数学思维训练导引 (四年级)

合集下载

四年级下数学思维训练教程(尖子生)

四年级下数学思维训练教程(尖子生)

四年级下数学思维训练教程第一讲定义新运算同学们对于“加、减、乘、除”四则运算已经相当熟悉了。

为了扩展对运算的认识,在四则运算的基础上,还可以按需要规定新的运算。

例1 设a、b都表示数,规定a△b=3×a-2×b。

(1)求4△3,3△4。

(2)这种运算有“交换律”吗?(3)求(17△6)△2,17△(6△2)。

(4)这种运算有“结合律”吗?(5)如果已知5△b=1,求b。

解:像这样的题目叫做“定义新运算”。

这里,“△”当作一种新的运算符号来使用,它的意义是:如等号右端所要求的那样,先求出3×a和2×b的值,再求出3×a与2×b的差。

弄清了新定义运算的意义之后,就要严格按照要求进行操作。

仍然要先做括号里面的。

所以:(1)4△3=3×4-2×3=12-6=6。

3△4=3×3-2×4=9-8=1。

(2)由(1)可知,4△3与3△4的结果不同,所以,这种运算没有“交换律”。

(3)(17△6)△2=(3×17-2×6)△2=(51-12)△2=39△2=3×39-2×2=117-4=113。

17△(6△2)=17△(3×6-2×2)=17△(18-4)=17△14=3×17-2×14=51-28=23。

(4)由(3)可知,(17△6)△2与17△(6△2) 的结果不同,所以,这种运算也没有“结合律”。

(5)因为5△b=3×5-2×b=15-2b,而15-2b=1,所以2b=15-1,2b=14,b=7。

通过这个例题使我们认识到,所谓的“新运算”并不神秘,它只不过是对原有的四则运算的一种综合运用而已。

在做这类题目时,关键是要弄清楚新运算的意义是什么,并且要严格按照它的意义进行运算。

例2 如果a#b=2×a+3×b,a*b=(a+b)÷2,那么(3*5)#7=?解:“#”的意义是先求出2×a和3×b,再求出2×a与3×b的和。

四年级数学思维训练导引(奥数)第14讲 行程问题二

四年级数学思维训练导引(奥数)第14讲  行程问题二

第十四讲行程问题二1.(1)费叔叔沿着一条与铁路平行的公路散步,每分钟走60米,迎面开过来一列长300米的火车.从火车头与费叔叔相遇到火车尾离开他共用了20秒.求火车的速度.(2)小悦沿着一条与铁路平行的公路散步,她散步的速度是每秒2米,这时从小悦背后开来一列火车,从车头追上她到车尾离开她共用了18秒,已知火车速度是每秒17米,求火车的长度.2.(1)一列火车长180米,每秒行20米,这列火车通过320米的大桥,需要多长时间?(2)一列火车以每秒20米的速度通过一座长200米的大桥,共用21秒,这列火车长多少米?3.一列火车长180米,每秒行20米;另一列火车长200米,每秒行18米.两车相向而行,它们从车头相遇到车尾相离要经过多长时间?4.甲火车长370米,每秒行15米;乙火车长350米,每秒行21米,两车同向行驶,乙车从追上甲车到完全超过甲车需要多长时间?5.许三多所在的钢七连队伍长450米,以每秒1.5米的速度行进.许三多以每秒3米的速度从队尾跑到队头需要多长时间?然后从队头返回队尾,又需要多长时间?6.甲、乙两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米.坐在甲车上的小坤从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗为止共用13秒.问:乙车全长多少米?7.现有两列火车同时同方向齐头行进,快车每秒行18米,慢车每秒行10米,行12秒后快车超过慢车.如果这两列火车车尾对齐,同时同方向行进,则9秒后快车超过慢车.请问:快车和慢车的车长分别是多少米?8.有甲、乙、丙三人,甲每分钟走40米,乙每分钟走50米,丙每分钟走60米.A、 B两地相距2700米.甲、乙两人从A、曰两地同时出发相向而行,他们出发15分钟后,丙从B地出发去追赶乙,请问:甲在与乙相遇之后多少分钟又与丙相遇?又过了多少分钟丙才追上乙?9.有甲、乙、丙三人,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米,如果甲从A地,乙和丙从B地,三人同时出发相向而行.甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地的距离.10.东、西两城相距75千米.小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西走,每小时行15千米.三人同时动身,途中小辉遇见小强即折回向东骑,遇见了小明又折回向西骑,再遇见小强又折回向东骑,……,这样往返,直到三人在途中相遇为止.请问:小辉共骑了多少千米?1.(1)一列火车长400米,以每分钟800米的速度通过一条长2800米的隧道,需要多长时间?(2)一列火车长720米,每秒行驶15米,全车通过一个山洞用了64秒.这个山洞长多少米?2.一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.你知道火车有多长吗?它的速度是多少?3.有一列客车和一列货车,客车长400米,每秒行驶20米;货车长800米,每秒行驶10米.试问:如果两车相向而行,它们从相遇到错开需要多长时间?如果两车同向而行,客车赶超货车(从追上到完全超过)需要多长时间?4.一列客车和一列货车同向而行,货车在前,客车在后,已知客车通过460米长的隧道用30秒,通过410米长的隧道用28秒.又已知货车长160米,每小时行驶54千米.请问:客车从追上到离开这列货车需要多少秒?5.与铁路平行的一条小路上,有一个行人与一个骑车人同时向南行进,行人速度为每小时3.6千米,骑车人速度为每小时10.8千米.这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.请问:这列火车的车身总长是多少米?6.人大附小组织学生去春游,队伍行进的速度是每秒2米,宋老师以每秒4米的速度从队尾跑到队头,再回到队尾,共用6分钟.请问:队伍的总长是多少米?7.阿奇在一条与铁路平行的小路上行走,有一列客车迎面开来,40秒后经过阿奇,如果这列客车从阿奇的背后开来,60秒后经过阿奇,试问:如果阿奇站着不动,客车多长时间可以经过阿奇?8.一列货车和一列客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小明在客车内沿着客车前进的方向向前走,小明发现货车用140秒就超过了他.已知小明在客车内行走的速度为每秒1米,客车的速度为每秒20米,客车长350米,货车长280米.求货车从追上客车到完全超过客车所需要的时间.9.甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车,又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?10.甲、乙两人同时从A地出发向B地前进,甲骑车,乙步行,与此同时,丙从B地出发向A地前进,甲骑9千米后与丙相遇,而乙走6千米后就与丙相遇.如果甲骑车的速度是乙步行速度的3倍,求A、B两地的距离.11.甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的3倍,现在甲从A地向B地行进,乙、丙两人从B地向A地行进,三人同时出发,出发时,甲、乙步行,丙骑车,途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又重新改为步行,三人仍按原来的方向继续前进,试问:三人之中谁最先到达目的地?谁最后到达目的地? 12.A、B两城相距56千米,甲、乙、丙三人分别以每小时6千米、5千米、4千米的速度前进.甲、乙两人从A城,丙从B城同时出发,相向而行,请问:出发多长时间后,乙正好在甲和丙的中点?1.米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过来,8:00货车追上了米老鼠,又过了30秒,货车超过了它;另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了12秒客车离开了它,如果客车的长度是货车的2倍,客车的速度是货车的3倍.请问:客车和货车什么时间相遇?两车错车需要多长时间?2.货车和客车相向而行,两车在A点迎面相遇,在B点错开,A点和B两点之间的距离为150米.已知客车的长度为450米,速度为每小时108公里,货车的速度为每小时72公里.如果货车比客车长,那么货车的长度是多少?3.铁路旁有一条小路,一列长110米的火车以每小时30千米的速度向北缓缓驶去.14时10分追上向北行走的一位工人,15秒后离开这个工人;14时16分迎面遇到一个向南走的学生,12秒后离开这个学生,请问:工人与学生将在何时相遇?4.A、B两地相距120千米,甲、乙两人分别骑车从A、B两地同时相向出发,甲速度为每小时50千米,出发后1小时30分钟相遇,然后甲、乙两人继续沿各自方向往前骑,在他们相遇6分钟后,甲与迎面骑车而来的丙相遇,而丙在C地追上乙.若甲以每小时44千米的速度,乙以每小时比原速度快6千米的车速,两人同时分别从A、B出发相向而行,则甲、乙二人在C点相遇,问丙的车速是多少?5.快、中、慢三辆车同时从甲地出发追赶前方的骑车人,分别用6分钟、12分钟、20分钟追上,已知快车每小时行24千米,中车每小时行20千米,求慢车每小时行多少千米.6.快、中、慢三辆车同时从甲地出发开往乙地,与此同时冬冬以每分钟100米的速度沿公路走向甲地,已知快车出发30分钟后在途中遇上冬冬,中车出发35分钟后遇上冬冬.三辆车到达乙地的时候分别用了100分钟、120分钟、150分钟.请问:慢车出发多长时间后可以遇上冬冬?7.铁路旁的一条平行小路上,有一行人与一骑车人早上同时从A城出发向南前进,行人速度为每小时7.2千米,骑车人速度为每小时18千米.途中,有一列火车从他们背后开过来,9点10分恰好追上行人,而且从行人身边通过用了20秒钟;9点18分恰好追上骑车人,从骑车人身边通过用26秒钟.请问:这列火车的车身总长是多少米?行人与骑车人早上何时从A城出发?他们出发时,火车头离A城还有多少千米?8.铁路货运调度站有A、B两个信号灯,在灯旁停靠着甲、乙、丙三列火车,它们的车长正好构成一个等差数列,其中乙车的车长居中.最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A信号灯处,而车头则冲着B信号灯的方向,乙车的车尾则位于 B信号灯处,车头则冲着A的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好完全超过丙车,而丙车也正好完全和乙车错开.请问:甲、乙两车从车头相遇直至完全错开一共用了几秒钟?。

