九年级上学期数学开学测试卷(二)(人教版)(含答案)

合集下载

人教版九年级数学上册二检参考答案.docx

人教版九年级数学上册二检参考答案.docx

初中数学试卷桑水出品2015—2016学年度(上)学期教学质量检测九年级数学试卷(二)参考答案试卷满分:150分一、选择题(每小题3分,共30分)1.B2.C3.D4.A5.D6.D7.A8.B9.C 10.C二、填空题(每小题3分,共24分) 11.120,2x x == 12.(2,0),(-4,0) 13.(1,-2) 14.3515.0或1 16.217.163π18. 23三、解答题(第19题10分,第20题12分,共计22分)19. 解:(1)连接OA.--------------------------------------------------------------------------------------1 由圆周角定理得:12∠AOC=∠ADC=30°,-------------------------------------------2 ∴∠AOC=60°--------------------------------------------------------------------------------3 ∵OC ⊥AB ,OA=OB∴∠BOC=∠AOC=60°-----------------------------------------------------------------------5(2)∠OBE=90°-∠BOC=30°,OE=12OB=2,BE=223OB OE -=---------8 S 阴影部分=S 扇形OBC -S △OBE =26021433313602ππ⨯--⨯⨯=----------------------------1020.第19题图解:(1)240÷40%=600,即本次参加抽样调查的居民有600人.--------------------------2 (2)扇形图A部分180÷600=30%,C部分1-10%-30%-40%=20%条形图C部分600-180-60-240=120补图正确-----------------------------------------------------------------------------------5 (3)8000×40%=3200,即估计爱吃D粽的人数为3200人-------------------------7第一个第二个A B C DA (A,B)(A,C)(A,D)B (B,A)(B,C)(B,D)C (C,A)(C,A)(C,A)D (D,A) (D,B) (D,C)----------------------------------------------------------------------------------------------------------9 共有12种结果,每种结果出现的可能性相同,--------------------------------------------10 满足条件的结果有3种,分别是(A,C)、(B,C)、(D,C)----------------------------------11∴小王第二个吃到的恰好是C粽的概率是P(第二次吃到C粽)=31124.------12四、解答题(第21题12分,第22题12分,共计24分)21.解:(1)取出黄球的概率是13---------------------------------------------------3(2)第一个球第二个球黄白红黄(黄,黄)(黄,白)(黄,红)第20题图白(白,黄)(白,白)(白,红)红(红,黄)(红,白)(红,红)----------------------------------------------------------------------------------------------------------7 共有9种结果,每种结果出现的可能性相同,----------------------------------------------9 满足条件的结果有1种,即(红,红)-----------------------------------------------------10 ∴两次取出的都是红色球的概率的概率是P(两次均为红球)=19-------------------------12 22.解:设钢产量的月平均增长率为x.---------------------------------------1则25000(1)5000(1)13200x x+++=--------------------------------6 化简得22575160x x+-=-------------------------------------------7解得:1120%5x==,2165x=-(不合题意,舍去)-------------------11 答:该厂钢产量的月平均增长率为20%.------------------------------------12五、解答题(12分)23.解(1)DE与⊙O相切,理由如下:----------------------------------------------------------1 连接OD交BC于M-----------------------------------------------------------------------2 ∵AB为直径∴∠ACB=90°∴∠MCE=180°-90°=90°-------------------------------------------------3 又∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAC∴∠OAD=∠DAE,∴∠ODA=∠DAE---------------------------------------------------------------------------------4 ∴MD∥CE又DE∥BC∴四边形CNDE为平行四边形----------------------------------------------------------------5第23题图∴∠ODE=∠MCE=90°-------------------------------------------------------------------------6 ∴DE 与⊙O 相切---------------------------------------------------------------------------------7 (2)∵MD ∥CE ∴∠DMC=∠ACB=90°∴BM=MC------------------------------------------------------------------------------------------8 又∵OA=OB∴OM=12AC=3-----------------------------------------------------------------------------------9 MD=OD-OM=12×10-3=2-----------------------------------------------------------------------10∵四边形CNDE 为平行四边形-----------------------------------------------------------------11 ∴CE=MD=2----------------------------------------------------------------------------------------12 六、解答题(12分)24. 解:(1)设甲、乙两种商品的进货单价分别为x 元和y 元.------------------------------------1 则3327x y x y +=⎧⎨+=⎩------------------------------------------------------------------------------------------3解得12x y =⎧⎨=⎩----------------------------------------------------------------------------------------------5答:甲、乙两种商品的进货单价分别为1元和2元.-------------------------------------------6 (2)设商店每天销售甲、乙两种商品获取的总利润w 元 则2(21)(500100)(32)1300100050018000.1mw m m m =--+⨯+-⨯=-++-----8 21000(0.25)1862.5w m =--+∵a=-1000<0,抛物线开口向下对称轴为m=0.25,当m <0.25时,w 随m 的增大而增大∵m 为0.1的正整数倍,∴m=0.2时,w 有最大值1860元---------------------------------10 当m >0.25时,w 随m 的增大而增减小∵m 为0.1的正整数倍,∴m=0.3时,w 有最大值1860元---------------------------------11答:当m 等于0.2或0.3时,商店每天销售甲、乙两种商品获取的总利润最大,最大利润为1860元.-------------------------------------------------------------------------------------------12 七、解答题(12分) 25.(1)作EG ⊥OB 交AB 于G----------------------------------------------------------------------------1 ∴∠GEB=90°∴∠FEB+∠FEG=∠FEG+∠AEG=90°∴∠FEB=∠AEG-------------------------------------------------------------------------------------2 ∵四边形A BCD 是正方形∴∠GBE=45°,AB=AD ,∴∠BAD=90° ∴∠BGE=90°-45°=45°=∠GBE ,EB+ED=BD=22222AB AD AB AB +==-----------------------------------------------------------------------------------------------------------------3 ∴EB=EG ,BG=22222BG EB EG EG EB =+==-------------------------------4①∠FEB+∠BAE=∠AEG+∠BAE=∠BGE=45°---------------------------------------------------5 ②在△EBF 和△EGA 中∴△EBF ≌△EGA (SAS )---------------------------------------------------------------------------6 ∴BF=AG-------------------------------------------------------------------------------------------------7 ∴EB+ED=BD=2AB =2()2(2)22BG AG EB BF EB BF +=+=+∴ED -EB=2BF------------------------------------------------------------------------------------8 (分写:①3分,②5分)(2)补图正确----------------------------------------------------------------------------------------10 EB -ED=2BF---------------------------------------------------------------------------------12八、解答题(14分) 26解:(1)∵抛物线的对称轴为1x =第25题图a第25题图bEF EAFEB AEG EB EG =⎧⎪∠=∠⎨⎪=⎩∴抛物线的解析式可设为2(1)y a x k =-+-------------------------------------1 又抛物线经过A (-1,0),B (4,5)两点 ∴4095a k a k +=⎧⎨+=⎩------------------------------------------------------------2解得14a k =⎧⎨=-⎩-------------------------------------------------------------4∴抛物线的解析式可设为22(1)423y x x x =--=---------------------------5 (2)设直线AB 的解析式是y mx n =+ 所以045m n m n -+=⎧⎨+=⎩,解得11m n =⎧⎨=⎩∴1y x =+----------------------------------6设点P 坐标为(,)x y①当P 在线段AB 上时,如图①PQ=21(23)6x x x +---=,解得121,2x x ==,所以P 点坐标为(1,2)或(2,3) ------------------------------------------------------------------------8当P 在线段AB 延长线或反向延长线上时,如图②PQ=223(1)6x x x ---+=,解得2x =-或5x =所以P 点坐标为(-2,-1)或(5,6) -------------------------------------------------------------------------9 所以P 点坐标为(1,2)或(2,3)或(-2,-1)或(5,6)②存在---------------------------------------------------------------------------------------------------10 P 1(2,3),P 2(3,4),P 3(42,52)--,P 4(42,52)++---------------------------14第26题图。

九年级上学期数学开学试卷第2套真题

九年级上学期数学开学试卷第2套真题

九年级上学期数学开学试卷一、单选题1. 若分式的值为零,则x的值是()A . 0B . 1C . ﹣1D . ﹣22. 在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比,已知这本书的长为20cm,则它的宽约为()A . 12.36 cmB . 13.6 cmC . 32.36 cmD . 7.64 cm3. 下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④直角三角形的两个锐角互余;⑤同角或等角的补角相等.其中真命题的个数是()A . 2个B . 3个C . 4个D . 5个4. 使代数式有意义的x的取值范围()A . x>2B . x≥2C . x>3D . x≥2且x≠35. 下列二次根式中,属于最简二次根式的是()A .B .C .D .6. 如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为()A . 4B . 16C . 2D . 47. 如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A .B .C .D .8. 如果小磊将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为()A .B .C .D .9. 如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A .B .C .D .10. 如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A . 1B . 2C . 3D . 4二、填空题11. 某一时刻,身高1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得旗杆的影长是5m,则该旗杆的高度是________m.12. 经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种的可能性相同,则两辆汽车经过十字路口全部继续直行的概率为________.13. 命题“如果a=b,那么a2=b2”的逆命题是________.14. 当a=________时,最简二次根式与是同类二次根式.15. 一次函数y=ax+b图象过一、三、四象限,则反比例函数y= (x >0),在每一个象限内,函数值随x的增大而________.16. 如图,线段AC、BD交于点O,请你添加一个条件:________,使△AOB∽△COD.17. 如图,一束光线从y轴上的点A(0,1)出发,经过x轴上的点C反射后经过点B(6,2),则光线从A点到B点经过的路线长度为________.18. 如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y= 在第一象限经过点D.则k=________.三、解答题19. 化简或求值(1)(1+ )÷(2)1﹣÷ ,其中a=﹣,b=1.20. 计算(1)(2).21. 解方程:22. 在一个布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.(1)闭上眼睛随机地从袋中取出1只球,求取出的球是黑球的概率;(2)若取出的第1只球是红球,将它放在桌上,闭上眼睛从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?(3)若取出一只球,将它放回袋中,闭上眼睛从袋中再随机地取出1只球,两次取出的球都是白球概率是多少?(用列表法或树状图法计算)23. 如图,在正方形网格中,△OBC的顶点分别为O(0,0),B(3,﹣1)、C(2,1).(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′(________,________),C′(________,________);(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标(________,________).24. 如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.25. 某商店第一次用6000元购进了练习本若干本,第二次又用6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.(1)问:第一次每本的进货价是多少元?(2)若要求这两次购进的练习本按同一价格全部销售完毕后获利不低于4500元,问每本售价至少是多少元?26. 如图,一次函数y1=mx+n的图象与x轴、y轴分别交于A、B两点,与反比例函数y2= (x<0)交于点C,过点C分别作x轴、y轴的垂线,垂足分别为点E、F.若OB=2,CF=6,.(1)求点A的坐标;(2)求一次函数和反比例函数的表达式.27. 如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.∴AC垂直平分EF,∴EM=FM,∵OM=OA,∴EF垂直平分AM,∴AE=EM,∴AE=EM=FM=AF,∴四边形AEMF是菱形(1)求证:BE=DF(2)连接AC交EF于点D,延长OC至点M,使OM=OA,连结EM、FM,试证明四边形AEMF是菱形.28. 直线y=x+b与双曲线y= 交于点A(﹣1,﹣5).并分别与x轴、y轴交于点C、B.(1)直接写出b=________,m=________;(2)根据图象直接写出不等式x+b<的解集为________;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB 相似?若存在,请求出D的坐标;若不存在,请说明理由.29. 如图①,在矩形ABCD中,AB= ,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.(1)求△PEF的边长;(2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;(3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.。

人教版九年级(上)开学数学试卷(解析版)

人教版九年级(上)开学数学试卷(解析版)

