锅炉烟气成分

合集下载

燃气锅炉烟气余热利用的途径及技术要点

燃气锅炉烟气余热利用的途径及技术要点

燃气锅炉烟气余热利用的途径及技术要点燃气锅炉排出的烟气中含有大量余热,目前的燃气锅炉都安装有烟气余热回收装置,但一般都是利用锅炉回水与烟气进行热交换,只回收了烟气中的部分显热。

因燃气锅炉烟气中水蒸汽占比较大,且水蒸汽的汽化潜热较大,人们为了提高燃气的利用率,把目光投向了烟气冷凝潜热回收技术。

本文通过对燃气锅炉烟气的特点进行分析,结合烟气余热回收装置的方式,明确烟气余热回收的技术思路,对锅炉房的节能降耗,降低运行成本提供一些参考。

一、烟气组成及热能分析天然气与空气混合完全燃烧后产生的烟气中的主要成分是烟气中烟气温度变化所引起的热量转移为显热,水蒸汽所含的汽化潜热为潜热,也就是水在发生相变时,所释放或吸收的热量。

烟气中水蒸汽的体积含量在15-20%左右,潜热可占天然气的低位发热量的10.97%左右。

从此数据可以看出,潜热占排烟热损失的比重是很大的。

而利用潜热,必须要把烟气温度降低到水蒸汽露点温度以下,使烟气中的水分由气态变为液态,从而释放烟气潜热,才能实现。

二、烟气中水蒸汽露点温度的确定烟气中水蒸汽的体积含量在15-20%之间,露点温度一般为54-60ºC之间。

如天然气中含有H2S,烟气中还会有SO X。

SO X会与烟气中的水蒸汽结合形成硫酸蒸汽,硫酸蒸汽的酸露点温度要比水露点温度要高。

所以会使烟气中水蒸汽露点提高。

一般烟气中含量愈多,酸露点温度愈高。

由于酸露点温度计算复杂且实际烟气组分变化较大,所以在实际应用中采用酸露点分析仪实测一定工况下的酸露点温度。

一般烟气SO X含量在0.03%左右时,露点温度可按58-62ºC左右估算。

当烟气温度低于露点温度时,烟气中水蒸汽开始凝结,烟温低于露点温度愈大,水蒸汽的凝结率也愈大。

凝结率愈大,潜热回收比例也愈大。

所以为提高烟气余热回收效率,与烟气进行换热的冷媒温度低于露点温度多些,才能确实做到冷凝换热。

按表1估算,烟气余热回收装置的出口烟温一般低于露点温度20-30ºC,才可使水蒸汽凝结率达到70-80%。

燃气、燃煤锅炉废气排放参数及计算

燃气、燃煤锅炉废气排放参数及计算

锅炉废气锅炉废气燃气1工程使用3台5t/h〔两用一备〕锅炉提供热源,年运行6000小时,天然气使用量为5.4×106m3。

天然气燃烧会产生烟尘和SO2。

参照环境保护实用数据手册〔机械工业出版社〕及川气天然气成分〔总硫含量≤200mg/Nm3〕进展分析计算,工程锅炉年烟气产生量为5.6×107Nm3,燃烧产生污染物为烟尘:2.4kg/万m3,SO2:4.0kg/万m3。

工程烟尘量为1.30t/a,产生浓度为23.3mg/m3,SO2产生量为2.16t/a,产生浓度为38.8mg/m3,烟尘、SO2排放浓度能够满足GB13271-1996锅炉大气污染物排放标准二类区Ⅱ时段标准要求。

另外,根据GB13271-1996锅炉大气污染物排放标准要求,锅炉应设置15m高排气筒,通过同一15m高排气筒排放。

建立单位应根据GB/T16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法关于采样位置要求,在锅炉排气筒应设置检测采样孔。

采样位置应优先选择在垂直管段,应避开烟道弯头和断面急剧变化部位。

采样位置应设置在距弯头、阀门、变径管下游方向不小于6倍直径,和距上述部件上游方向不小于3倍直径处,对矩形烟道,其当量直径D=2AB/(A+B),式中A、B为边长。

在选定测定位置上开设采样孔,采样孔内径应不小于80mm,采样孔管应不大于50mm,不使用时应用盖板、管堵或管帽封闭,当采样孔仅用于采集气态污染物时,其内径应不小于40mm。

同时为检测人员设置采样平台,采样平台应有足够工作面积是工作人员平安、方便地操作,平台面积应不小于1.5m2,并设有1.1m高护栏,采样孔距平台面约为1.2-1.3m。

锅炉废气燃气2工程使用2台6t/h锅炉提供热源,每天运行20h,年运行5000h,天然气使用量为5.0×106m3。

天然气燃烧会产生烟尘和SO2。

根据环境统计手册,燃气锅炉烟气量计算公式如下:yQLVy=1.14-0.25+1.0161〔-1〕V0 4187其中:Vy——实际烟气量〔Nm3/ Nm3〕;y QL——燃料低位发热值〔kj/kg〕,天然气为38630kj/m3;α——过剩空气系数,α取1.2;yQL-250. V0——理论空气需要量〔Nm/kg〕,V0=0.2610003,经计算得V0:9.18。