数学思维训练导引 (四年级)

数学思维训练导引   (四年级)

第1讲 整数计算综合内容概述熟练运用已学的各种方法解决复杂的整数四则运算问题;学会利用加减抵消、分组计算方法处理各种数列的计算问题。

学会处理“定义新运算”的问题,初步体会用字母表示数。

典型问题兴趣篇1. 计算:(1) 121×32÷8; (2) 4×(250÷8) (3) 25×83×32×1252. 计算:(1) 56×22+56×33+56×44 (2) 222×33+889×66.3. 计算:(1) 37×47+36×53 (2) 123×76-124×75。

4. 计算:100-99+98-97+96-95+…+12-11+10.5. 计算:50+49-48-47+46+45-44-43+…-4-3+2+1.6. 计算:(1+3+5+7+…+199+201) -(2+4+6+8+…+198+200).7. 计算:1+2+3+4+…+48+49+50+49+48+…+4+3+2+1.8. 下面是一个叫做“七上八下”的数字游戏。

游戏规则是:对一个给定的数,按照由若干个7和8组成的口令进行一连串的变换。

口令“7”是指在这个数中插入一个数字,使得新生成的数尽量大;口令“8”是指将这个数中的一个数字去掉,也要使新生成的数尽量大。

例如:给出的数是1995,口令是“8→7,”在第一个口令“8”发出后变成995,在第二个口令“7”发出后变成9995。

如果给出数“6595”以及口令“8→7→8→7→8→8”,问:变换后依次得到的6个数的和是多少?9. 规定运算“∇”为:a ∇b= (a+1) ×(b -1), 请计算:(1)8∇10; (2) 10∇8.10. 规定运算“☺”为:a ☺b=a ×b -(a+b), 请计算:(1) 5☺8; (2) 8☺5; (3) (6☺5)4; (4)6☺ (54)拓展篇1. 计算:(1)72×27×88÷(9×11×12); (2) 31×121-88×125÷(1000÷121).2. 计算:(1) 555×445-556×444; (2) 42×137-80÷15+58×138-70÷15.3. 计算:20092009×2009-20092008×2008-20092008.4. 计算:1+2-3+4+5-6+7+8-9+……+97+98-99.5. 计算:100×99-99×98-98×97-97×96-96×95-95×94+…+4×3-3×2-2×1.6. 在不大于1000的自然数中,A 为所有个位数字为8的数之和,B 为所有个位数字为3的数之和. A 与B的差是多少?7. 求图1-1中所有数的和.8. 已知平方差公式:22()()a b a b a b -=+⨯-,计算: 2222222220191817161521-+-+-++-9. 计算:951×949-52×48.10. 规定运算“Θ”为:a Θb=a+2b -2, 计算:(1) (8Θ7) Θ6;(2) 8Θ(7Θ6)11. 规定运算“ ”为:a b=(a+1) ×(b -2). 如果6 ( 5)=91, 那么方格内应该填入什么数?12. 规定:符号“∆”为选择两数中较大的数的运算,“∇”为选择两数中较小的数的运算,例如:3∆5=5,3∇5=3请计算:1∆2∆3∇4∆5∆6∇7∆…∇100.(运算的顺序是从左至右)超越篇1. 观察下面算式的规律:2000+1991-1988-1982+1976+1970-1964-1958+1952+1946-1940-1934+……一直这样写下去,那么最后4个自然数分别是哪4个?符号分别是加还是减?算式最终的结果为多少?2. 从1, 2, ……, 9, 10 中任意选取一个奇数和一个偶数,并将两数相乘,可以得到一个乘积,把所有这样的乘积全部加起来,总和是多少?3. 计算:1-3+6-10+15-21+28- (4950)4. 已知平方差公式:22()()a b a b a b -=+⨯-, 计算: 222222222222100999897969594934321+--++--+++--5. a Θb 表示从a 开始依次增加的b 个连续自然数的和,例如:4Θ3=4+5+6=15, 5Θ4=5+6+7+8=26, 请计算:(1) 4Θ15 (2) 在算式( Θ7)Θ11=1056中,方框里的数应该是多少?6. 定义两种运算:a Ωb=a -b+1, a ∀b=a ×b+1, 用“Ω”、“∀”和括号填入下面的式子,使得等式成立(不能用别的计算符号):7 3 4 5=27.现定义四种操作的规则如下:①“一分为二”:如果一个自然数是偶数,就把它除以2;如果是奇数,就先加上1,然后除以2. 例如从16可以得到8,从27可以得到14.②“丢三落四”:如果一个自然数中包含数字“3”或“4”,就将其划掉,例如从5304可以得到50,从408可以得到8. (不含数字3和4的自然数不能进行“丢三落四”操作)③“七上八下”:如果一个自然数中包含数字“7”,就将所有“7”移到最左边;如果一个自然数中包含数字“8”,就将所有“8”移到最右边。

小学四年级数学思维专题训练—追及问题 (含答案解析)

小学四年级数学思维专题训练—追及问题 (含答案解析)