人教版九年级(上)开学数学试卷一、选择题(每小题3分,满分36分)1.下列方程,是一元二次方程的是()①3y2+x=4,②2x2﹣3x+4=0,③,④x2=0A.①②B.①②④C.①③④D.②④2.一次函数y=5x﹣4的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限3.宁宁所在的班级有42人,某次考试他的成绩是80分,若全班同学的平均分是78分,判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的()A.中位数B.众数C.加权平均数D.方差4.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行另外一组对边相等的四边形是平行四边形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形5.若m是方程x2﹣2x﹣1=0的根,则1+2m﹣m2的值为()A.0 B.1 C.﹣1 D.26.抛物线y=﹣(x﹣3)2+1的顶点坐标为()A.(3,1)B.(﹣3,1)C.(1,3)D.(1,﹣3)7.如图,菱形ABCD的一边AB的中点E到对角线交点O的距离为4cm,则此菱形的周长为()A.8 cm B.16 cm C.16cm D.32 cm8.某水果种植基地2016年产量为80吨,截止到2018年底,三年总产量达到300吨,求三年中该基地水果产量的年平均增长率.设水果产量的年平均年增长率为x,则可列方程为()A.80(1+x)2=300B.80(1+3x)=300C.80+80(1+x)+80(1+x)2=300D.80(1+x)3=3009.在2015年聊城市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是()A.这次比赛的全程是500米B.乙队先到达终点C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快D.乙与甲相遇时乙的速度是375米/分钟10.已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+ac在直角坐标系中的图象大致为()A.B.C .D .11.如图,直线y =﹣x +4与x 轴、y 轴分别交于点A 、B 、C 是线段AB 上一点,四边形OADC 是菱形,则OD 的长为( )A .4.2B .4.8C .5.4D .612.将二次函数y =x 2﹣5x ﹣6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y =2x +b 与这个新图象有3个公共点,则b 的值为( )A .﹣或﹣12B .﹣或2C .﹣12或2D .﹣或﹣12二、填空题(每小题3分,满分18分)13.在函数y =中,自变量x 的取值范围是 .14.三角形的每条边的长都是方程x 2﹣6x +8=0的根,则三角形的周长是 .15.二次函数y =﹣2x 2﹣4x +5的最大值是 .16.一次函数y =kx +b (k 、b 为常数,且k ≠0)的图象如图所示,根据图象信息可得到关于x 的方程kx +b =4的解为 .17.已知A (x 1,y 1),B (x 2,y 2)在二次函数y =x 2﹣6x +4的图象上,若x 1<x 2<3,则y 1 y 2(填“>”、“=”或“<”)18.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<﹣4a;④<a<;⑤b>c.其中正确结论有(填写所有正确结论的序号).三、解答题19.(6分)解方程:(x﹣3)(x﹣1)=820.(6分)先化简,再求值:(1﹣)÷,其中x从0,1,2,3四个数中适当选取.21.(8分)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.22.(8分)已知关于x的一元二次方程:x2+(k﹣5)x+4﹣k=0(1)求证:无论k为何值,方程总有实数根;(2)若方程的一个根是2,求另一个根及k的值.23.(9分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图(如图),请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件A ,B 型商品的进价分别为多少元?(2)若该欧洲客商购进A ,B 型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件.已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出.设购进A 型商品m 件,求该客商销售这批商品的利润v 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y =x ﹣1,令y =0,可得x =1,我们就说1是函数y =x ﹣1的零点.已知函数y =x 2﹣2mx ﹣2(m +3)(m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为x 1和x 2,且,此时函数图象与x 轴的交点分别为A 、B (点A 在点B 左侧),点M 在直线y =x ﹣10上,当MA +MB 最小时,求直线AM 的函数解析式.26.(10分)如图(1),在平面直角坐标系xOy 中,直线y =2x +4与y 轴交于点A ,与x 轴交于点B,抛物线C1:y=﹣x2+bx+c过A,B两点,与x轴的另一交点为点C.(1)求抛物线C1的解析式及点C的坐标;(2)如图(2),作抛物线C2,使得抛物线C2与C1恰好关于原点对称,C2与C1在第一象限内交于点D,连接AD,CD,①请直接写出抛物线C2的解析式和点D的坐标②求四边形AOCD的面积;(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为直线y=2x+4上一点,是否存在以点M,Q,P,B为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案一、选择题1.解:①3y2+x=4中含有两个未知数,不是一元二次方程,故错误;②2x2﹣3x+4=0、④x2=0符合一元二次方程的定义,故正确;③是分式方程,故错误;故选:D.2.解:∵一次函数y=5x﹣4中,5>0,﹣4<0,∴图象经过一、三、四象限,故选:C.3.解:判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的中位数,故选:A.4.解:A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选:B.5.解:∵m是方程x2﹣2x﹣1=0的根,∴m2﹣2m﹣1=0,∴﹣m2+2m=﹣1,∴1+2m﹣m2=1﹣1=0.故选:A.6.解:抛物线y=﹣(x﹣3)2+1的顶点坐标为(3,1).故选:A.7.解:菱形的对角线互相垂直平分,又直角三角形斜边上的中线等于斜边的一半,根据三角形中位线定理可得:BC=2OE=8,则菱形的周长为8×4=32cm.故选:D.8.解:设水果产量的年平均年增长率为x,则可列方程为:80+80(1+x)+80(1+x)2=300.故选:C.9.解:由纵坐标看出,这次龙舟赛的全程是500m,故选项A正确;由横坐标可以看出,乙队先到达终点,故选项B正确;∵比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面,∴乙队的速度比甲队的速度慢,故C选项错误;∵由图象可知,乙队在1.1分钟后开始加速,加速的总路程是500﹣200=300(米),加速的时间是1.9﹣1.1=0.8(分钟),∴乙与甲相遇时,乙的速度是300÷0.8=375(米/分钟),故D选项正确.故选:C.10.解:由二次函数的图象可知,a>0,b<0,c<0,∵一次函数y=bx+ac,∴b<0,ac<0,∴一次函数y=bx+ac的图象经过第二、三、四象限,故选:D.11.解:∵直线y=﹣x+4与x轴、y轴分别交于点A,B,∴点A(3,0),点B(0,4),∴OA=3,OB=4,∴AB==5,∵四边形OADC是菱形,∴OE⊥AB,OE=DE,∴OA•OB=OE•AB,即3×4=5×OE,解得:OE=2.4,∴OD=2OE=4.8.故选:B.12.解:如图所示,过点B的直线y=2x+b与新抛物线有三个公共点,将直线向下平移到恰在点C处相切,此时与新抛物线也有三个公共点,令y=x2﹣5x﹣6=0,解得:x=﹣1或6,即点B坐标(6,0),将一次函数与二次函数表达式联立得:x2﹣5x﹣6=2x+b,整理得:x2﹣7x﹣6﹣b=0,△=49﹣4(﹣6﹣b)=0,解得:b=﹣,当一次函数过点B时,将点B坐标代入:y=2x+b得:0=12+b,解得:b=﹣12,综上,直线y=2x+b与这个新图象有3个公共点,则b的值为﹣12或﹣;故选:A.二、填空题(共6小题,每小题3分,满分18分)13.解:由题意,得3x+1≥0且x﹣2≠0,解得x≥﹣,且x≠2,故答案为:x≥﹣,且x≠2.14.解:由方程x2﹣6x+8=0,得x=2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.15.解:y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:7.16.解:观察图象知道一次函数y =kx +b (k 、b 为常数,且k ≠0)的图象经过点(3,4), 所以关于x 的方程kx +b =4的解为x =3,故答案为:x =3.17.解:二次函数y =x 2﹣6x +4对称轴为直线x =3,当x 1<x 2<3时,y 随x 增大而减小,所以y 1>y 2,故答案为>.18.解:①∵函数开口方向向上,∴a >0;∵对称轴在y 轴右侧∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴,∴c <0,∴abc >0,故①正确;②∵图象与x 轴交于点A (﹣1,0),对称轴为直线x =1,∴图象与x 轴的另一个交点为(3,0),∴当x =2时,y <0,∴4a +2b +c <0,故②错误;③∵二次函数y =ax 2+bx +c 的图象与y 轴的交点在(0,﹣1)的下方,对称轴在y 轴右侧,a >0,∴最小值:<﹣1, ∵a >0,∴4ac ﹣b 2<﹣4a ;∴③正确;④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确.综上所述,正确的有①③④⑤,故答案为:①③④⑤.三、解答题(共8小题,满分66分)19.解:(x﹣3)(x﹣1)=8,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,得x﹣5=0,x+1=0,x 1=5,x2=﹣1.20.【解答】解:(1﹣)÷=×=∵x﹣1≠0,x﹣2≠0,x﹣3≠0,∴x≠1,2,3,当x=0时,原式==﹣21.(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.22.解:(1)∵△=(k﹣5)2﹣4×1×(4﹣k)=k2﹣6k+9=(k﹣3)2≥0,∴无论k取任何值,方程总有实数根.(2)∵x=2是方程x2+(k﹣5)x+4﹣k=0的一个根,∴22+(k﹣5)×2+4﹣k=0,解得:k=2,设方程的另一个根为x1,则x•x1=4﹣k,即2×x1=2,x1=1,则方程的另一个根为1.23.解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:(3)全校最喜爱文学类图书的学生约有:1200×=480(人).24.解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,即0<a<10时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,即10<a≤80时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.25.解:(1)当m=0时,该函数的零点为和;(2)令y=0,得△=(﹣2m)2﹣4[﹣2(m+3)]=4(m+1)2+20>0∴无论m取何值,方程x2﹣2mx﹣2(m+3)=0总有两个不相等的实数根.即无论m取何值,该函数总有两个零点.(3)依题意有x1+x2=2m,x1x2=﹣2(m+3)由,解得m=1.∴函数的解析式为y =x 2﹣2x ﹣8.令y =0,解得x 1=﹣2,x 2=4∴A (﹣2,0),B (4,0)作点B 关于直线y =x ﹣10的对称点B ′,连接AB ′,则AB ’与直线y =x ﹣10的交点就是满足条件的M 点.易求得直线y =x ﹣10与x 轴、y 轴的交点分别为C (10,0),D (0,﹣10).连接CB ′,则∠BCD =45°∴BC =CB ’=6,∠B ′CD =∠BCD =45°∴∠BCB ′=90°即B ′(10,﹣6)设直线AB ′的解析式为y =kx +b ,则,解得:k =﹣,b =﹣1;∴直线AB ′的解析式为,即AM 的解析式为.26.解:(1)∵直线y =2x +4与y 轴交于点A ,与x 轴交于点B ,∴A (0,4),B (﹣2,0),∵抛物线C 1:y =﹣x 2+bx +c 过A ,B 两点,∴c =4,0=﹣×(﹣2)2﹣2b +4,解得b =∴抛物线C 1的解析式为:y =﹣x 2+x +4令y =0,得﹣x 2+x +4=0,解得x 1=﹣2,x 2=8∴C (8,0);(2)①∵抛物线C2与C1恰好关于原点对称,∴抛物线C2的解析式为y=+x﹣4,解方程组得:,,∵点D在第一象限内,∴D(4,6);②如图2,过D作DE⊥x轴于E,则OE=4,CE=OC﹣OE=8﹣4=4,DE=6,S四边形AOCD =S梯形AOED+S△CDE=(OA+DE)×OE+DE×CE=(4+6)×4+×6×4=32;(3)存在.过B作BN∥y轴,过M作MN∥x轴与BN交于点N,∵抛物线C2的解析式为y=+x﹣4=﹣,∴顶点M(﹣3,﹣),∴BN=,MN=1,抛物线C1的对称轴为:直线x=3,设P(3,m)①以点M,Q,P,B为顶点的四边形为平行四边形,若MQ为对角线,则BM∥PQ,BM=PQ∴Q(4,m+),又∵Q为直线y=2x+4上一点,∴m +=2×4+4,解得:m =∴P (3,); ②若BM 为对角线,设P (3,m ),Q (n ,2n +4),∵BM 中点坐标为(﹣,)∴,解得,∴P (3,),③若BQ 为对角线,∵BM ∥PQ ,BM =PQ ,∴Q (2,8),设P (3,m ),则m ﹣=8+0,解得:m =,∴P (3,)综上所述,存在以点M ,Q ,P ,B 为顶点的四边形为平行四边形,点P 的坐标为P (3,)或P (3,).。

人教版九年级数学上册第22章《二次函数》测试卷2(附答案)

人教版九年级数学上册第22章《二次函数》测试卷2(附答案)

人教版九年级数学上册第22章《二次函数》测试卷2(附答案)时间:100分钟 总分100分一、选择题(每小题3分,共30分。

每小题只有一个选项是符合题意的)1.下列函数关系中,y 是x 的二次函数的是 ( )A . y =2x +2B . y =√x 2+1C . y =x 2-xD . y =1x 2+1 2.下列函数中,当x >0时,y 随x 增大而增大的是 ( )A . y =-xB . y =3x 2C . y =-x 2D . y =-2x +13.下表是二次函数y =ax 2+bx +c (a ≠0)的自变量x 与函数y 的对应值,则方程 ax 2+bx +c =0的一个解x 的范围是 ( )A . 3.1<x <3.2B . 3.2<x <3.3C . 3.3<x <3.4D . 以上都不正确4.若抛物线y =(x +n )2+n (n 是常数)的顶点恰好在直线y =-2x -1上,则n 的值为( )A . -2B . -1C . 1D . 25.已知二次函数y =-x 2-2x +2,当0≤x ≤3时,函数y 的最小值为 ( )A . -13 B. -6 C . 1 D . 86.把二次函数y =x 2-4x -1的图象向左平移3个单位,再向上平移2个单位后,得到的图象所对应的二次函数表达式为 ( )A . y =x 2+2x +3B . y =(x -1)2+3C . y =x 2-2x -3D . y =x 2+2x -27.二次函数y =ax 2+4x +2(a ≠0)和一次函数y =ax -a (a ≠0)在同一平面直角坐标 系中的图象可能是 ( )A .B .C .D .8.现某农产品专卖店销售某种特产,其进价为每千克6元,按每千克12元出售。

