高中数学必修一试卷

合集下载

高一数学必修一试题含答案

高一数学必修一试题含答案

高一数学必修一试题含答案一、选择题(每题4分,共48分)1、下列哪个选项正确地表示了直线、平面、体之间的关系?A.直线与平面是平行关系B.平面与平面是垂直关系C.两个平面可能相交也可能平行D.以上说法都不正确2、在下列四个选项中,哪个选项的图形是由旋转得到的?A.圆锥体B.正方体C.球体D.圆柱体3、下列哪个函数在区间[0, 1]上是增函数?A. y = sin(x)B. y = cos(x)C. y = x^2D. y = log(x)4、下列哪个选项能正确表示函数y = x^3在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增5、对于集合A和B,如果A ∪ B = A,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∩ B = ∅D. A = B6、下列哪个选项能正确表示函数y = x^2在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增7、下列哪个选项能正确表示函数y = log(x)在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增8、对于集合A和B,如果A ∩ B = B,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∪ B = BD. A = B二、填空题(每题4分,共16分)9、在空间四边形ABCD中,E、F分别是AB、AD的中点,则用符号表示空间中下列向量之间的关系:向量____________与____________是共线向量。

高一数学必修一试卷与答案一、选择题1、下列选项中,哪个选项是正确的?A. (1,2)和 (2,3)是同一个集合B. {1,2,3}和 {3,2,1}是同一个集合C. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}是同一个集合D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合答案:D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合。

高中数学必修1集合测试题及答案

高中数学必修1集合测试题及答案

高中数学集合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ150分;考试时间90分钟.第Ⅰ卷(选择题;共60分)一、选择题:本大题共12小题;每小题5分;共60分. 在每小题给出的四个选项中;只有一项是符合题目要求的.1.已知集合M={x N|4-x N}∈∈;则集合M 中元素个数是( ) A .3 B .4 C .5 D .62.下列集合中;能表示由1、2、3组成的集合是( ) A .{6的质因数} B .{x|x<4;*x N ∈} C .{y||y |<4;y N ∈} D .{连续三个自然数} 3. 已知集合{}1,0,1-=A ;则如下关系式正确的是 A A A ∈ B 0A C A ∈}0{ D ∅A4.集合}22{<<-=x x A ;}31{<≤-=x x B ;那么=⋃B A ( )A. }32{<<-x xB.}21{<≤x xC.}12{≤<-x xD.}32{<<x x 5.已知集合}01|{2=-=x x A ;则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个6.已知2U U={1,2,23},A={|a-2|,2},C {0}a a A +-=;则a 的值为( ) A .-3或1 B .2 C .3或1 D .17. 若集合}8,7,6{=A ;则满足A B A =⋃的集合B 的个数是( )A. 1B. 2C. 7D. 88. 定义A —B={x|x A x B ∈∉且};若A={1;3;5;7;9};B={2;3;5};则A —B 等于( ) A .A B .B C .{2} D .{1;7;9}9.设I 为全集;1S ;2S ;3S 是I 的三个非空子集;且123S S S I ⋃⋃=;则下面论断正确的是( )A .()I 123(C S )S S ⋂⋃= φB .()1I 2I 3S [C S )(C S ]⊆⋂C .I 1I 2I 3(C S )(C S )(C S )⋂⋂=∅D .()1I 2I 3S [C S )(C S ]⊆⋃ 10.如图所示;I 是全集;M ;P ;S 是I 的三个子集;则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()I (C )M P S ⋂⋂D .()I (C )M P S ⋂⋃11. 设},2|{R x y y M x ∈==;},|{2R x x y y N ∈==;则( )A. )}4,2{(=⋂N MB. )}16,4(),4,2{(=⋂N MC. N M =D. N M ≠⊂12.已知集合M={x|x 1},N={x|x>}a ≤-;若M N ≠∅;则有( ) A .1a <- B .1a >- C . 1a ≤- D .1a ≥-第Ⅱ卷(非选择题 共90分)二、填空题:本大题6小题;每小题5分;共30分. 把正确答案填在题中横线上13.用描述法表示右侧图中阴影部分的点(含边界上的点)组成的集合M 是___________________________.14. 如果全集}6,5,4,3,2,1{=U 且}2,1{)(=⋂B C A U ;}5,4{)()(=⋂B C A C U U ;}6{=⋂B A ;则A 等于_________15. 若集合{}2,12,4a a A --=;{}9,1,5a a B --=;且{}9=B A ;则a 的值是________; 16.设全集{|230}U x N x =∈≤≤;集合*{|2,,15}A x x n n N n ==∈≤且;*{|31,,9}B x x n n N n ==+∈≤且;C={x|x 是小于30的质数};则[()]U C A B C =________________________.17.设全集R B C A x x B a x x A R =⋃<<-=<=)(},31{},{且;则实数a 的取值范围是________________18.某城市数、理、化竞赛时;高一某班有24名学生参加数学竞赛;28名学生参加物理竞赛;19名学生参加化学竞赛;其中参加数、理、化三科竞赛的有7名;只参加数、物两科的有5名;只参加物、化两科的有3名;只参加数、化两科的有4名;若该班学生共有48名;则没有参加任何一科竞赛的学生有____________名三、解答题:本大题共5小题;共60分;解答应写出文字说明;证明过程或演算步骤.19. 已知:集合{|A x y ==;集合2{|23[03]}B y y x x x ==-+∈,,; 求A B (本小题8分)20.若A={3;5};2{|0}B x x mx n =++=;A B A =;{5}A B =;求m 、n 的值。

数学高中必修一试题及答案

数学高中必修一试题及答案

数学高中必修一试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. y = x^2B. y = 3x + 5C. y = √xD. y = log(x)答案:B2. 如果a > 0,b < 0,且|a| < |b|,那么a + b的符号是:A. 正B. 负C. 零D. 不确定答案:B3. 已知等差数列的首项a1=2,公差d=3,求第10项a10的值:A. 17B. 29C. 35D. 38答案:B4. 圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内切答案:B5. 函数f(x) = 2x - 3在点x=1处的导数是:A. 2B. -3C. -2D. 1答案:A6. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B7. 集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B8. 已知等比数列的首项a1=2,公比q=2,求第5项a5的值:A. 16B. 32C. 64D. 128答案:C9. 函数y = x^3 - 3x^2 + 2在点x=1处的极值情况是:A. 极大值B. 极小值C. 无极值D. 不确定答案:B10. 已知向量a=(2, -1),b=(-3, 4),求向量a与b的点积:A. 5B. -5C. -10D. 10答案:B二、填空题(每题2分,共20分)11. 已知函数f(x) = x^2 + 2x + 1,求f(-1)的值。

答案:012. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

答案:513. 已知集合M={x | x < 5},N={x | x > 3},求M∩N。

高中数学必修一阶段性测试试卷(共八套)含参考答案

高中数学必修一阶段性测试试卷(共八套)含参考答案
R

2x 1 1, x R ,集合 B x x a 1, x R . x 1
A B ,求实数 a 的取值范围.
16. (本题满分 10 分) 设 A 是由一些实数构成的集合,若 a∈A,则 (1)若 3∈A,求 A; (2)证明:若 a∈A,则 1
1
14. (本题满分 10 分) 已知集合 A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0}. (1)求集合 A,B; (2)若 C⊆(A∩B),求实数 a 的取值范围.
15. (本题满分 10 分) 已知集合 A x | (1)求集合 A ; (2)若 B
8.已知全集 U={1,2,3,4,5,6,7,8},在 U 中任取四个元素组成的集合记为 A={a1, a2,a3,a4},余下的四个元素组成的集合记为∁UA={b1,b2,b3,b4},若 a1+a2+a3+a4 <b1+b2+b3+b4,则集合 A 的取法共有 种. 2 9.已知函数 f(x)=x +nx+m,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则 m+n 的取值范围是 . 10.设全集 U={(x,y)|y=x+1,x,y∈R},M={(x,y)|
y 3 1 },则∁UM= x2

11.请在图中用阴影部分表示下面一个集合:(A∩B)∪(A∩C)∩ (∁uB∪∁uC). 3 1 12.设集合 M=x m≤x≤m+4 ,N= xn-3≤x≤n ,且 M,N 都

是集合{0|0≤x≤1}的子集,如果把 b-a 叫作集合{x|a≤x≤b}的 “长度”,那么集合 M∩N 的“长度”的最小值是 . 二、解答题(本大题共 4 小题,共计 40 分.请在答题纸指定区域 内作答,解答应写出文字 ....... 说明,证明过程或演算步骤.) 13. (本题满分 10 分) 已知集合 A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1},若 A∪B=A,求实数 m 的取值范 围.

【人教版】高中数学必修一期末试卷(附答案)

【人教版】高中数学必修一期末试卷(附答案)