小学四年级数学思维专题训练—追及问题1.有80米环形走廊,弟弟在环形走廊上行走,速度为1米/秒,哥哥奔跑速度为5米/秒.现在哥哥和弟弟在环形跑道上的同一点,同时向同一方向出发,哥哥第二次追上弟弟的时候,用了秒.2.甲、乙两车从A地开往B地分别需要用10小时和15小时,若乙车先出发3小时,则甲车出发小时后能追上乙车.3.有两列同方向行驶的火车,快车每秒行31米,慢车每秒行22米,如果从两车头对齐开始算,23秒后快车超过慢车;如果从两车尾对齐开始算,26秒后快车超过慢车.快车长米,慢车长米.4.狗追狐狸,狗跳一次前进15分米,狐狸跳一次前进10分米.狗每跳4次的时间狐狸恰好跳2次,如果开始时狗离狐狸有300分米,那么狗跑分米才能追上狐狸.5.在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车制动突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距米.6.甲每小时行4千米,乙每小时行3千米.两人从同一地点出发.甲动身时,乙已经走出了9千米,甲追乙3小时后,改以每小时5千米的速度追乙,再经小时甲能追上乙.7.甲、乙两人练习跑步,若甲让乙先跑2秒钟,则甲跑5秒钟可追上乙;若甲后退12米,则甲跑6秒钟也能追上乙,甲的速度是米/秒;乙的速度是米/秒.8.AB两地相距15千米,一辆汽车以每小时50千米的速度从A地出发,另一辆车以每小时40千米的速度从B地出发,两车同时出发同向而行,经过小时两车相距30千米,9.小明和小刚清晨来到学校操场练习跑步,学校操场是400米的环形跑道,小刚对小明说:“咱们比比看谁跑的快”,于是两人同时同向起跑,结果10分钟后小明第一次从背后追上小刚,同学们一定知道谁跑得快了,小明的速度是每分钟跑140米,那么当小明第3次从背后追上小刚时,小刚一共跑了米.10.有两列火车,甲车长200米,每秒行13米;乙车长150米,每秒行8米.现在两车在两条互相平行的轨道上同向而行,甲在后,乙在前,路当中有一条隧道,其长度和甲车长度相同.当乙车车尾刚离开隧道时,甲车车头刚进入隧道.则秒后,两车车头平行,11.早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地,下午2点时两人之间的距离是15千米,下午3点时,两人之间的距离还是15千米,下午4点时小王到达乙地,晚上7点小张到达乙地,小张是早晨点出发.12.亮亮骑着白行车,以每分钟400米的速度,从46路汽车的始发站出发,沿46路车的线路前进.当他骑出 1400米肘,一辆46路车从始发站出发.已知这辆车每分钟行600米,每4分钟到达一站并停车1分钟,那么汽车开出分钟后能追上亮亮.13.乌龟和兔子赛跑,比赛场地为一个长方形池塘,如下图所示,AB=600米,BC=IOOO米,乌龟可以游泳且无论水陆都可选任意方向,兔子则只能顺时针绕着池塘跑;已知兔子速度为乌龟游泳速度的5倍,乌龟的游泳速度比陆地速度快,若起点为AB的中点E,那么请问终点设置在什么地方,乌龟能取得比赛的胜利?请证明你的结论.参考答案1.有80米环形走廊,弟弟在环形走廊上行走,速度为1米/秒,哥哥奔跑速度为5米/秒.现在哥哥和弟弟在环形跑道上的同一点,同时向同一方向出发,哥哥第二次追上弟弟的时候,用了 40 秒.【答案】 40【分析】第二次追上时,两人的路程差是2个全程,即160米,所以追及时间是160÷(5-1)﹦4(秒)2.甲、乙两车从A地开往B地分别需要用10小时和15小时,若乙车先出发3小时,则甲车出发 6 小时后能追上乙车.【答案】 6【分析】设数法.假设A、B两地之间的距离是30千米,那么甲的速度是30÷10﹦3(千/小时),乙的速度是30÷15﹦2(千米/小时),甲开始追乙时两者的距离是3×2﹦6(千米),追及时间为6÷(3-2) ﹦6(小时).3.有两列同方向行驶的火车,快车每秒行31米,慢车每秒行22米,如果从两车头对齐开始算,23秒后快车超过慢车;如果从两车尾对齐开始算,26秒后快车超过慢车.快车长 207 米,慢车长234 米.【答案】 234【分析】从车头对齐开始算,那么快车超过慢车的时间刚好比慢车多走一个快车的车身长,(31-22)×23﹦207(米);从两车尾对齐开始算,那么快车超过慢车的时间刚好比慢车多走一个慢车的车身长,(31-22)×26﹦234(米).4.狗追狐狸,狗跳一次前进15分米,狐狸跳一次前进10分米.狗每跳4次的时间狐狸恰好跳2次,如果开始时狗离狐狸有300分米,那么狗跑 450 分米才能追上狐狸.【答案】 450【分析】把狗跳4次、狐狸跳2次的时间看做单位时间,那么单位时间内狗可以跳15×4﹦60(分米),狐狸可以跳10 X 2﹦20(分米),狗追上狐狸所花的时间:300÷(60-20) ﹦7.5(单位时间),狗跑了7.5×60-450(分米).5.在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车制动突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距 25 米.【答案】 25【分析】90×1000÷3600﹦25(米/秒),108×1000÷3600=30(米/秒),(30-25)×5﹦25(米)6.甲每小时行4千米,乙每小时行3千米.两人从同一地点出发.甲动身时,乙已经走出了9千米,甲追乙3小时后,改以每小时5千米的速度追乙,再经 3 小时甲能追上乙.【答案】 3【分析】甲每小时行4千米,乙每小时行3千米,则甲每小时比乙多行走1千米,甲追乙3小时后,则甲迫近3千米,甲现在距乙9 -3=6(千米).甲现在每小时行5千米,每小时比乙多走2千米,则甲6÷2=3(小时)即可追上乙.7.甲、乙两人练习跑步,若甲让乙先跑2秒钟,则甲跑5秒钟可追上乙;若甲后退12米,则甲跑6秒钟也能追上乙,甲的速度是 7 米/秒;乙的速度是 5 米/秒.【答案】 7;5【分析】第二次甲6秒能追上乙,甲和乙的速度差为12÷6﹦2(米/秒),第一次甲花5秒钟追乙,说明甲和乙的距离是2×5=10(米),乙先跑2秒跑了10米,则乙的速度是10÷2﹦5(米/秒),那么甲的速度是5+2﹦7(米/秒).8.AB两地相距15千米,一辆汽车以每小时50千米的速度从A地出发,另一辆车以每小时40千米的速度从B地出发,两车同时出发同向而行,经过 1.5或4.5 小时两车相距30千米,【答案】 1.5或4.5【分析】有两种情况:两辆车方向是从A到B或从B到A,前一种情况:时速50千米的车要追上另一辆并超过30千米,需要(15+30)÷(50-40) ﹦4.5(小时);后一种情况只要再拉开15千米距离就可以了,需要(30-15)÷(50-40) ﹦1.5(小时).9.小明和小刚清晨来到学校操场练习跑步,学校操场是400米的环形跑道,小刚对小明说:“咱们比比看谁跑的快”,于是两人同时同向起跑,结果10分钟后小明第一次从背后追上小刚,同学们一定知道谁跑得快了,小明的速度是每分钟跑140米,那么当小明第3次从背后追上小刚时,小刚一共跑了米.【答案】 3000【分析】速度差为400÷10﹦40(米/分),所以小刚的速度为140 - 40=100(米/分),第三次追上小刚时,小刚一共跑了10×3=30(分钟),共跑了100×30=3000(米).10.有两列火车,甲车长200米,每秒行13米;乙车长150米,每秒行8米.现在两车在两条互相平行的轨道上同向而行,甲在后,乙在前,路当中有一条隧道,其长度和甲车长度相同.当乙车车尾刚离开隧道时,甲车车头刚进入隧道.则秒后,两车车头平行【答案】70【分析】火车与火车的追及问题,速度差是每秒13-8=5(米).关键要找出追及路程.最后要求甲、乙两车车头平行,找到甲车的车头A点和乙车的车头B点,两点在初始时刻的距离是隧道长和乙车车长之和,是200+150=350(米),即所求追及路程,那么追及时间就是350÷5﹦70(秒).11.早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地,下午2点时两人之间的距离是15千米,下午3点时,两人之间的距离还是15千米,下午4点时小王到达乙地,晚上7点小张到达乙地,小张是早晨点出发.【答案】 10【分析】由题意容易推断出,14点时小王落后小张15千米,15点时小王领先小张15千米,1小时内小王比小张多行了30千米,即两人的速度差为30千米/小时. 16点时,小王到达乙地,此时小张落后小王15+30﹦45(千米),也就是距离乙地45千米,又19点到达乙地,则小张用了7-4﹦3(小时)走完这45千米,可得小张速度为45÷3=15(千米/小时),则小王速度为15+30﹦45(千米/小时).那么全程为45×(16-13) ﹦135(千米),小张走完全程需要135÷15﹦9(小时),小张m发时间即为19-9﹦10(点).12.亮亮骑着白行车,以每分钟400米的速度,从46路汽车的始发站出发,沿46路车的线路前进.当他骑出 1400米肘,一辆46路车从始发站出发.已知这辆车每分钟行600米,每4分钟到达一站并停车1分钟,那么汽车开出分钟后能追上亮亮.【答案】 13【分析】以5分钟为1个周期:在这段时间内,亮亮骑了400×5﹦2000(米),46路车行驶了600×4﹦2400(米),两者的距离减少了400米.那么两个周期后,两者的距离是1400-400×2=600(米),600÷(600-400) ﹦3(分钟),所以,在第三个周期内,汽车追上了亮亮,共用时5×2+3﹦13(分钟).13.乌龟和兔子赛跑,比赛场地为一个长方形池塘,如下图所示,AB﹦600米,BC﹦IOOO米,乌龟可以游泳且无论水陆都可选任意方向,兔子则只能顺时针绕着池塘跑;已知兔子速度为乌龟游泳速度的5倍,乌龟的游泳速度比陆地速度快,若起点为AB的中点E,那么请问终点设置在什么地方,乌龟能取得比赛的胜利?请证明你的结论.【答案】:终点设在AE上或AD上距A小于400米的位置上即可(包括A点,不包括E点)【分析】显然乌龟最好的办法是选择在水中沿直线段游泳.池塘的周长为(600+1000)×2﹦3200(米),AE-600÷2﹦300(米).如果终点在A点,则兔子需要跑3200 - 300=2900(米),乌龟需要游300米,由于2900>300×5,所以乌龟获胜,同理如果终点在AE之间任意一点乌龟都获胜;如果终点在AD上距A点x米处,则兔子需要跑2900—x米,乌龟需要游的距离等于以300和x为两条直角边的三角形的斜边.由勾股定理可知,r﹦400时,前者恰好是后者的5倍.因此,要想使乌龟获胜,x<400.综上所述,终点设在AE上或AD上距A小于400米的位置上即可(包括A点,不包括E 点).。

【四年级下册数学竞赛试题-思维训练导引:第2讲,和差倍问题三(无答案)全国通用】 四年级数学竞赛大全

【四年级下册数学竞赛试题-思维训练导引:第2讲,和差倍问题三(无答案)全国通用】 四年级数学竞赛大全

【四年级下册数学竞赛试题-思维训练导引:第2讲,和差倍问题三(无答案)全国通用】四年级数学竞赛大全集第2讲和差倍问题三内容概述数量关系复杂,需要深入分析的和差倍问题;由于数量大小改变,而产生倍数关系变化的问题;需要利用比较或分组的方法进行分析的问题。

