直导线的长度所以:l d d R )sin(21βα+=代入①式得:)sin(cos cos 4210βαβαπμ++=d d Il B令2sin2cos2cos 2sin 22cos2cos2)sin(cos cos βαβαβαβαβαβαβαβα+-=++-+=++=y将α=0 β=π代入上式得0=y所以:在通电直导线的延长线上任意一点的磁感应强度为0=B2、微小电流元产生的磁场微小电流元的磁场,根据直线电流的磁场公式)cos (cos 40βαπμ+=rIB得:Ⅰ若α、β都是锐角,如左图,有:)cos (cos 40βαπμ+=r I B =)sin (sin 4210θθπμ∆+∆rI因1θ∆、2θ∆0→,所以≈∆+∆=)sin (sin 4210θθπμr I B )(4210θθπμ∆+∆rI所以:θπμ∆=rIB 40Ⅱ若α、β中有一个是钝角,如β(右图),则:]sin )[sin(cos 4)cos (cos 400000θθθθπμβαπμ-+∆=+=r Id I B -------------①00000sin sin cos cos sin sin )sin(θθθθθθθθ-∆+∆=-+∆因0→∆θ,所以:0000cos cos sin sin )sin(θθθθθθθ∆≈∆≈-+∆--------------------------------②②式代入①式得:θπμ∆=rIB40总上所述,电流元I 在空间某点产生的磁场为:θπμ∆=rIB 40,式中r 为电流元到该点的距离,θ∆为电流元端点与该点连线张开的角度。
2020年南师附中高中物理竞赛辅导课件(电磁学篇)11真空中的恒定磁场(F磁场对载流线圈的作用)(共18张PPT)
----载流线圈的磁矩
M p m B
a(b) n
Fab
适用于均匀磁场中任意形状的平面
线圈
讨论:
1.=/2:线圈受的磁力矩最大
BM ma/x pm
2.=0:线圈受到的磁力矩为零
----稳定的平衡位置
3.=:线圈所受力矩为零
----不稳定的平衡位置
线圈稍受扰动,就会转向=0的位置
4.均匀磁场中的载流线圈所受合力 为零,但力矩不为零
b
Fb c
此相互抵消
FabFcdIl2B
Fcd
B
d(c)
大小相等, 方向相反, 但作
用线不在同一直线上 力矩大小为
a(b) n
M F alb 2 1sin F cd l2 1sFiabn
I1ll2BsinISsB in
方向垂直于纸面向外
对矢定N量匝义式线圈p M m M N N n n I N S I B IS sSi Fn B cdd(c)B
谢谢观看!
2020年
高中物理学奥林匹克竞赛
考前辅导
2020 江苏南京
2
§11-6 磁场对载流线圈的作用
载流线圈的法向:右手四指沿电流
流动方向弯曲,大姆指所指方向
Fad d
a
B
F ad I1B lsin ()
I1lBsin
l2
l1
I
ncI
FbcI1B lsin
大小相等,方向相反, 且在同一直线上,因
圈共有N匝,当均匀外磁场方向与线 圈 法 向 成 60o 角 时 , 求 1. 线 圈 的 磁 矩
;2.此时线圈所受磁力矩;3.从该位 置转到平衡位置,磁力矩所作的功
解: 1.线圈磁矩
《真空中的恒定磁场》课件
磁通量密度计具有测量精度高、响应速度快、稳定性好等优点,广泛应用于科研和工业生产 中。
06
总结与展望
真空中的恒定磁场的重要性和影响