一、选择题1.已知关于x 的方程2(3)10ax a x +-+=在区间1(,)2+∞上存在两个实数根,则实数a 的取值范围是( ) A .2332a << B .213a < C .9aD .293a < 2.若关于x 的一元二次方程(2)(3)x x m --=有实数根1x ,2x ,且12x x <,则下列结论中错误的是( )A .当0m =时,12x =,23x =B .14m ≥-C .当0m >时,1223x x <<<D .二次函数()()12y x x x x m =--+的图象与x 轴交点的坐标为()2,0和()3,0 3.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .πB .2πC .3πD .4π4.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0xx f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .45.已知1311531log ,log ,363a b c π-===,则,,a b c 的大小关系是( )A .b a c <<B .a c b <<C .c b a <<D .b c a << 6.计算log 916·log 881的值为( ) A .18B .118C .83D .387.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14,8.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3]9.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( )A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 10.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1C .-3或2D .-1或211.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤⎥⎝⎦C .(,1)[0,)-∞-+∞ D .1[,0)(0,1)3-⋃12.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .1二、填空题13.已知f (x )=23,123,1x x x x x +≤⎧⎨-++>⎩,则函数g (x )=f (x )-e x 的零点个数为________. 14.(文)已知函数2cos ,1()21,1xx f x x x π⎧≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是________个.15.函数()()()212log 24f x ax x a R =-+∈,若()f x 的值域为(],1-∞,则a 的值为______.16.若函数()()20.2log 1f x kx kx =-+的定义域是R ,则实数k 的取值范围是______.17.定义在R 上的减函数()f x 满足(0)4f =,且对任意实数x 都有()(2)4f x f x +-=,则不等式|()2|2f x -<的解集为____________.18.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________19.已知集合{}1,2,5,7,13,15,16,19A =,设,i j x x A ∈,若方程(0)i j x x k k -=>至少有三组不同的解,则实数k 的所有可能取值是________20.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________三、解答题21.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产x 台需要另投入成本()C x (万元).当年产量不足80台时,21()402C x x x =+(万元),当年产量不小于80台时,8100()1012180C x x x=+-(万元),若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?并求出这个最大利润.22.函数()f x 是定义在R 上的奇函数,当0x >时,()241f x x x =-+.(1)求函数()f x 的解析式:(2)根据解析式在图画出()f x 图象. (3)讨论函数()()g x f x m =-零点的个数.23.已知函数()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=. (1)求函数()f x 的表达式;(2)判断函数()(2)(2)g x f x f x =++-的奇偶性,并说明理由.24.(1)求满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合;(2)求函数235()log (45)f x x x =--的单调递减区间.25.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.26.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可设2()(3)1f x ax a x =+-+,0a ≠,讨论0a >,0a <,结合对称轴与区间的关系和1()2f 的符号、判别式的符号,解不等式可得所求范围. 【详解】解:方程有两个实数根,显然0a ≠,可设2()(3)1f x ax a x =+-+,对称轴是32ax a-=, 当0a >时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++>,且2(3)40a a ∆=--, 即为302a <<且23a >,且9a 或1a ,则213a <;当0a <时,要使二次方程在区间1(,)2+∞上有两个实数根,如图所示,则需3122a a ->,且113()10242a f a -=++<,且2(3)40a a ∆=--, 即为302a <<且23<a ,且9a 或1a ,则a ∈∅.综上可得,a 的取值范围是213a <.故选:B . 【点睛】本题解题关键是结合二次函数的图象特征研究二次方程根的分布,分类讨论借助图象准确列出不等关系,突破难点.2.C解析:C 【分析】画出函数()()23y x x =--的图像,然后对四个选项逐一分析,由此得出错误结论的选项. 【详解】画出二次函数()()23y x x =--的图像如下图所示,当0m =时,122,3x x ==成立,故A 选项结论正确. 根据二次函数图像的对称性可知, 当 2.5x =时,y 取得最小值为14-, 要使()()23y x x m =--=有两个不相等的实数根, 则需14m >-,故B 选项结论正确. 当0m >时,根据图像可知122,3x x <>,故C 选项结论错误.由()()23x x m --=展开得2560x x m -+-=, 根据韦达定理得12125,6x x x x m +=⋅=-. 所以()()()2121212y x x x x m x x x x x x m =--+=-+++()()25623x x x x =-+=--,故()()12y x x x x m =--+与x 轴的交点坐标为()()2,0,3,0. 故选:C. 【点睛】思路点睛:一元二次方程根的分布,根据其有两个不等的实根,结合根与系数的关系、函数图象,判断各选项的正误.3.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称.函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.4.C解析:C 【分析】由新定义可知探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数即得结果. 【详解】由题意可知,函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,因为()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,由y 轴左侧部分()3,0xy x =-<图像关于原点中心对称的图像3x y --=-,即3xy -=,()0x >,作函数3xy -=,()0x >和()22,0y x x x =-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”. 故选:C. 【点睛】本题解题关键是理解新定义,寻找对称点对,探究y 轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数,通过数形结合,即突破难点.5.D解析:D 【分析】根据指数函数和对数函数性质,借助0和1进行比较. 【详解】由对数函数性质知151log 16>,13log 03π<,由指数函数性质知13031-<<,∴b c a <<. 故选:D . 【点睛】方法点睛:本题考查指数式、对数式的大小比较,比较指数式大小时,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小.6.C解析:C 【分析】根据对数的运算性质,换底公式以及其推论即可求出. 【详解】原式=23443232448log 2log 3log 2log 3233⋅=⋅=. 故选:C . 【点睛】本题主要考查对数的运算性质,换底公式以及其推论的应用,属于基础题.7.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.8.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e --⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.9.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1243a ---=,x 223a-+=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;10.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.11.A解析:A 【分析】先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围. 【详解】因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥,所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足, 当0a >时,因为10ax +≤,所以1x a≤-,又因为B A ⊆,所以11-<-a,所以01a <<, 当0a <时,因为10ax +≤,所以1x a ≥-, 又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭.故选:A.【点睛】本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集. 12.C解析:C【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,1==,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++, ,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素.故选:C【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.二、填空题13.2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数在同一坐标系中画出这两个函数的图象由图象可知函数g(x)=f(x)-ex 的零点个数为2解析:2【详解】 把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数,在同一坐标系中画出这两个函数的图象,由图象可知,函数g (x )=f (x )-e x 的零点个数为2.14.5【分析】先解方程再根据图象确定实根个数【详解】或图象如图:则由图可知实根的个数是5个故答案为:5【点睛】本题考查函数与方程考查综合分析求解能力属中档题解析:5【分析】先解方程2()3()20f x f x -+=,再根据()f x 图象确定实根个数.【详解】2()3()20()1f x f x f x -+=∴=或()2f x =,2cos ,1()21,1x x f x x x π⎧≤⎪=⎨⎪->⎩图象如图:则由图可知,实根的个数是5个故答案为:5【点睛】本题考查函数与方程,考查综合分析求解能力,属中档题.15.【分析】根据对数的性质可知且最小值为即可求得的值【详解】因为的值域为所以函数的最小值为即解得故答案为:【点睛】本题考查对数函数的值域考查对数的性质合理转化是解题的关键考查了运算能力属于中档题 解析:27【分析】根据对数的性质可知2240y ax x =-+>,且最小值为1,即可求得a 的值. 【详解】因为()()()212log 24f x ax x a R =-+∈的值域为(],1-∞,所以2240ax x -+>, 函数224y ax x =-+的最小值为12,即()20442142a a a >⎧⎪⎨⨯--=⎪⎩,解得27a =, 故答案为:27【点睛】本题考查对数函数的值域,考查对数的性质,合理转化是解题的关键,考查了运算能力,属于中档题.16.【分析】由题可知恒成立再分情况讨论即可【详解】由题可知恒成立当时成立当时当时不等式不恒成立故实数k 的取值范围是故答案为:【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题属于中等题型解析:[)0,4【分析】由题可知210kx kx -+>恒成立.再分情况讨论即可.【详解】由题可知210kx kx -+>恒成立.当0k =时成立.当0k >时,24004k k k ∆=-<⇒<<. 当k 0<时,不等式不恒成立.故实数k 的取值范围是[)0,4.故答案为:[)0,4【点睛】本题主要考查了对数的定义域以及二次函数恒成立问题.属于中等题型.17.【分析】由绝对值不等式可知利用中x 的任意性得再利用函数的单调性解不等式即可【详解】因为任意实数都有且令则故不等式解得即又函数为上的减函数解得故不等式的解集为故答案为:【点睛】方法点睛:本题考查了解抽 解析:(0,2)【分析】由绝对值不等式可知0()4f x <<,利用()(2)4f x f x +-=中x 的任意性得(2)0f =,再利用函数的单调性解不等式即可.【详解】因为任意实数x 都有()(2)4f x f x +-=,且(0)4f =,令2x =,则(2)(0)4f f +=,故(2)0f =不等式|()2|22()22f x f x -<⇒-<-<,解得0()4f x <<,即(2)()(0)f f x f << 又函数()f x 为R 上的减函数,解得02x <<,故不等式|()2|2f x -<的解集为(0,2) 故答案为:(0,2)【点睛】方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.18.【分析】由函数的定义域得出的取值范围结合分母不等于0可求出的定义域【详解】函数的定义域函数应满足:解得的定义域是故答案为:【点睛】本题考查了求函数定义域的问题函数的定义域是函数自变量的取值范围应满足 解析:[1,1)-【分析】由函数()y f x =的定义域,得出21x +的取值范围,结合分母不等于0,可求出()g x 的定义域.【详解】函数()y f x =的定义域[1-,3],∴函数(21)()1f xg x x +=-应满足: 121310x x -≤+≤⎧⎨-≠⎩解得11x -≤< ()g x ∴的定义域是[1,1)-.故答案为:[1,1)-.【点睛】本题考查了求函数定义域的问题,函数的定义域是函数自变量的取值范围,应满足使函数的解析式有意义,是基础题.19.【分析】先将的可能结果列出然后根据相同结果出现的次数确定出的取值集合【详解】将表示为可得如下结果:其中为都出现了次所以若方程至少有三组不同的解则的取值集合为故答案为:【点睛】关键点点睛:解答本题的关 解析:{}3,6,14【分析】先将i j x x -的可能结果列出,然后根据i j x x -相同结果出现的次数确定出k 的取值集合.【详解】将i j x x k -=表示为(),,i j x x k ,可得如下结果: ()()()()()()()19,1,18,16,1,15,15,1,14,13,1,12,7,1,6,5,1,4,2,1,1,()()()()()()19,2,17,16,2,14,15,2,13,13,2,11,7,2,5,5,2,3,()()()()()()19,5,14,16,5,11,15,5,10,13,5,8,7,5,2,19,7,12,()()()()()()16,7,9,15,7,8,13,7,6,19,13,6,16,13,3,15,13,2,()()()19,15,4,16,15,1,19,16,3,其中k 为3,6,14都出现了3次,所以若方程(0)i j x x k k -=>至少有三组不同的解, 则k 的取值集合为{}3,6,14,故答案为:{}3,6,14【点睛】关键点点睛:解答本题的关键是理解方程(0)i j x x k k -=>至少有三组不同的解的含义,即i j x x -的差值出现的次数不小于三次,由此可进行问题的求解.20.【分析】由f (x )=x2﹣(a+2)x+2﹣a <0可得x2﹣2x+1<a (x+1)﹣1即直线在二次函数图像的上方的点只有一个整数1则满足题意结合图象即可求出【详解】f (x )=x2﹣(a+2)x+2﹣ 解析:12(,]23由f(x)=x2﹣(a+2)x+2﹣a<0可得x2﹣2x+1<a(x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.【详解】f(x)=x2﹣(a+2)x+2﹣a<0,即x2﹣2x+1<a(x+1)﹣1,分别令y=x2﹣2x+1,y=a(x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A={x∈Z|f(x)<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10 {120 311aaa-≤--≤<,解得12<a23≤故答案为(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题三、解答题21.(1)2160500,080281001680,80x x xyx xx⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥⎪⎪⎝⎭⎩;(2)当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.(1)分别求080x <<和80x ≥时函数的解析式可得答案;(2)当080x <<时,21(60)13002y x =--+,配方法求最值、;当80x ≥时, 利用基本不等式求最值,然后再做比较.【详解】 (1)当080x <<时,2211100405006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭, 当80x ≥时,8100810010010121805001680y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭, 于是2160500,080281001680,80x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩. (2)由(1)可知当080x <<时,21(60)13002y x =--+, 此时当60x =时y 取得最大值为1300(万元),当80x ≥时,8100168016801500y x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当8100x x=即90x =时y 取最大值为1500(万元), 综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩;(2)答案见解析;(3)答案见解析.【分析】(1)当0x <时,0x ->,运用已知区间的解析式和奇函数的定义结合()00f =,即可求解;(2)根据(1)中的解析式作出图象即可;(3)()()g x f x m =-零点的个数即等价于()y f x =与y m =两个函数图象交点的个数,数形结合讨论m 的值即可.【详解】(1)当0x =时,()00f =,当0x <时,0x ->,()241f x x x -=++,因为()f x 时奇函数,所以()()f x f x -=-,所以()()241f x x x f x -=++=-,即()()2410f x x x x =---<,所以()2241,00,041,0x x x f x x x x x ⎧---<⎪==⎨⎪-+>⎩(2)()f x 图象如图所示:(3)由()f x 图象知:()23f -=,()23f =-,①当3m <-或3m >时,()y f x =与y m =两个函数图象有1个交点,函数()()g x f x m =-有1个零点;②当3m =±时,()y f x =与y m =两个函数图象有2个交点,函数()()g x f x m =-有2个零点;③当31m -<≤-或13m ≤<时,()y f x =与y m =两个函数图象有3个交点,函数 ()()g x f x m =-有3个零点;④当11m -<<且0m ≠时,()y f x =与y m =两个函数图象有4个交点,函数 ()()g x f x m =-有4个零点;⑤当0m =时,()y f x =与y m =两个函数图象有5个交点,函数()()g x f x m =-有5个零点;综上所述:当3m <-或3m >时,()g x 有1个零点;当3m =±时,,()g x 有2个零点;当31m -<≤-或13m ≤<时,()g x 有3个零点;当11m -<<且0m ≠时,()g x 有4个零点;当0m = 时,()g x 有5个零点;【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.23.(1)2()log f x x =(2)偶函数.见解析【分析】(1)根据(4)(2)1f f -=,代入到函数的解析式中可求得2a =,可求得函数()f x 的解析式; (2)由函数()f x 的解析式,求得函数()g x 的解析式,先求得函数()g x 的定义域,再由函数的奇偶性的判断方法证得函数的奇偶性.【详解】(1)因为()log (0,1)a f x x a a =>≠,且(4)(2)1f f -=,所以log 4log 21a a -=,即log 21a =.,解得2a =,所以2()log f x x =;(2)因为()log a f x x =,所以22()log (2)log (2)g x x x =++-,由2020x x +>⎧⎨->⎩,得22x -<<,所以()g x 的定义域为()22-,, 又因为22()log (2)log (2)()g x x x g x -=-++=,所以22()log (2)log (2)g x x x =++-为偶函数.【点睛】本题考查对数函数的函数解析式的求解,函数的奇偶性的证明,属于基础题.24.(1)32x x⎧⎨⎩或}1x <- (2)(5,)+∞ 【分析】 (1)先使得()22222139x x ---⎛⎫= ⎪⎝⎭,再由3x y =的单调性求解即可; (2)先求定义域,再根据复合函数单调性的“同增异减”原则求解即可.【详解】 解:(1)因为221139x x --⎛⎫> ⎪⎝⎭,且()22222139x x ---⎛⎫= ⎪⎝⎭,所以()222133x x --->,因为3x y =在R 上单调递增,所以()2221x x -->-,解得32x >或1x <-, 则满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合为32x x ⎧⎨⎩或}1x <- (2)由题,2450x x -->,解得5x >或1x <-,则定义域为()(),15,-∞-+∞, 设245u x x =--,35log y u =, 因为35log y u =单调递减,若求()f x 的递减区间,则求245u x x =--的递增区间, 因为245u x x =--的对称轴为2x =,所以在()5,+∞上单调递增,所以函数()f x 的单调减区间为()5,+∞【点睛】本题考查解指数不等式,考查复合函数的单调区间.25.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k =-与区间()0,4端点的大小关系得出实数k 的取值范围;(3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n =⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值.【详解】(1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a b b a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+ (2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k =- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k <-恒成立 综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭ (3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132 132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩ ∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =- 4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围.26.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.【详解】(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.。