典型问题兴趣篇 1. 有长、短两根竹竿,长竹竿的长度是短竹竿长度的3倍. 将它们插入水塘中,插入水中的长度都是40厘米,而露出水面部分的总长为160厘米. 请问:短竹竿露在外面的长度是多少厘米? 2. 李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆中拿出15个放到乙堆中,则两堆零件的个数相等;如果从乙堆中拿出15个放到甲堆中,则甲堆零件的个数是乙堆的3倍. 问:甲堆原来有零件多少个?李师傅这一天共生产零件多少个? 3. 一个六边形广场的边界上插有336面红旗和黄旗. 六边形的每个顶点处都插有红旗,每条边上的红旗数目一样多,并且每两面红旗间插有相同数目的黄旗. 已知每条边上黄旗比红旗的2倍还多12面,那么每两面红旗间插有几面共旗? 4. 爸爸和冬冬一起搬砖,爸爸所搬的砖头数是冬冬的3倍. 冬冬觉得自己搬的砖头太少了,又搬了24块砖头,于是爸爸所搬的砖头数是科科的2倍. 请问:最后爸爸和冬冬各搬了多少块砖? 5. 四年级三班买来单价为5角的练习本若干. 如果将这些练习本只分给女生,平均每人可得15本;如果将这些练习本只分给男生,平均每人可得10本. 请问:将这些练习本平均分给全班同学,每人可以得到多少本?此时每人应付多少钱? 6. 有甲、乙、丙三所小学的同学来参加幼苗杯数学邀请赛,其中甲校参赛人数比乙校多5人,比丙校多7人. 如果乙、丙两校一共有40人参加比赛,那么三所学校各有多少人参加比赛? 7. 有三个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克. 问:其中最轻的箱子重多少千克? 8. 小悦和妈妈一起去家具城挑选客厅的桌椅. 她们看中了两款,这两款桌椅都包含一张桌子和若干把椅子.其中桌子的价钱一样,每把椅子的价钱也一样. 第一款桌椅中有6把椅子,总价为700元;第二款桌椅中有9把椅子,总价为970元. 请问:一张桌子的价钱是多少元? 9. 小白兔与小黑兔一块去森林里采摘了一些胡萝卜,回家后它们就把胡萝卜平分了. 小白兔当天吃了4个胡萝卜,小黑兔则一口气吃了12个胡萝卜. 小白免往后每天都吃4个胡萝卜;小黑兔因为第一天吃得太多,往后每天只吃2个胡萝卜,最后它俩同时把自己的胡萝卜吃完. 小白兔与小黑兔一共采摘了多少个胡萝卜? 10. 一家汔车销售店有若干部福特汽车和丰田汽车等待销售. 福特汽车的数量是丰田汽车的3倍.如果每周销售2辆丰田汽车和4辆福特汽车,丰田汽车销售完时还剩下30辆福特汽车. 请问:原有丰田汽车和福特汽车各多少辆?拓展篇 1. 李师傅将甲、乙两种零件加工成产品,开始时甲零件的数量乙零件的2倍,每件产品需要5个甲零件和2个乙零件,生产30件产品后,剩下的甲、乙零件数量相等,请问:李师傅还可以生产几件产品? 2. 学校门口放有红、黄、蓝三种颜色的花. 其中黄花的盆数最多,既是红花盆数的4倍,也是蓝花盆数的3倍,如果蓝花比红花多20盆,请问:学校门口一共有多少盆花? 3. 动物园的饲养员给三群猴子分花生. 如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如果只分给第三群,则每只猴子可得20 粒,试问:现在将这些花生平均分给三群猴子,每只可得多少粒? 4. 养鸡场有东、西两院,西院鸡的只数是东院的3倍. 一天有10只鸡从西院跑到东院,这时西院鸡的数是是东院的2倍,那么现在东、西两个院子各有多少只鸡? 5. 爸爸和冬冬一起搬砖,原计划爸爸搬其中的一些,冬冬搬剩余的砖头,父子二人发现,如果爸爸帮冬冬搬10块,那么爸爸所搬的砖头数是冬冬的5倍;如果冬冬帮爸爸搬10 块,那么爸爸所搬的砖头数是冬冬的2倍. 请问:原计划爸爸搬多少块砖,冬冬搬多少块砖?6. 甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人. 问:甲班和丁班共多少人?7. 小悦、冬冬、阿奇三人去称体重,由于秤出了点问题,只能准确称出60千克与90千克之间的重量,因此他们三人只能两个两个称重. 如果小悦和冬冬一起称,总重量是73千克;冬冬和阿奇一起称,总重量是80千克;阿奇和小悦一起称,总重量是75千克,三人的体重分别是多少千克?8. 四年级有甲、乙、丙、丁四个班,不算甲班,其余三个数的总人数是131人;不算丁班,其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人. 问:这四个班共有多少人?9. 某学生到工厂勤工俭学,按合同规定,干满30天,工厂将给他一套工作服和70玩钱,但由于学校另有安排,他工作了20天后便中止了合同,工厂只给他一套工作服和20元钱. 请问:这套工作服值多少元? 10. 小悦和冬冬看同一本小说,小悦打算第一天看50页,接着每天看15页;冬冬则打算每天看22页,最后两人正好在同一天看完,这本小说一共多少页? 11. 某食堂买来的大米的袋数是面粉的4倍,该食堂每天消耗面粉20袋,大米60袋,几天后面粉全部用完,大米还剩下200袋,这个食堂买来大米多少袋? 12. 超市运来一批水果糖和巧克力糖,其中水果糖的颗数比巧克力糖的3倍还多10颗,售货员将这些糖包装成相同的小袋,每袋内装了3颗巧克力糖和7颗水果糖,最后巧克力糖全部装完,水里糖还剩下170颗. 请问:这批糖果共有几颗水果糖,几颗巧克力糖?超越篇 1. 在一次速算比赛中,每道题的分数是一样的. 前20道题中,小时做对了15道;余下的题中,他做对的题仅是做错的一半,最后一共得了50分. 如果满分是100分,那么小明做对了多少道题? 2. 有四个数,其中每三个数的和分别是45、46、49、52,那么这四个数中最小的一个数是多少?3. 小伟和小杰两人玩游戏牌,第一轮过后,小伟赢了小杰13张牌,这时小伟的牌数是小杰的2倍少10张;由于得意忘形,小伟在第二、三轮惨败,输了29张牌,结果小杰的牌数反而是小伟的7倍少10张. 求小伟和小杰原来各有多少张牌?4. 费叔叔买了一台电视机,购买时可以按以下两种方式付款:第一个月付款750元,以后每月付150元;或前一半时间每月付300元,后一半时间每月付100元. 两种付款方式的付款总数及时间都相同.问:这台电视机的价格是多少元?5. 甲、乙、丙三人乘坐飞机,三人所带行李的重量都超过了免费重量,超出部分必须另付行李费. 甲付20元,乙付40元,丙付60元. 三人的行李共重150千克,如果是一个人带这些行李出行,就需要支付240元的超重费用. 请问:每人可以免费携带多少千克的行李? 6. 小楠的妈妈买回了若干个桔子和梨,其中桔子的个数是梨的3倍. 如果全家每天吃5个桔子和2个梨,那么一星期后,桔子的个数是梨的4倍少5个. 原来桔子和梨分别有多少个? 7. 小真、小想和小看在讨论买《变形金刚》电影票的事,小真现有的钱数是小想的3倍,是小看的2倍. 小真说:“如果小想给我15元钱,我就可以买3张电影票小想说:“如果我给小真15元钱,剩下的钱恰好能买3个一样的汉堡。

四年级数学思维训练教案例文

四年级数学思维训练教案例文

四年级数学思维训练教案例文备课不但要备教材,还必需要备学生。

在写教案之前要先了解一下学生的实际状况,然后再来详细探究。

今日我在这里整理了一些四年级数学思维训练教案20xx例文,我们一起来看看吧!四年级数学思维训练教案20xx例文1教学目标:1、通过小组合作,运用直观操作的方法,探究并发觉三角形内角和等于180。

能应用三角形内角和的性质解决一些简洁问题。

2、经验亲自动手实践、探究三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进展验证的数学思想方法,提高动手操作实力和数学思索实力。

3、使学生在数学活动中获得胜利的体验,感受探究数学规律的乐趣。

造就学生的创新意识、探究精神和实践实力,在学生亲自动手实践和归纳中,感受理性的美。

教学重点:1、探究和发觉三角形三个内角和的度数和等于180o。

2、确定三角形的两个角的度数,会求出第三个角的度数。

教学难点:确定三角形的两个角的度数,会求出第三个角的度数。

教学打算:小黑板、学生、教师打算几个形态不同的三角形、量角器。

教学过程:一、预习检查说一说在预习课中操作的感受,应留意哪些问题,三角形的内角和等于多少度? 组内沟通订正。

二、情景导入呈现目标故事引入。

一天,大三角形对小三角形说:“我的个头大,所以我的内角和必须比你的大。

”小三角形很不甘心地说:“是这样的吗?”提醒课题,出示目标。

产生质疑,引入新课。

三、探究新知自主学习1、活动一、比一比2、活动二、量一量(1)什么是内角?(2)如何得到一个三角形的内角和?(3)小组活动,每组同学分别画出大小,形态不同的假设干个三角形。