促进物理学的深入研究
真空中的恒定磁场是物理学中的一个重要概念,它对于深 入理解电磁场、电磁波以及相关物理现象具有重要意义。
推动技术应用的发展
真空中的恒定磁场在许多技术领域中有着广泛的应用,如 电子显微镜、核磁共振成像、粒子加速器等,对推动这些 领域的技术进步起到关键作用。
促进交叉学科的研究
真空中的恒定磁场与材料科学、生物医学、能源科学等学 科领域有着密切的联系,通过对其深入研究,可以促进相 关交叉学科的发展。
粒子加速器在科学研究、工业生产等领域也有广泛应用, 如放射性治疗、放射性同位素生产等。
04
真空中的恒定磁场的物理效应
霍尔效应
霍尔效应
当电流垂直于外磁场通过导体时,在 导体垂直于磁场和电流方向的两个端 面之间会出现电势差,这一现象称为 霍尔效应。
霍尔系数
应用
霍尔效应在测量、自动化控制、电机 调速等领域有广泛应用。
未来研究方向和挑战
探索更高强度的恒定磁场
随着科学技术的发展,探索更高强度的恒定磁场成为了一个重要的研究方向,这将有助于 揭示更多未知的物理现象。
深入研究磁场对物质的影响
除了在电磁场中观测到的现象,磁场对物质内部结构和性质的影响也是值得深入研究的课 题,这将有助于发现新的应用领域。
探索磁场与其他物理场的相互作用
、磁感应强度等物理量。
高中物理 奥赛教练员培训讲义磁场部分课件 新人教
2bm0v e(b2a2)
(3) Fr(eBrv)r L t(eB r)rveB rtr1 2eB rt2
(L1eB2r)0 t 2
L1eBr2 常量 2
mav1 2eB2amv1 2beB2 b
B 2m(vbva) e(b2 a2)
1 2m (vr2v2vz2)eV 1 2m (v2vz2)
磁场
一、磁感应强度和磁感应通量:
磁感应强度: 磁感应通量:
B F
方向:
qv s in
B S B c o Ss
B c o Ss
均匀场中线圈的磁通: BS
二、磁感应强度的计算
1..毕奥—萨B伐你定4律0 Irl2rˆ
例:如图所示,半径为R的圆形载流导线中通有电流强度为I的稳恒电流。求 圆形载流导线轴线上与圆心相距x的p点的磁感应强度。
线圈受力平衡,即
I0Br(z0)2amg
(6)
B0a2 3B0a2amg 求得
LZ03 2Z4
Z0
7
3B02 2a4
Lmg
(7)
(2)线圈在平衡位置上移小量ΔZ,则线圈中电流变为I0+i,由(2)式得
(Z0B0Z)3a2L(I0i)0
ZB003a2(13 ZZ0)L(I0i)0
利用(3)、(4)式得
五、霍耳效应
如图所示,一厚为d,宽为b的载流导体薄板放 在磁场B中,如果磁场与薄板板面垂直,则板的两 侧A、A’间会出现电势差,这一现象叫霍耳效.A、 A’间的电势差叫霍耳电势差(或霍耳电压).
若导体板中电子的浓度为n,电流为I,则霍耳电势差为:
URH
IB d
IB ned
式中
RH
1 ne
高二物理竞赛课件:恒定磁场(1)
电动势 :(标量,但有方向)
定义:单位正电荷绕闭合回路一周时,非静电力所 作的功,是描述电源性能的物理量。
W q
l qEk dl q
l Ek dl
l 应是包括电源的任意回路
外 Ek dl 内Ek dl
由于非静电力只存在于电源内部, 外 Ek dl 0
电源电动势 l Ek dl 内 Ek dl
(2)家用线路电流最大值 15A, 铜 导 线半径 0.81mm此时电子漂移速率多少?
(3)铜导线中电流密度均匀,电流密度值多少?