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

根据环境统计手册煤渣包括煤灰和炉渣,锅炉中煤粉燃烧产生的叫粉煤灰,炉膛中排出的灰渣称为炉渣。

(1)炉渣产生量:Glz= B×A×dlz/(1-Clz)式中:Glz——炉渣产生量,t/a;B——耗煤量,t/a;A——煤的灰份,20%;dlz——炉渣中的灰分占燃煤总灰分的百分数,取35%;Clz——炉渣可燃物含量,取20%(10-25%);(2)煤灰产生量:Gfh= B×A×dfh×η/(1-Cfh)式中:Gfh——煤灰产生量,吨/年;B——耗煤量,800吨/年;A——煤的灰份,20%;dfh——烟尘中灰分占燃煤总灰分的百分比,取75%(煤粉炉75-85%);dfh=1-dlzη——除尘率;Cfh——煤灰中的可燃物含量,25%(15-45%);注:1)煤粉悬燃炉Clz可取0-5%;C f取15%-45%,热电厂粉煤灰可取4%-8%。

Clz、Cfh也可根据锅炉热平衡资料选取或由分析室测试得出。

2)d fh值可根据锅炉平衡资料选取,也可查表得出。

当燃用焦结性烟煤、褐煤或煤泥时,d fh值可取低一些,燃用无烟煤时则取得高一点。

烟尘中的灰占煤灰之百分比(d fh)表1 煤的工业分析与元素分析一、烟气量的计算:0V -理论空气需求量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); ar net Q ⋅-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料)); daf V -干燥无灰基挥发分(%);V Y -烟气量(Ng 或Nm 3/m 3/KNm 3(气体燃料)); α-过剩空气系数, α=αα∆+0。

1、理论空气需求量daf V >15%的烟煤:278.01000Q 05.1arnet 0+⨯=⋅V daf V <15%的贫煤及无烟煤:61.04145Q arnet 0+=⋅V 劣质煤ar net Q ⋅<12560kJ/kg :455.04145Q arnet 0+=⋅V 液体燃料:21000Q 85.0arnet 0+⨯=⋅V 气体燃料,ar net Q ⋅<10468kJ/Nm 3:1000Q 209.0arnet 0⋅⨯=V 气体燃料,ar net Q ⋅>14655kJ/Nm 3:25.01000Q 260.0arnet 0-⨯=⋅V 2、实际烟气量的计算(1)固体燃料无烟煤、烟煤及贫煤:0arnet Y )1(0161.177.041871.04Q V V -++⋅α=ar net Q ⋅<12560kJ/kg 的劣质煤:0arnet Y )1(0161.154.041871.04Q V V -++⋅α=(2)液体燃料:0arnet Y )1(0161.141871.1Q V V -+⋅α=(3)气体燃料:ar net Q ⋅<10468kJ/Nm 3时:0arnet Y )1(0161.10.141870.725Q V V -++⋅α=ar net Q ⋅>14655kJ/Nm 3时:0arnet Y )1(0161.125.041871.14Q V V -+-⋅α=炉膛过剩空气系数α表1.6-1.65;炉排垃圾锅炉:1.9-2。

烟气成分分析

烟气成分分析

实验三 烟气成分分析一、实验目的锅炉中燃烧产物的计算和测定主要是求出燃烧后的烟气量和烟气组成。

燃料燃烧后烟气的主要成分有:CO 2、SO 2 、O 2 、H 2 O 、N 2 、CO 等气体。

本实验使用奥氏烟气分析器测定干烟气的容积成分百分数。

通过实验使学生巩固烟气组成成分的概念,初步学会运用奥氏烟气分析器测定烟气成分的方法。

二、实验原理奥氏烟气分析器是利用化学吸收法按容积测定气体成分的仪器。

它主要由三个化学吸收瓶组成,利用不同化学药剂对气体的选择性吸收特性进行的。

吸收瓶Ⅰ内盛放氢氧化钾溶液(KOH ),它吸收烟气中的CO 2与SO 2气体。

在烟气成分中常用RO 2表示CO 2与SO 2容积总和,即RO 2=CO 2+SO 2。

其化学反应式如下:2KOH+CO 2→K 2CO 3 ;KOH+SO 2→K 2SO 3 ;吸收瓶Ⅱ内盛焦性没食子酸苛性钾溶液[C 6H 3(OK )3],它可吸收烟气中的RO 2与O 2气体。

当RO 2被吸收瓶Ⅰ吸收后,吸收瓶Ⅱ则吸收的烟气容积中的O 2气体。

焦性没食子酸苛性钾溶液吸收O 2的化学反应式为:4C 6H 3(OK )3 + O 2→2[(OK )3C 6H 2—C 6H 2(OK )3]+2 H 2 O吸收瓶Ⅲ内盛氯化亚铜的氨溶液[Cu (NH 3)2Cl ],它可吸收烟气中的CO 气体。