分别量出三个内角的度数,并求出它们的和。

(4)填写小组活动记录表。

发觉大小,形态不同的每个三角形,三个内角的度数和都接近度。

3、说一说,做一做。

(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。

(2)把三个角折叠在一起,三个角在一条直线上。

从而得到三角形三个内角和等于( )度。

四年级数学思维训练导引(奥数)第15讲 加法原理与乘法原理

四年级数学思维训练导引(奥数)第15讲  加法原理与乘法原理

第十五讲加法原理与乘法原理1.阿奇去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个.他准备找一家餐厅吃饭,一共有多少种不同的选择?2.阿奇进入一家中餐厅后,发现主食有3种,热菜有20种.他打算主食和热菜各买1种,一共有多少种不同的买法?3.老师要求冬冬在黑板上写出一个减法算式,而且被减数必须是两位数,减数必须是一位数,冬冬共有多少种不同的写法?4.传说地球上有7颗不同的龙珠,如果找齐这7颗龙珠,并且按照特定顺序排成一行就会有神龙出现.邪恶的沙鲁找到了这7颗龙珠,但是他不知道排列的特定顺序.请问:运气不好的沙鲁最坏要试几次才能遇见神龙?5.用红、黄、蓝三种颜色给图15-1的三个圆圈染色,一个圆圈只能染一种颜色,并且相连的两个圆圈不能同色,一共有多少种不同的染色方法?6.在图15-2中,从“北”字开始,每次向下移动到一个相邻的字可以读出“北京奥运会”,那么一共有多少种不同的读法?7.运动会中有四个跑步比赛项目,分别为50米、100米、200米、400米,规定每个参赛者只能参加其中的一项.甲、乙、丙、丁四名同学报名参加这四个项目,请问:(1)如果每名同学都可以任意报这四个项目,一共有多少种报名方法?(2)如果这四名同学所报的项目各不相同,一共有多少种报名方法?8.冬冬的书包里有5本不同的语文书、6本不同的数学书、3本不同的英语书,请问:(1)如果从中任取1本书,共有多少种不同的取法?(2)如果从中取出语文书、数学书、英语书各l本,共有多少种不同的取法?9.如图15-3,甲、乙两地之间有4条路,乙、丙两地之间有2条路,甲、丙两地之间有3条路,那么从甲地去丙地一共有多少条不同的路线?10.图15-4中有一个从A到曰的公路网络,一辆汽车从A行驶到曰,可以选择的最短路线一共有多少条?1.阿奇一家人外出旅游,可以乘火车,也可以乘汽车,还可以坐飞机,经过网上查询,出发的那一天中火车有4班,汽车有3班,飞机有2班,他们乘坐这些交通工具,一共可以有多少种不同的选择?2.“IMO”是“国际数学奥林匹克”的缩写,要求把这三个字母涂上三种不同的颜色,且每个字母只能涂一种颜色.现有五种不同颜色的笔,按上述要求能有多少种不同颜色搭配的“IMO”?3.书架上有三层书,第一层放了15本小说,第二层放了10本漫画,第三层放了5本科普书,并且这些书各不相同,请问:(1)如果从所有的书中任取1本,共有多少种不同的取法?(2)如果从每一层中各取1本,共有多少种不同的取法?(3)如果从中取出2本不同类别的书,共有多少种不同的取法?4.如图15-5,从甲地到乙地有3条路,从乙地到丙地有3条路,从甲地到丁地有2条路,从丁地到丙地有4条路.如果要求所走路线不能重复,那么从甲地到丙地共有多少条不同的路线?5.如图15-6,四张卡片上写有数字2、4、7、8.从中任取三张卡片,排成一行,就可以组成一个三位数.请问:一共可以组成多少个不同的三位数?其中有多少个不同的三位奇数?6.奥运场馆实行垃圾分类处理.每个地方放置五个垃圾桶,从左向右依次标明:电池、塑料、废纸、易拉罐、不可再造,如图15-7.现在准备把五个垃圾桶染成红、绿、蓝这3种颜色之一,要求相邻两个垃圾筒颜色不同,且回收废纸的垃圾桶不能染成红色,一共有多少种染色方法?7.如图15-8,把A、曰、C、D、E这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色,请问:这幅图共有多少种不同的染色方法?8.如图15-9,用红、蓝两种颜色来给图中的小圆圈染色,每个小圆圈只能染一种颜色.请问:(1)如果每个小圆圈可以随意染色,一共有多少种不同的染法?(2)如果要求关于中间那条竖线左右对称,一共有多少种不同的染法?9.甲、乙、丙、丁、戊五人要驾驶A、B、C、D、E这五辆不同型号的汽车.会驾驶汽车A的只有甲和乙,汽车E必须由甲、乙、丙三人中的某一人驾驶,则一共有多少种不同的安排方案?10.如图15-10,4枚相同的棋子放入4x4的方格内,每个方格只能放1枚,且要求每行每列最多只能放1枚,一共有多少种不同的放法?11.图15-11是一个阶梯形方格表,在方格中放入5枚相同的棋子,使得每行、每列中都只有1枚棋子,这样的放法共有多少种?12.如图15-12和图15-13,蚂蚁在线段上爬行,只能按照箭头的方向行走,请问:(1)按图15-12所示,从A点走到B点的不同路线有多少条?(2)按图15-13所示,从A点走到B点的不同路线有多少条?1.爸爸、妈妈带阿奇去吃西餐,餐厅里有米饭和面条2种主食,烤牛排、烤羊排和烤鸡排3种主菜,奶油蘑菇汤1种汤,以及蛋糕和布丁2种甜点,如果阿奇想要点1种主食和1种主菜,汤和甜点可点可不点,而且种类不限.请问:阿奇一共有多少种点菜方法?2.如图15-14,在一个3x4的方格表内放人4枚相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?如果放人4枚互不相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?3.如图15-15,将图中的八个部分用红、黄、绿、蓝这4种不同的颜色染色,而且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.请问:这幅图共有多少种不同的染色方法?4.用4种不同的颜色给图15-16中的圆圈染色,有线段相连的两个圆圈不能同色,一共有多少种不同的染色方法?5.一只甲虫沿着图15-17中的方格线从A爬到B,每次只能向右爬一格或向上爬一格.图中画着黑点的地方不能通过.请问:这只甲虫可以选择多少条不同的路线?6.王老师家装修新房,需要2个木匠和2个电工.现有木匠3人、电工3人,另有1人既能做木匠也能做电工,要从这7人中挑选出4人完成这项工作,共有多少种不同的选法?7.如图15-18所示,一只小甲虫要从A点出发沿着线段爬到B点,不能重复经过任何点,试问:这只甲虫有多少种不同的走法?8.如图15-19所示,国际象棋中的棋子“皇后”从左下角走到右上角,每步只能向右、向上或者向右上移动任意多格,一共有多少种不同的走法?。

四年级数学上册思维训练全

四年级数学上册思维训练全

第一讲方阵问题(一)学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。

②每边人(或物)数和四周人(或物)数的关系:四周人(或物)数=[每边人(或物)数-1]×4;每边人(或物)数=四周人(或物)数÷4+1。

③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。

例1:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?分析:要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。

解:以10米为一段,公路全长可以分成900÷10=90(段)共需电线杆根数:90+1=91(根)练习与作业1.四年级同学参加广播体操比赛,要排列成每行11人,共11行的方阵。

这个方阵里有多少同学?2.用棋子排成一个6×6的正方形,共需用棋子多少枚?3.有1764棵树苗,准备在一块正方形的苗圃(实心方阵)里栽培。

这个正方形苗圃的每边要栽多少棵树苗?4.576人排成一个实心方阵,这个方阵每边多少人?5.棋子若干只,恰好可以排成每边6只的正方形,棋子的总数是多少?棋子最外层有多少?6.在大楼的正方形平顶四周装彩灯,四个角都装一盏,每边装25盏,四周共装彩灯多少盏?第二讲方阵问题(二)例3:某校五年级学生排成一个方阵,最外一层的人数为60人。

问方阵外层每边有多少人?这个方阵共有五年级学生多少人?分析:根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。