高中数学试卷必修一基础100题

高中数学试卷必修一基础100题

高中数学试卷必修一基础50题一、单选题(共15题;共30分)1.已知函数y=sinx的定义域为值域为,则的值不可能是( )A. B. C. D.2.已知集合, ,则()A. B. C. D.3.设集合是锐角,,从集合到的映射是“求正弦值”,则与中元素相对应的中元素是()A. B. C. D.4.设f(x)为周期是2的奇函数,当时,f(x)=x(x+1),则当时,f(x)的表达式为( )A. (x-5)(x-4)B. (x-6)(x-5)C. (x-6)(5-x)D. (x-6)(7-x)5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A. a≤1B. a<1C. a≥2D. a>26.已知集合,,则()A. B. C. D.7.已知函数的定义域为,的定义域为()A. B. C. D.8.已知偶函数在区间上是增函数,如果,则x的取值范围是()A. B. C. D.9.二次函数图象的对称轴方程为()A. B. C. D.10.下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A. y=﹣x3B. y=ln|x|C. y=cosxD. y=2﹣|x|11.函数f(x)=a x﹣1+2的图象恒过定点()A. (3,1)B. (0,2)C. (1,3)D. (0,1)12.集合,,若,则实数a的取值范围是()A. B. C. D.13.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为y=2x2﹣1,值域为{1,7}的“合一函数”共有()A. 10个B. 9个C. 8个D. 4个14.已知,b=0.53,,则a,b,c三者的大小关系是()A. b<a<cB. c<a<bC. a<c<bD. a<b<c15.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁U B=()A. {x|0<x≤1}B. {x|1<x<2}C. {x|0<x<1}D. {x|1≤x<2}二、填空题(共20题;共21分)16.已知A={x|x<2},B={x|x<m},若B是A的子集,则实数m的取值范围为________.17.若二次函数的图象经过点,则代数式的值等于________.18.已知集合A={x|y=lg(2﹣x)},集合B=[y|y= },则A∩B=________.19.已知函数f(x)=2x﹣3,x∈N且1≤x≤5,则函数的值域为________.20.设集合M={x|﹣1<x<1},N={x|0≤x<2},则M∪N=________.21.设函数在区间上的最大值为,则________.22.函数的定义域为________.23.若函数f(x)= 在(﹣1,+∞)上的值域为________.24.已知幂函数的图象过点,则的单调减区间为________.25.设函数f(x)=(x﹣4)0+ ,则函数f(x)的定义域为________.26.若f(x)=2x+2﹣x lga是奇函数,则实数a=________.27.已知函数是奇函数,则=________.28.已知全集U={﹣1,0,2,4},集合A={0,2},则________.29.函数的单调递增区间为________.30.已知函数f(x)=,则f[f(-2)]=________ ,f(x)的最小值是________.31.设函数,若,则________.32.计算:的结果是________ .33.函数的单调增区间为________.34.化简:+=________35.已知集合,,若存在非零整数k,满足,则________.三、解答题(共15题;共135分)36.设,求证:(1);(2).37.设A={x|﹣1≤x≤a},(a>﹣1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若B=C,求a的值.38.(1)计算:;(2)已知( ) ,求的值.39.已知集合A={x|x<﹣1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.40.已知集合A={x|﹣3<x≤4},集合B={x|k+1≤x≤2k﹣1},且A∪B=A,试求k的取值范围.41.比较下列各题中两个值的大小.(1)1.82.2,1.83;(2)0.7-0.3,0.7-0.4;(3)1.90.4,0.92.4.42.已知函数f(x)= 的定义域为(﹣1,1),满足f(﹣x)=﹣f(x),且f()= .(1)求函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(x2﹣1)+f(x)<0.43.已知函数.(1)求函数的定义域;(2)是否存在实数a,使得为奇函数.44.已知全集U={x|﹣5≤x≤3},集合A={x|﹣5≤x<﹣1},B={x|﹣1≤x≤1}.(1)求A∩B,A∪B;(2)求(∁U A)∩(∁U B),(∁U A)∪(∁U B).45.设集合,.若,求的值46.设函数f(x)=ax2+(b﹣8)x﹣a﹣ab的两个零点分别是﹣3和2.(Ⅰ)求f(x);(Ⅱ)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.47.已知全集,若集合,B={x|x-m<0} .(1)若,求;(2)若, 求实数的取值范围.48.已知集合,.(1)当m=4时,求,;(2)若,求实数m的取值范围.49.已知A={x|x2﹣2x﹣3<0},B={x||x﹣1|<a}.(1)若A⊊B,求实数a的取值范围;(2)若B⊊A,求实数a的取值范围.50.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】D10.【答案】B11.【答案】D12.【答案】C13.【答案】A14.【答案】B15.【答案】C二、填空题16.【答案】17.【答案】[ ,1]18.【答案】{2,4}19.【答案】;20.【答案】821.【答案】b<a<c22.【答案】23.【答案】24.【答案】25.【答案】26.【答案】27.【答案】028.【答案】{0,2,6,10}29.【答案】30.【答案】231.【答案】②③32.【答案】33.【答案】[2,5)34.【答案】35.【答案】三、解答题36.【答案】(1)解:(2)。

高一数学必修一试题(带答案)

高一数学必修一试题(带答案)

高中数学必修1检测题本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分、共120分,考试时间90分钟、第Ⅰ卷(选择题,共48分) 一、选择题:本大题共12小题,每小题4分,共48分、 在每小题给出得四个选项中,只有一项就是符合题目要求得、1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确得有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确得有 ( ) (1)A 中得任一元素在B 中必须有像且唯一; (2)A 中得多个元素可以在B 中有相同得像; (3)B 中得多个元素可以在A 中有相同得原像; (4)像得集合就就是集合B 、A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 得取值范围就是 ( )A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数就是同一函数得就是 ( )①()f x =()g x =()f x x =与()g x =; ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

A 、①② B 、①③ C 、③④ D 、①④6.根据表格中得数据,可以断定方程02=--x e x 得一个根所在得区间就是 ( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg yx a y x 则 ( )A .a 3B .a 23C .aD .2a 8、 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕得值域就是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在x a y =上得最大值与最小值得与为3,则=a ( )A .21 B .2 C .4 D .41 10、 下列函数中,在()0,2上为增函数得就是( )A 、12log (1)y x =+ B、2log y =C 、21log y x = D、2log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化得一组数据,判断它最可能得函数模型就是( )A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好得顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于就是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只就是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

高中必修1函数数学试卷

高中必修1函数数学试卷

是R上的单调递增函数,则实数a的取值范围为( ) A.(1,+∞) B.[4,8) C.(4,8) D.(1,8) 9.下列函数中,既是奇函数又是增函数的为( )A. y=x+1 B.y=﹣x3 C.y=x-1 D.y=x|x|
10.函数 ,则该函数为( ) A.单调递增函数,奇函数 B.单调递增函数,偶函数 C.单调 递减函数,奇函数 D.单调递减函数,偶函数 11.下列函数中,在(0,+∞)上为增函数的是( )A.y=(x ﹣1)2 B.y=x2 C.y=(0.5)x D.y=3/x 12.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣ [x]在R上为( ) A.周期函数 B.奇函数 C.偶函数 D.增函数 二.填空题(共4小题)13.已知全集U=R,集合P={x||x﹣2| ≥1},则P= . 14.已知集合A={0,1,2},则A的子集的个数 为 . 15.已知集合A={1},B={﹣1,2m﹣1},若AB,则实数m的 值为 . 16.设A={x|1≤x≤3},B={x|m+1≤x≤2m+4,m∈R},AB,则m 的取值范围是 . 三.解答题(共6小题) 17.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0},其中 x∈R,如果A∩B=B,求实数a的取值范围.
D.y=x+ex 4.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|
≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1) ∈A,(x2,y2)∈B},则A⊕B中元素的个数为( ) A.77 B.49 C.45 D.30 5.设集合A={x|﹣1<x<2},集合B={x|1<x<3},则 A∪B=( ) A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D. {x|2<x<3} 6.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1) 的定义域为( ) A.(﹣1,1)B. C.(﹣1,0)D. 7.函数y= 的定义域是( )A.{x|x> } B.{x|x≠0,x∈R} C.{x|x< } D.{x|x≠ ,x∈R} 8.f(x)=

高中数学必修1综合测试卷(三套+含答案)

高中数学必修1综合测试卷(三套+含答案)