其化学反应式为:Cu (NH 3)2Cl+2CO → Cu (CO )2Cl+ 2NH 3;它同时也能吸收O 2气体。

故烟气应先通过吸收瓶Ⅱ,使O 2被吸收后,这样通过吸收瓶Ⅲ吸收的烟气只剩下一氧化碳CO 气体了。

综上所述,三个吸收瓶的测定程序切勿颠倒。

在环境温度下,烟气中的过饱和蒸汽将结露成水,因此在进入分析器前,烟气应先通过过滤器,使饱和蒸汽被吸收,故在吸收瓶中的烟气容积为干烟气容积,气体容积单位为Nm 3/Kg ,测定的成分为干烟气容积成分百分数,即CO 2+SO 2+O 2+CO+N 2=100%CO 2=%1002⨯gy CO V V (3-1); SO 2=%1002⨯gy SO V V (3-2); O 2 = %1002⨯gyO V V (3-3); CO = %100⨯gyCO V V (3-4);N 2 =%1002 gyN V V (3-5);三、实验仪器及材料1、奥氏烟气分析器主要部件:过滤器、量筒(100ml )、水准瓶、三通旋塞、吸收瓶 2、吸收剂配置⑴KOH 溶液:称取65gKOH 溶于130 ml 蒸馏水中。

锅炉烟气环境监测报告

锅炉烟气环境监测报告

锅炉烟气环境监测报告摘要本文报告了对某锅炉烟气环境进行了监测和分析的结果。

通过对烟气中的污染物进行采样和分析,我们评估了锅炉的燃烧效率和环境污染程度。

本次监测显示,锅炉在操作过程中产生的烟气污染物浓度均低于国家标准,符合环保要求。

1. 引言锅炉作为工业生产中常用的热能设备,其排放的烟气对环境和人类健康产生重要影响。

为了保证锅炉的正常运行和减少环境污染,烟气环境监测显得尤为重要。

本报告对某锅炉的烟气进行了全面的监测和分析。

2. 实验方法2.1 采样点的选择我们选择了离锅炉排烟口最近的位置作为采样点,以确保获取最准确的烟气数据。

2.2 采样设备我们使用了高精度的烟气采样器进行采样。

该采样器具有自动调节流量和稳定的温度控制,以确保样品的代表性和准确性。

2.3 采样参数我们设置了每小时采样一次,每次采样持续5分钟。

在每次采样之前,我们确保采样器处于稳定状态。

2.4 分析方法我们采用了标准的气体分析仪器对烟气中的污染物进行了分析。

在分析过程中,我们注意了仪器的准确性和稳定性,以保证数据的可靠性。

3. 实验结果3.1 烟气温度我们测得锅炉烟气的平均温度为200摄氏度,最高温度为250摄氏度。

温度的测量结果显示锅炉的燃烧效果良好。

3.2 烟气流量锅炉烟气的平均流量为10立方米/小时,最大流量为12立方米/小时。

3.3 烟气成分分析我们对烟气中的主要污染物进行了分析,包括二氧化硫、氮氧化物和颗粒物。

3.3.1 二氧化硫我们测得锅炉烟气中的二氧化硫浓度平均为20毫克/立方米,最高浓度为25毫克/立方米。

根据国家标准,二氧化硫的排放浓度应低于30毫克/立方米,因此锅炉的二氧化硫排放符合环保要求。

3.3.2 氮氧化物锅炉烟气中的氮氧化物浓度平均为30毫克/立方米,最高浓度为35毫克/立方米,低于国家标准要求的50毫克/立方米。

3.3.3 颗粒物锅炉烟气中的颗粒物浓度平均为5毫克/立方米,最高浓度为8毫克/立方米。

根据国家标准,颗粒物的排放浓度应低于20毫克/立方米,因此锅炉的颗粒物排放符合环保要求。

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

根据环境统计手册煤渣包括煤灰和炉渣,锅炉中煤粉燃烧产生的叫粉煤灰,炉膛中排出的灰渣称为炉渣。

(1)炉渣产生量:Glz= B×A×dlz/(1-Clz)式中:Glz——炉渣产生量,t/a;B——耗煤量,t/a;A——煤的灰份,20%;dlz——炉渣中的灰分占燃煤总灰分的百分数,取35%;Clz——炉渣可燃物含量,取20%(10-25%);(2)煤灰产生量:Gfh= B×A×dfh×η/(1-Cfh)式中:Gfh——煤灰产生量,吨/年;B—-耗煤量,800吨/年;A—-煤的灰份,20%;dfh-—烟尘中灰分占燃煤总灰分的百分比,取75%(煤粉炉75—85%);dfh=1-dlzη-—除尘率;Cfh--煤灰中的可燃物含量,25%(15—45%);注:1)煤粉悬燃炉Clz可取0—5%;C f取15%—45%,热电厂粉煤灰可取4%—8%。

Clz、Cfh也可根据锅炉热平衡资料选取或由分析室测试得出。

2)d fh值可根据锅炉平衡资料选取,也可查表得出.当燃用焦结性烟煤、褐煤或煤泥时,d fh值可取低一些,燃用无烟煤时则取得高一点.烟尘中的灰占煤灰之百分比(d fh)表1 煤的工业分析与元素分析表2 煤和矿化脱硫剂的筛分特征一、烟气量的计算:0V -理论空气需求量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); ar net Q ⋅-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料)); daf V -干燥无灰基挥发分(%);V Y -烟气量(Ng 或Nm 3/m 3/KNm 3(气体燃料)); α-过剩空气系数, α=αα∆+0.1、理论空气需求量daf V 〉15%的烟煤:278.01000Q 05.1arnet 0+⨯=⋅V daf V 〈15%的贫煤及无烟煤:61.04145Q arnet 0+=⋅V 劣质煤ar net Q ⋅〈12560kJ/kg :455.04145Q arnet 0+=⋅V 液体燃料:21000Q 85.0arnet 0+⨯=⋅V 气体燃料,ar net Q ⋅〈10468kJ/Nm 3:1000Q 209.0arnet 0⋅⨯=V 气体燃料,ar net Q ⋅>14655kJ/Nm 3:25.01000Q 260.0arnet 0-⨯=⋅V 2、实际烟气量的计算(1)固体燃料无烟煤、烟煤及贫煤:0arnet Y )1(0161.177.041871.04Q V V -++⋅α=ar net Q ⋅〈12560kJ/kg 的劣质煤:0arnet Y )1(0161.154.041871.04Q V V -++⋅α=(2)液体燃料:0arnet Y )1(0161.141871.1Q V V -+⋅α=(3)气体燃料:ar net Q ⋅<10468kJ/Nm 3时:0arnet Y )1(0161.10.141870.725Q V V -++⋅α=ar net Q ⋅〉14655kJ/Nm 3时:0arnet Y )1(0161.125.041871.14Q V V -+-⋅α=炉膛过剩空气系数α表1。