解:方阵最外层每边人数:60÷4+1=16(人)整个方阵共有学生人数:16×16=256(人)答:方阵最外层每边有16人,此方阵中共有256人。

四年级数学思维训练导引(奥数)第06讲 行程问题一

四年级数学思维训练导引(奥数)第06讲  行程问题一

第六讲行程问题一1.A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时.如果要按照原定的时间到达B城,汽车在后一半路程上每小时应该行驶多少千米?2.A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两个人从出发到相遇需要多长时间?3.在第2题中,如果甲、乙两人的速度大小不变,但甲出发时改变方向,即两个人同时、同向出发.请问:乙出发后多久可以追上甲?4.甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地.2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地.问:什么时候两车在途中相遇?5.小悦和冬冬分别从相距720米的两地出发同向而行,且冬冬比小悦先出发2分钟.已知小悦的速度是每分钟60米,冬冬的速度为每分钟50米,试问:当小悦追上冬冬的时候,冬冬已经走了多少米?6.一辆公共汽车和一辆小轿车从相距350千米的两地同时出发,相向而行,公共汽车每小时行40千米,小轿车每小时行60千米,问:(1)2小时后两车相距多少千米?(2)经过几小时后两车第一次相距50千米?7.一辆公共汽车和一辆小轿车从相距300千米的两地同时出发,同向而行.公共汽车在前,每小时行40千米;小轿车在后,每小时行60千米,问:(1)经过6小时后两车相距多少千米?(2)经过几小时后两车第一次相距100千米?8.甲、乙两人分别在A地和B地,甲从A地到曰地需要20分钟,乙从曰地到A地需要30分钟.如果两个人同时出发相向而行,多长时间可以相遇?9.甲、乙两车分别从A、B两地同时出发相向而行.已知甲车每小时行驶40千米,两车6小时后相遇.相遇后它们继续前进,又过了3小时,甲车到达艿地,问:乙车还要过多久才能到达A地?10.甲、乙两人分别从A、B两地同时出发相向而行.已知甲每分钟走50米,乙走完全程要18分钟.出发3分钟后,甲、乙仍相距450米.问:还要过多少分钟,甲、乙两人才能相遇?1.甲、乙两地相距450千米,快车和慢车分别从甲、乙两地出发相向而行,快车每小时行60千米,慢车每小时行30千米.试问:(1)如果两车同时出发,几小时后相遇?(2)如果慢车比快车早出发3小时,当两车相遇时快车走了多远?2.A、曰两地相距400千米,甲、乙两车分别从A、B同时出发,相向而行.甲车的速度为每小时60千米,乙车的速度为每小时40千米,请问:(1)从出发算起,多久后甲、乙两车第一次相距100千米?(2)从出发算起,多久后甲、乙两车第二次相距100千米?3.甲、乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?4.冬冬步行上学,每分钟行75米.冬冬离家12分钟后,爸爸发现他忘了带文具盒,马上骑自行车去追,每分钟行375米.求爸爸追上冬冬所需要的时间.5.小轿车和大货车上午9点同时同向从甲地出发,小轿车每小时开60千米,大货车每小时开48千米.请问:下午几点的时候小轿车领先大货车72千米?6.一辆公共汽车早上6点从A城出发,以每小时40千米的速度向B城驶去.3小时后一辆小轿车以每小时75千米的速度也从A城出发到B城.当小轿车到达B城后,公共汽车离B城还有160千米.问:公共汽车什么时候到达B城?7.甲、乙两车同时从东、西两地出发,相向而行.甲每小时行36千米,乙每小时行30千米,两车在距离中点9千米处相遇,求东、西两地间的距离.8.小悦一家开车去外地旅游,原计划每小时行驶45千米.实际上,由于高速公路堵车,汽车每小时只行驶30千米,这样就晚到了2小时.请问:小悦一家在路上实际花了几个小时?9.甲从A地出发去召地办事情,下午1点出发,晚上7点准时到达.如果他想下午2点出发,晚上7点准时到达,每小时就必须多行2千米,求A、B两地之间的距离.10.甲、乙两人分别从A、B两地同时出发.如果相向而行,l小时后两人相遇;如果同向而行,3小时后甲追上乙.问:甲的步行速度是乙的几倍?11.甲、乙两人分别由A、曰两地同时出发,相向而行.A、B两地相距48千米,甲的速度是乙的3倍.请问:当甲、乙相遇的时候,甲走了多远?12.猎狗追兔子,猎狗的速度是兔子的2倍,兔子径直往兔洞里跑,猎狗则紧随其后.现在,猎狗距离洞口还有1000米,当猎狗跑到兔子现在的位置时,兔子距离洞口将还剩100米.问:现在兔子距离洞口多少米?最终兔子会被猎狗追上吗?1.小悦、冬冬骑车从甲地同时出发,同向而行.小悦的速度比冬冬的速度每小时快4千米,因此小悦比冬冬早20分钟通过途中的乙地,当冬冬到达乙地时,小悦又前进了8千米.求甲、乙两地之间的距离.2.甲、乙两人分别从A、曰两地同时出发,6小时后相遇在中点.如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇.请问:甲、乙两地相距多少千米?3.冬冬平时每天上学都是先步行10分钟后再跑步2分钟.某天他步行6分钟后就开始跑步,结果比平时早到了2分钟,请问:冬冬跑步的速度是步行速度的几倍?4.阿奇家离学校1000米,平时他步行25分钟后准时到校.有一天他晚出发10分钟,为避免迟到,阿奇先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是阿奇步行速度的6倍,请问:阿奇这天上学步行了多少米?5.甲、乙两车分别从A、B两站同时出发,相向而行.已知:甲车速度是乙车的2倍,甲、乙到达途中C站的时刻依次为5:00和17:00.问:两车是在几点相遇的?6.甲、乙两人分别由A、曰两地同时出发.如果相向而行,1小时后两人相遇;如果同向而行,且乙先出发2小时,那么甲3小时后追上乙,请问:甲的速度是乙的几倍?7.如图6-1所示,一条笔直的公路上有16个车站Al,A2,A,…,A16,已知相邻两站之间的距离都相等.有一天,甲、乙、丙三人都要从第1站去第16站.甲先出发,当甲到达第2站时,乙出发.当乙到达第3站时丙出发.如果丙在第4站追上乙,甲和丙同时到达第16站,那么甲的速度是乙的速度的几倍?8.甲、乙两人分别从相距24千米的A、B两地同时出发同向而行,一段时间后甲在 C点追上乙,如果甲每小时多走1千米,而乙每小时少走1千米,则甲追上乙的时间会少用2小时,且追上的地点与C点相距12千米.试问:如果甲、乙两人以原速分别从 A、日两地同时出发相向而行,需要几个小时相遇?。

四年级数学思维训练导引(奥数)第16讲 统筹与对策

四年级数学思维训练导引(奥数)第16讲  统筹与对策

第十六讲统筹与对策1.妈妈让冬冬给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.冬冬估算了一下,完成这些工作要花20分钟,为了尽快给客人沏茶,你认为最合理的安排,最少需要多少分钟?2.理发店里同时来了A、B、C三个顾客,A理板寸需要7分钟,艿理光头需要10分钟,C烫卷发需要40分钟.请问:如何安排这三个人的理发顺序才能使得他们三人所花的时间总和最短?这个最短的时间是多少?3.西点店里卖的面包都是5个一袋或3个一袋的,不拆开零售.已知5个一袋的售价是8元,3个一袋的售价是5元,要给47位同学每人发1个面包最少要花多少钱?4.如图16—1的方格屏幕上,每个小方格的边长是1厘米,一条贪吃蛇从左下角出发,沿着格线爬行,如果它想吃掉图中的3个“★",最少要爬多远?请画出路线,5.如图16-2所示,一条环形公路上有A、B、C、D四个仓库.A仓库存盐40吨,B仓库存盐5吨,C仓库存盐35吨,D仓库没有盐.现在要调整存放数量,计划A、B、C、D每个仓库各存盐20吨,已知每吨盐运1千米需要运费2元.试问:为完成上述调运计划,最少需要多少元运费?(图16—2中公路旁的数字表示相邻仓库间的里程数,单位为千米)6. 2008个小方格从左到右排成一行,甲、乙两人轮流在空格内放棋子,每人每次放一枚.规定如下:每个空格至多放一枚棋子;当甲放好一枚棋子后,乙必须在紧挨着这枚棋子的空格内放;而当乙放好棋子后,甲必须隔一个位子放;谁放不了就判谁输.如果乙一开始在左数第一个方格内放了一枚棋子,谁将有必胜策略?7.有9根火柴,甲、乙两人轮流取,规定每次可以取1根或者2根火柴,以取走最后一根火柴的人为胜者.试问:如果甲先取,谁有必胜的策略?8.有100根火柴,甲、乙两人轮流取,规定每次可以取1根、2根、3根或4根火柴,谁取到最后一根火柴谁输,甲先取.问:谁有必胜的策略?9.黑板上写有l,2,3,4,5,…,2009这些自然数,甲先乙后,两人轮流擦去一个自然数.如果最后剩下的两个自然数奇偶性不同,那么甲就胜,否则乙胜,请问:谁有必胜的策略,具体的策略是怎样的?10。

四年级数学上册汇总_ 思维训练

四年级数学上册汇总_ 思维训练

人教版小学四年级数学上册思维训练1..修花坛要用9 4 块砖,第一次搬来3 6 块,第二次搬来3 8 ,还要搬多少块?( 用两种方法计算)2.. 张老师买来一条绳子,长2 0 米剪下5 米修理球网,剩下多少米?3..食堂买来6 0 棵大白菜,吃了5 6 棵,又买来3 0 棵,现在还有多少棵大白菜?4 、小红有4 1 元钱,在文具店买了3 支钢笔,每支6 元钱,还剩多少元?5 、二(1 )班从书店买来了8 9 本书,第一组同学借了2 5 本,第二组同学借了3 8 本,还剩多少本?6 、果园里有桃树1 2 6 颗,是梨树棵数的3 倍,果园里桃树和梨树一共多少棵?7 、1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 1 0 =()8 、1 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 +1 9 =()9 、按规律填数。

( 1 ) 1 , 3 , 5 , 7 , 9 ,()( 2 ) 1 , 2 , 3 , 5 , 8 , 1 3 ()( 3 ) 1 , 4 , 9 , 1 6 ,(), 3 6( 4 ) 1 0 , 1 , 8 , 2 , 6 , 4 , 4 , 7 , 2 , ( )1 0 、在下面算式适当的位置添上适当的运算符号,使等式成立。

( 1 ) 8 8 8 8 8 8 8 8 = 1 0 0 0( 2 ) 4 4 4 4 4 = 1 6( 3 ) 9 8 7 6 5 4 3 2 1 = 2 21 1 、用0 、1 、2 、3 能组成多少个不同的三位数?1 2 . 小华参加数学竞赛,共有1 0 道赛题。

规定答对一题给十分,答错一题扣五分。

小华十题全部答完,得了8 5 分。

小华答对了几题?1 3 、2 ,3 , 5 , 8 , 1 2 ,(),()1 4 、1 , 3 , 7 , 1 5 ,(), 6 3 , ( )1 5 、1 , 5 ,2 , 1 0 ,3 , 1 5 ,4 ,(), ( ) 1 6 、○ 、△ 、☆ 分别代表什么数?( 1 )、○ + ○ + ○ = 1 8(2 )、△ + ○ = 1 4( 3 )、☆ + ☆ + ☆ + ☆ = 2 0○= ()△= ()☆= ()1 7 、△ + ○ = 9 △ + △ + ○ + ○ + ○ =2 5△ = ()○ = ()1 8 、有3 5 颗糖,按淘气—笑笑—丁丁—冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗?1 9 、雪帆小同学有3 0 0 元钱,买书用去5 6 元,买文具用去12 8 元,雪帆剩下的钱比原来少多少元?2 0 、5 个人5 天吃了5 个大馒头,照这个速度计算, 2 0 个人吃掉2 0 个大馒头要用多少天?2 1 、3 0 名学生报名参加美术小组或者书法小组。