为了扩大促销,实现如下方案:顾客一次购买这种特产不超过10千克时,每千克按12元销售;若一次购买该特产超过10千克时,每多购买1千克,销售单价降低0.2元,则该专卖店获得的最大利润为 ( )A . 150元B . 120元C . 100元D .80元x 3.1 3.2 3.3 3.4 y -0.4 -0.2 0.3 0.59.如图是二次函数y=ax2+bx+c(a≠0)的部分图象,有下列结论:①方程ax2+bx+c=0的两个根是x1=-3,x2=2;②3a+c>0;③a-b<m(am+b)(m≠-1,m为实数);④若点A(x1,y1),B(x2,y2)为抛物线上两点,当x1<-1<x2,且x1+x2>-2时,有y1<y2,其中正确的是()A. ①②B. ②③C. ③④D. ①④10.如图,在矩形ABCD中,AB=2,∠ACB=30°,动点P由点A出发,沿A→B→C的路径匀速运动,过点P作对角线AC的垂线,垂足为Q,设AQ=x,△APQ的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题(每小题3分,共18分)11.二次函数y=x2+4x-3图象的顶点坐标为_____________.12.如果二次函数y=(2m-4)x2+10x+m2-4的图象经过原点,那么m=________.13.已知矩形的周长是12cm,那么这个矩形的面积s(单位:cm2)与一条边长x(单位:cm)之间的关系式是______________.(要求写出自变量的取值范围)14.已知抛物线y=x2-bx-1的顶点坐标为[b2 ,−1−(b2)2],由此可知抛物线y=x2-bx-1的顶点运动轨迹为抛物线y=-x2-1,称顶点运动轨迹的函数为原函数的母函数,则二次函数y=x2-2mx-3的母函数为___________.15.如图,在平面直角坐标系中,点A,B的坐标分别为(-2,2),(-4,2),若抛物线y=ax2(a>0)与线段AB没有交点,则a的取值范围是_______________.16.已知二次函数y=x2-2ax+2a,其中a为实数,对称轴为直线x=3,将二次函数的图象向上平移6个单位,当m-1≤x≤m+2时,函数有最小值为12,则m的值为_________.三、解答题(共52分.解答应写出过程)17.(6分)已知y=y1-y2,其中y1与2x2+1成正比例,y2与x-2成正比例,且函数y的图象经过点(1,2)与点(2,9)。

初三开学测试数学试卷答案

初三开学测试数学试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. √4D. √0答案:C解析:有理数包括整数和分数,其中√4=2是一个整数,因此是有理数。

2. 已知a,b是方程x^2-3x+2=0的两个实数根,则a+b的值为()A. 1B. 2C. 3D. 4答案:C解析:根据韦达定理,方程x^2-3x+2=0的两个实数根a和b满足a+b=3。

3. 下列函数中,是反比例函数的是()A. y=x^2B. y=2x+3C. y=1/xD. y=3x答案:C解析:反比例函数的一般形式是y=k/x(k≠0),因此y=1/x是反比例函数。

4. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 80°C. 85°D. 90°答案:C解析:三角形内角和为180°,∠A+∠B+∠C=180°,代入已知角度得∠C=180°-60°-45°=75°。

5. 下列各式中,正确的是()A. (a+b)^2=a^2+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2+2ab+b^2D. (a-b)^2=a^2+2ab-b^2答案:C解析:根据完全平方公式,(a+b)^2=a^2+2ab+b^2,因此选项C正确。

6. 已知函数y=2x-1,若x=3,则y的值为()A. 5B. 4C. 3D. 2答案:A解析:将x=3代入函数y=2x-1中,得y=23-1=6-1=5。

7. 下列各数中,绝对值最大的是()A. -2B. -3C. 2D. 3答案:B解析:绝对值表示一个数到原点的距离,因此绝对值最大的数是距离原点最远的数,即-3。

8. 下列各式中,正确的是()A. a^2b^2=(ab)^2B. (a+b)^3=a^3+b^3C. (a-b)^3=a^3-b^3D.(a+b)^2=a^2+b^2答案:A解析:根据幂的乘方和积的乘方运算法则,a^2b^2=(ab)^2,因此选项A正确。

九年级数学上学期入学试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

九年级数学上学期入学试卷(含解析) 新人教版-新人教版初中九年级全册数学试题

2016-2017学年某某省某某中学九年级(上)入学数学试卷一、选择题:(每题2分,共30分)1.下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1 2.不等式(a﹣1)x>1的解集是x>,则a的取值X围是()A.a>1 B.a<1 C.a≠0 D.以上都不对3.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形4.下列因式分解正确的是()A.﹣a4+16=﹣(a2+4)(a2﹣4)B.x2﹣x﹣=(x﹣)2C.a4﹣2a+1=(a2+1)2D.9a2﹣1=(9a+1)(9a﹣1)5.下列变形正确的是()A.=B.=C.=D.=6.设a,b,c是三角形的三边,则多项式a2﹣b2﹣c2﹣2bc的值()A.等于0 B.大于0 C.小于0 D.无法确定7.若a是方程2x2﹣x﹣3=0的一个解,则6a2﹣3a的值为()A.3 B.﹣3 C.9 D.﹣98.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=79.下列一元二次方程中,没有实根的是()A.x2+2x﹣3=0 B.x2+x+=0 C.x2+x+1=0 D.﹣x2+3=010.已知,则的值为()A.B.C.2 D.11.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为()A.20米B.18米C.16米D.15米12.一次函数y=﹣x+3的图象如图所示,当﹣3<y<3时,x的取值X围是()A.x>4 B.0<x<2 C.0<x<4 D.2<x<413.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABC C.S△BCD=S△BOD D.BD=BC14.无论x为任何实数,x2﹣4x+9的取值X围为()A.x2﹣4x+9>9 B.x2﹣4x+9≥18 C.x2﹣4x+9≥5 D.x2﹣4x+9≤515.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22的值为()A.﹣3 B.3 C.﹣6 D.6二、填空题:(每题3分,共21分)16.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm2.17.方程(x+2)2=x+2的根是.18.已知=,则=.19.分式方程:1+=的解是.20.分解因式:2xy﹣x2﹣y2+1=.21.如果正整数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a=.22.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为.三、解答题:(共69分)23.解方程(若题目有要求,请按要求解答)(1)x2﹣4x+2=0(配方法);(2)x2+3x+2=0.24.设方程:x2+3x﹣5=0的两个实数根为x1、x2,不解方程,求下列代数式的值:(1)﹣;(2)x12+x22.25.化简:(﹣)•.26.解方程:.27.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.28.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?29.已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根:(2)若x1,x2是原方程的两根,且|x1﹣x2|=2,求m的值,并求出此时方程的两根.2016-2017学年某某省某某中学九年级(上)入学数学试卷参考答案与试题解析一、选择题:(每题2分,共30分)1.下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【考点】一元二次方程的定义.【分析】一元二次方程有四个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.(4)二次项系数不为0.【解答】解:A、3(x+1)2=2(x+1)化简得3x2+4x﹣4=0,是一元二次方程,故正确;B、方程不是整式方程,故错误;C、若a=0,则就不是一元二次方程,故错误;D、是一元一次方程,故错误.故选:A.2.不等式(a﹣1)x>1的解集是x>,则a的取值X围是()A.a>1 B.a<1 C.a≠0 D.以上都不对【考点】不等式的解集.【分析】根据不等式的性质可得a﹣1>0,由此求出a的取值X围.【解答】解:∵(a﹣1)x>1的解集是x>,∴不等式两边同时除以(a﹣1)时不等号的方向不变,∴a﹣1>0,∴a>1.故选A.3.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【考点】命题与定理.【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.4.下列因式分解正确的是()A.﹣a4+16=﹣(a2+4)(a2﹣4)B.x2﹣x﹣=(x﹣)2C.a4﹣2a+1=(a2+1)2D.9a2﹣1=(9a+1)(9a﹣1)【考点】提公因式法与公式法的综合运用.【分析】根据完全平方公式、平方差公式,可得答案.【解答】解:A、符合平方差公式,故A正确;B、平方和减乘积的二倍等于差的平方,故B错误;C、平方和减乘积的二倍等于差的平方,故C错误;D、平方差等于这两个数的和乘这两个数的差,故D错误;故选:A.5.下列变形正确的是()A.=B.=C.=D.=【考点】分式的基本性质.【分析】根据分式的基本性质进行选择即可.【解答】解:A、符合分式的性质3,分子分母同时乘以﹣1,正确;B、不符合分式的基本性质,故错误;C、不符合分式的基本性质,故错误;D、不符合分式的基本性质,故错误;故选A.6.设a,b,c是三角形的三边,则多项式a2﹣b2﹣c2﹣2bc的值()A.等于0 B.大于0 C.小于0 D.无法确定【考点】因式分解的应用;三角形三边关系.【分析】根据等边三角形的边相等,可得关于a的代数式,根据相反数的意义,可得答案.【解答】解:由a,b,c是三角形的三边,得a=b=c.a2>0.a2﹣b2﹣c2﹣2bc=a2﹣a2﹣a2﹣2a2=﹣3a2<0,故选:C.7.若a是方程2x2﹣x﹣3=0的一个解,则6a2﹣3a的值为()A.3 B.﹣3 C.9 D.﹣9【考点】一元二次方程的解.【分析】将a代入方程2x2﹣x﹣3=0中,再将其变形可得所要求代数式的值.【解答】解:若a是方程2x2﹣x﹣3=0的一个根,则有2a2﹣a﹣3=0,变形得,2a2﹣a=3,故6a2﹣3a=3×3=9.故选C.8.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=7【考点】解一元二次方程-配方法.【分析】利用配方法解已知方程时,首先将﹣3变号后移项到方程右边,然后方程左右两边都加上一次项系数一半的平方1,左边化为完全平方式,右边合并为一个非负常数,即可得到所求的式子.【解答】解:x2﹣2x﹣3=0,移项得:x2﹣2x=3,两边都加上1得:x2﹣2x+1=3+1,即(x﹣1)2=4,则用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是(x﹣1)2=4.故选:B9.下列一元二次方程中,没有实根的是()A.x2+2x﹣3=0 B.x2+x+=0 C.x2+x+1=0 D.﹣x2+3=0【考点】根的判别式.【分析】根据一元二次方程的根的判别式△=b2﹣4ac<0作出选择.【解答】解:A、∵△=4+12=16>0,∴本方程有两个不相等的实数根;故本选项错误;B、∵△=1﹣1=0,∴原方程有两个相等的实数根;故本选项错误;C、∵△=2﹣4=﹣2<0,∴本方程无实数根;故本选项正确;D、∵△=1>0,∴原方程有两个不相等的实数根;故本选项错误.故选C.10.已知,则的值为()A.B.C.2 D.【考点】分式的基本性质.【分析】设=k,则a=2k,b=3k,c=4k.将其代入分式进行计算.【解答】解:设=k,则a=2k,b=3k,c=4k.所以==,故选B.11.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为()A.20米B.18米C.16米D.15米【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】根据题意解:=,即,∴旗杆的高==18米.故选:B.12.一次函数y=﹣x+3的图象如图所示,当﹣3<y<3时,x的取值X围是()A.x>4 B.0<x<2 C.0<x<4 D.2<x<4【考点】一次函数的图象.【分析】由函数的图象直接解答即可.【解答】解:由函数的图象可知,当y=3时,x=0;当y=﹣3时,x=4,故x的取值X围是0<x<4.故选C.13.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABC C.S△BCD=S△BOD D.BD=BC【考点】等腰三角形的性质;角平分线的性质;线段垂直平分线的性质.【分析】求出∠C的度数即可判断A;求出∠ABC和∠ABD的度数,求出∠DBC的度数,即可判断B;根据三角形面积即可判断C;继而证得△BCD是等腰三角形,则可判断D.【解答】解:A、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,B、∵DO是AB垂直平分线,∴AD=BD,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD,∴BD是∠ABC的角平分线,正确,C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,D,∵∠ABD=36°,∠C=72°,∴∠BDC=72°,∴∠BDC=∠BCD,∴BD=BC,正确.故选C.14.无论x为任何实数,x2﹣4x+9的取值X围为()A.x2﹣4x+9>9 B.x2﹣4x+9≥18 C.x2﹣4x+9≥5 D.x2﹣4x+9≤5【考点】配方法的应用;非负数的性质:偶次方.【分析】运用配方法把原式化为一个完全平方式与一个常数和的形式,根据平方的非负性解答即可.【解答】解:∵x2﹣4x+9=(x﹣2)2+5,∵(x﹣2)2≥0,∴(x﹣2)2+5≥5,即x2﹣4x+9≥5.故选C.15.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22的值为()A.﹣3 B.3 C.﹣6 D.6【考点】根与系数的关系.【分析】由一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,根据根与系数的关系求得x1+x2=3,x1•x2=﹣1,又由x12x2+x1x22=x1x2•(x1+x2),即可求得答案.【解答】解:∵一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,∴x1+x2=3,x1•x2=﹣1,∴x12x2+x1x22=x1x2•(x1+x2)=﹣1×3=﹣3.故选A.二、填空题:(每题3分,共21分)16.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是 3 cm2.【考点】菱形的性质.【分析】由知菱形的两条对角线长分别为2cm,3cm,根据菱形的面积等于对角线乘积的一半,即可求得答案.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).故答案为:3.17.方程(x+2)2=x+2的根是x1=﹣2,x2=﹣1 .【考点】解一元二次方程-因式分解法.【分析】先移项得到(x+2)2﹣(x+2)=0,再把方程左边分解因式得到(x+2)(x+2﹣1)=0,原方程转化为x+2=0或x+2﹣1=0,然后解两个一元一次方程即可.【解答】解:∵(x+2)2﹣(x+2)=0,∴(x+2)(x+2﹣1)=0,∴x+2=0或x+2﹣1=0,故答案为x1=﹣2,x2=﹣1.18.已知=,则= ﹣.【考点】比例的性质.【分析】根据题意,设x=3k,y=4k,代入即求得的值.【解答】解:设x=3k,y=4k,∴==﹣.19.分式方程:1+=的解是x=5 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣3﹣3=4﹣x,解得:x=5,经检验x=5是分式方程的解.故答案为:x=520.分解因式:2xy﹣x2﹣y2+1= (1﹣x+y)(1+x﹣y).【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项可以利用完全平方公式分解因式,且与第4项可以继续利用平方差公式分解因式,所以应考虑2xy﹣x2﹣y2为一组.【解答】解:2xy﹣x2﹣y2+1=1﹣(x2﹣2xy+y2)=1﹣(x﹣y)2=(1﹣x+y)(1+x﹣y).故答案为:(1﹣x+y)(1+x﹣y).21.如果正整数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a= 5 .【考点】一元二次方程的解.【分析】分别将a和﹣a代入两个方程,相减即可确定a的值.【解答】解:∵正整数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x ﹣m=0的一个根,∴a2﹣5a+m=0,a2﹣5a﹣m=0,∴a2﹣5a=0,解得:a=0或a=5,∵a为正整数,∴a=5,故答案为:5.22.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为22 .【考点】菱形的性质.【分析】由菱形的性质得出AB=BC=4,AD∥BC,证明四边形AECF是平行四边形,得出CF=AE=3,AF=CE,再由角的互余关系求出∠BAE=∠E,得出BE=AB=4,求出CE,即可得出四边形AECF 的周长.【解答】解:∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴AF∥CE,∵AE⊥AC,CF⊥AC,∴AE∥CF,∴四边形AECF是平行四边形,∴CF=AE=3,AF=CE,∵AB=BC,∴∠BAC=∠BCA,∵AE⊥AC,∴∠EAC=90°,∴∠BAC+∠BAE=90°,∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴CE=4+4=8,∴四边形AECF的周长=2(AE+CE)=2(3+8)=22.故答案为:22.三、解答题:(共69分)23.解方程(若题目有要求,请按要求解答)(1)x2﹣4x+2=0(配方法);(2)x2+3x+2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方;(2)将方程左边的多项式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:(1)把方程x2﹣4x2=0的常数项移到等号的右边,得x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得x2﹣4x+4=2配方,得(x﹣2)2=2,直接开平方,得x﹣2=±,解得,x1=2+,x2=2﹣;(2)x2+3x+2=0,因式分解得:(x+1)(x+2)=0,解得:x1=﹣1,x2=﹣2.24.设方程:x2+3x﹣5=0的两个实数根为x1、x2,不解方程,求下列代数式的值:(1)﹣;(2)x12+x22.【考点】根与系数的关系.【分析】(1)根据韦达定理得出x1+x2=﹣3,x1x2=﹣5,再求出x1﹣x2=±=±=,代入﹣=即可得;(2)x12+x22=(x1+x2)2﹣4x1x2即可得.【解答】解:(1)∵方程:x2+3x﹣5=0的两个实数根为x1、x2,∴x1+x2=﹣3,x1x2=﹣5,∴x1﹣x2=±=±=,则﹣===;(2)x12+x22=(x1+x2)2﹣4x1x2=(﹣3)2﹣4×(﹣5)=29.25.化简:(﹣)•.【考点】分式的混合运算.【分析】首先利用分配律转化为乘法计算,对分式的分子和分母分解因式,计算乘法,然后对分式进行加法计算即可.【解答】解:原式=•﹣•=﹣+=26.解方程:.【考点】解分式方程.【分析】∵x2﹣4=(x+2)(x﹣2),∴最简公分母为(x+2)(x﹣2).方程两边都乘最简公分母,把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘(x+2)(x﹣2),得:x(x+2)+2=(x+2)(x﹣2),即x2+2x+2=x2﹣4,移项、合并同类项得2x=﹣6,系数化为1得x=﹣3.经检验:x=﹣3是原方程的解.27.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.【考点】菱形的性质;平行四边形的判定与性质.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【解答】(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°﹣∠ABO=40°.28.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【考点】一元二次方程的应用.【分析】(1)先求出每件的利润.再乘以每月销售的数量就可以得出每月的总利润;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)由题意,得60=4800元.答:降价前商场每月销售该商品的利润是4800元;(2)设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x元,由题意,得(5x+60)=7200,解得:x1=8,x2=60∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.29.已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根:(2)若x1,x2是原方程的两根,且|x1﹣x2|=2,求m的值,并求出此时方程的两根.【考点】根的判别式;根与系数的关系.【分析】(1)根据关于x的一元二次方程x2+(m+3)x+m+1=0的根的判别式△=b2﹣4ac的符号来判定该方程的根的情况;(2)根据根与系数的关系求得x1+x2=﹣(m+3),x1•x2=m+1;然后由已知条件“|x1﹣x2|=2”可以求得(x1﹣x2)2=(x1+x2)2﹣4x1x2=8,从而列出关于m的方程,通过解该方程即可求得m的值;最后将m值代入原方程并解方程.【解答】(1)证明:∵△=(m+3)2﹣4(m+1)=(m+1)2+4,∵无论m取何值,(m+1)2+4恒大于0,∴原方程总有两个不相等的实数根.(2)∵x1,x2是原方程的两根,∴x1+x2=﹣(m+3),x1•x2=m+1,∵|x1﹣x2|=2∴(x1﹣x2)2=(2)2,∴(x1+x2)2﹣4x1x2=8,∴[﹣(m+3)]2﹣4(m+1)=8∴m2+2m﹣3=0,解得:m1=﹣3,m2=1.当m=﹣3时,原方程化为:x2﹣2=0,解得:x1=,x2=﹣,当m=1时,原方程化为:x2+4x+2=0,解得:x1=﹣2+,x2=﹣2﹣.。