解 (1) n NA 8.481028个/ m3
M
(2)
vd
I nSe
5.36104 m s-1 2m h-1
(3)
j
I S
π
15 (8.10 104)2
A
m
单位: 安培(A)或 库仑/秒
1mA 10-3 A , 1A 10-6 A
S
+
+
+
+
+
+
I
2 电流密度(矢量)
物理意义:描 述导体内各点电流的分布情况 方向规定: j 该点正电荷运动方向
大小规定:等于在单位时间内过该点附近垂直于 正电荷运动方向的单位面积的电荷
j dq dI
dtdS dS cos dI j dS jdS cos
I s j dS
dS
I j
3 I与j的关系:
dq envddtdS
j
dq dtds
envd
I s j dS envd S
I envd S
I jS
dS
jI
vddt
vd 为电子的漂移速度大小
高二物理竞赛课件:恒定磁场复习
Bx Bix
B Bi
By Biy
关键:取恰当基本电流模型,利用对称性求解
2.
记住:一批基本电流的磁场 (a) 电流元——B-S定律 (b) 直线电流
(含无限长 ,半无限长, 中垂面, 延长线)
(c) 圆形线电流轴线上
(含中心处 , 弧形电流中心处)
(d) 长直螺线管(中部、端口)
恒定磁场
一. 概 念
1.
SB
dS
0
无源场
磁感线为闭合线
2.
B dl
L
0
Ii 0
非保守场
分清影响 B dl 、 B dl 、及 B 的因素
3.
L
电流密度与电流强度 I
dq
j dI qnv
ds cos
dt 均匀分布
I j dS
I jS
s
4.
电动势 L Ek
dl
1. 对运动电荷Fm
qv—
在B 匀强磁场中运动(定量)
2. 对一段载流 导线 Fx dFx
(1)力作用 F Idl B
L
Fy dFy
非匀强磁场:取 Idl ,利用对称性先对分量求解
匀强磁场: Fab Fab ILBsin ( 中学 )
*(2)力矩作 用
取 Idl — dF— dM = rdF — M dM
3. 对平面闭合电流
(1)力作用 F Idl B
匀强磁场
F
0
L
5.
(2a).力磁矩矩作m用(或
pm
)
对平面闭合线电流 m ISen (右螺旋)
对平面闭合面电流
取 dI — dm = dIS m dm
b.匀强磁场
竞赛辅导2012(稳恒磁场)
8.电阻丝连成的二端网络如图。电流 I 从网络的 A端流入,C 端流出。周围有匀强磁场,磁感应 强度为 B(未画出),试证该网络各部位所受合 力为 F I LAC B ,其中 LAC 为C端相对A端的 位置矢量。 C
I
A 解:设电流分布
I
I1
I1 I 3 C I3 I 2 I3
Q a
dq
o
r
r
P 静止均匀带电球面的电场强度:
E
0 (r a) dq 1 dq ˆ ˆ Q r r ˆ (r a) 2 2 r 40 r 0 4r 4 r 2 0 0 (r a ) dq ˆ r Q 2 ˆ r (r a) 4r 2 4r
2 3
0
北 ω
σ
西
rO
R
l B// φ 小磁针
l
南
B旋转盘
东
B盘 dB
0
2
R
0
0 R 2 2l 2 r3 dr ( 2l ) 2 2 3/ 2 [r l ] 2 R2 l 2
0 mB sin mB sin ( 90 ) mB盘 cos 力矩平衡 // 盘
x
0 I B ( i j ) 4R 2 BAB 2 tg 0.6366 BBC
32.480
2. 据稳恒电流磁场的毕奥 -萨伐尔定律 dB ________ ,最终可以求得图中三个互相正 交的圆环电流公共中心处的磁感应强度大小为
B ________ .