锅炉烟气量计算公式

锅炉烟气量计算公式

锅炉烟气总量
101424 m3/h
标态
标态 空气过剩系 数 标态
标态
系统漏风系数
K= 1.05
排放烟气温度
锅炉引风机额 定风量Q=
T=
165

170861 m3/h
由于空气中O2 的容积含量为
a= 1.45
Car Sar Har Oar 为C S H O 在煤中的含 量,直接代入 表中给出的数 字。
22.4 Nar
VN 2
0.79 V0
100 14 2
0.79 (1.4 1) V0.790为氮气
占空气比
6.3313 (Nm3/kg)
例,1.4为过 量空气系数
2N=N2
VO2 0.21(1.41)V0 0.4804 (Nm3/kg)
0.21为氧气 占空气百分 百,1.4为过 量空气
ka/kg
a.煤 中氢元素的氧 化 由式(2)可 知,1kgH2完 全燃烧后生成 44.8/4.032≈ 11.11(m3)的 水蒸气,所以 1kg煤中的氢 燃烧后生成的 水蒸气的体积 为:
c.随空气带 入的水蒸气
式(4)、式(5) 、式(6)相加即 得到烟气中水 蒸气的体积:
所以烟气中含 量为:
Vy VCO2 VN2 VSO2 VH2O VO2
1、燃煤成 分
序号 1 2 3 4 6 5 8 7 9
名称
碳 氢 氧 硫 氮 全水分 灰分 低位发热量
符号
单位
收到基原素分析
C

H

O

S

N

Mar

Aar

Qent.ar
kJ/kg

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

根据环境统计手册(一)煤渣包括煤灰和炉渣,锅炉中煤粉燃烧产生的叫粉煤灰,炉膛中排出的灰渣称为炉渣。

(1)炉渣产生量:Glz= B×A×dlz/(1-Clz) 式中:Glz——炉渣产生量,t/a;B——耗煤量,t/a;A——煤的灰份,20%;dlz——炉渣中的灰分占燃煤总灰分的百分数,取35%;Clz——炉渣可燃物含量,取20%(10-25%);(2)煤灰产生量:Gfh= B×A×dfh×η/(1-Cfh) 式中:Gfh——煤灰产生量,吨/年;B——耗煤量,800吨/年;A——煤的灰份,20%;dfh——烟尘中灰分占燃煤总灰分的百分比,取75%(煤粉炉75-85%);dfh=1-dlzη——除尘率;Cfh——煤灰中的可燃物含量,25%(15-45%);注:1)煤粉悬燃炉Clz可取0-5%;C f取15%-45%,热电厂粉煤灰可取4%-8%。

Clz、Cfh 也可根据锅炉热平衡资料选取或由分析室测试得出。

2)d fh值可根据锅炉平衡资料选取,也可查表得出。

当燃用焦结性烟煤、褐煤或煤泥时,d fh值可取低一些,燃用无烟煤时则取得高一点。

烟尘中的灰占煤灰之百分比(d fh)表1 煤的工业分析与元素分析3 煤:煤矸石4:1 1.92 32.61 28.10 -- 0.48 -- -- -- -- 19.44表2 煤和矿化脱硫剂的筛分特征序号燃用煤名称配比(煤:矿化脱硫剂)10mm(%)8mm(%)6mm(%)5mm(%)4mm(%)2mm(%)2mm以下(%)1 高硫煤60:40 3.5 2.5 5.0 5.0 16.0 61.0 7.02 低硫煤6:40 2.5 2.0 3.0 2.5 10.0 68.5 11.53 煤:煤矸石4:1 -- 16.75 7.75 11.75 7.5 9.5 40.5 6.254 矿化脱硫剂-- -- -- 1.0 1.25 5.15 33.25 59.35 表3 煤的灰分成分全分析表序号名称SiO2 Al2O3 Fe2O3 CaO MgO TiO2 烧失量1 高硫煤47.26 17.49 17.00 9.01 1.44 0.76 --2 低硫煤56.62 27.98 3.99 3.29 1.70 -- --一、烟气量的计算:-理论空气需求量(Nm3/Kg或Nm3/Nm3(气体燃料));-收到基低位发热量(kJ/kg或kJ/Nm3(气体燃料));-干燥无灰基挥发分(%);VY-烟气量(Ng或Nm3/m3/KNm3(气体燃料));-过剩空气系数, =。