九年级上学期数学开学考试试卷第2套真题

九年级上学期数学开学考试试卷第2套真题

九年级上学期数学开学考试试卷一、单选题1. 观察下列图形,是中心对称图形的是()A .B .C .D .2. 把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A .B .C .D .3. 若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A . (﹣1,0)B . (﹣1,﹣1)C . (﹣2,0)D . (﹣2,﹣1)4. 如图,绕点O逆时针旋转得到,若,则等于()A .B .C .D .5. 多项式分解因式的结果是()A .B .C .D .6. 若关于x的分式方程的解为x =2,则m的值为().A . 2B . 0C . 6D . 47. 在下列性质中,平行四边形不一定具有的是()A . 对边相等B . 对边平行C . 对角互补D . 内角和为360°8. 如图,DE是△ABC的中位线,若BC=8,则DE的长为()A . 2B . 4C . 6D . 89. 若一个凸多边形的内角和为720°,则这个多边形的边数为A . 4B . 5C . 6D . 710. 如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD 成为菱形,下列给出的条件正确的是()A . AB=ADB . AC=BDC . ∠ABC=90°D . ∠ABC=∠ADC11. 函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②P A与PB始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A . ①②③B . ②③④C . ①③④D . ①②④12. 定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l:经过点一组抛物线的顶点,,,…(n为正整数),依次是直线上的点,这组抛物线与轴正半轴的交点依次是:,,,…(n为正整数).若,当d为()时,这组抛物线中存在美丽抛物线.A . 或B . 或C . 或D .二、填空题13. 等腰三角形的一个底角为,则它的顶角的度数为________.14. 如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=1,则BC的长为________15. 若,则________.16. 已知方程的两个根分别是,,则________.17. 已知△ABC∽△DEF,若△ABC与△DEF的相似比为3∶4,则△ABC与△DEF的面积比为________.18. 如图,一个正方形摆放在桌面上,则正方形的边长为________.19. 如图,二次函数的图象经过点,对称轴为直线,下列5个结论:① ;②;③ ;④ ;⑤,其中正确的结论为________.(注:只填写正确结论的序号)20. 已知如图,正方形的边长为4,取边上的中点E,连接,过点B作于点,连接,过点A作于点H,交于点M,交于点N,则________.三、解答题21.(1)解不等式组;(2)分解因式:.22.(1)解分式方程:;(2)解方程:.23. 如图,在的正方形方格中,和的顶点都在边长为1的小正方形的顶点上.(1)填空:________,________;(2)判断与是否相似,并证明你的结论.24. 在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF︰FA的值.25. 列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?26. 如图,在平面直角坐标系中,矩形的顶点E 的坐标为,顶点G的坐标为,将矩形绕点O 逆时针旋转,使点F落在y轴的点N处,得到矩形,与交于点A.(1)求图象经过点A的反比例函数的解析式;(2)设(1)中的反比例函数图象交于点B,求出直线的解析式.27. 如图,二次函数的图象交x轴于A、B两点,交y轴于点D,点B的坐标为,顶点C的坐标为.(1)求二次函数的解析式和直线的解析式;(2)点P是直线上的一个动点,过点P作x轴垂线,交抛物线于点M,当点P在第一象限时,求线段长度的最大值;(3)在抛物线上是否存在异于、的点,使中边上的高?若存在求出点Q的坐标;若不存在请说明理由.。

2024年九年级上学期开学考数学(人教版)试题及答案

2024年九年级上学期开学考数学(人教版)试题及答案

九年级上学期开学摸底卷02 重难点检测卷【考试范围:人教版八下全部内容+九年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。