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。

已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。

5D .6 4。

下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。

设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。

2 B .3 C .9 D 。

187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。

高中数学必修一期末试卷带答案

高中数学必修一期末试卷带答案

一、选择题1.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为( )A .4.25米B .4.5米C .3.9米D .4.05米2.对于定义域为R 的函数()f x ,若存在非零实数0x ,使函数()f x 在()0,x -∞和()0,x +∞上与 x 轴都有交点,则称0x 为函数()f x 的一个“界点”.则下列四个函数中,不存在“界点”的是( ) A .()22xf x x =-B .()()22f x x bx b R =+-∈C .()12f x x =--D .()sin x x x f -=3.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的( )倍.(当||x 较小时,2101 2.3 2.7x x x ≈++) A .1.27B .1.26C .1.23D .1.224.已知函数()()2log 23a f x x x =--+,若()00f <,则此函数的单调递增区间是( ) A .(],1-∞-B .[)1,-+∞C .[)1,1-D .(]3,1--5.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .126.函数213()log 4f x x =-的单调减区间是( )A .(]()2,02,-+∞B .(]2,0-和(2,)+∞C .(),20,2[)-∞-D .(,2)-∞-和[0,2)7.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( ) A .4-B .12C .36D .808.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( )A .](2-∞,B .[)2,+∞C .[]24-,D .[]14, 9.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .403810.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .311.集合{}*|421A x x N =--∈,则A 的真子集个数是( )A .63B .127C .255D .51112.对于非空实数集A ,定义{|A z *=对任意},x A z x ∈≥.设非空实数集(],1C D ≠⊆⊂-∞.现给出以下命题:(1)对于任意给定符合题设条件的集合C ,D ,必有D C **⊆;(2)对于任意给定符合题设条件的集合C ,D ,必有C D *≠∅;(3)对于任意给定符合题设条件的集合C ,D ,必有CD *=∅;(4)对于任意给定符合题设条件的集合C ,D ,必存在常数a ,使得对任意的b C *∈,恒有a b D *+∈.以上命题正确的个数是( ) A .1B .2C .3D .4二、填空题13.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时,()f x x =,则函数()()ln ||g x f x x =-的零点个数为________14.某物流公司计划在其停车库附近租地建仓库,已知每月土地占用费P (万元)与仓库到停车库的距离x (公里)成反比,而每月库存货物的运费K (万元)与仓库到停车库的距离x (公里)成正比.如果在距停车库18公里处建仓库,这两项费用P 和K 分别为4万元和144万元,那么要使这两项费用之和最小,仓库到停车库的距离x = ________ 公里.15.已知0x >且1x ≠,0y >且1y ≠,方程组58log log 4log 5log 81xy x y +=⎧⎨-=⎩的解为11x x y y =⎧⎨=⎩或22x x y y =⎧⎨=⎩,则()1212lg x x y y =________. 16.已知12512.51000x y ==,则11x y=_____.17.已知函数()f x 对于任意实数x 满足条件()()12f x f x +=-,若()113f =- ,则()2019f = _________.18.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.19.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______.20.关于x 的不等式组10ax x a <⎧⎨-<⎩的解集不是空集,则实数a 的取值范围是_____.三、解答题21.某蔬菜基地种植西红柿,由历年市场行情知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图①的一条折线表示;西红柿的种植成本与上市时间的关系用图②的抛物线段表示.(Ⅰ)写出图①表示的市场售价与时间的函数关系式()f t ;写出图②表示的种植成本与时间的函数关系式()g t ;(Ⅱ)若记市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/100kg ,时间单位:天). 22.按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为m m a +;如果他买进该产品的单价为n 元,则他的满意度为nn a+.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h ,则他对这两种交易的综合满12h h现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙 (1)求h 甲和h 乙关于A m 、B m 的表达式;当35A B m m =时,求证:h 甲=h 乙; (2)设35A B m m =,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立?试说明理由. 23.已知函数()11x af x e =++为奇函数. (1)求a 的值,并用函数单调性的定义证明函数()f x 在R 上是增函数;(2)求不等式()()2230f t f t +-≤的解集.24.(1)求满足不等式221139x x --⎛⎫> ⎪⎝⎭的x 的取值集合;(2)求函数235()log (45)f x x x =--的单调递减区间. 25.已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a > 时,()f x 的定义域和值域都是[],m n ,求n m -的最大值;(3)若1≥x 时不等式()22a f x x ≤恒成立,求实数a 的取值范围.26.设集合(){lg 1A x y x ==-,{}230B x x x a =-+=.(1)若2a =时,求AB ;(2)若A B A ⋃=,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-, 即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米). 故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.2.D解析:D 【分析】由“界点”定义可知,存在“界点”要求函数至少有2个零点.通过对四个函数零点个数的判断,得到最终结果. 【详解】A 选项:令3n an n b a =,即22x x =,根据2x y =与2y x =图像如图所示:可知当0x >时,有2x =与4x =两个交点 当0x <时,有1个交点因此两函数共有3个交点,故()f x 必有“界点”;B 选项:令220x bx +-=,可知280b ∆=+>,方程恒有2个不等式根,即()f x 必有2个零点,故()f x 必有“界点”;C 选项:令120x --=,解得3x =或1x =,即()f x 有2个零点,故()f x 必有“界点”;D 选项:令sin 0x x -=,令()sin g x x x =-,则()1cos g x x =-'又cos 1≤x ,所以()0g x '≥()g x ∴在(),-∞+∞上单调递增又()00g =,即()g x 只有0x =一个零点,故()f x 不存在“界点”. 本题正确选项:D 【点睛】本题属于新定义问题,考查转化化归的数学思想.解题关键在于明确“界点”的定义,从而转化为零点个数问题.3.B解析:B 【分析】把已知数据代入公式计算12E E . 【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg 0.1E E =, ∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈. 故选:B . 【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.4.C解析:C 【分析】由()00f <求得01a <<,求出函数()f x 的定义域,利用复合函数法可求得函数()f x 的单调递增区间. 【详解】由题意可得()0log 30log 1a a f =<=,01a ∴<<.对于函数()()2log 23a f x x x =--+,2230x x --+>,可得2230x x +-<,解得31x -<<.所以,函数()f x 的定义域为()3,1-.由于内层函数223u x x =--+在区间(]3,1--单调递增,在区间[)1,1-单调递减. 外层函数log a y u =单调递减,由复合函数法可知,函数()f x 的单调递增区间为[)1,1-. 故选:C. 【点睛】方法点睛:函数单调性的判定方法与策略:(1)定义法:一般步骤:设元→作差→变形→判断符号→得出结论;(2)图象法:如果函数()f x 是以图象的形式给出或者函数()f x 的图象易作出,结合图象可得出函数的单调区间;(3)导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间; (4)复合函数法:先将函数()y f g x ⎡⎤=⎣⎦分解为内层函数()u g x =和外层函数()y f u =,再讨论这两个函数的单调性,然后根据复合函数法“同增异减”的规则进行判定. 5.B解析:B 【分析】根据()3x f x -为定值,可假设()3x f x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3x f x -为定值故设()3x f x m -=,即()3x f x m =+ 又[()3]4x f f x -=,所以()341m f m m m =+=⇒= 则()31x f x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥=当且仅当133xx=时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3x f x -为定值,审清题意,细心计算,属中档题.6.B【分析】先分析函数的定义域,然后根据定义域以及复合函数的单调性判断方法确定出()f x 的单调递减区间. 【详解】因为240x ->,所以定义域为()()(),22,22,-∞--+∞,令()24u x x =-,13log y u =在()0,∞+上单调递减,当(),2x ∈-∞-时,()u x 单调递减,所以()f x 单调递增; 当(]2,0x ∈-时,()u x 单调递增,所以()f x 单调递减; 当()0,2x ∈时,()u x 单调递减,所以()f x 单调递增; 当()2,x ∈+∞时,()u x 单调递增,所以()f x 单调递减; 综上可知:()f x 的单调递减区间为(]2,0-和()2,+∞. 故选:B. 【点睛】本题考查对数型复合函数的单调区间的求解,难度一般.分析复合函数的单调性,注意利用判断的口诀“同增异减”,当内外层函数单调性相同时,整个函数为增函数,当内外层函数单调性相反时,整个函数为减函数.7.D解析:D 【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果. 【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+, 构造(2)(31)(31)(4)f f f f -=-+=+=,而40>, 所以23(4)4+4=16(14)80f =⨯+=. 故选:D. 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下: (1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+; (2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=; (3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.8.C【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.9.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=.故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.10.D解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则A B A =正确.11.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N =--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3, 故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.12.B解析:B 【分析】根据题干新定义{|A z *=对任意},x A z x ∈≥,通过分析举例即可判断。

2024年人教版高中数学必修第一册第一章集合与常用逻辑用语试卷

2024年人教版高中数学必修第一册第一章集合与常用逻辑用语试卷

2024年人教版高中数学必修第一册第一章集合与常用逻辑用语试卷**一、选择题(每题5分,共50分)**1. 下列各组对象中,不能构成集合的是()A. 所有大于1的自然数B. 班级中身高超过1.8米的学生C. 接近1的数D. 所有正方形2. 集合A = {x | x²= 4},集合B = {2, 3},则A ∩B = ()A. {2}B. {3}C. ∅D. {2, 3}3. 已知集合A = {x | 2x - 1 < 5},B = {x | x²- 4 < 0},则A ∪B = ()A. ( -2, 3)B. ( -∞, 3)C. ( -∞, 2)D. ( -2, +∞)4. 若集合A = {x | x = 2k, k ∈ℤ},B = {x | x = 2k + 1, k ∈ℤ},则()A. A ∩B = ∅B. A ∪B = ℤC. A ⊆BD. B ⊆A5. 已知集合M = {x | x = a + b√2, a, b ∈ℤ},则下列元素中属于集合M 的是()A. 0B. 1/√2C. √2D. π6. 已知命题p:x > 1,命题q:x > 2,则p 是q 的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 已知命题“若x = 2,则x²= 4”的否命题是()A. 若x = 2,则x²≠4B. 若x ≠2,则x²= 4C. 若x ≠2,则x²≠4D. 若x²= 4,则x = 28. 下列命题中,为真命题的是()A. 若p ∨q 为真命题,则p,q 均为真命题B. 命题“若x > 1,则x²> 1”的否命题为假命题C. “x = 1”是“x²- 3x + 2 = 0”的充分不必要条件D. “x ≠1 或y ≠2”是“x + y ≠3”的必要不充分条件9. 设p:x > 1,q:1/x < 1,则p 是¬q 的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件10. 已知p:x²- 2x - 3 < 0,q:x - 2 > 0,则p 是q 的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件**二、填空题(每题5分,共10分)**11. 已知集合A = {x | x = 2k + 1, k ∈ℤ},B = {x | -2 < x < 5},则A ∩B = _______。