ˆ 0 qv r [公式 B ] 2 4 r
Q a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章 真空的恒定磁场一、基本要求1、确切理解磁感应强度的概念,明确磁感应强度的矢量性和迭加性;2、掌握毕奥一萨伐尔一拉普拉斯定律,并熟练地运用该定律来计算几何形状比较规则的载流导线所产生的磁场;3、掌握磁场的高斯定理和安培环路定理,并能熟练地运用安培环路定理来计算具有一定对称性分布的磁场的磁感应强度;4、掌握洛仑兹公式和安培定律,掌握计算洛仑兹力、安培力(或磁力矩)的方法。
二、基本概念和规律1.磁感应强度 磁场中某点的磁感应强度的大小定义为V q F B 0max / ,即在磁场中某点磁感应强度的大小等于运动试验电荷在该点所受的最大的力F max 与其所带电量q 0和速度的乘积之比值,的方向为置于该点的小磁针北极所指的方向。
应该指出:1)磁感应强度是描写磁场对运动电荷(或电流)施以作用力—磁场力的性质。
它是表征磁场本身性质的物理量。
既与在该点上的运动试验电荷所带的电量和速度无关,又与该点上有无运动试验电荷无关。
2)将磁感应强度和电场强度的定义进行比较,磁感应强度大小不能定义为运动试验电荷在磁场中所受的力与其所带电量和速度乘积之比值,否则的大小不确定;同样,磁感应强度的方向也不能定义为运动试验电荷所受磁场力的方向,不然,的方向亦不确定。
2、毕奥—萨伐尔—拉普拉定律真空中 304rr l Id d ⨯=πμ 应该指出: 1)注意电流元→l Id 、矢径→r 方向的规定,→B d 与→l Id 和→r 成右手定则关系。
2)当→l Id 与→r 之间的夹角为零或π,则dB =0,亦即在电流元→l Id 延长线上各点,电流元→l Id 并不产生磁场。
3)磁感应强度的迭加原理载流导线在磁场中某点产生的磁感应强度等于该载流导线上各电流元在该点所产生的磁感应强度的矢量和,即 304rr l Id B d B L L ⨯==⎰⎰πμ 4)运动电荷所产生的磁感应强度为304r q ⨯=πμ 式中q 为运动电荷所带的电量,V 为其速度。
若运动电荷为正电荷,0>q ,的方向与⨯的方向相同;若运动电荷为负电荷,0<q ,的方向与⨯的方向相反;5)毕一萨一拉定律只在稳恒电流情况下成立。
它是根据大量实验事实进行理论分析的结果,不能从实验上直接加以证明,但由它所计算出的与实验测定相符合,从而间接证明了它的正确性。
它是电流产生磁场所遵循的基本规律,是稳恒磁场的理论基础。
3、稳恒磁场的基本性质1)磁场的高斯定理0·=⎰⎰s d B S即通过任意闭合曲面S 的磁通量等于零。
磁场的高斯定理说明磁场是无源场,磁感应线是闭合曲线。
2)安培环路定理在真空中 ∮L i I l d B ∑=0·μ 即磁感应强度沿任何闭合环路L 的线积分,等于穿过这环路所有电流强度的代数和的0μ倍。
应该指出:a 、在环路定理∮L i I l d B ∑=0·μ中,环路L 上任一点的应是空间中所有电流在该点所产生的磁感应强度的矢量和,即它既包括环路L 内的电流,又包括环路L 外的电流共同产生的。
而i I ∑只包括穿过环路L 的电流。
即是说环路L 外的电流对有贡献,而对沿l 的环流无贡献。
b 、必须注意电流I 的正负规定。
当穿过环路L 的电流方向与环路l 的绕行方向服从右手定则时,I >0,反之I <0。
c 、安培环路定理只对稳恒电流产生的稳恒磁场才成立。
而对于有限长的载有稳恒电流的直导线不能用安培环路定理求磁感应强度,因稳恒电流一定是闭合的,而安培环路定理中的应是闭合电路中全部电流产生的。