烟气成分分析

烟气成分分析

烟气成分分析及对热效率的影响分析摘要:介绍燃烧产物及烟道气体中氧气和一氧化碳的含量对炉窑热效率的影响,以及烟气分析关键词:燃烧效率;烟气,烟气成分,烟气分析仪燃料的燃烧,是可燃成分与空气中的氧进行的化合反应,在已知燃料成分和空气成分的情况下,就可根据所进行的氧化反应,确定其燃烧产物--烟气的成分。

例如:固体、液体燃料完全燃烧时,碳与氧化合生成二氧化碳,氢与氧化合生成水蒸汽,硫与氧化合生成二氧化硫。

除此之外,燃料中的水分汽化成水蒸汽,氮气化为氮气,还有空气中剩余的氮气及过量空气中的氧气等。

综上所述,燃料完全燃烧时,烟气的成分是:CO2、SO2、H2O、N2、和O2等。

随着人们对环保和节能意识的逐渐提高,众多大中型企业如钢铁冶金、石油化工、火力发电厂等,已将提高炉窑热效率、降低能源消耗、降低污染物排放、保护环境等作为企业可持续发展的重要途径。

钢铁行业的轧钢加热炉、电力行业的锅炉等燃烧装置和热工设备,是各行业的能源消耗大户。

因此,如何测量和提高燃烧装置的燃烧效率,确定最佳燃烧点十分重要。

燃料不完全燃烧时,一部分碳生成一氧化碳,还可能生成少量的氢气及碳氢化合物CmHn,所以,燃料在不完全燃烧时,烟气成分除了CO2、SO2、H2O、N2、和O2外,还有少量的CO、H2、CmHn等。

此外,烟气中尚有微量SO3和NOx它们都对环境造成污染。

其中SO3还是低温腐蚀的主要因素。

1 烟气成分对炉窑热效率的影响分析供给加热炉、锅炉等加热设备的燃料燃烧热并没有被全部利用。

以轧钢加热炉或锅炉为例,有效热是为了使物料加热或熔化(以及工艺过程的进行) 所必须传入的热量。

根据炉子热平衡可知,η= 1 -Q1 + Q2 + Q3 + Q4Q式中,η为炉窑热效率; Q 为供给炉子的热量,J ;Q1 为炉子烟气(废气) 中过剩空气带走的物理热,J ;Q2 为炉子烟气(废气) 中燃料不完全燃烧而生成的或未燃烧的CO 气带走的物理热,J ; Q3为炉子设备热损失(包括炉体散热、逸气损失、冷却水带走、热辐射等) ,J ;Q4 为其他热损失,J 。

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

燃煤锅炉灰渣、烟气量、烟尘、二氧化硫的计算

根据环境统计手册煤渣包括煤灰和炉渣,锅炉中煤粉燃烧产生的叫粉煤灰,炉膛中排出的灰渣称为炉渣。

(1)炉渣产生量:Glz= B×A×dlz/(1-Clz)式中:Glz——炉渣产生量,t/a;B——耗煤量,t/a;A——煤的灰份,20%;dlz——炉渣中的灰分占燃煤总灰分的百分数,取35%;Clz——炉渣可燃物含量,取20%(10-25%);(2)煤灰产生量:Gfh= B×A×dfh×η/(1-Cfh)式中:Gfh——煤灰产生量,吨/年;B——耗煤量,800吨/年;A——煤的灰份,20%;dfh——烟尘中灰分占燃煤总灰分的百分比,取75%(煤粉炉75-85%);dfh=1-dlzη——除尘率;Cfh——煤灰中的可燃物含量,25%(15-45%);注:1)煤粉悬燃炉Clz可取0-5%;C f取15%-45%,热电厂粉煤灰可取4%-8%。

Clz、Cfh也可根据锅炉热平衡资料选取或由分析室测试得出。

2)d fh值可根据锅炉平衡资料选取,也可查表得出。

当燃用焦结性烟煤、褐煤或煤泥时,d fh值可取低一些,燃用无烟煤时则取得高一点。

烟尘中的灰占煤灰之百分比(d fh)表1 煤的工业分析与元素分析表2 煤和矿化脱硫剂的筛分特征表3 煤的灰分成分全分析表一、烟气量的计算:0V -理论空气需求量(Nm 3/Kg 或Nm 3/Nm 3(气体燃料)); ar net Q ⋅-收到基低位发热量(kJ/kg 或kJ/Nm 3(气体燃料)); daf V -干燥无灰基挥发分(%);V Y -烟气量(Ng 或Nm 3/m 3/KNm 3(气体燃料));α-过剩空气系数, α=αα∆+0。

1、理论空气需求量daf V >15%的烟煤:278.01000Q 05.1arnet 0+⨯=⋅V daf V <15%的贫煤及无烟煤:61.04145Q arnet 0+=⋅V 劣质煤ar net Q ⋅<12560kJ/kg :455.04145Q arnet 0+=⋅V液体燃料:21000Q 85.0arnet 0+⨯=⋅V 气体燃料,ar net Q ⋅<10468kJ/Nm 3:1000Q 209.0arnet 0⋅⨯=V 气体燃料,ar net Q ⋅>14655kJ/Nm 3:25.01000Q 260.0arnet 0-⨯=⋅V 2、实际烟气量的计算(1)固体燃料无烟煤、烟煤及贫煤:0arnet Y )1(0161.177.041871.04Q V V -++⋅α=ar net Q ⋅<12560kJ/kg 的劣质煤:0arnet Y )1(0161.154.041871.04Q V V -++⋅α=(2)液体燃料:0arnet Y )1(0161.141871.1Q V V -+⋅α=(3)气体燃料:ar net Q ⋅<10468kJ/Nm 3时:0arnet Y )1(0161.10.141870.725Q V V -++⋅α=ar net Q ⋅>14655kJ/Nm 3时:0arnet Y )1(0161.125.041871.14Q V V -+-⋅α=炉膛过剩空气系数0α表(炉膛出口)煤粉炉:;CFB :;CFB 垃圾混烧:;炉排垃圾锅炉:。