(完整版)高中数学必修一练习题及解析非常全

(完整版)高中数学必修一练习题及解析非常全

必修一数学练习题及解析第一章练习一、选择题(每小题5分,共60分)1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø{0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞)解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快.答案:B8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|) ②y=f(-x) ③y=xf(x) ④y=f(x)+xA.①③B.②③C.①④D.②④解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x).①y=f(|x|)为偶函数;②y =f(-x)为奇函数;③令F(x)=xf(x),所以F(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x).所以F(-x)=F(x).所以y=xf(x)为偶函数;④令F(x)=f(x)+x,所以F(-x)=f(-x)+(-x)=-f(x)-x =-[f(x)+x].所以F(-x)=-F(x).所以y=f(x)+x为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( ) A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( ) A .f (-32)<f (-1)<f (2) B .f (-1)<f (-32)<f (2) C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1).答案:D12.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎢⎡⎦⎥⎤f (52)的值是( )A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎢⎡⎦⎥⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f (x )=(m -1)x 2+6mx +2是偶函数,∴m =0.∴f (x )=-x 2+2.∴f (0)=2,f (1)=1,f (-2)=-2,∴f (-2)<f (1)<f (0). 答案:f (-2)<f (1)<f (0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围. 解:(1)∵x ∈N *且A ={x |-2≤x ≤5},∴A ={1,2,3,4,5}.故A 的子集个数为25=32个. (2)∵A ∩B =Ø,∴m -1>2m +1或2m +1<-2或m -1>5, ∴m <-2或m >6.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.解:(1)当B =A ={-1,1}时,易得a =0,b =-1; (2)当B 含有一个元素时,由Δ=0得a 2=b , 当B ={1}时,由1-2a +b =0,得a =1,b =1 当B ={-1}时,由1+2a +b =0,得a =-1,b =1.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.解:∵f (x )=xax +b且f (2)=1,∴2=2a +b . 又∵方程f (x )=x 有唯一实数解. ∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝ ⎛⎭⎪⎫x -a 22+2-2a .(1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2. (2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=2-2a =3,解得:a =-12(舍去).(3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/小时,其他主要参考数据如下:问:如何根据运输距离的远近选择运输工具,使运输过程中的费用与损耗之和最小? 解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:于是y 1=8x +1000+(x50+2)×300=14x +1600, y 2=4x +1800+(x100+4)×300=7x +3000. 令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车; ②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3. (2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎨⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].第二章 练习一、选择题(每小题5分,共60分)1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6. 答案:D2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( ) A .x >12 B.12<x <1 C .x <1D .0<x <1解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克B .(1-0.5%)3克C .0.925克D.1000.125克解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =(12)1100.可得放射性元素满足y =[(12)1100]x =(12)x 100.当x =3时,y =(12)3100=100(12)3=1000.125. 答案:D6.函数y =log 2x 与y =log 12x 的图象( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称D .关于y =x 对称解析:据图象和代入式判定都可以做出判断,故选B. 答案:B 7.函数y =lg(21-x -1)的图象关于( ) A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称解析:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)关于原点对称,故选C.答案:C8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a c C .c a >c bD .log b c <log a c解析:y =x c 在(0,+∞)上递增,因为a >b ,则a c >b c ;y =log a x 在(0,+∞)上递增,因为b>c,则log a b>log a c;y=c x在(-∞,+∞)上递增,因为a>b,则c a>c b.故选D.答案:D9.已知f(x)=log a(x+1)(a>0且a≠1),若当x∈(-1,0)时,f(x)<0,则f(x)是() A.增函数B.减函数C.常数函数D.不单调的函数解析:由于x∈(-1,0),则x+1∈(0,1),所以a>1.因而f(x)在(-1,+∞)上是增函数.答案:A10.设a=424,b=312,c=6,则a,b,c的大小关系是()A.a>b>c B.b<c<a C.b>c>a D.a<b<c解析:a=424=12243,b=12124,c=6=1266.∵243<124<66,∴12243<12124<1266,即a<b<c.答案:D11.若方程a x=x+a有两解,则a的取值范围为() A.(1,+∞) B.(0,1)C.(0,+∞) D.Ø解析:分别作出当a>1与0<a<1时的图象.(1)当a>1时,图象如下图1,满足题意.图1图2 (2)当0<a<1时,图象如上图2,不满足题意.答案:A1112.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A .(110,1)B .(0,110)∪(1,+∞) C .(110,10)D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎨⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12. 答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________. 解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________. 解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1.答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________. 解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12.12 当t =3时,y min =12;当t =1时,y max =12×4+12=52. 答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中,得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0,将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0. 解得y =4或y =22.当y =4时,即2x =4,解得x =2; 当y =22时,2x =22,解得x =-12. 综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则13f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12. (1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ; (2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa . 综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞); 当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa ,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax ),其中0<a <1.14 (1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a1-ax11-a x 2=log a 1-a x 2+a x 2-a x11-a x2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎪⎨⎪⎧1-a x >0,①1-ax <a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a 1-a}.15第三章 练习一、选择题(每小题5分,共60分)1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2D .4解析:∵Δ=b 2+4×2×3=b 2+24>0,∴函数图象与x 轴有两个不同的交点,从而函数有2个零点. 答案:C2.函数y =1+1x 的零点是( ) A .(-1,0) B .-1 C .1D .0解析:令1+1x =0,得x =-1,即为函数零点. 答案:B3.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 答案:C4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部.16 答案:C5.函数f (x )=e x -1x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内. 答案:B6.方程log 12x =2x -1的实根个数是( ) A .0 B .1 C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台解析:设产量为x 台,利润为S 万元,则S =25x -y =25x -(0.1x 2-11x +3000) =-0.1x 2+36x -3000=-0.1(x -180)2+240,则当x =180时,生产者的利润取得最大值. 答案:D8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0D .以上答案都不对17解析:定理的逆定理不成立,故f (x 1)f (x 2)的值不确定. 答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( )A .10吨B .13吨C .11吨D .9吨解析:设该职工该月实际用水为x 吨,易知x >8. 则水费y =16+2×2(x -8)=4x -16=20, ∴x =9. 答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图象为( )答案:A11.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0B .k >1C .0≤k <1D .k >1,或k =0解析:令y 1=|x 2-6x +8|,y 2=k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D12.利用计算器,算出自变量和函数值的对应值如下表:x0.20.61.0 1.41.82.22.63.0 3.4 … y =2x 1.149 1.516 2.0 2.639 3.4824.595 6.063 8.0 10.556 … y =x 20.04 0.361.01.963.244.846.769.011.56…18 那么方程2x=x2的一个根所在区间为()A.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f(x)=x3-2x-5,则f(2)<0,f(3)>0,f(4)>0,有f(2)f(3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f(x)=ax2-bx+1的零点为-12,13,则a=__________,b=__________.解析:由韦达定理得-12+13=ba,且-12×13=1a.解得a=-6,b=1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l,则这块场地面积y与场地一边长x的关系为________.图1解析:由题意知场地的另一边长为l-2x,则y=x(l-2x),且l-2x>0,即0<x<l 2.19答案:y =x (l -2x )(0<x <l2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n≤0.1% 即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a =2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a =10, ∴a =1.代入-b2a =2中,得b =-4.∴f (x )=x 2-4x +3. 18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,20 ∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375).19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800x m ,于是鱼池与路的占地面积为 y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2. 答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x , 由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c 表示,其中a ,b ,c 为待定常数,今有实际统计数据如下表:(1)试确定成本函数y =f (x );(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c ,得⎩⎨⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0). (3)令p (x )=0,即-12x 2+14x -50=0, 解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:x 1 2 3 4 f (x )4.005.587.008.44(1)画出2000~2003年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎨⎧a +b =43a +b =7,解得a =32,b =52,∴f(x)=32x+52.检验:f(2)=5.5,|5.58-5.5|=0.08<0.1;f(4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f(x)=32x+52能基本反映产量变化.(3)f(7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.全册书综合练习题及解析一、选择题(每小题5分,共60分)1.集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=() A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}解析:∵A∩B={1,2},∴(A∩B)∪C={1,2,3,4}.答案:D2.如图1所示,U表示全集,用A,B表示阴影部分正确的是()图1A.A∪B B.(∁U A)∪(∁U B)C.A∩B D.(∁U A)∩(∁U B)解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A)∩(∁U B).答案:D3.若f(x)=1-2x,g(1-2x)=1-x2x2(x≠0),则g⎝⎛⎭⎪⎫12的值为()A.1 B.3C.15 D.30解析:g(1-2x)=1-x2x2,令12=1-2x,则x=14,∴g⎝⎛⎭⎪⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7)B .(5,7)C .(-4,-3)∪(5,7)D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎨⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值解析:2x +1在(-∞,+∞)上递增,且2x +1>0, ∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( ) A .0 B .1 C .2D .3解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( ) A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错; 函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D 错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝ ⎛⎭⎪⎫1102=10,∴H 1=103.答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m 的取值范围是( )A .(0,12) B .(-1,1) C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1, 解得0<m <12,即m ∈(0,12). 答案:A12.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:23 14.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪0≤k <34 15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数. 证明:设x 1<x 2<0,则g (x 1)-g (x 2)=k x 1-k x 2=k (x 2-x 1)x 1x 2.∵x 1<x 2<0,∴x 1x 2>0,x 2-x 1>0,又∵k <0,∴g (x 1)-g (x 2)<0,即g (x 1)<g (x 2),∴g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.解:当Q ≠Ø,且P ∩Q =Ø时,⎩⎨⎧ 2k -1<2,2k -1≥k +1,或⎩⎨⎧k +1>5,2k -1≥k +1.解得k >4;当Q =Ø时,即2k -1<k +1,即k <2时,P ∩Q =Ø.综上可知,当P ∩Q =Ø时,k <2或k >4.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.解:因为函数f (x )为一次函数,所以f (x )在[-1,1]上是单调函数,f (x )在[-1,1]上的最大值为max{f (-1),f (1)}.分别取x =0和x =2,得⎩⎨⎧4f (1)-2f (-1)=18,4f (-1)-2f (1)=24,解得f (1)=10,f (-1)=11,所以函数f (x )在[-1,1]上的最大值为f (-1)=11.又因为f (1)<f (-1),所以f (x )在R 上是减函数,所以f (2007)>f (2008).20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上单调递增.故⎩⎨⎧ f (2)=2f (3)=5,即⎩⎨⎧ 4a -4a +2+b =29a -6a +2+b =5,解得⎩⎨⎧a =1b =0 ②当a <0时,f (x )在[2,3]上单调递减.故⎩⎨⎧ f (2)=5f (3)=2,即⎩⎨⎧ 4a -4a +2+b =59a -6a +2+b =2,解得⎩⎨⎧a =-1b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, 由题意知2+m 2≤2或2+m2≥4,∴m ≤2或m ≥6. 21.(12分)设函数y =f (x ),且lg(lg y )=lg3x +lg(3-x ). (1)求f (x )的解析式和定义域; (2)求f (x )的值域; (3)讨论f (x )的单调性.解:(1)lg(lg y )=lg[3x ·(3-x )],即lg y =3x (3-x ),y =103x (3-x ).又⎩⎨⎧3x >0,3-x >0,所以0<x <3,所以f (x )=103x (3-x )(0<x <3).(2)y =103x (3-x ),设u =3x (3-x )=-3x 2+9x =-3⎝⎛⎭⎪⎫x 2-3x +94+274=-3(x -32)2+274.当x =32∈(0,3)时,u 取得最大值274,所以u ∈(0,274],y ∈(1,10274].(3)当0<x ≤32时,u =-3⎝ ⎛⎭⎪⎫x -322+274是增函数,而y =10u 是增函数,所以在⎝ ⎛⎦⎥⎤0,32上f (x )是递增的;当32<x <3时,u 是减函数,y =10u 是增函数,所以f (x )是减函数.22.(12分)已知函数f (x )=lg(4-k ·2x )(其中k 为实数), (1)求函数f (x )的定义域;(2)若f (x )在(-∞,2]上有意义,试求实数k 的取值范围. 解:(1)由题意可知:4-k ·2x >0,即解不等式:k ·2x <4, ①当k ≤0时,不等式的解为R ,②当k >0时,不等式的解为x <log 24k ,所以当k ≤0时,f (x )的定义域为R ; 当k >0时,f (x )的定义域为(-∞,log 24k ).(2)由题意可知:对任意x ∈(-∞,2],不等式4-k ·2x >0恒成立.得k <42x ,设u =42x ,4又x∈(-∞,2],u=2x的最小值1.所以符合题意的实数k的范围是(-∞,1).。