d 、无论环路L 外面电流如何分布,只要环路L 内没有包围电流,或者所包围电流强度的代数和为零,则∮L 0·=l d B ,但应当注意,的环流为零,一般并不意味着环路L 上各点的都为零。
e 、安培环路定理说明磁场是非保守场,亦即是有旋场。
4、磁场对运动电荷、载流导线(或载流线圈)的作用1)磁场对运动电荷的作用 运动电荷在磁场中所受的力称为洛仑兹力,由洛仑兹公式计算q ⨯=式中q 为运动电荷所带的电量,V 是它的速度。
洛仑兹力与库仑力是不同的。
主要表现在:a 、洛仑兹力只作用于运动电荷,而库仑力既作用于运动电荷,又作用于静止电荷;b 、洛仑兹力总是垂直于运动电荷的速度,即V F ⊥,所以洛仑兹力只改变运动电荷速度的方向,而不改变其速度的大小,故洛仑兹力对运动电荷不作功。
而库仑力既可改变电荷速度的方向,又可改变其速度的大小,故库仑力对电荷要做功;c 、洛仑兹力与垂直,而库仑力与平行。
在均匀磁场中,带电粒子在洛仑兹力作用下作圆周运动的半径为qB mv R =v 是与相垂直的速度,带电粒子在均匀磁场中运动的回频共振频率mqB T πν21== 它与粒子的速率及回旋半径无关。
2)磁场对载流导线的作用电流元→l Id 在磁场中所受到的安培力→F d 由安培定律计算Id F d ⨯=→ 载流导线所受到的安培为B l Id F L ⨯=⎰→在稳恒电流情况下,载流导线在磁场中运动时,磁力所作的功为∆Φ=I A△Φ是闭合电流回路所包围面积内磁通量的增量。
磁场对载流平面线圈的作用载流平面线圈在均匀磁场中所受的力矩为M m ⨯=→式中NIS m =为载流平面线圈的磁矩。
I 是线圈中的电流强度,N 是线圈的匝数,S 为线圈每匝所包围的面积,的方向与电流I 的方向成右手定则关系。
上式表明,对于任意形状的载流平面线圈(或闭合电路)在均匀磁场中所受合力为零(不考虑线圈变形),但受到一个力矩,这力矩总是力图使这线圈的磁矩m 转到磁感应强度的方向,当m 与的夹角2πθ=时,线圈所受的力矩最大;当0=θ或π时,线圈所受的力矩为零。
当0=θ时,线圈处于稳定平衡状态;πθ=时,线圈处于非稳定平衡状态。
上式只对在同一平面上的任意形状的载流线圈在均匀磁场中成立。
三、解题方法本章的内容分两个方面:一是稳恒电流所产生的磁场;二是磁场对电流(或运动电荷)的作用。
虽然稳恒磁场与静电场的基本性质不同,但分析和处理问题的方法与静电场有很多相似之处。
1、求磁场分布的方法已知电流分布,求磁感应强度的方法有两种。
1)利用毕奥—萨伐尔—拉普拉斯定律和磁场的迭加原理求磁感应强度,即 304r r l Id B L ⨯=→⎰πμ 求 从原则上讲,在已知电流分布的情况下,可利用此种方法求任何载流导体所产生的磁场,因此,这是求的一种普遍方法。
这种方法还应包括利用已知的载流导体的磁感应强度公式和磁场的迭加原理求磁感应强度。
例如将无限长的载流导线弯成几何形状比较规则的各种形状的载流导线(由若干段直线和圆弧组成),在求其它们所产生的磁场时,就是利用载流导线和圆形电流在其圆心处的磁感应强度公式和磁场的迭加原理求。
2)利用安培环路定理求磁感应强度利用安培环路定理求磁感应强度与用静电场的高斯定理求电场强度的方法相类似,其步骤如下:a 、首先分析磁场分布的对称性,这是判断能否用安培环路定理求磁感应强度的关键。
只有当磁场分布具有一定的对称性时,才能用安培环路定理求,否则不能用。
这并不意味着安培环路定理对非对称性磁场不适用,而是用它求不出。
这是因为安培环路定理只是反映了稳恒磁场性质的一个侧面(有旋场),它对磁场性质的描述是不完全的,只有在磁场分布具有高度对称性的情形下,才能根据这种不完全的描述来确定磁场的分布,在一般情况下,应当配合反映磁场性质的另一个侧面(无源场)的高斯定理,才能充分描述稳恒磁场,并由它们确定普遍情形下稳恒磁场的分布。