四年级上册数学必考《年龄问题》思维训练

四年级上册数学必考《年龄问题》思维训练

四年级上册数学必考《年龄问题》思维训练1、父亲今年47岁,儿子21岁,几年前父亲的年龄是儿子的3倍?21-(47-21)÷(3-1)=21-13=8(年)答:8年前父亲的年龄是儿子的3倍。

2、今年叔叔21岁,小新5岁,几年后叔叔的年龄是小新的3倍?(21-5)÷(3-1)-5=3(年)答:3年后叔叔的年龄是小新的3倍3、爸爸比小强大30岁,明年爸爸的年龄是小强的3倍,今年小强几岁?30÷(3-1)-1=9(岁)打:今年小强9岁。

4、弟弟今年8岁,哥哥今年14岁,当二人年龄和是50岁时,弟弟和哥哥各几岁?14-8=6(岁)弟弟:(50-6)÷2=22(岁))哥哥:50-22=28(岁)5、哥哥和弟弟两人3年后年龄和是27岁,弟弟今年的年龄正好是哥哥和弟弟两人年龄的差。

哥哥和弟弟今年各多少岁?弟弟今年的年龄(27-3×2)÷(1+2)=7(岁)哥哥今年的年龄7×2=14(岁)答:弟弟今年7岁,哥哥14岁。

6、亮亮今年2岁,妈妈今年26岁,问几年后妈妈的年龄是亮亮的3倍?妈妈与亮亮的年龄差:26-2=24(岁)几年后亮亮的年龄:24÷(3-1)=12(岁)经过几年:12-2=10(年)7、父亲今年比儿子大30岁,3年后,父亲的年龄是儿子的4倍,儿子今年几岁?30÷(4-1)=10(岁)10-3=7(岁)答:儿子今年7岁。

8、爸爸妈妈今年的年龄和是82。

5年后爸爸比妈妈大6岁,今年爸爸妈妈两人各多少岁?解:设妈妈今年为X岁X+X+6=82X=38爸:38+6=44岁答:今年爸爸妈妈两人各44岁和38岁。

9、学生问老师多少岁,老师说:“当我像你这么大时,你刚3岁;当你像我这么大时,我已经48岁。

”求老师和学生现在的年龄。

年龄差为(48-3)÷3=15岁。

所以学生现在15+3=18岁老师现在18+15=33岁。

四年级数学思维训练导引(奥数)第17讲--数列与数表

四年级数学思维训练导引(奥数)第17讲--数列与数表

第十七讲数列与数表1.1,1,4,2,7,3,10,1,13,2,16,3,19,l,22,2,25,3, (100)请观察上面数列的规律,问:(1)这个数列一共有多少项?(2)这个数列所有数的总和是多少?2.观察数组(1,2,3),(3,4,5),(5,6,7),(7,8,9)的规律,求:(1)第20组中三个数的和;(2)前20组中所有数的和.3.一个数列的第一项是1,之后的每一项是这样得到的:如果前一项是一位数,接着的一项就等于前一项的两倍;如果前一项是两位数,接着的一项就等于前一项个位数字的两倍.请问:(1)第100项是多少?(2)前100项的和是多少?4.如图17-1,方格表中的数是按照一定规律填入的,请观察方格表,并填出“?”处的数.5.如图17-2,数阵中的数是按一定规律排列的,请问:(1) 100在第几行、第几列?(2)第20行第3列的数是多少?6.如图17-3,从4开始的自然数是按某种规律排列的,请问:(1) 100在第几行,第几列?(2)第5行第20列的数是多少?7.如图174所示,把偶数2、4、6、8,排成5列.各列从左到右依次为第1列、第2列、第3列、第4列和第5列,请问:(1) l00在第几行,第几列?(2)第20行第2列的数是多少?8.如图17-5,从1开始的自然数按某种方式排列起来,请问:(1) 100在第几行?100是这一行左起第几个数?(2)第25行左起第5个数是多少?9.如图17-6,把从1开始的自然数排成数阵,试问:能否在数阵中放人一个3×3的方框,使得它围住的九个数之和等于:(1) 1997; (2) 2016; (3) 2349.如果可以,请写出方框中最大的数.10.如图17-7,将1至400这400个自然数顺次填入20×20的方格表中,请问:(1)246在第几行,第几列?(2)第14行第13列的数是多少?(3)所有阴影方格中数的总和是多少?1.1,100,2,98,3,96,2,94,1,92,2,90,3,88,2,86,1,84, 0请观察上面数列的规律,请问:(1)这个数列中有多少项是27(2)这个数列所有项的总和是多少?2.一列由两个数组成的数组: (1,1),(1,2),(2,2),(1,3),(2,3),(3,3),(1,4),(2,4),(3,4),(4,4),(1,5),…,请问:(1)第100组内的两数之和是多少?(2)前55组中“5”这个数出现了多少次?3.有一列数,第一个数是3,第二个数是4,从第三个数开始,每个数都是它前面两个数的和的个位数.从这列数中取出连续的50个数,并求出它们的和,所得的和最大是多少?如果从中取出连续的500个数,500个数的和最大又是多少?4.如图17。

四年级数学思维训练全册(PDF版)

四年级数学思维训练全册(PDF版)

目录第1讲和、差的变化规律 (1)第2讲积、商的变化规律 (4)第3讲错中求解 (7)第4讲简单枚举 (13)第5讲图形的个数 (18)第6讲和倍问题(一) (21)第7讲和倍问题(二) (24)第8讲差倍问题(一) (28)第9讲差倍问题(二) (32)第10讲和差问题(一) (36)第11讲和差问题(二) (39)第12讲年龄问题 (42)第13讲归一问题 (45)第14讲归总问题 (49)第15讲数学开放题 (53)第16讲周期问题(一) (57)第17讲周期问题(二) (60)第18讲最佳方案 (63)第19讲加、减法的巧算 (67)第20讲乘、除法的巧算(一) (71)第21讲乘除法的巧算(二) (74)第22讲数列求和(一) (77)第23讲数列求和(二) (80)第24讲相遇问题 (82)第25讲追及问题 (86)第26讲植树问题 (89)第27讲火车过桥问题 (93)第28讲还原问题 (96)第29讲图形问题 (99)第30讲流水问题(一) (103)第31讲流水问题(二) (106)第32讲盈亏问题(一) (109)第33讲盈亏问题(二) (113)第34讲画线段图解决问题 (116)第35讲方阵问题 (120)第36讲页码问题 (123)四年级数学思维训练第1讲和、差的变化规律【专题导引】和、差的规律见下表(m≠0)2.两个数相加,一个数加3.另一个数也加3.和起什么变化?【例2】两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化?-1-关注每一个孩子的成长让每一位学生都有进步【思路导航】一个加数增加10,假如另一个加数不变,和就增加10。

现在要使和增加6,那么另一个加数应减少10-6=4。

【试一试】1.两个数相加,如果一个加数增加8,要使和增加15,另一个加数应有什么变化?2.两个数相加,如果一个加数增加8,要使和减少15,另一个加数应有什么变化?【例3】两数相减,如果被减数增加8,减数也增加8,差是否起变化?【思路导航】被减数增加8,假如减数不变,差就增加8;假如被减数不变,减数增加8,差就减少8。

四年级思维导引

四年级思维导引

四年级上学期第01讲,计算问题第03讲整数与数列【内容概述】等差数列的项和运算符号按某种规律排列所得算式的速算与巧算,这里有时要改变运算顺序,有时需通过裂项来实现求和。