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。

高中数学必修一不等式试卷

高中数学必修一不等式试卷

必修一 不等式一、单选题1.“06x π<<”是“1sin 2x <”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件 【答案】A【分析】根据充分必要条件的定义判断.【详解】06x π<<时,1sin 2x 成立,是充分的,但0x =时,1sin 02x =<,不满足6x π<<,必要性不满足,因此是充分不必要条件.故选:A .2.命题“x R ∀∈,均有2cos 10x x ++<”的否定为( )A .x R ∀∈,均有2cos 10x x ++≥B .0x R ∃∈,使得200cos 10x x ++<C .0x R ∃∈,使得200cos 10x x ++≥D .x R ∀∈,均有2cos 10x x ++>【答案】C【分析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“x R ∀∈,均有2cos 10x x ++<”的否定为“0x R ∃∈,使得200cos 10x x ++≥”故选 :C3.若,a b ∈R ,且0ab >,则下列不等式中,恒成立的是A .222a b ab +>B .a b +≥C .11a b +D .2b a a b +≥ 【答案】D【详解】试题分析:,所以A 错;,只能说明两实数同号,同为正数,或同为负数,所以当时,B 错;同时C 错;或都是正数,根据基本不等式求最值,,故D 正确. 考点:不等式的性质4.关于x 的不等式22280(0)x ax a a --<>的解集为12(,)x x ,且:2115x x -=,则a =( )A .52B .72C .154D .152【答案】A【详解】因为关于x 的不等式22280(0)x ax a a --<>的解集为12(,)x x ,所以212122,8x x a x x a +==-,又2115x x -=,所以2222212121()()43615x x x x x x a -=+-==, 解得52a =±,因为0a >,所以52a =. 故选:A.5.若实数,a b 满足12a b+=ab 的最小值为A B .2 C .D .4【答案】C【详解】12121002ab a b ab ab a ba b a +=∴=+≥⨯∴≥,>,>,(当且仅当2b a =时取等号),所以ab 的最小值为 C.考点:基本不等式 【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.6.若不等式220ax x c ++<的解集是121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,则不等式220cx x a ++≤的解集是. A .11,23⎡⎤-⎢⎥⎣⎦B .11,32⎡⎤-⎢⎥⎣⎦C .[-2,3]D .[-3,2] 【答案】D【分析】先由题意求出,a c ,再代入不等式220cx x a ++≤,求解,即可得出结果.【详解】因为不等式220ax x c ++<的解集是121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭, 所以021*******a a c a⎧⎪<⎪⎪-=-+⎨⎪⎪=-⨯⎪⎩,解得122a c =-⎧⎨=⎩, 所以不等式220cx x a ++≤可化为222120x x +-≤,即260x x +-≤,解得32x -≤≤.故选D 【点睛】本题主要考查一元二次不等式的解法,熟记三个二次之间的关系即可,属于基础题型.7.若正实数,a b 满足1a b +=,则A .11a b +有最大值4 B .ab 有最小值14CD .22a b +【答案】C【详解】试题分析:因为正实数,满足,所以112224a b a b b a a b a b a b +++=+=++≥+=,故11a b+有最小值4,故A 不正确;由基本不等式可得112,4a b ab ab +=≥∴≤,故有最大值14,故B 不正确;由于()22122,2a b a b ab ab a b +=++=+≤∴+≤,故+a b 由最大值为2,故C 正确;()22211212122a b a b ab ab +=+-=-≥-=,故22a b +由最小值12,故D 不正确. 考点:基本不等式8.已知0a >,0b >,若44a b ab +=,则a b +的最小值是( )A .2B 1C .94D .52【答案】C【分析】将44a b ab +=,转化为144b a +=,由()11414544a b a b a b b a b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,利用基本不等式求解. 【详解】因为44a b ab +=,所以144b a+=, 所以()11414544a b a b a b b a b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,19544⎛≥+=⎝, 当且仅当1444b a a b b a ⎧+=⎪⎪⎨⎪=⎪⎩,即3234a b ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,故选:C9.对x R ∀∈,不等式()()222240a x a x -+--<恒成立,则a 的取值范围是( )A .22a -<≤B .22a -≤≤C .2a <-或2a ≥D .2a ≤-或2a ≥【答案】A【分析】对a 讨论,结合二次函数的图象与性质,解不等式即可得到a 的取值范围.【详解】不等式()()222240a x a x -+--<对一切x ∈R 恒成立,当20a -=,即2a =时,40-<恒成立,满足题意;当20a -≠时,要使不等式恒成立,需200a -<⎧⎨∆<⎩,即有()()22421620a a a <⎧⎪⎨-+-<⎪⎩,解得22a -<<.综上可得,a 的取值范围为(]2,2-.故选:A.10. 不等式(x +3)2<1的解集是( )A .{x |x >-2}B .{x |x <-4}C .{x |-4<x <-2}D .{x |-4≤x ≤-2}【答案】C【解析】原不等式可化为x 2+6x +8<0,解得-4<x <-2.选C.11.不等式20ax x c -+>的解集为{21}x x -<<∣,则函数2y ax x c =++的图像大致为()A .B .C .D .【答案】C【分析】根据不等式的解集求出参数,从而可得22y x x =-++,根据该形式可得正确的选项.【详解】因为不等式20ax x c -+>的解集为{21}xx -<<∣, 故021121a c a a ⎧⎪<⎪⎪-⨯=⎨⎪⎪-+=⎪⎩,故1,2a c =-=,故222y ax x c x x =++=-++, 令220x x -++=,解得1x =-或2x =,故抛物线开口向下,与x 轴的交点的横坐标为1,2-,故选:C .12.若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b +的值为( ) A .10-B .14-C .10D .14【答案】B【分析】分析可知关于x 的二次方程220ax bx ++=的两根分别为12-、13,利用韦达定理可求得实数a 、b 的值,即可得解. 【详解】由题意可知,关于x 的二次方程220ax bx ++=的两根分别为12-、13,且有0a <, 由韦达定理可得112231123a b a ⎧-⨯=⎪⎪⎨⎪-+=-⎪⎩,解得122a b =-⎧⎨=-⎩,因此,14a b +=-. 故选:B.13.若0a <b <,则下列结论中不恒成立的是( )A .a b >B .11a b >C .222a b ab +> D.a b +>-【答案】 D【分析】将0a <b <,转化为0->->a b ,利用不等式的基本性质判断A ,B 的正误,利用重要不等式判断C 的正误,利用特殊值判断D 的正误.【详解】因为0a <b <,所以0->->a b 所以a b >,11a b -<-即11a b >,故A ,B 正确. 因为()20a b -≥,所以222a b ab +≥,所以222a b ab +>故C 正确.当 2,1a b =-=-时, +<-a b D 错误.故选:D【点睛】本题主要考查不等式的基本性质,基本不等式,还考查了理解辨析的能力,属于基础题.14.若两个正实数x ,y 满足141x y +=,且存在这样的x ,y 使不等式234y x m m +<+有解,则实数m 的取值范围是( )A .(1,4)-B .(4,1)-C .()(),41,-∞-+∞ D .()(),30,-∞-⋃+∞【答案】C【分析】利用基本不等式1的妙用,求4y x +的最小值,由题意可得2min 34y m m x ⎛⎫+>+ ⎪⎝⎭,解不等式即可求解. 【详解】 因为正实数x ,y 满足141x y+=,所以144224444y y x y x x x y y x ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭, 当且仅当44x y y x =且141x y+=,即2x =,8y =时取等号, 所以min 44y x ⎛⎫+= ⎪⎝⎭, 因为存在x ,y 使不等式234y x m m +<+有解, 所以234m m +>,解得:1m 或4m <-,所以实数m 的取值范围是()(),41,-∞-+∞,故选:C .15.已知a 、b 、c 满足c b a <<且0ac <,则下列选项中不一定能成立的是A .ab ac >B .()0c b a ->C .22cb ca <D .()0ac a c -<【答案】C【分析】 由已知条件得出0a >,0c <且b 的符号不确定,利用不等式的性质以及特殊值法可判断各选项中不等式的正误.【详解】c b a <<且0ac <,0a ∴>,0c <且b 的符号不确定.对于A 选项,b c >,0a >,由不等式的基本性质可得ab ac >,A 选项中的不等式一定能成立;对于B 选项,a b >,则0b a -<,又0c <,()0c b a ∴->,B 选项中的不等式一定能成立;对于C 选项,取0b =,则22b a <,0c <,22cb ca ∴>;取3c =-,1b =-,2a =,则22cb ca >,C 选项中的不等式不一定成立;对于D 选项,0a >,0c <,则0ac <,0a c ->,()0ac a c ∴-<,D 选项中的不等式一定能成立. 故选:C.【点睛】本题以命题的真假判断与应用为载体,考查了不等式的基本性质,实数的性质,难度不大,属于基础题. 16.“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .非充分非必要条件 【答案】A【分析】根据不等式的关系结合充分条件和必要条件的定义进行判断即可.【详解】当1a >时,11a<成立,即充分性成立, 当1a =-时,满足11a <,但1a >不成立,即必要性不成立, 则“1a >“是“11a<“的充分不必要条件, 故选:A . 17.“0a b >>”是“1a b >”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【分析】根据充分条件、必要条件的定义判断即可;【详解】解:由0a b >>,得1a b >,反之不成立,如2a =-,1b =-,满足1a b >,但是不满足0a b >>, 故“0a b >>”是“1a b >”的充分不必要条件. 故选:B18.已知a >1,b >1,记M =11a b +,N ,则M 与N 的大小关系为( ) A .M >N B .M =NC .M <ND .不确定【答案】A【分析】利用基本不等式可得答案.【详解】因为1,1a b >>,所以11a bM a b ab +=+=≥11a b =取等号,N=>=,故选:A .19.不等式111x ≥--的解集为( )A .(],0-∞B .(](),01,-∞+∞C .[)()0,11,+∞D .[)0,+∞【答案】B【分析】 本题可将111x ≥--转化为01xx ≥-,通过解()1010x x x ⎧-≥⎨-≠⎩即可得出结果.【详解】111x ≥--,即1101x +≥-,01xx ≥-,则()1010x x x ⎧-≥⎨-≠⎩,解得0x ≤或1x >,故不等式111x ≥--的解集为(](),01,-∞+∞,故选:B. 20.若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4【答案】C【分析】x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出.【详解】解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0.解得m ≥3.则实数m 的取值范围是[3,+∞).故选:C.21.若,a b c d >>,则下列关系一定成立的是( )A .ac bd >B .ac bc >C .a c b d +>+D .a c b d ->- 【答案】C【分析】利用基本不等式的性质,对选项进行一一验证,即可得到答案;【详解】对A ,当0,0a b c d ac bd >>>>⇒>,故A 错误;对B ,当0c >时,ac bc >,故B 错误;对C ,同向不等式的可加性,故C 正确;对D ,若2,1,0,31,4a b c d a c b d ====-⇒-=-=,不等式显然不成立,故D 错误;故选:C. 22.当01x <<时,141x x+-的最小值为( ) A .0B .9C .41e e e +-D .10【答案】B【分析】将代数式141x x +-与()1x x +-相乘,展开后利用基本不等式可求得141x x+-的最小值. 【详解】因为01x <<,则011x <-<,因此,()1414141559111x x x x x x x x x x -⎛⎫+=++-=++≥+⎡⎤ ⎪⎣⎦---⎝⎭, 当且仅当13x =时,等号成立,故141x x+-的最小值为9. 故选:B.23.若命题“22103x x -+<”是命题“x a >”的充分不必要条件,则a 的取值范围是( ) A .1a ≥B .12a ≥C .12a ≤D .1a ≤【答案】C【分析】解不等式22103x x -+<得112x <<,进而根据题意得集合1,12⎛⎫ ⎪⎝⎭是集合(),+∞a 的真子集,再根据集合关系求解即可. 【详解】解:解不等式22103x x -+<得112x <<, 因为命题“22103x x -+<”是命题“x a >”的充分不必要条件, 所以集合1,12⎛⎫ ⎪⎝⎭是集合(),+∞a 的真子集, 所以12a ≤ 故选:C24.若0a <,则关于x 的不等式(1)(2)0ax x -->的解集为( )A .12x x a ⎧⎫<<⎨⎬⎩⎭ B .12x x a ⎧⎫<<⎨⎬⎩⎭ C .1{x x a <或2}x > D .{2x x <或1}x a> 【答案】B【分析】结合含参一元二次不等式的解法即可.【详解】解:方程(1)(2)0ax x --=的两个根为2x =和1x a=, 因为0a <,所以12a <, 故不等式(1)(2)0ax x -->的解集为1|2x x a ⎧⎫<<⎨⎬⎩⎭.故选:B .二、多选题25.下列选项中,满足p 是q 的充分不必要条件的是( )A .:1p x >,:0q x >B .:2≠p x ,2:4≠q xC .:0p x =,:0=q xyD .:p x y >,22:q x y > 【答案】AC【分析】利用充分条件、必要条件的定义逐项判断即得.【详解】对于A ,∵:1p x >,:0q x >,∴由p 能推出q ,由q 推不出p ,即p 是q 的充分不必要条件,故A 正确; 对于B ,∵:2≠p x 即2x ≠±,2:4≠q x 即2x ≠±,∴p 是q 的充要条件,故B 错误;对于C ,∵:0p x =,:0=q xy 即0x =或0y =,∴由p 能推出q ,由q 推不出p ,即p 是q 的充分不必要条件,故C 正确;对于D ,∵:p x y >,22:q x y >,取12x y =->=-,则2214x y =<=,由p 推不出q ;取2210,10x y x y =-<==>=,由q 推不出p ;故p 是q 的既不充分也不必要条件,故D 错误.故选:AC.26.