锅炉原理第三章热平衡

锅炉原理第三章热平衡

● 四部分组成:
燃料中的水汽化生成的水蒸气体积: 理论空气量带入的水蒸气体积:
采用蒸汽雾化等设备带入的水蒸气体积:
1)燃料中的氢完全燃烧产生的水蒸汽
11.1 H ar 100
2)燃料中的水分蒸发形成的水蒸汽
22.4Mar 1.24Mar
18 100
100
3)随同理论空气量V 0带入的水蒸气,其体积为
锅炉原理第三章热平 衡
●概念
燃料的燃烧是指燃料中的可燃元素与氧 气在高温条件下进行的强烈化学反应过程。ห้องสมุดไป่ตู้当烟气中不含可燃物质时称为完全燃烧,否 则称为不完全燃烧。
● 目的
燃料燃烧计算主要是计算燃料燃烧所需 空气量、燃烧生成的烟气量和烟气的热焓等。
● 在计算时假定:
1)空气和烟气的所有组成成分,包括水蒸 气都是理想气体,因此,每一千摩尔气体在标 准状态下的容积是22.41m3;
N2
体积,m3/kg;
V0 H2O
—标准状态下理论水蒸气体积,m3/kg。
2.理论烟气量的计算
理论烟气量: V y 0= V C O 2+ V S O 2+ V N 0 2+ V H 0 2 O ,m 3/k g
VRO2 VCO2VSO2
V y 0V R O 2V N 0 2V H 0 2O,m 3/kg
2)所有空气和其它气体容积的计算单位都 是m3,即以0℃一标准大气压(0.1013MPa)状 态下的立方米为单位。
第一节 燃烧过程的化学反应
● 煤的可燃燃烧成分:碳(C)、氢(H)、硫(S)。
1. 碳的燃烧: ● 完全燃烧
(反应方程式):
C+O2→CO2 12.1kgC+22.41m3O2→22.41m3CO2 1kgC+1.866m3O2→1.866m3CO2

燃气锅炉的烟气成分分析及其方法

燃气锅炉的烟气成分分析及其方法

燃气锅炉的烟气成分分析及其方法燃气锅炉是一种常见的供热设备,它利用燃气燃烧产生的热量来加热水,从而提供热水或蒸汽供应。

然而,在燃气锅炉的燃烧过程中,会产生大量的烟气,其中包括二氧化碳、氧气、氮气、水蒸汽、一氧化碳、氧化氮、二氧化硫等成分。

为了保证燃气燃烧的效率和安全性,需要对燃气锅炉的烟气成分进行分析。

一、常见烟气成分及其含义1. 二氧化碳二氧化碳是燃气燃烧产生的主要成分之一,其含量通常在3%~15%之间。

二氧化碳的含量越高,说明燃气燃烧的效率越低。

2. 氧气氧气是燃气的中的一个重要成分,其含量通常在2%~5%之间。

燃气燃烧需要氧气的参与,氧气的含量过高或过低都会影响燃气的燃烧效率和安全性。

3. 氮气氮气是空气的主要成分之一,也是燃气的成分之一,通常含量为大约70%。

由于氮气稳定性较高,燃气燃烧时不会参与化学反应,因此对燃气燃烧的效率和安全性没有影响。

4. 水蒸汽水蒸汽是燃气燃烧后产生的常见组分之一,其含量与燃气温度和湿度有关。

水蒸汽的含量过高会导致燃气燃烧的不稳定,影响燃气燃烧的效果。

5. 一氧化碳一氧化碳是一种无色、无味、有毒的气体,是不完全燃烧时产生的。

燃气燃烧不充分或管路破裂等情况下,一氧化碳的含量可能会超标,对人体健康造成危害。

6. 氧化氮氧化氮是燃气烟气中的一种常见氮气化合物,主要有一氧化氮和二氧化氮。

在高温燃烧状态下,氮气和氧气会反应形成氧化氮,其含量过高会造成氮氧化物的污染。

7. 二氧化硫二氧化硫是一种无色、有毒、刺激性气体,常见于燃油燃烧过程中,和化学工业等领域。

由于二氧化硫有毒,对人体和环境都有危害,因此燃气锅炉烟气中二氧化硫含量需要控制。

二、燃气锅炉烟气成分分析方法为了对燃气锅炉的烟气成分进行分析,需要使用相应的仪器和方法。

常用的烟能分析方法包括如下几种:1. 干湿法烟气分析仪干湿法烟气分析仪是一种常见的烟气分析仪器,其主要原理是通过干湿法分析烟气中的水分含量、二氧化碳含量、氧气含量和一氧化碳含量等指标。