答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题2分,共20分)1.(2024·山东潍坊·模拟预测)计算()23−的结果是( )A .3B .9C .23D .3 2.(23-24八年级上·甘肃酒泉·期末)如图,一张长方形纸片剪去一个角后剩下一个梯形,则这个梯形的周长为( )A .30B .32C .34D .363.(23-24八年级下·云南昆明·期末)已知正比例函数的解析式为7x y =,下列结论正确的是( ) A .图象是一条线段B .图象必经过点(1,6)−C .图象经过第一、三象限D .y 随x 的增大而减小4.(23-24八年级下·湖北恩施·期末)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数5.(22-23八年级下·广东揭阳·期中)如图,在ABCD 中,对角线AC ,BD 交于点O ,下列结论一定成立的是( )A .AC BD ⊥B .=AC BD C .OB OD =D .ABC BAC∠=∠6.(22-23八年级下·四川广安·期末)如图,在作线段AB 的垂直平分线时,小聪是这样操作的:分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .平行四边形7.(23-24八年级上·安徽合肥·期末)下图中表示一次函数y mx n =+与正比例函数y mnx = (m ,n 是常数,且<0mn )图象是( )A .B .C .D .8.(23-24八年级下·云南昭通·期末)为了培养学生的数学核心素养,提高学生发现问题,分析问题,解决问题的能力.2024年昭通市某学校的156班组织了一次课外研学活动.在研学活动中,王宇同学欲控制遥控轮船匀速垂直横渡一条河,但由于水流的影响,实际上岸地点F 与欲到达地点E 相距10米,结果轮船在水中实际航行的路程HF 比河的宽度EH 多2米,则河的宽度EH 是( ).A .8米B .12米C .16米D .24米9.(2024·重庆·模拟预测)设一元二次方程()200ax bx ca ++=≠的两个根分别为1x ,2x ,则方程可写成()()12a x x x x 0−−=,即()212120ax a x x x ax x −++=.容易发现:12b x x a +=−,12c x x a=.设一元三次方程()3200ax bx cx d a +++=≠的三个非零实根分别为1x ,2x ,3x ,则以下正确命题的序号是( ) ①123b x x x a ++=−;②122313c x x x x x x a ++=;③123111cx x x d ++=;④123d x x x a =−. A .①②③ B .①②④ C .②③④ D .①③④10.(2023·湖北黄冈·模拟预测)如图,抛物线()20y ax bx c a ++≠与x 轴的一个交点坐标为(1,0)−,抛物线的对称轴为直线1x =,下列结论:①0abc <;②30a c +=;③当0y >时,x 的取值范围是13x −≤<;④点1(2,)y −,2(2,)y 都在抛物线上,则有120.y y <<其中结论正确的个数是( )A .2个B .3个C .4个D .5个二、填空题(8小题,每小题2分,共16分)11.(23-24八年级下·广东惠州·期中)如果最简二次根式1a +与21a −是同类二次根式,那么a = .12.(23-24八年级下·山西晋城·期末)若点()13,A y ,()25,B y 都在一次函数y x b =+的图象上,则1y 2y .(填“>”“<”“=”)13.(2024·四川乐山·二模)若关于x 的方程()22140x m x m −+++=两根互为负倒数,则m 的值为 .14.(22-23八年级下·广东惠州·阶段练习)如图,Rt ABC △中,90C ∠=°,AB 比AC 长1,3BC =,则AC = .15.(22-23八年级下·湖南衡阳·期末)如图,已知直线y ax b =+和直线y kx =交于点P ,则关于x ,y 的二元一次方程组y kx y ax b = =+ 的解是.16.(23-24八年级下·广东惠州·期中)如图,在平行四边形ABCD 中,DDDD 平分ADC ∠,5AD =,2BE =,则平行四边形ABCD 的周长是 .17.(22-23八年级下·湖北黄冈·期中)如图,电工黄师傅为了确定新栽的电线杆与地面是否垂直,他从电线杆上离地面2.5m 处向地面拉一条长6.5m 的缆绳,当黄师傅量得这条缆绳在地面的固定点距离电线杆底部距离为 m 时,这根电线杆便与地面垂直了.18.(2024·吉林·模拟预测)已知抛物线2y ax bx c ++(a ,b ,c 是常数,0a c <<)经过点()1m −,,其中0m >.下列结论:①0b <;②当12x >−时,y 随x 的增大而减小; ③关于x 的方程()20ax b m x c n ++++=有实数根,则n 是非负数;④代数式3m a b++的值大于0.其中正确的结论是(填写序号).三、解答题(8小题,共64分)19.(23-24八年级下·广东广州·期末)计算:()243332+−.20.(23-24八年级下·海南省直辖县级单位·阶段练习)用适当的方法解下列方程:(1)21690x −=;(2)231212x x −=−;(3)()33x x x +=+;(4)24240x x −+=.21.(23-24八年级下·广东广州·期末)如图,在 Rt ABC △中,90ACB ∠=°,68AC BC ==,,以点 A 为圆心,AC 长为半径画弧交AB 于点 D ,求BD 的长.22.(23-24八年级上·四川达州·期末)如图,在ABC 中,5cm AB =,26cm BC =,AD 是BC 边上的中线,12cm AD =,求ABC 的面积.23.(23-24八年级下·福建泉州·期末) 某公司随机抽取一名职员,统计了他一个月 (30天) 每日上班通勤费用通勤费用 (元/天) 0 48 36 天数(天) 8 12 64 (1)该名职工上班通勤费用的中位数是 元,众数是 元:(2)若该公司每天补贴该职员上班通勤费用6元,请你利用统计知识判断该职员是否还需自行补充上班通勤费用?24.(23-24八年级下·山东临沂·期中)如图,点D ,C 在BF 上,AC DE ∥,A E ∠=∠,BD CF =.(1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.25.(22-23八年级下·四川广安·期末)如图,已知函数12y x b =−+的图象与x 轴,y 轴分别交于点A 、B ,与函数y x =的图象交于点M ,点M 的横坐标为2,在x 轴上有一点(,0)P a (其中2)a >,过点P 作x 轴的垂线,分别交函数12y x b =−+和y x =的图象于点C 、D .(1)求点A 的坐标;(2)若OB CD =,求a 的值.26.(2024·山西晋中·模拟预测)鹰眼技术助力杭州亚运,提升球迷观赛体验.如图分别为足球比赛中某一时刻的鹰眼系统预测画面(如图1)和截面示意图(如图2),攻球员位于点O ,守门员位于点A ,OA 的延长线与球门线交于点B ,且点A ,B 均在足球轨迹正下方,足球的飞行轨迹可看成抛物线.水平距离s 与离地高度h 的鹰眼数据如表: /m s 0 9 12 1518 21 … /m h 0 4.2 4.8 5 4.8 4.2 …(2)求h关于s的函数解析式.九年级上学期开学摸底卷02 重难点检测卷【考试范围:人教版八下全部内容+九年级上衔接内容】注意事项:本试卷满分100分,考试时间120分钟,试题共26题。

人教版2020年九年级上学期开学考试数学试题(II)卷

人教版2020年九年级上学期开学考试数学试题(II)卷

一、单选题人教版 2020 年九年级上学期开学考试数学试题(II)卷姓名:________班级:________成绩:________1 . 如图,在 Rt△AOB 中,两直角边 OA,OB 分别在 x 轴的负非轴和 y 轴的正半轴上,且 tan∠ABO= 将△AOB绕点 B 逆时针旋转 90°后得到△A′O′B.若反比例函数 y= 的图象恰好经过斜边 A′B 的中点 C.则△ABO 的面 积 S△ABO 为( )A.2B.4C.6D.82 . 如图,在正方形中, 与 相交于点 .嘉嘉作,,在正方形外,, 交于点 ;淇淇作,,在正方形外, , 交于点 ,两人的作法中,能使四边形是正方形的是( )A.只有嘉嘉B.只有淇淇3 . 下列计算结果正确的是( )C.嘉嘉和淇淇D.以上均不正确A. ﹣ =1B. ÷ =2C. =D.﹣=44 . 有一组数据: , , ,…, ,它的平均数是 ,中位数是 ,众数是 ,方差是 ,则关于另第1页共7页一组数据:,,,…,的说法正确的是( )A.平均数是,标准差是B.中位数是,方差是C.众数是,标准差是5 . 下列条件中,不能判定四边形D.中位数是 ,方差是 是平行四边形的是( )A.B.C.D.6 . 平面直角坐标系内的点 A(-1,2)与点 B(-1,-2)关于( )A.y 轴对称B.x 轴对称C.原点对称7 . 用反证法证明“a<b”时应假设( )A.a>bB.a≤bC.a=bD.直线 y=x 对称 D.a≥b8 . 已知,,是反比例函数 的图象上的三点,且的大小关系是( ),则 、 、A.B.C.D.9 . 关于 x 的一元二次方程(m﹣1)x2+(2m+1)x+m2﹣1=0 的一根为 0,则 m 的值是( )A.m=1B.m=﹣110 . 如果关于 x 的一元二次方程C.m=1 或 m=﹣1D.m=﹣有两个不相等的实数根,那么 k 的取值范围是( )A.k<二、填空题B.k< 且 k≠0C.﹣ ≤k<D.﹣ ≤k< 且 k≠0第2页共7页11 . 若方程 x2﹣4x+3=0 的两根是等腰三角形的底和腰,则它的周长为_____.12 . 对于函数 y=,当函数 y﹤-3 时,自变量 x 的取值范围是____________ .13 . 要使分式有意义,则 x 应满足的条件是______.14 . 在△ABC 中,tanB= ,BC 边上的高 AD=6,AC=3 ,则 BC 长为_____.15 . 学校篮球集训队 11 名队员进行定点投篮训练,11 名队员在 1 分钟内投进篮筐的球数分别为 9、6、9、7、8、9、12、10、9、10、10,这组数据的中位数是.16 . 在平面直角坐标系 xOy 中,记直线 y=x+1 为 l.点 A1 是直线 l 与 y 轴的交点,以 A1O 为边作正方形 A1OC1B1,使点 C1 落在在 x 轴正半轴上,作射线 C1B1 交直线 l 于点 A2,以 A2C1 为边作正方形 A2C1C2B2,使点 C2 落在在 x轴 正 半 轴 上 , 依 次 作 下 去 , 得 到 如 图 所 示 的 图 形 . 则 点 B4 的 坐 标 是, 点 Bn 的 坐 标是.三、解答题17 . 已知一次函数 y=kx+k 的图象与反比例函数 y= 的图像在第二象限交于点 B(4,n),(1)求 n 的值(2)求一 次函数的解析式.18 . 某校组织代表队参加市“与经典同行”吟诵大赛,初赛后对选手成绩进行了整理,分成 5 个小组( 表示成绩,单位:分). 组:; 组:,并绘制如下两幅不完整的统计图:; 组:; 组:; 组:第3页共7页请根据图中信息,解答下列问题: (1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中, 组人数占参赛选手的百分比是多少?它对应的圆心角是多少度?(3)学校准备组成 8 人的代表队参加市级决赛, 组 6 名选手直接进入代表队,现要从 组中的两名男生和 两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中两名女生的概率。

人教版数学九年级上册第二单元测试试卷(含答案)(2)

人教版数学九年级上册第二单元测试试卷(含答案)(2)