已知,a b R +∈且1a b +=,那么下列不等式中,恒成立的有( ).A .14abB .1174ab ab +C 2bD .11222a b+ 【答案】ABC【分析】利用基本不等式,逐个进行验证,即可得到结论.【详解】,,1a b R a b +∈+=,2124a b ab +⎛⎫∴= ⎪⎝⎭(当且仅当12a b ==时取得等号).所以选项A 正确 由选项A 有14ab ≤,设1y x x =+,则1y x x =+在104⎛⎤ ⎥⎝⎦,上单调递减. 所以1117444ab ab +≥+=,所以选项B 正确 2(2a b a b ab a b a b +=+++++=(当且仅当12a b ==时取得等号),2b .所以选项C 正确.113332222222a b a b b a b a b a b a ba +++=+=+++=+222ab =时等号成立),所以选项D 不正确. 故A ,B ,C 正确故选:ABC 【点睛】 本题考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题27.若正实数a ,b 满足1a b +=则下列说法正确的是( )A .ab 有最大值14B C .11a b +有最小值2 D .22a b +有最大值12【答案】AB【分析】对A,根据基本不等式求ab 的最大值;对B,对C,根据()1111a b a b a b ⎛⎫+=++ ⎪⎝⎭再展开求解最小值; 对D,对1a b +=平方再根据基本不等式求最值.【详解】对A,2211224a b ab +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12a b ==时取等号.故A 正确.对B, 22a b a b a b =+++++=,,当且仅当12a b ==时取等号.故B 正确.对C,()1111224b a a b a b a b a b ⎛⎫+=++=++≥+⎝= ⎪⎭.当且仅当12a b ==时取等号.所以11a b +有最小值4.故C 错误. 对D, ()()2222222121a b a ab b a a b b +=⇒++=≤+++,即2212a b +≥,故22a b +有最小值12.故D 错误. 故选:AB【点睛】本题主要考查了基本不等式求解最值的问题,需要根据所给形式进行合适的变形,再利用基本不等式.属于中档题. 28.解关于x 的不等式:2(24)80ax a x +-->,则下列说法中正确的是( )A .当0a =时,不等式的解集为{}4x x >B .当0a >时,不等式的解集为{|4x x >或2x a ⎫<-⎬⎭C .当0a <时,不等式的解集为24x x a ⎧⎫-<<⎨⎬⎩⎭D .当12a =-时,不等式的解集为∅ 【答案】ABD【分析】讨论参数a ,结合一元二次不等式的解法求解集即可判断各选项的正误.【详解】A :0a =,则280x ->,可得解集为{}4x x >,正确;B :0a >,则(2)(4)0ax x +->,可得解集为{|4x x >或2x a ⎫<-⎬⎭,正确; C :0a <,当24a -<时解集为24x x a ⎧⎫-<<⎨⎬⎩⎭;当24a -=时无解;当24a ->时解集为24x x a ⎧⎫<<-⎨⎬⎩⎭,错误; D :由C 知:12a =-,即24a -=,此时无解,正确. 故选:ABD29.若0a b <<,下列不等式中不成立的是( )A .1a b < B .11a b< C .|a|>b -D .22b a >【答案】ABD【分析】根据不等式的性质判断各选项.【详解】A 选项,10a a b b b --=>,∴1a b>,不成立, B 选项,110b a a b ab--=>,不成立, C 选项,∵0a b <<,∴a a b -=>-,成立,D 选项,由0a b ->->,∴22()()a b ->-,即22a b >,不成立,故选:ABD.30.设正实数m 、n 满足2m n +=,则下列说法中正确的是( )A .124m n ->B .mn 的最大值为1C 的最小值为2D .22m n +的最小值为2【答案】ABD【分析】 利用不等式的性质以及指数函数的性质可判断A 选项的正误,利用基本不等式可判断BCD 选项的正误.【详解】对于A 选项,因为正实数m 、n 满足2m n +=,则02m <<,()()2222,2m n m m m -=--=-∈-,故21224m n -->=,A 对; 对于B 选项,由基本不等式可得212m n mn +⎛⎫≤= ⎪⎝⎭,当且仅当1m n ==时,等号成立,B 对;对于C 选项,由基本不等式可得()222m n m n =+++=,02,当且仅当1m n ==时,等号成立,C 错;对于D 选项,()()()()222222222224m n m n m n m n mn m n +=+++≥++=+=, 可得222m n +≥,当且仅当1m n ==时,等号成立,D 对.故选:ABD.31.已知,,,a b c d R ∈,则下列结论正确的是( )A .若,a b c d >>,则ac bd >B .若22ac bc >,则a b >C .若0a b >>,则()0a b c ->D .若,a b c d >>,则a d b c ->- 【答案】BD【分析】举反例可判断选项A 、C 不正确,由不等式的性质可判断选项B 、D 正确,即可得正确选项.【详解】对于选项A :举反例:3a =-,4b =-,0c ,2d =-满足,a b c d >>,但ac bd <,故选项A 不正确;对于选项B :因为22ac bc >,则20c >,所以 a b >,故选项B 正确;对于选项C :因为2a =,1b =,1c =-,满足0a b >>,但()0a b c -<,故选项C 不正确;对于选项D :因为c d >,所以d c ->-,因为a b >,所以a d b c ->-,故选项D 正确,故选:BD.32.设0a >,0b >,给出下列不等式恒成立的是( )A .21a a +>B .296a a +>C .()114a b a b ⎛⎫++≥ ⎪⎝⎭D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭ 【答案】ACD【分析】选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围.【详解】由()22131024a a a ⎛⎫+-=-+> ⎪⎝⎭可得21a a +>,故A 正确; 由()()229630a a a +-=-≥可得296a a +≥,故B 错误; 由()11224a b a b a b b a ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =时取等号,故C 正确;由1114a b a b ab a b ab b a ⎛⎫⎛⎫⎛⎫⎛⎫++=+++≥= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 当且仅当1ab ab a b b a⎧=⎪⎪⎨⎪=⎪⎩,即1a b ==时取等号,故D 正确. 故选:ACD.三、填空题33.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________.【答案】30【详解】总费用为600900464()4240x x x x +⨯=+≥⨯,当且仅当900x x=,即30x =时等号成立.故答案为30. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. 34.函数y R ,则实数k 的取值范围为______.【答案】[]0,4【分析】函数y =R ,等价于2240kx kx -+≥恒成立,然后分 0k =和0k ≠两种情况讨论求解即可得答案【详解】函数y =R ,等价于2240kx kx -+≥恒成立,当 0k =时,显然成立;当0k ≠时,由2Δ(2)440k k =--⨯≤,得04k <≤.综上,实数k 的取值范围为[]0,4.故答案为:[]0,435.设0a >,1b >,若2a b +=,则911a b +-的最小值为__________. 【答案】16【分析】 把911a b +-乘以111a b =+-=得到()9191111a b a b a b ⎛⎫+=++-⎡⎤ ⎪⎣⎦--⎝⎭,后用均值定理 【详解】解:0a >,1b >且210a b b +=⇒->且()11a b +-= ∴()()91919111010616111b a a b a b a b a b -⎛⎫+=++-=++≥+=⎡⎤ ⎪⎣⎦---⎝⎭ 当且仅当()911b a a a -=-取等号, 又2a b +=,即34a =,54b =时取等号,故所求最小值为16. 故答案为:16【点睛】考查均值定理的应用,基础题36.已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____. 【答案】1[,1]2【详解】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x =时,取最小值12.因此22xy +的取值范围为1[,1]2.【名师点睛】本题考查了转化与化归的能力,除了像本题的方法,即转化为二次函数求取值范围,也可以转化为几何关系求取值范围,即0,0x y ≥≥,1x y +=表示线段,那么22xy +的几何意义就是线段上的点到原点距离的平方,这样会更加简单.37.不等式2320x x -++>的解集为____________. 【答案】2,13⎛⎫- ⎪⎝⎭ 【分析】由题意结合一元二次不等式的解法即可得解.【详解】由2320x x -++>得()()2321320x x x x --=-+<,所以不等式2320x x -++>的解集为2,13⎛⎫- ⎪⎝⎭. 故答案为:2,13⎛⎫- ⎪⎝⎭. 【点睛】本题考查了一元二次不等式的求解,考查了运算求解能力,属于基础题.38.若4x >,1y >,且124xy x y =++,则x y + 最小值是_____.【答案】13【分析】 由题得124x y x +=- ,进而124x x y x x ++=+-,结合基本不等式求解即可 【详解】 由题得124x y x +=- ,故124x x y x x ++=+-又12164551344x x x x x ++=+-+≥=--,当且仅当x=8,y=5,等号成立 故答案为13【点睛】本题考查基本不等式求最值,考查换元思想,准确计算变形是关键,是中档题39.已知x 、y 都是正数,且满足230x y xy ++=,则xy 的最大值为_________.【答案】18.【分析】根据基本不等式2x y +≥xy 的范围,求出答案.【详解】因为,0x y >,且230x y xy ++=,所以302xy x y -=+≥(当且仅当2x y =时,取等号)即2030≤+,解得≤≤-180xy ≤<,所以xy 的最大值是18.此时6x =,3y =.故答案为:18.【点睛】关键点点睛:本题的关键点是运用基本不等式把230x y xy ++=转化为2030≤+.40.已知0x >,则97x x --的最大值为________. 【答案】1【分析】直接利用基本不等式求最大值.【详解】0x ,则997771x x x x ⎛⎫--=-+≤- ⎪⎝⎭, 当且仅当9x x=即3x =时取等号. 故答案为:141.不等式3442x x +≥-的解集是___________. 【答案】(2,12]【分析】 移项通分化简,等价转化为1202x x -≥-,进一步等价转化为二次不等式(组),注意分母不能为零,然后求解即得. 【详解】 原不等式等价于34402x x +-≥-,化简得1202x x -≥-,又等价于()()122020x x x ⎧--≥⎨-≠⎩, 解得:212x <≤,故答案为:(2,12].四、解答题42.()1已知3x >,求43y x x =+-的最小值,并求取到最小值时x 的值; ()2已知0x >,0y >,223x y +=,求xy 的最大值,并求取到最大值时x 、y 的值. 【答案】()1当5x =时,y 的最小值为7.()2 2x =,3y =时,xy 的最大值为6.【分析】()1直接利用基本不等式的关系式的变换求出结果.()2直接利用基本不等式的关系式的变换求出结果.【详解】()1已知3x >,则:30x ->,故:44333733y x x x x =+=-++≥=--, 当且仅当:433x x -=-, 解得:5x =,即:当5x =时,y 的最小值为7.()2已知0x >,0y >,223x y +=,则:23x y +≥ 解得:6xy ≤,即:123x y ==, 解得:2x =,3y =时,xy 的最大值为6.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.43.设函数()21f x mx mx =--(1)若对一切实数x ,()0f x <恒成立,求m 的取值范围;(2)若对于[]1,3x ∈,()5f x m <-+恒成立,求m 的取值范围:【答案】(1)(]4,0-.(2)6,7⎛⎫-∞ ⎪⎝⎭ 【分析】 (1)对m 进行分类讨论,利用判别式进行求解;(2)利用参数分离得到261m x x <-+对[]1,3x ∈恒成立,利用二次函数的性质求得26()1g x x x =-+的值域即可. 【详解】(1)210mx mx --<对x ∈R 恒成立,若0m =,显然成立, 若0m ≠,则00m <⎧⎨∆<⎩,解得40m -<<. 所以,(]4,0m ∈-.(2)对于[]1,3x ∈,()5f x m <-+恒成立,即2(1)6m x x -+<对[]1,3x ∈恒成立210x x -+>对[]1,3x ∈恒成立 ∴261m x x <-+对[]1,3x ∈恒成立, 即求26()1g x x x =-+在[]1,3的最小值, 21y x x =-+的对称轴为12x =, ∴min 13()24y y ==,max (3)7y y ==,∴22]1146[,][,8173176x x x x ∈⇒∈-+-+, 可得min 6(),7g x =即6,7m ⎛⎫∈-∞ ⎪⎝⎭. 【点睛】本题考查一元二次函数的图象与性质、不等式恒成立问题,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的应用.44.已知函数2()()f x x ax a R =-∈.(1)若2a =,求不等式()3f x ≥的解集;(2)若[1,)x ∈+∞时,2()2f x x ≥--恒成立,求a 的取值范围.【答案】(1){|1x x ≤-或3}x ≥;(2)(,4]-∞.【详解】试题分析:(1)先对不等式移项并因式分解得()()310x x -+≥,再根据不等号方向得不等式解集,(2)先化简不等式,并分离12a x x ⎛⎫≤+ ⎪⎝⎭,转化为求对应函数最值:()min a h x ≤,其中()12h x x x ⎛⎫=+ ⎪⎝⎭,再根据基本不等式求()h x 最值,即得a 的取值范围.试题解析:(1)若()2,3a f x =≥即()()2230,310x x x x --≥-+≥所以原不等式的解集为{|1x x ≤-或3}x ≥(2)()22f x x ≥--即12a x x ⎛⎫≤+ ⎪⎝⎭在[)1,x ∈+∞时恒成立, 令()12h x x x ⎛⎫=+ ⎪⎝⎭,等价于()min a h x ≤在[)1,x ∈+∞时恒成立,又()124h x x x ⎛⎫=+≥ ⎪⎝⎭,当且仅当1x x =即1x =等号成立,所以4a ≤. 故所求a 的取值范围是(],4-∞.45.已知0,0x y >>,且41x y +=.(1)求xy 的最大值;试卷第21页,共21页 (2)求1y x y+的最小值. 【答案】(1)最大值为116;(2)最小值为5. 【分析】 (1)直接用基本不等式求解;(2)依题意,1441y y x y y x x y x y x y++=+=++,进而用基本不等式可求得结果. 【详解】(1)因为0,0,x y >>所以14x y =+≥ 即1.16xy ≤当且仅当4x y =取等号. 又41x y +=,所以当11,82x y ==时,xy 的最大值为1.16(2)因为0,0,x y >>且41x y +=.144115,y y x y y x x y x y x y ++=+=++≥= 当且仅当4y x x y =即2y x =取等号.又41x y +=,所以当11,63x y ==时,1y x y +的最小值为5.。