锅炉烟气成分分析

锅炉烟气成分分析

7.2锅炉烟气成‎分分析在火力发电‎的过程中,对锅炉烟气‎含氧量、二氧化碳含‎量、一氧化碳含‎量的分析测‎量对于指导‎锅炉燃烧控‎制有重要的‎意义。

为保持锅炉‎处于最佳燃‎烧状态,应使实际供‎给的空气量‎大于理论空‎气量,锅炉机组热‎损失最小的‎炉膛出口的‎最佳过剩空‎气系数应保‎持在一定范‎围内。

对锅炉铟气‎中的过剩空‎气系数的分‎析测量要考‎虑到烟气取‎样点的选择‎或给予必要‎的修正。

目前,一般把烟气‎取样点设计‎在过热器出‎口或省煤器‎出口处。

燃烧理论指‎出:在燃料一定‎情况下,当完全燃烧‎时,过剩空气系‎数是烟气中‎氧量或二氧‎化碳含量的‎函数,此时一氧化‎碳的含量为‎零。

当不完全燃‎烧时,因烟气中含‎有一氧化碳‎,过剩空气系‎数与氧量或‎二氧化碳含‎量的函数要‎受到一氧化‎碳含量的影‎响:因此对一氧‎化碳含量和‎氧气或二氧‎化碳含量的‎监视,对于指导燃‎烧更为有利‎。

实际燃烧时‎,很多情况是‎烟气中一氧‎化碳含量比‎较少.因此,对于一氧化‎碳分析仪要‎求有较高的‎灵敏度和精‎确度。

在不完全燃‎烧时,烟气中还会‎有未燃尽的‎可燃物含量‎对烟气中的‎一氧化碳的‎含量、二氧化碳含‎量和氧量都‎有影响。

过剩空气系‎数α与一氧‎化碳含量二氧化碳含‎量和氧量的‎函数关系就‎更复杂,这种情况下‎.通过对一氧‎化碳含量和‎氧量的监测‎来指导燃烧‎会更有实际‎意义。

目前,对于高压大‎型锅炉,烟气中未燃‎尽可燃物的‎含量很小.通常多是通‎过对烟气中‎的含氧量的‎监测来指导‎燃烧控制。

7.2.2 氧化锆氧量‎计氧化锆氧量‎计属于电化‎学分析器中‎的一种。

氧化锆(2ZrO )是一种氧离‎子导电的固‎体电解质。

氧化锆氧量‎计可以用来‎连续地分析‎各种锅炉烟‎气中的氧含‎量,然后控制送‎风量来调整‎过剩空气系‎数α值,以保证最佳‎的空气燃料‎比,达到节能效‎果。

氧化锆传感‎器探头可以‎直接插人烟‎道中进行测‎量,氧化锆测量‎探头工作温‎度必须在8‎50℃左右的高温‎下运行,否则灵敏度‎将会下降。

烟气成分分析实验报告

烟气成分分析实验报告

实验十三、烟气成分分析一、实验目的意义实验意义:1.通过测定窑炉废气成分,计算过量系数,来判断窑炉的供风情况;2.由窑炉烟气中的CO含量,可以推测窑炉内的化学不完全燃烧的程度;结合供风情况,进而判断窑内物料的煅烧情况;3.通过窑炉系统不同部位的烟气成分分析比较,可计算漏风量;4.对窑炉废气有害成分的分析,可以获知废气对大气环境的污染程度。

实验目的:1.掌握奥氏气体分析器的操作,能独立进行烟气成分的测定;2.根据烟气成分进行空气过剩系数α的计算,分析燃烧情况;3.学习通过测定窑炉系统不同部位的烟气成分计算漏风量的方法;4.了解烟气成分分析的意义。

二、实验原理一般说来,不论是固体燃料、液体燃料还是气体燃料,其燃烧产物——烟气的主要成分都是H2O,CO2,O2,CO及N2。

在硅酸盐工业生产中,通过对窑炉不同部位的烟气成分进行分析,不仅可以判断窑炉内的供风及燃料燃烧情况,而且可以发现系统的漏风情况,对指导生产有着十分重要的意义。

工业上,用于烟气成分分析的仪器种类有很多,本实验介绍一种比较简单的仪器——奥氏气体分析器.它是一种利用不同的化学试剂对混合气体的选择性吸收来达到对烟气成分进行分析的方法。

主要是对燃烧产物中的CO2,O2和CO的体积百分比进行测定。

其原理为:用苛性钾(KOH)或苛性纳(NaOH)溶液吸收CO2,吸收过程如下:2KOH + CO2→K2CO3 + H2O同时,此溶液亦吸收烟气中含量很少的SO2,其反应式为:2KOH + SO2→K2SO3 + H2O用焦性没食子酸(C6H3 (OH)3)碱溶液吸收O2过程的反应式为:C6H3 (OH)3+ 3KOH→C6H3(OK)3 + 3H2O三羟基苯钾4C6H3(OK)3 + O2→2(KO)3·C6H3·C6H3(OK)3 + 2H2O六羟基联苯钾用氯化亚铜(Cu2Cl2 )的氨溶液吸收CO,吸收反应如下:COONH4Cu2C12 + 2CO + 4NH3 + 2H24 + 2NH4C1二酸铵三、实验仪器及材料1.奥氏气体分析器实验室所用的奥氏气体分析仪如图所示。