人教版数学9年级上册第2单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若将双曲线y=2x向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是( )A.0<a<12B.12<a<1C.1<a<2D.2<a<32.(3分)已知抛物线y=﹣(x﹣m)2+2m过不同的两点A(a,n),B(b,n),则当点C(a+b,m)在该函数图象上时,m的值为( )A.0B.1C.0或1D.±13.(3分)抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n4.(3分)如果二次函数y=ax2+bx+c的图象全部在x轴的上方,那么下列判断中一定正确的是( )A.a>0,b>0B.a>0,b<0C.a>0,c<0D.a>0,c>0 5.(3分)已知:二次函数y=﹣x2+x+6,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=m与新图象有2个交点时,m的取值范围是( )A.m<―254B.m≤―254或m=0C.m<―254或m=0D.―254<m<06.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)中,x与y的部分对应值如表:x…﹣10124…y…﹣10.510.5﹣3.5…有下列结论:①函数有最大值,且最大值为1;②b=1;③若x 0满足a x 02+bx 0+c =0,则2<x 0<3或﹣1<x 0<0;④若方程ax 2+bx +c +m =0有两个不等的实数根则m <﹣1;其中正确结论的个数是( )A .1B .2C .3D .47.(3分)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x …﹣2﹣1012…y =ax 2+bx +c…tm﹣2﹣2n…且当x =―12时与其对应的函数值y >0,则下列各选项中不正确的是( )A .abc >0B .m =nC .a <83D .图象的顶点在第四象限8.(3分)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则下列结论正确的是( )A .x 1<﹣1<5<x 2B .x 1<﹣1<x 2<5C .﹣1<x 1<5<x 2D .﹣1<x 1<x 2<59.(3分)已知二次函数y =x 2+bx +c ,当m ≤x ≤m +1时,此函数最大值与最小值的差( )A .与m ,b ,c 的值都有关B .与m ,b ,c 的值都无关C .与m ,b 的值都有关,与c 的值无关D .与b ,c 的值都有关,与m 的值无关10.(3分)已知二次函数y =2x 2﹣4x ﹣1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是 .12.(3分)已知抛物线y=x2与直线y=(k+2)x+1﹣2k的两个不同交点分别为A(x1,y1),B(x2,y2).若x1和x2均为整数,则实数k的值为 .13.(3分)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.14.(3分)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D (m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为 .15.(3分)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为 .三、解答题(共8小题,满分75分)16.(9分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若抛物线y=x2﹣(2k+1)x+k2+k与x轴相交于A、B两点,当OA+OB=5时,求k的值.17.(9分)如图,抛物线y=―12x2+2x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明△ABC为直角三角形.18.(9分)某科技公司生产一款精密零件,每个零件的成本为80元,当每个零件售价为200元时,每月可以售出1000个该款零件,若每个零件售价每降低5元,每月可以多售出100个零件,设每个零件售价降低x元,每月的销售利润为w元.(1)求w与x之间的函数关系式;(2)为了更好地回馈社会,公司决定每销售1个零件就捐款n(0<n≤6)元作为抗疫基金,当40≤x≤60时,捐款后每月最大的销售利润为135000元,求n的值.19.(9分)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,―94)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.20.(9分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c 经过B,C两点.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上的一动点,当点E到直线BC的距离最大时,求点E 的坐标;(3)Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,B,C 为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.21.(10分)如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.(10分)如图,抛物线y=﹣x2+ax与直线y=﹣x+b交于点A(4,0)和点C.(1)求a和b的值;(2)求点C的坐标,并结合图象写出不等式﹣x2+ax>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向右平移2个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.23.(10分)如图,抛物线y=ax2﹣2ax﹣3a与x轴交于A,B两点,与y轴交点为(0,﹣3),顶点为C.(1)求a的值;(2)求顶点C的坐标;(3)抛物线的对称轴与x轴交于点P,连接BC,BC的垂直平分线MN交直线PC 于点M,交BC于点N,求线段PM的长.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.B;4.D;5.C;6.C;7.C;8.A;9.C;10.D;二、填空题(共5小题,满分15分,每小题3分)11.x1=﹣3,x2=1.12.213.14 914.(﹣5,﹣4)或(0,1)15.1或―4 5三、解答题(共8小题,满分75分)16.(1)证明:∵Δ=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴无论k取何值时,方程总有两个不相等的实数根;(2)解:由x2﹣(2k+1)x+k2+k=0,解得:x1=k,x2=k+1,∴A(k,0),B(k+1,0),∵OA+OB=5,∴|k|+|k+1|=5,①当k<﹣1时,|k|+|k+1|=5变为﹣k﹣(k+1)=5,解得:k=﹣3;②当﹣1≤k<0时,|k|+|k+1|=5变为﹣k+k+1=5,此方程无解;③当k≥0时,|k|+|k+1|=5变为k+k+1=5,解得:k=2.综上所述,k的值为﹣3或k=2.17.(1)解:对于抛物线y=―12x22x+2,当y=0时,则―12x2+2x+2=0,解得x1=―x2=当x=0时,y=2,∴A(―0),B(0),C(0,2).(2)证明:连接AC,BC,∵OA OB=AOC=∠BOC=90°,∴AC22+22=6,BC2=(2+22=12,∴AC2+BC2=6+12=18;∵AB=(―∴AB2=(2=18,∴AC2+BC2=AB2,∴△ABC是直角三角形.18.解:(1)设每个零件售价降低x元,则每个零件的实际售价为(200﹣x)元,每月的实际销售量为(1000+x5×100),则w=(200﹣x﹣80)(1000+x5×100)=20x2十1400x+120000,∵x≥0200―x―80≥0,∴0≤x≤120,∴w与x之间的函数关系式为w=﹣20x2+1400x+120000(0≤x≤120);(2)设捐款后的实际利润为p元,则p=﹣20x2+1400x+120000﹣(1000+x5×100)n,整理得:p=﹣20x2+(1400﹣20n)x+120000﹣1000n,则p是x的二次函数,其对称轴为直线x=―140020n2×(20)=70n2,∵0<n≤6,∴32≤70n2<35,∵﹣20<0,∴函数图象开口向下,当40≤x≤60时,p随x的增大而减小,∴当x=40时,p有最大值135000,即﹣20×402+40(1400﹣20n)+120000﹣1000n=135000,解得:n=5.19.解:(1)设抛物线L1的表达式是y=a(x―1)2―9 4,∵抛物线L1过点A(﹣2,0),∴0=a(―2―1)2―9 4,解得a=1 4,∴y=14(x―1)2―94.即抛物线L1的表达式是y=14(x―1)2―94;(2)令x=0,则y=﹣2,∴C(0,﹣2).Ⅰ.当AC为正方形的对角线时,如图所示,∵AE3=E3C=CD3=D3A=2,∴点D3的坐标为(0,0),点E3的坐标为(﹣2,﹣2).设y=14x2+bx,则―2=14×22―2b,解得b=32即抛物线L2的解析式是y=14x2+32x.Ⅱ.当AC为边时,分两种情况,如图,第①种情况,点D1,E1在AC的右上角时.∵AO=CO=E1O=D1O=2,∴点D1的坐标为(0,2),点E1的坐标为(2,0).设y=14x2+bx+2,则0=14×22+2b+2,解得:b=―3 2,即抛物线L2的解析式是y=14x2―32x+2.第②种情况,点D2E2在AC的左下角时,过点D2作D2M⊥x轴,则有△AD2M≌△AD1O,∴AO=AM,D1O=D2M.过E2作E2N⊥y轴,同理可得,△CE2N≌△CE1O,∴CO=CN,E1O=E2N.则点D2的坐标为(﹣4,﹣2),点E2的坐标为(﹣2,﹣4),设y=14x2+bx+c,则―2=14×16―4b+c―4=14×4―2b+c,解得b=12c=―4,即抛物线L2的解析式是y=14x2+12x―4.综上所述:L2的表达式为:y=14x2+32x,y=14x2―32x+2或y=14x2+12x―4.20.解:(1)∵直线y=﹣x+4与x轴交于点C,与y轴交于点B,∴点B,C的坐标分别为B(0,4),C(4,0),把点B(0,4)和点C(4,0)代入抛物线y=ax2+x+c,得:16a+4+c=0,c=4,,解之,得a=―12,c=4,,∴抛物线的解析式为y=―12x2+x+4.(2)∵BC为定值,∴当△BEC的面积最大时,点E到BC的距离最大.如图,过点E作EG∥y轴,交直线BC于点G.设点E的坐标为(m,―12m2+m+4),则点G的坐标为(m,﹣m+4),∴EG=―12m2+m+4―(―m+4)=―12m2+2m,∴S△BEC=12EG⋅OC=12×4(―12m2+2m)=―m2+4m=―(m―2)2+4,∴当m=2时,S△BEC最大.此时点E的坐标为(2,4).(3)存在.由抛物线y=―12x2+x+4可得对称轴是直线x=1.∵Q是抛物线对称轴上的动点,∴点Q的横坐标为1.①当BC为边时,点B到点C的水平距离是4,∴点Q到点P的水平距离也是4.∴点P的横坐标是5或﹣3,∴点P的坐标为(5,―72)或(―3,―72);②当BC为对角线时,点Q到点C的水平距离是3,∴点B到点P的水平距离也是3,∴点P的坐标为(3,52 ).综上所述,在抛物线上存在点P,使得以P,Q,B,C为顶点的四边形是平行四边形,点P的坐标是(5,―72)或(―3,―72)或(3,52).21.解:(1)根据题意得:D (﹣2,0),C (2,0),E ((0,1),设抛物线的解析式为y =ax 2+1(a ≠0),把D (﹣2,0)代入得:4a +1=0,解得a =―14,∴抛物线的解析式为y =―14x 2+1;(2)在y =―14x 2+1中,令y =134―3=14得:14=―14x 2+1,解得x∴距离地面134米高处,隧道的宽度是;(3)这辆货运卡车能通过该隧道,理由如下:在y =―14x 2+1中,令y =3.6﹣3=0.6得:0.6=―14x 2+1,解得x =±5,∴|2x |≈2.53(m ),∵2.53>2.4,∴这辆货运卡车能通过该隧道.22.解:(1)∵抛物线y =﹣x 2+ax 的图象过点A (4,0),∴0=﹣42+a ×4,解得a =4,∵直线y =﹣x +b 的图象过点A (4,0),∴0=﹣4+b ,解得b =4;(2)由(1)得,抛物线解析式为y =﹣x 2+4x ,一次函数解析式为y =﹣x +4,联立方程组y =―x 2+4x y =―x +4,解得:x =1y =3或x =4y =0(舍去),∴点C 坐标为(1,3),由图象得不等式﹣x 2+ax >﹣x +b 的解集为:1<x <4;(3)∵抛物线y =﹣x 2+4x 的对称轴为直线x =2,∴C 点关于对称轴的对称点坐标为(3,2),又∵抛物线y =﹣x 2+4x 的顶点坐标为(2,4),∴当M (0,4)时,N 点坐标为(2,4),此时抛物线与线段MN 有一个交点,当M (4,0)时,此时抛物线与线段MN 有一个交点,当M (1,3)时,此时抛物线与线段MN 有两个交点,∴0≤x M ≤4且x M ≠1.23.解:(1)∵抛物线y =ax 2﹣2ax ﹣3a 与y 轴交点为(0,﹣3),∴﹣3a =﹣3,∴a =1,即a 的值为1;(2)∵a =1,∴抛物线y =ax 2﹣2ax ﹣3a =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点C 的坐标为(1,﹣4);(3)∵顶点C 的坐标为(1,﹣4),∴物线的对称轴为直线x =1,∴P (1,0),∵抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点,令y =0,则x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∴BP =2,PC =4,∴BC =∵MN 垂直平分BC ,∴CN =12BC MNC =90°,∴∠BPC =∠MNC .又∠MCN =∠BCP ,∴△MCN ∽△BCP ,∴CN CP =CM CB ,即4CM ,∴CM =52,∴PM =PC ﹣CM =4―52=32.即线段PM 的长为32.。

人教版九年级数学上册试卷(附答案解析)

人教版九年级数学上册试卷(附答案解析)