按照给定的法则进行定义新运算。

较为复杂的整数四则运算问题。

【典型问题】2.计算:1000+999-998-997+996+995-994-993+…+108+107-106-105+104+193-102-101.=(1000+999-998-997)+(996+995-994-993)+…+(108+107-106-105)+(104+193-102-101)=4+4+…+4+4=[(1000-101)÷1+1]÷4×4=9004.利用公式l×l+2×2+…+n×n=n×(n+1)×(2×n+1)÷6,计算:15×15+16×16+…+21×21.=21×(21+1)×(2×21+1)÷6-14×(14+1)×(2×14+1)÷6=3311-1015=22966.计算:3333×5555+6×4444×2222.=3×1111×5×1111+6×1111×4×2×1111=15×1111×1111+2×3×1111×1111×4×2=1111×1111(15+48)=1111×1111×63=1111×1111×9×7=9999×7777=(1000-1)×7777=77770000-7777=777622238.两个十位数1111111111与9999999999的乘积中有几个数字是奇数?解1:1111111111×9999999999=1111111111×(10000000000-1)=11111111110000000000-1111111111=1111111118888888889有10个数为奇数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超越篇 1. 观察下面算式的规律: 2000+1991-1988-1982+1976+1970-1964-1958+1952+1946-1940-1934+……一直这样写下去,那么最 后 4 个自然数分别是哪 4 个?符号分别是加还是减?算式最终的结果为多少?
2. 从 1, 2, ……, 9, 10 中任意选取一个奇数和一个偶数,并将两数相乘,可以得到一个乘积,把所有这样 的乘积全部加起来,总和是多少? 3. 计算:1-3+6-10+15-21+28-……+4950.
算:(1) 4 15
(2) 在算式( 7) 11=1056 中,方框里的数应该是多少?
6. 定义两种运算:a b=a-b+1, a b=a×b+1, 用“ ”、“ ”和括号填入下面的式子,使得等式成立(不
能用别的计算符号):7 3 4 5=2
7.现定义四种操作的规则如下: ①“一分为二”:如果一个自然数是偶数,就把它除以 2;如果是奇数,就先加上 1, 然后除以 2. 例如从 16 可以得到 8,从 27 可以得到 14. ②“丢三落四”:如果一个自然数中包含数字 “3”或“4”,就将其划掉,例如从 5304 可以得到 50,从 408 可以得到 8. (不含数字 3 和 4 的自然数不能进行“丢三落四”操作) ③“七上八下”:如果一个自然数中包含数字“7”,就将所有“7”移到最左边;如果一个自然数中包含数 字“8”,就将所有“8”移到最右边。例如从 98707 可以得到 77908,从 802 可以得到 28. (不含数字 7 和 8 的自然数不能进行“七上八下”操作) ④“十全十美”:将一个自然数的个位数字换成 0. 例如从 111 可以得到 110,从 905 可以得到 900. (个位是 0 的自然数不能进行“十全十美”操作) (1) 请写出对 4176 依次进行③①③②④操作后的结果: (2) 从 655687 开始,最少经过几次操作以后可以得到 0? (3) 一个三位数除了“丢三落四”外,其他三个操作各进行一次之后得到的结果是
2. 计算:(1) 56×22+56×33+56×44
(2) 222×33+889×66.
3. 计算:(1) 37×47+36×53
(2) 123×76-124×75。
4. 计算:100-99+98-97+96-95+…+12-11+10.
5. 计算:50+49-48-47+46+45-44-43+…-4-3+2+1.
6. 甲班和乙班共 83 人,乙班和丙班共 86 人,丙班和丁班共 88 人. 问:甲班和丁班共多少人?
7. 小悦、冬冬、阿奇三人去称体重,由于秤出了点问题,只能准确称出 60 千克与 90 千克之间的重量,因 此他们三人只能两个两个称重. 如果小悦和冬冬一起称,总重量是 73 千克;冬冬和阿奇一起称,总重量是 80 千克;阿奇和小悦一起称,总重量是 75 千克,三人的体重分别是多少千克?
2. 学校门口放有红、黄、蓝三种颜色的花. 其中黄花的盆数最多,既是红花盆数的 4 倍,也是蓝花盆数的 3 倍,如果蓝花比红花多 20 盆,请问:学校门口一共有多少盆花?
3. 动物园的饲养员给三群猴子分花生. 如果只分给第一群,则每只猴子可得 12 粒;如果只分给第二群, 则每只猴子可得 15 粒;如果只分给第三群,则每只猴子可得 20 粒,试问:现在将这些花生平均分给三群 猴子,每只可得多少粒?
10. 小悦和冬冬看同一本小说,小悦打算第一天看 50 页,接着每天看 15 页;冬冬则打算每天看 22 页,最 后两人正好在同一天看完,这本小说一共多少页?
11. 某食堂买来的大米的袋数是面粉的 4 倍,该食堂每天消耗面粉 20 袋,大米 60 袋,几天后面粉全部用 完,大米还剩下 200 袋,这个食堂买来大米多少袋?
12. 超市运来一批水果糖和巧克力糖,其中水果糖的颗数比巧克力糖的 3 倍还多 10 颗,售货员将这些糖包 装成相同的小袋,每袋内装了 3 颗巧克力糖和 7 颗水果糖,最后巧克力糖全部装完,水里糖还剩下 170 颗. 请问:这批糖果共有几颗水果糖,几颗巧克力糖?
超越篇 1. 在一次速算比赛中,每道题的分数是一样的. 前 20 道题中,小时做对了 15 道;余下的题中,他做对的 题仅是做错的一半,最后一共得了 50 分. 如果满分是 100 分,那么小明做对了多少道题?
8. 求有多少个这样的三位数. 图 1-2 是同学们都很熟悉的九九乘法口诀表,表中所有乘积的总和是多少?
第 2 讲 和差倍问题三 内容概述 数量关系复杂,需要深入分析的和差倍问题;由于数量大小改变,而产生倍数关系变化的问题;需要利用 比较或分组的方法进行分析的问题。 典型问题
兴趣篇 1. 有长、短两根竹竿,长竹竿的长度是短竹竿长度的 3 倍. 将它们插入水塘中,插入水中的长度都是 40 厘米,而露出水面部分的总长为 160 厘米. 请问:短竹竿露在外面的长度是多少厘米?
8. 四年级有甲、乙、丙、丁四个班,不算甲班,其余三个数的总人数是 131 人;不算丁班,其余三个班的 总人数是 134 人;乙、丙两班的总人数比甲、丁两班的总人数少 1 人. 问:这四个班共有多少人?
9. 某学生到工厂勤工俭学,按合同规定,干满 30 天,工厂将给他一套工作服和 70 玩钱,但由于学校另有 安排,他工作了 20 天后便中止了合同,工厂只给他一套工作服和 20 元钱. 请问:这套工作服值多少元?
6. 在不大于 1000 的自然数中,A 为所有个位数字为 8 的数之和,B 为所有个位数字为 3 的数之和. A 与 B
的差是多少?
7. 求图 1-1 中所有数的和.
8. 已知平方差公式: a2 b2 (a b) (a b) ,计算: 202 192 182 172 162 152 22 12
10. 一家汔车销售店有若干部福特汽车和丰田汽车等待销售. 福特汽车的数量是丰田汽车的 3 倍.如果每周 销售 2 辆丰田汽车和 4 辆福特汽车,丰田汽车销售完时还剩下 30 辆福特汽车. 请问:原有丰田汽车和福特 汽车各多少辆?
拓展篇 1. 李师傅将甲、乙两种零件加工成产品,开始时甲零件的数量乙零件的 2 倍,每件产品需要 5 个甲零件和 2 个乙零件,生产 30 件产品后,剩下的甲、乙零件数量相等,请问:李师傅还可以生产几件产品?
6. 计算:(1+3+5+7+…+199+201) -(2+4+6+8+…+198+200).
7. 计算:1+2+3+4+…+48+49+50+49+48+…+4+3+2+1.
8. 下面是一个叫做“七上八下”的数字游戏。游戏规则是:对一个给定的数,按照由若干个 7 和 8 组成的
口令进行一连串的变换。口令“7”是指在这个数中插入一个数字,使得新生成的数尽量大;口令“8”是
指将这个数中的一个数字去掉,也要使新生成的数尽量大。例如:给出的数是 1995,口令是“8→7,”在
第一个口令“8”发出后变成 995,在第二个口令“7”发出后变成 9995。
如果给出数“6595”以及口令“8→7→8→7→8→8”,问:变换后依次得到的 6 个数的和是多少?
9. 规定运算“ ”为:a b= (a+1) ×(b-1), 请计算:(1)8 10; (2) 10 8.
8. 小悦和妈妈一起去家具城挑选客厅的桌椅. 她们看中了两款,这两款桌椅都包含一张桌子和若干把椅子. 其中桌子的价钱一样,每把椅子的价钱也一样. 第一款桌椅中有 6 把椅子,总价为 700 元;第二款桌椅中 有 9 把椅子,总价为 970 元. 请问:一张桌子的价钱是多少元?
9. 小白兔与小黑兔一块去森林里采摘了一些胡萝卜,回家后它们就把胡萝卜平分了. 小白兔当天吃了 4 个 胡萝卜,小黑兔则一口气吃了 12 个胡萝卜. 小白免往后每天都吃 4 个胡萝卜;小黑兔因为第一天吃得太多, 往后每天只吃 2 个胡萝卜,最后它俩同时把自己的胡萝卜吃完. 小白兔与小黑兔一共采摘了多少个胡萝 卜?
9. 计算:951×949-52×48.
10. 规定运算“ ”为:a b=a+2b-2, 计算:(1) (8 7) 6; (2) 8 (7 6)
11. 规定运算“ ”为:a b=(a+1) ×(b-2). 如果 6 ( 5)=91, 那么方格内应该填入什么数?
12. 规定:符号“ ”为选择两数中较大的数的运算,“ ”为选择两数中较小的数的运算,例如:3 5=5, 3 5=3 请计算:1 2 3 4 5 6 7 … 100.(运算的顺序是从左至右)
2. 李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆中拿出 15 个放到乙堆中,则两堆 零件的个数相等;如果从乙堆中拿出 15 个放到甲堆中,则甲堆零件的个数是乙堆的 3 倍. 问:甲堆原来有 零件多少个?李师傅这一天共生产零件多少个?
3. 一个六边形广场的边界上插有 336 面红旗和黄旗. 六边形的每个顶点处都插有红旗,每条边上的红旗数 目一样多,并且每两面红旗间插有相同数目的黄旗. 已知每条边上黄旗比红旗的 2 倍还多 12 面,那么每两 面红旗间插有几面共旗?
ቤተ መጻሕፍቲ ባይዱ
(2) 42×137-80÷15+58×138-70÷15.
3. 计算:20092009×2009-20092008×2008-20092008.
4. 计算:1+2-3+4+5-6+7+8-9+……+97+98-99.
相关文档
最新文档