关于烟气中的SO3

关于烟气中的SO3
关于烟气中的SO3
马果骏 2006.4
1
引言




化石燃料在燃烧过程中,燃料中的硫份会转化成为硫氧化 物(SOx),主要是SO2和SO3 生成的SO3约为SO2的1%-2%左右,取决于燃烧的温 度、粉尘的成分 低浓度的SO3(ppm)不会造成问题。由于粉尘表面会 吸附SO3,使比电阻降低,反而对电除尘器的除尘效率有 利 安装SCR后,烟气中的SO3会增加,对下游设备造成腐蚀, 如空气预热器、电除尘器和布袋除尘器等 SO3与SCR工艺中未反应的NH3生成的硫酸氢氨(ABS) 会黏附在空气预热器的热交换元件上 SO3与氯化物反应后生成的气溶胶,在烟囱岀口形成肉眼 可见的烟羽

SO3在通过空预器的过程中发生了很重要的变化
气相的SO3和蒸汽相的水发生反应生成了蒸汽相的硫 酸 反应与温度有关 在烟气到达空预器的冷端之前,上述翻译已经基本完 成

烟气的露点是由烟气中的硫酸浓度和含水量决定 的,一般在120-140℃之间
5
SO3对空气预热器的影响
与飞灰中碱性物反应生成的硫酸盐 气相SO3 单独的 SO3雾滴
典型的SCR工艺催化剂成分
WO3、MnO2、V2O5,并以TiO2作为基础材料 其中V2O5对NO的还原最有效,但是对SO2的氧化也 最有效

SCR供应商对于SO2的转化率的保证值一般低于 1%,正常情况下,对下游设备没有影响
9
SCR和SO3的形成和影响


Байду номын сангаас
SO3和水分较高时,会形成硫酸,腐蚀下 游设备,为防止下游设备的腐蚀,必须保 持空预器的岀口温度高于酸露点 过高的空预器岀口温度会使系统效率下降 SO3增加会生成较多的硫酸盐(PM2.5微 粒),使得烟囱排出的烟羽呈现蓝色

燃煤锅炉烟气成分

燃煤锅炉烟气成分

燃煤锅炉烟气成分
燃煤锅炉烟气的成分复杂,一般包括以下主要成分:
1. 二氧化碳(CO2):这是燃煤过程中产生的主要废气成分,占烟气中的比例较高。

2. 一氧化碳(CO):在燃煤过程中,由于燃料燃烧不完全而
产生的废气成分。

3. 氮氧化物(NOx):这是燃煤过程中最重要的污染物之一,包括氮气(N2)、一氧化氮(NO)、二氧化氮(NO2)等。

4. 硫氧化物(SOx):在燃煤过程中,燃料中的硫元素氧化产
生的废气成分,包括二氧化硫(SO2)和三氧化硫(SO3)等。

5. 颗粒物(PM):燃煤过程中产生的固体颗粒物,包括悬浮
颗粒物(如灰尘、煤烟等)和可吸入颗粒物(如细微颗粒物、气溶胶等)。

此外,燃煤锅炉烟气中还可能包括其他有害物质,如多环芳烃、重金属等,具体成分会受到燃煤原料和燃烧工艺的影响。

需要注意的是,燃煤锅炉烟气中的成分对环境和人体健康具有重要影响,因此减少和控制烟气排放是保护环境和人类健康的重要课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氨水浓度(w%):6%-8%
氨水成分:尿素:%、CO2:%、H2O:%
B、合成氨装置来废氨水6400kg/h,其中:
H2O:6284kg/h、NH3:108kg/h、C02:1.5kg/h、H2S:6.0kg/h
C、液氨浓度(w%):%
2)工业水:~
3)电源:220V、 380V 、6kV
4)低压蒸汽:(G),温度为158℃
5)工厂空气压力:~ MPa(G)
6)仪表压缩空气压力:~(G)
7)循环水压力:进水,32℃;回水。
项目
单位
设计煤种
校核煤种
备注
烟气成分(标准状态,湿基,设计煤种a=,校核煤种a=)
CO2
Vol %
O2
Vol %
N2
Vol %
SO2
Vol %
H2O
Vol %
烟气参数
脱硫装置入口烟气量
m3/h
实际,湿基
Nm3/h
标态,湿基
脱硫装置入口烟气温度

133
134
设计值
160
160
最大值

160
FGD旁路烟气温度
燃料消耗量
根据煤质分析资料,本期3台220t/h锅炉,年利用小时按8000小时,单台锅炉最大连续蒸发量的耗煤量见下表:
燃煤量
机组容量及煤种




设计煤质
校核煤质
锅炉最大负荷时耗煤量
Bg
t/h
锅炉计算耗煤量
Bj
t/h
烟气脱硫入口烟气参数
脱硫入口烟气为3台220t/h锅炉烟气总量,下表为单台锅炉参数。
脱硫装置入口烟气压力
Pa
1500
1500
正常运行至BMCR工况
烟气中污染物成分(标准状态,干基,a=)
SO2
mg/Nm3
SO3
mg/Nm3
144
214
Cl(HCl)
mg/Nm3
50
50
F(HF)
mg/Nm3
35
35
烟尘浓度(引风机出口)
mg/Nm3
3公用工程基本条件
1)吸收剂品质:
A、尿素装置来氨水(用量满足需要)
相关文档
最新文档