2022-2023学年人教版九年级数学上册暑假开学假期自主学习学情检测题(附答案)一、选择题(每小题3分,共12小题)1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)2.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A.y=(x+3)2﹣1B.y=(x+3)2+3C.y=(x﹣3)2﹣1D.y=(x﹣3)2+3 3.二次函数y=x2﹣2x+1与x轴的交点个数为()A.0个B.1个C.2个D.3个4.若,,为二次函数y=x2﹣4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2 5.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.6.若关于x的方程x2+px+q=0没有实数根,则函数y=x2﹣px+q的图象的顶点一定在()A.x轴的上方B.x轴的下方C.x轴上D.y轴上7.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+=0的根的情况是()A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根8.已知抛物线y =﹣x 2+x +6与x 轴交于点A ,点B ,与y 轴交于点C .若D 为AB 的中点,则CD 的长为()A .B .C .D .9.已知关于x 的二次函数y =x 2+(1﹣a )x +1,当x 的取值范围是1≤x ≤3时,y 在x =1时取得最大值,则实数a 的取值范围是()A .a =5B .a ≥5C .a =3D .a ≥310.二次函数y =x 2﹣x +m (m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a ﹣1时,函数值()A .y <0B .0<y <mC .y >mD .y =m11.当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为()A .﹣B .或C .2或D .2或或12.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x =2,且OA =OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④c ﹣a <0;关于x 的方程ax 2+bx +c =0(a ≠0)有一个根为﹣.其中正确的结论个数有()A .1个B .2个C .3个D .4个二、填空题(每小题3分,共6小题)13.已知函数,当m =时,它是二次函数.14.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣4﹣3﹣2﹣10…y…3﹣2﹣5﹣6﹣5…则y<﹣2时,x的取值范围是.15.已知抛物线y=ax2﹣2ax+c与x轴一个交点的坐标为(﹣1,0),则一元二次方程ax2﹣2ax+c=0的根为.16.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.17.二次函数y=ax2﹣12ax+36a﹣5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.=;(1)S△ABC(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为底边的等腰△ABP,使该三角形的面积等于△ABC的面积,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(共66分,共7小题)19.已知二次函数y=﹣x2+x+4.(1)确定抛物线的开口方向、顶点坐标和对称轴;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?20.抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,求抛物线的解析式.21.已知二次函数y=2x2+4x﹣6.(1)求图象与两坐标轴的交点坐标;(2)直接写出当x取何值时,y>0?(3)直接写出当﹣4<x<0时,求y的取值范围.22.已知抛物线y=x2+bx+c经过A(0,﹣1),B(3,2)两点.(1)求这个函数的解析式;(2)函数图象有最点,当x=时,y有最值是;(3)抛物线上是否存在点C,使△AOC的面积等于2?若存在,求出C点的坐标;若不存在,请说明理由.23.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.(3)在(2)的条件下,根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?25.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c (a<0)经过点A,B.(1)求a,b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求实数a的取值范围.(3)当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共12小题)1.解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.2.解:由题意得原抛物线的顶点为(0,1),∴平移后抛物线的顶点为(3,﹣1),∴新抛物线解析式为y=(x﹣3)2﹣1,故选:C.3.解:令y=0,则x2﹣2x+1=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×1=4﹣4=0,所以,二次函数与x轴有1个交点.故选:B.4.解:∵二次函数y=x2﹣4x﹣5=(x﹣2)2﹣9,∴当x>2时,y随x的增大而增大,当x≤2时,y随x的增大而减小,∵2>>>﹣,∴y1<y3<y2,故选:D.5.解:A、由抛物线可知,a>0,>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.6.解:∵关于x的方程x2+px+q=0没有实数根,∴△=p2﹣4q<0;而对于函数y=x2﹣px+q,∵△=(﹣p)2﹣4q=p2﹣4q<0,∴函数y=x2﹣px+q的图象的顶点一定在x轴的上方,故选:A.7.解:函数y=ax2+bx+c向上平移个单位得到y′=ax2+bx+c+,而y′顶点的纵坐标为﹣2+=﹣,故y′=ax2+bx+c+与x轴有两个交点,且两个交点在x轴的右侧,故ax2+bx+c+=0有两个同号不相等的实数根,故选:D.8.解:令y=0,则﹣x2+x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∵C(0,6)∴OD=4.5,OC=6,当x=0时,y=6,∴OC=6,∴CD==.故选:D.9.解:∵1≤x≤3时,y在x=1时取得最大值,∴﹣≥,解得a≥5.故选:B.10.解:∵对称轴是直线x=,0<x1<故由对称性<x2<1当x=a时,y<0,则a的范围是x1<a<x2,所以a﹣1<0,当x时y随x的增大而减小,当x=0时函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选:C.11.解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.12.解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴为直线x=2,∴﹣>0,∴b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>0,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;∵对称轴为直线x=2,∴﹣=2,即b=﹣4a,由图可知:x=1时y>0,∴a+b+c>0,∴b+c>﹣a>0,∴﹣4a+c>0,即c﹣a>0,故④错误;∵OA=OC=﹣c,∴A(﹣c,0),代入y=ax2+bx+c得:0=ac2﹣bc+c,两边同除以ac得:c﹣+=0,即﹣+c=0,∴a•(﹣)2+b•(﹣)+c=0,∴ax2+bx+c=0(a≠0)有一个根为﹣,故⑤正确;综上可知正确的结论有①③⑤,故选:C.二、填空题(每小题3分,共6小题)13.解:∵y=(m﹣1)x m2+1是二次函数,∴m2+1=2,∴m=﹣1或m=1(舍去此时m﹣1=0).故答案为:﹣1.14.解:从表格得到x=0与x=﹣2所对应的y值相同,∴函数的对称轴为直线x=﹣1,∴当x=﹣1时,函数有最小值,∴函数开口向上,∵y=﹣2,x=﹣3,由对称性可得x=1时,y=﹣2,∴y<﹣2时,﹣3<x<1,故答案为﹣3<x<1.15.解法一:将x=﹣1,y=0代入y=ax2﹣2ax+c得:a+2a+c=0.解得:c=﹣3a.将c=﹣3a代入方程得:ax2﹣2ax﹣3a=0.∴a(x2﹣2x﹣3)=0.∴a(x+1)(x﹣3)=0.∴x1=﹣1,x2=3.解法二:已知抛物线的对称轴为x==1,又抛物线与x轴一个交点的坐标为(﹣1,0),则根据对称性可知另一个交点坐标为(3,0);故而ax2﹣2ax+c=0的两个根为﹣1,3故答案为:﹣1,3.16.解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.17.解:∵抛物线的对称轴为直线x=﹣=6,∴x=4和x=8对应的函数值相等,∵在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,∴抛物线与x轴的交点坐标为(4,0),(8,0),把(4,0)代入y=ax2﹣12ax+36a﹣5得16a﹣48a+36a﹣5=0,解得a=.故答案为.18.解:(1)S△ABC=•BC•AC=•2•3=3,故答案为3.(2)如图取格点E、F,连接EF,与网格线交于点G,AB与网格线交于H,连接GH,取格点I,连接CI交GH于点P,连接PA、PB,△PAB即为所求.故答案为:如图取格点E、F,连接EF,与网格线交于点G,AB与网格线交于H,连接GH,取格点I,连接CI交GH于点P,连接PA、PB,△PAB即为所求.三、解答题(共66分,共7小题)19.解:(1)∵y=﹣x2+x+4=﹣(x﹣1)2+,∴抛物线开口向下,顶点坐标为(1,),对称轴为直线x=1;(2)当x<1时,y随x的增大而增大,当x>1时,y随x的增大而减小.20.解:由抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,可设抛物线为:y=a(x﹣2)2+4,把(1,2)代入得:2=a+4,解得:a=﹣2,所以抛物线为:y=﹣2(x﹣2)2+4,即y=﹣2x2+8x﹣4,21.解:(1)y=2x2+4x﹣6,与y轴交于(0,﹣6),令y=0得2x2+4x﹣6=0.解得:x1=﹣3,x2=1,∴抛物线与x轴交点为(﹣3,0),(1,0);(2)∵抛物线与x轴交点为(﹣3,0),(1,0),抛物线的开口方向向上,∴当x<﹣3或x>1时,y>0;=2×16﹣4×4﹣6=10.(3)当x=﹣4时,y最大值=2﹣4﹣6=﹣8.当x=﹣1时,y最小值所以﹣8<y<10.22.解:(1)∵抛物线y=x2+bx+c经过(0,﹣1),(3,2),∴,∴,∴二次函数的关系式为:y=x2﹣2x﹣1;(2)y=x2﹣2x﹣1=(x﹣1)2﹣2,∴抛物线的顶点坐标为(1,﹣2),又∵a>0,∴抛物线开口向上,有最低点,当x=1时,y有最小值﹣2,故答案为:低,1,小,﹣2;(3)∵A(0,﹣1),∴AO=1,=2=OA•h,∵S△AOC∴h=4,即:|x c|=4,当x=4时,y=16﹣8﹣1=7,当x=﹣4时,y=16+8﹣1=23,∴C(4,7)或(﹣4,23).23.解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0∴m>﹣1;(2)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m∴m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴,解得:,∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).(3)根据函数图象可知:x<0或x>3.24.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为322520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.25.解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即﹣≥0,解得:a≥﹣,故a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=×2×PQ×=1,则PQ=y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1±,故点P(﹣1,2)或(﹣1+,)或(﹣1﹣,﹣).。

九年级数学上学期入学试卷(含解析) 新人教版(2021-2022学年)

九年级数学上学期入学试卷(含解析) 新人教版(2021-2022学年)

2016—2017学年重庆市九年级(上)入学数学试卷一、选择题(4X10)1.下列是关于x的一元二次方程的是()A.B.(x﹣1)(x﹣5)=x2﹣5ﻩ C.x2=0 D.x2﹣2xy=12.画出如图中物体的俯视图,正确的是()A.B. C.ﻩD.3.若分式的值为0,则x的值为()A.1ﻩB.﹣1 C.±1ﻩD.04.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )A.AB=CD B.AD=BCﻩC.AB=BC D.AC=BD5.若x=3是关于x的方程x2﹣bx﹣3a=0的一个根,则a+b的值为()A.3ﻩB.﹣3ﻩC.9ﻩ D.﹣96.一个密闭不透明盒子中有若干个白球,现又放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再放回盒中,像这样共摸200次,其中40次摸到黑球,估计盒中大约有白球( )A.28个B.30个ﻩ C.32个ﻩ D.34个7.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O.过点O作OE⊥AC,交AD于点E.连接CE,则△CDE的周长为()A.3ﻩB.5ﻩC.8ﻩ D.11ﻬ8.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=9厘米,EF=12厘米,则边AD的长是()A.12厘米B.15厘米ﻩ C.20厘米ﻩ D.21厘米9.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是( )A.﹣3B.﹣2 C.﹣ﻩ D.10.如图,菱形OABC的顶点O为坐标原点,顶点A在x轴正半轴上,顶点B、C在第一象限,OA=2,∠AOC=60°,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的B′和C′处,且∠C′DB′=60°,某正比例函数图象经过B′,则这个正比例函数的解析式为( )A.y=﹣xﻩB.y=﹣ C.y=﹣ﻩ D.y=﹣x二、填空题(4X10)11.方程x2﹣4=0的解是.12.关于x的一元二次方程2x2+kx+1=0有两个相等的实根,则k=;方程的解为.13.如图,已知△ACP∽△ABC,AC=4,AP=2,则AB的长为.ﻬ14.如图:M为反比例函数图象上一点,MA⊥y轴于A,S△MAO=2时,k=.15.在分别写有﹣2,﹣1,0,1,2的五张卡片中随机抽取两张,所抽取的两个数差的绝对值大于1的概率为 .16.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是.17.若关于x的分式方程+=1有增根,则m=.18.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.19.如图,已知M是平行四边形ABCD中AB边的三等分点,BD与CM交于E,阴影部分面积为7,则平行四边形ABCD的面积为.20.在正方形ABCD中,点E为BC边上一点且CE=2BE,点F为对角线BD上一点且BF=2DF,连接A E交BD于点G,过点F作FH⊥AE于点H,连结CH、CF,若HG=2cm,则△CHF的面积是cm2.ﻬ三、解答题(共70分)21.解方程:(1)x2﹣4x+1=0(2)﹣=.22.先化简,再求值:,其中a满足方程a2+4a+1=0.23.如图,已知直线y=mx+b(m≠0)与双曲线y=(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.24.今年前两个月,全国商品住宅市场销售出现销售量和销售价格齐跌态势.数据显示,2016年前两个月,鲁能地产开发公司开发的鲁能星城13街区的销售面积一共8000平方米,其中1月份的销售面积不多于总面积的40%.(1)求鲁能地产开发公司开发的鲁能星城13街区2016年2月份最少销售了多少平方米?(2)鲁能地产前两月每平方米的售价为8000元,为了解资金链问题,公司决定从3月份开始,以降价促销的方式回笼资金.根据数据调查显示,每平方米销售单价下调a%,3月份销售面积将会在2月份最少销售面积的基础上增加(a+10)%,结果3月份总销售额为3456万元,求a的值.25.任意写一个个位数字不为零的四位正整数A,将该正整数A的各位数字顺序颠倒过来,得到四位正整数B,则称A和B为一对四位回文数.例如A=2016,B=6102,则A和B就是一对四位回文数,现将A的回文数B从左往右,依次顺取三个数字组成一个新数,最后不足三个数字时,将开头的一个数字或两个数字顺次接到末尾,在组成三位新数时,如遇最高位数字为零,则去掉最高位数字,由剩下的两个或一个数字组成新数,将得到的所有新数求和,把这个和称为A的回文数B作三位数的和.例如将6102依次顺取三个数字组成的新数分别为:610,102,26,261,它们的和为:610+102+26+261=999,把999称为2016的回文数作三位数的和.(1)请直接写出一对四位回文数:猜想一个四位正整数和回文数作三位数的和能否被111整除?并说明理由;(2)已知一个四位正整数1x1y(千位数字为1,百位数字为x且0≤x≤9,十位数字为1,个位数字为y且0≤y≤9)的回文数作三位数的和能被27整除,请求出x与y的数量关系.26.已知正方形ABCD中,点E在BC上,连接AE,过点B作BF⊥AE于点G,交CD于点F.(1)如图1,连接AF,若AB=4,BE=1,求AF的长;(2)如图2,连接BD,交AE于点N,连接AC,分别交BD、BF于点O、M,连接GO,求证:GO平分∠AG F;(3)如图3,在第(2)问的条件下,连接CG,若CG⊥GO,请直接写出的值.27.如图1,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3.(1)延长HF交AB于G,求△AHG的面积.(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B 重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图2).探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.ﻬ探究2:在运动过程中,延长HF交AB于G,三角形GEB能否为等腰三角形?若能,求出此时的t值;若不能,请说明理由.ﻬ2016-2017学年重庆市巴蜀中学九年级(上)入学数学试卷参考答案与试题解析一、选择题(4X10)1.下列是关于x的一元二次方程的是()A.B.(x﹣1)(x﹣5)=x2﹣5ﻩ C.x2=0 D.x2﹣2xy=1【考点】一元二次方程的定义.【分析】根据一元二次方程的定义进行判断.【解答】解:A、该方程属于分式方程,故本选项错误;B、由已知方程得到﹣6x﹣10=0,属于一元一次方程,故本选项错误;C、该方程符合一元二次方程的定义,故本选项正确;D、该方程中含有2个未知数,属于二元一二次方程,故本选项错误;故选:C2.画出如图中物体的俯视图,正确的是()A. B. C.ﻩD.【考点】简单组合体的三视图.【分析】俯视图是从上面看所得到的图形,因此找到从上面看所得到的图形即可.【解答】解:从上面看可得;故选D.3.若分式的值为0,则x的值为()A.1ﻩB.﹣1 C.±1ﻩD.0【考点】分式的值为零的条件.【分析】直接利用分式的值为零,则其分母不为零,分子为零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,﹣x﹣1≠0,∴x=1,故选:A.4.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BCﻩ C.AB=BCD.AC=BD【考点】矩形的判定.【分析】由四边形ABCD的对角线互相平分,可得四边形ABCD是平行四边形,再添加AC=BD,可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.【解答】解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.5.若x=3是关于x的方程x2﹣bx﹣3a=0的一个根,则a+b的值为( )A.3 B.﹣3 C.9ﻩD.﹣9【考点】一元二次方程的解.【分析】将x=3代入方程,得出32﹣3b﹣3a=0,然后利用等式的性质变形即可得到答案.【解答】解:∵x=3是关于x的方程x2﹣bx﹣3a=0的一个根,∴32﹣3b﹣3a=0,∴3a+3b=9,ﻬ∴a+b=3,故选A.6.一个密闭不透明盒子中有若干个白球,现又放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再放回盒中,像这样共摸200次,其中40次摸到黑球,估计盒中大约有白球()A.28个ﻩB.30个ﻩC.32个ﻩ D.34个【考点】用样本估计总体.【分析】设盒中大约有白球x个,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设盒中大约有白球x个,根据题意得: =,解得:x=32,则盒中大约有白球32个,故选C7.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O.过点O作OE⊥AC,交AD于点E.连接CE,则△CDE的周长为( )A.3B.5C.8 D.11【考点】平行四边形的性质.【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=8,继而可得△CDE的周长等于AD+CD.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=3,BC=5,∴AD+CD=8,∵OE⊥AC,∴AE=CE,ﻬ∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=8.故选:C.8.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=9厘米,EF=12厘米,则边AD的长是()A.12厘米ﻩ B.15厘米C.20厘米 D.21厘米【考点】翻折变换(折叠问题).【分析】利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.【解答】解:∵∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形.∵AD=AH+HD=HM+MF=HF,HF===15,∴AD=15厘米.故选:B.9.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是( )A.﹣3 B.﹣2ﻩC.﹣ D.【考点】解分式方程;解一元一次不等式组.【分析】根据不等式组无解,求得a≤1,解方程得x=,于是得到a=﹣3或1,即可得到结论.【解答】解:解得,∵不等式组无解,∴a≤1,解方程﹣=﹣1得x=,∵x=为整数,a≤1,∴a=﹣3或1或﹣1,∵a=﹣1时,原分式方程无解,故将a=﹣1舍去,∴所有满足条件的a的值之和是﹣2,故选B.10.如图,菱形OABC的顶点O为坐标原点,顶点A在x轴正半轴上,顶点B、C在第一象限,OA=2,∠AOC=60°,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的B′和C′处,且∠C′DB′=60°,某正比例函数图象经过B′,则这个正比例函数的解析式为( )A.y=﹣xﻩB.y=﹣C.y=﹣ﻩD.y=﹣x【考点】一次函数图象与几何变换;菱形的性质.【分析】ﻬ连接AC,求出△BAC是等边三角形,推出AC=AB,求出△DC′B′是等边三角形,推出C′D=B′D,得出CB=BD=B′C′,推出A和D重合,连接BB′交x轴于E,求出AB′=AB=2,∠B′AE =60°,求出B′的坐标即可求得正比例函数的解析式.【解答】解:连接AC,∵四边形OABC是菱形,∴CB=AB,∠CBA=∠AOC=60°,∴△BAC是等边三角形,∴AC=AB,∵将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,∴BD=B′D,CD=C′D,∠DB′C′=∠ABC=60°,∵∠B′DC′=60°,∴∠DC′B′=60°,∴△DC′B′是等边三角形,∴C′D=B′D,∴CB=BD=B′C′,即A和D重合,连接BB′交x轴于E,则AB′=AB=2,∠B′AE=180°﹣=60°,在Rt△AB′E中,∠B′AE=60°,AB′=2,∴AE=1,B′E=,OE=2+1=3,即B′的坐标是(3,﹣),设正比例函数的解析式为y=kx,∵正比例函数图象经过B′,∴﹣=3k,∴k=﹣.故选B.ﻬ二、填空题(4X10)11.方程x2﹣4=0的解是±2 .【考点】解一元二次方程—直接开平方法.【分析】首先把4移项,再利用直接开平方法解方程即可.【解答】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.12.关于x的一元二次方程2x2+kx+1=0有两个相等的实根,则k= ;方程的解为 x1=x2= .【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于k的等式,求出k的取值.【解答】解:∵a=2,b=k,c=1,方程有两个相等的实数根,∴△=b2﹣4ac=k2﹣8=0∴k=±2.把k=±2代入原方程,得2x2±2x+1=0,解得x1=x2=.13.如图,已知△ACP∽△ABC,AC=4,AP=2,则AB的长为8 .【考点】相似三角形的性质.【分析】根据相似三角形对应边的比相等即可求解.【解答】解:∵△ACP∽△ABC,∴AC:AB=AP:AC,∴4:AB=2:4,∴AB=8.故答案为:8.14.如图:M为反比例函数图象上一点,MA⊥y轴于A,S△MAO=2时,k=﹣4.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数y=(k≠0)系数k的几何意义得到S△AOM=|k|=2,然后根据k<0去绝对值得到k的值.【解答】解:∵AB⊥x轴,∴S△AOM=|k|=2,∵k<0,∴k=﹣4.故答案为﹣4.15.在分别写有﹣2,﹣1,0,1,2的五张卡片中随机抽取两张,所抽取的两个数差的绝对值大于1的概率为 0。