b 、若能用安培环路定理,则选取适当的闭合环路(又称安培环路)通过拟求的场点,并规定安培环路的绕行方向。
选取安培环路的原则是使B 能从∮L l d B ·中积分号内提出来,以便能算出B ,通常选用的安培环路为圆周和矩形。
c 、分别计算所选取的安培环路的环流和安培环路所包围的电流的代数和,应用安培环路定理求出B ,并指出的方向。
2、磁场对电流、运动电荷的作用1)利用安培定律求磁场对载流导线的作用,即B l Id F L ⨯=⎰→其步骤如下:a 、根据问题的性质,选取适当的坐标系,首先求出在载流导线分布区域内的分布。
若题中已给出的分布,则此步骤求可省略。
b 、将载流导线分成无限多个电流元Id ,利用安培定律,写出某一电流元Id (所在位置不能选得特殊)所受的安培力Id d ⨯=,由右手定则确定d 的方向,然后根据所选择的坐标系将d 沿坐标轴进行正交分解,亦即将d 的矢量式用其分量式表示,以便把矢性函数的运算化成数性函数的运算。
c 、对电流元所受的安培力Fd 的诸分量分别积分,积分遍及整个载流导体。
注意:应根据所选取的坐标系,载流导线的几何形状,电流I 的方向,积分变量正确确定积分上、下限。
载流平面线圈在均匀磁场中所受的力矩,由M m ⨯=→求之,M 和与→成右手定则关系2)磁场对运动电荷的作用 利用络仑兹公式q F ⨯=→求磁场对运动电荷所作用的磁力。
3、常用例题公式1)载流直导线的磁场)(421θθπμCos Cos rI B O -= 式中r 为场点到直导线之垂直距离,1θ为始端电流元方向与其矢径方向之间的夹角。
2θ为末端电流的方向与其矢径方向之间的夹角,的方向由右手定则确定之。
若载流直导线为无限长,即πθθ==21,0,则有rI B O πμ2= 2)载流圆线圈轴线上的磁场23222)(2x R IR B O +=μ式中R 为圆线圈的半径,x 为轴线上的场点到圆线圈的圆心的距离。
当x = 0时,即在圆心处R I B O μ=3)载流长直螺线管内的磁场nI B O μ=式中n 为单位长度的线圈匝数4)载流螺绕环内的磁场当螺绕环横截面积很小时,环的平均周长为l ,则环内的磁感应强度nI I lN B O O μμ== 式中N 为螺绕环的总匝数四、解题示例例1,将一根载流导线弯成如图所示的形状,已知导线中的电流为I ,正方形的边长为a ,圆的半径为R ,求圆心O 点的磁感应强度。
解:利用载流直导线和载流圆线圈圆心处的磁感应强度公式和磁场迭加原理求圆心O 点的磁感应强度。
由于圆心O 点在载流直导线AC 之延长线上,所以载流直导线AC 在O 点产生的磁感应强度B 1=0。
载流圆弧CDE 在O 点产生的磁感应强度B 2是载流圆线圈中心磁感应强度R IO 2μ的43,即RI R IB O O 834322μμ=⨯= 2B 的方向由右手定则可得,垂直于纸面向外。
由于圆心O 点在载流直导线EF 延长线上,所以载流直导线EF 在O 点产生的磁感应强度B 3=0。
由载流直导线的磁感应强度公式可得载流直导线FG 在O 点产生的磁感应强度为:a I Cos Cos a I B O O πμπππμ82)432(44=-= 4B 的方向垂直于纸面向外,同理可得载流直导线GA 在O 点产生的磁感应强度为a I Cos Cos a I B O O πμπππμ82)24(45=-= 5的方向垂直于纸面向外,选取通过O 点垂直于纸面向外为正方向,由磁场的迭加原理得圆心O 点的磁感应强度为aI R I B B B B B B O O μμ28354321+=++++= 的方向垂直于纸面向外。