九年级上学期开学数学试卷第2套真题

九年级上学期开学数学试卷第2套真题

九年级上学期开学数学试卷一、选择题1. 计算a3•()2的结果是()A . aB . a3C . a6D . a92. 下列式子:①﹣2<0;②2x﹣3y<0;③x=3;④x+y.其中不等式的个数有()A . 1B . 2C . 3D . 43. 一个等腰三角形有一个角是40°,则它的底角是()A . 40°B . 70°C . 60°D . 40°或70°4. 把多项式4x2y﹣4xy2﹣x3分解因式的结果是()A . 4xy(x﹣y)﹣x3B . ﹣x(x﹣2y)2C . x(4xy﹣4y2﹣x2)D . ﹣x(﹣4xy+4y2+x2)5. 分式﹣可变形为()A . ﹣B .C . ﹣D .6. 关于x的方程(a﹣1)x2+x﹣2=0是一元二次方程,则a满足()A . a≠1B . a≠﹣1C . a≠±1D . 为任意实数7. 下列数值中不是不等式5x≥2x+9的解的是()A . 5B . 4C . 3D . 28. 如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线AC的长是()A . 1B .C . 2D . 29. 一元二次方程x2﹣8x﹣1=0配方后可变形为()A . (x+4)2=17B . (x+4)2=15C . (x﹣4)2=17D . (x﹣4)2=1510. 如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A . 8B . 10C . 12D . 1411. 如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC 先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()A . (4,3)B . (2,4)C . (3,1)D . (2,5)12. 如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A . x>﹣2B . x>0C . x>1D . x<1二、填空题13. 分解因式:x3﹣6x2+9x=________.14. 当m=2016时,计算:﹣=________.15. 如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D 到AB的距离是________.16. 若关于x的不等式组的解集是x>3,则m的取值范围是________.17. 如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=________°.18. 如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是________.三、解答题19. 解方程(1)﹣=1;(2)2x2﹣3x﹣2=0.20. 解不等式组:,并把解集在数轴上表示出来.21. 某小区在绿化工程中有一块长为18m、宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.22. 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE∥BC,DE∥AB.证明:(1)AE=DC;(2)四边形ADCE为矩形.23. 已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.24. 如图,等边△A BC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.25. 2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期数学开学测试卷(二)(人教版)
考查范围:八下+九上前两章 (满分120分,考试时间100分钟)
一、选择题(每小题3分,共30分)
1.
下列二次根式中,是最简二次根式的是( )
A
B .5
C
D .24
2. 下列函数属于二次函数的是( )
A .1
y x x =-
B .22(3)y x x =--
C .21
y x x
=-
D .22(1)1y x =+-
3. 下列命题是假命题的是( )
A .四个角相等的四边形是矩形
B .对角线相等的平行四边形是矩形
C .对角线垂直的四边形是菱形
D .对角线垂直的平行四边形是菱形
4. 如图,在平行四边形ABCD 中,BD =CD ,∠A =70°,CE ⊥BD 于E ,则
∠BCE 等于( ) A .20°
B .25°
C .30°
D .35°
A
B
C
D
E
5. 用配方法解一元二次方程x 2+4x -5=0,此方程可变形为( )
A .(x +2)2=9
B .(x -2)2=9
C .(x +2)2=1
D .(x -2)2=1
6. 甲、乙、丙、丁四名射击选手,在相同条件下各射靶10次,他们的成绩统
计如下表所示:
若要从他们中挑选一位成绩最高且波动较小的选手参加射击比赛,那么一般应选( ) A .甲
B .乙
C .丙
D .丁
7. 如图,在Rt △ABC 中,∠A =90°,∠B =30°,BC 的垂直平分线交AB 于点E ,
垂足为D ,若AE =1,则BE 的长为( ) A .2
B

C
D .1
A
B C
D E
8. 下列一元二次方程中没有实数根的是( )
A .2240x x +-=
B .2440x x -+=
C .2250x x --=
D .2340x x ++=
9. 已知一次函数y =(1-k )x +k ,若y 随着x 的增大而增大,且它的图象与y 轴交
于负半轴,则直线y =kx +k 的大致图象是( )
A B C D
10. 如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1 cm/s 的速度匀
速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( ) A .2
B

C .52
D

图1
A
图2
二、填空题(每小题3分,共
15分)
11. 在函数y =x 的取值范围是_______.
12. 已知关于x 的一元二次方程mx 2+5x +m 2-2m =0有一个根为0,则m =_____. 13. 某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:
工种
人数
每人每月工资/元
电工 5 7 000 木工 4 6 000 瓦工
5
5 000
现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差______(填“变小”、“不变”或“变大”).
14. 如图,把一张长是宽的2倍的矩形硬纸板,四周各剪去一个同样大小的正方
形,再折合成一个高为5 cm 的无盖的长方体盒子(纸板的厚度忽略不计).要使长方体盒子的底面积为600 cm 2
,则矩形硬纸板的宽为
_____cm .
15. 如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CE =2DE ;将△ADE
沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF ,下列结论:
①BG =GC ;②AG ∥CF ;③9
=10
FGC S △.其中正确的结论有_______.
(填上你认为正确的序号)
G
F
E
D C
B
A
三、解答题(本大题共8小题,共75分)
16. (8分)先化简,再求值:2222
22a b a b ab
a a
b b a b a b
-+÷--+--
,其中2a =
2b =+
17. (8分)解方程:
(1)x 2+4x -5=0; (2)x 2-3x +1=0.
18. (9分)在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同
学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A 代表睡眠时间8小时左右,B 代表睡眠时间6小时左右,C 代表睡眠时间4小时左右,D 代表睡眠时间5小时左右,E 代表睡眠时间7小时左右),其中扇形统计图中“E ”的圆心角为90°,请你结合统计图所给信息解答下列问题:
(1)共抽取了____名同学进行调查,同学们的睡眠时间的中位数是____小时左右,并将条形统计图补充完整;
(2)请你估计年级每个学生的平均睡眠时间约多少小时?
抽样调查中各种睡眠时间人数占总人数的扇形统计图
A
B 30%
C
D
E 抽样调查中各种睡眠时间人数占总人数的条形统计图
19. (9分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,AO =CO ,BO =DO ,
且∠ABC +∠ADC =180°.
(1)求证:四边形ABCD 是矩形.
(2)DF ⊥AC ,若∠ADF :∠FDC =3:2,则∠BDF 的度数是多少?
F
O
A B
C
D
20. (10分)已知一元二次方程x 2-4x +k =0有两个不相等的实数根.
(1)求k 的取值范围;
(2)如果k 是符合条件的最大整数,求此时方程的解.
21. (10分)如图,在平行四边形ABCD 中,对角线BD =12 cm ,AC =16 cm ,
AC ,BD 相交于点O ,若E ,F 是AC 上两动点,分别从A ,C 两点以相同的速度向C ,A 运动,其速度为0.5 cm/s .
(1)当E 与F 不重合时,四边形DEBF 是平行四边形吗?说明理由. (2)点E ,F 的运动过程中,问以D ,E ,B ,F 为顶点的四边形是否能为矩形?若能,求出此时的运动时间t 的值;若不能,请说明理由.
A
B
C
D
E F
O
22.(10分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一
段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果公司想要在这段时间内获得2 250元的销售利润,销售单价应定为多少元?
23.(11分)在平面直角坐标系xOy中,如果点A,点C为某个菱形的一组对角
的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形”.如图为点A,C的“极好菱形”的一个示意图.
已知点M的坐标为(1,1),点P的坐标为(3,3).
(1)点E(2,1),F(1,3),G(4,0)中,能够成为点M,P的“极好菱形”
的顶点的是__________.
(2)如果四边形MNPQ是点M,P的“极好菱形”.
①当点N的坐标为(3,1)时,求四边形MNPQ的面积;
②当四边形MNPQ的面积为8,且与直线y=x+b有公共点时,写出b的取值
范围.
【参考答案】
一、选择题
11. x ≥1 12. 2 13. 变大 14. 25
15. ①②③ 三、解答题
16. 原式=
2a b ab
a b
---;当2a =2b =+时,原式=33+.
17. (1)x 1=-5,x 2=1;
(2)1x =
,2x = 18. (1)20;6;作图略(A 类4人,E 类5人);
(2)年级每个学生的平均睡眠时间约6.3小时. 19. (1)证明略;
(2)∠BDF=18°. 20. (1)k 的取值范围为k <4;
(2)此时方程的解为x 1=1,x 2=3. 21. (1)是,理由略;
(2)能,此时t =4 s 或28 s .
22. (1)y 与x 的关系式为y =-2x 2+340x -12 000;
(2)当x =85时,y 的值最大; (3)销售单价应定为75元. 23. (1)F ,G ;
(2)①四边形MNPQ 的面积为4;②b 的取值范围为-4≤b ≤4.。

相关文档
最新文档