高中数学必修一期末试卷(附答案)

高中数学必修一期末试卷(附答案)

一、选择题1.设()31xf x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( ) A .102⎛⎫ ⎪⎝⎭, B .()0,2 C .()0,1 D .(]0,12.设函数3,()log ,x x a f x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( ) A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞3.已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩若a b c <<,且满足()()()f a f b f c ==,则abc 的取值范围为( ) A .(],0-∞B .(],1-∞-C .[]2,0-D .[]4,0-4.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-= C .222log 3log 5log (35)⋅=+D .231log 3log 2= 5.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现. 比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=( ) A .134217728B .268435356C .536870912D .5137658026.若函数112xy m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是( )A .1m ≤-B .10m -≤<C .m 1≥D .01m <≤7.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,48.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .39.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞10.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉11.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,312.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.已知函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩,若函数()()g x f x m =-与x 轴有3个交点,则实数m 的取值范围是_________.14.若y a x =的图象与直线y x a =+(0a >)有两个不同交点,则a 的取值范围是__________.15.方程()()122log 44log 23xx x ++=+-的解为____;16.已知函数2,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥恒成立,则a 的取值范围是________.17.关于函数()11f x x =+-的性质描述,正确的是_________.①()f x 的定义域为[-1,0)∪(0,1]; ②()f x 的值域为R ; ③在定义域上是减函数; ④()f x 的图象关于原点对称.18.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.19.已知集合2|230A x x x ,{}|0B x x a =-=,若B A ≠⊂,则实数a 的值为______.20.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =.三、解答题21.新冠肺炎疫情发生后,某公司生产A 型抗疫商品,第一个月是为国内生产,当地政府决定对该型商品免税,该型商品出厂价为每件20元,月销售量为12万件;后来国内疫情得到有效控制,从第二个月开始,该公司为国外生产该型抗疫商品,当地政府开始对该型抗疫商品征收税率为%p (0100p <<,即销售1元要征收100p元)的税,于是该型抗疫商品出厂价就上升到每件100202p-元,预计月销售量将减少2p 万件.(1)将第二个月政府对该商品征收的税y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二个月该公司缴纳的税额不少于1万元的前提下,又要让该公司当月获得最大销售金额,p 应为多少?22.已知函数22,01,()ln ,1x x f x x x e-≤<⎧=⎨≤≤⎩,其中e 为自然对数的底数.(1)求(f f 的值;(2)作出函数()()1F x f x =-的图象,并指出单调递减区间(无需证明) ;(3)若实数0x 满足00(())f f x x =,则称0x 为()f x 的二阶不动点,求函数()f x 的二阶不动点的个数.23.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.24.已知函数()f x ()()4log 41xkx k R =++∈的图象关于y 轴对称.(1)求实数k 的值(2)设函数()g x 12421f x xx m +=+⋅-(),[]20log 3x ∈,,是否存在实数m , 使得()g x 的最小值为0?若存在, 求出m 的值,若不存在说明理由.25.对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“M 类函数”(1)已知函数()23f x cos x π⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”,并说明理由;(2)设()1423xx f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围26.已知集合{|A x y ==,{}22|60B x x ax a =--<,其中0a ≥.(1)当1a =时,求集合A B ⋃,()R C A B ⋂; (2)若()R C A B B ⋂=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围. 【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解, ∴()f x t =必须有两解, 由图象知01t <<. 故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x a f x x x a ⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.3.A解析:A 【分析】画出()f x 的图象结合图象,求得1bc =、求得a 的取值范围,由此求得abc 的取值范围. 【详解】由函数()f x 的图象(如图),可知1022a b c ≤<≤<≤,由22log log b c =得22log log b c -=,所以1bc =,所以(],0abc a =∈-∞.故选:A【点睛】本小题主要考查分段函数的图象与性质,属于中档题.4.D解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误;222log 3log 5log (35)⋅≠+,C 错误; 3233log 31log 3log 2log 2==,D 正确. 故选:D . 【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠. 5.C解析:C 【分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可. 【详解】由已知可知,要计算16384×32768,先查第一行的对应数字: 16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912, 所以有:16384×32768=536870912, 故选C. 【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.6.B解析:B 【分析】11()+2x y m -=与x 有公共点,转化为11()2xy -=与y m =-有公共点,结合函数图象,可得结果. 【详解】11()+2x y m -=与x 有公共点,即11()2x y -=与y m =-有公共点,11()2xy -=图象如图可知0110m m <-≤⇒-≤< 故选:B 【点睛】本题考查了函数的交点问题,考查了运算求解能力和数形结合思想,属于基础题目.7.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.8.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.9.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.10.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xyz x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.11.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.12.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意;当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.二、填空题13.【分析】先将函数与轴有个交点转化成与的交点问题再作出分段函数的图像利用数形结合求得范围即可【详解】依题意函数与轴有个交点即与有3个交点作分段函数的图像如下由图可知的取值范围为故答案为:【点睛】方法点 解析:()0,1【分析】先将函数()()g x f x m =-与x 轴有3个交点,转化成()y f x =与y m =的交点问题,再作出分段函数()y f x =的图像,利用数形结合求得m 范围即可. 【详解】依题意,函数()()g x f x m =-与x 轴有3个交点, 即()y f x =与y m =有3个交点,作分段函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩的图像如下,由图可知,m 的取值范围为()0,1. 故答案为:()0,1. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.14.【分析】首先根据已知题意画出图形然后根据数形结合分析的取值范围需要注意为的斜率【详解】根据题意的图象如图:结合图象知要想有两个不同交点的斜率要大于的斜率的取值范围是故答案为:【点睛】本题考查函数图象 解析:()1,+∞【分析】首先根据已知题意画出图形,然后根据数形结合分析a 的取值范围,需要注意a 为y ax =的斜率. 【详解】根据题意y a x =的图象如图:()0a >,结合图象知,要想有两个不同交点y ax ∴=的斜率要大于y x a =+的斜率a ∴的取值范围是1a >.故答案为:()1,+∞ 【点睛】本题考查函数图象的交点问题,考查数形结合能力,属于中等题型.15.【分析】直接利用对数的运算法则化简求解即可【详解】解:可得即:解得(舍去)可得经检验是方程的解故答案为:【点睛】本题考查方程的解的求法对数的运算法则的应用考查计算能力 解析:2【分析】直接利用对数的运算法则化简求解即可. 【详解】 解:()()122log 44log 23x x x ++=+-()()1222log 44log log 232x x x +∴+=+-可得()()122log 44log 232x x x++=-⎡⎤⎣⎦, 即:()144232x x x++=-,()223240xx -⋅-=,解得21x =-(舍去)24x =,可得2x =.经检验2x =是方程的解. 故答案为:2. 【点睛】本题考查方程的解的求法,对数的运算法则的应用,考查计算能力.16.【分析】分两种情况讨论当时结合图象可知;当时再分两种情况讨论分离参数后化为函数的最值可解得结果【详解】当时则恒成立等价于恒成立函数的图象如图:由图可知;当时所以恒成立等价于恒成立若则若则恒成立所以综 解析:10a -≤≤【分析】分0x >,0x ≤两种情况讨论,当0x >时,结合图象可知0a ≤;当0x ≤时,再分0x =,0x <两种情况讨论,分离参数后化为函数的最值可解得结果. 【详解】当0x >时,()ln(1)0f x x =+>,则|()|f x ax ≥恒成立等价于ln(1)x ax +≥恒成立,函数ln(1)y x =+的图象如图:由图可知0a ≤;当0x ≤时,2()0f x x x =-+≤,所以|()|f x ax ≥恒成立等价于2x x ax -≥恒成立,若0x =,则a R ∈,若0x <,则1a x ≥-恒成立,所以1a ≥-, 综上所述:10a -≤≤. 故答案为:10a -≤≤ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;17.①②④【分析】求出函数的定义域值域判断①②根据单调性的定义判断③根据奇偶性的定义与性质判断④【详解】函数满足解得或故函数的定义域为故①正确当时当时所以函数值域为故②正确③虽然时函数单调递减当时函数单解析:①②④ 【分析】求出函数的定义域,值域判断①②,根据单调性的定义判断③,根据奇偶性的定义与性质判断④. 【详解】函数()f x =21011x x ⎧-⎪⎨+≠⎪⎩,解得10x -<或01x <,故函数的定义域为[1-,0)(0⋃,1].故①正确.当[1x ∈-,0)时(][)(]2211,(),00,1x f x x ∈+∞⇒===-∞∈⇒,当(0x ∈,1]时,(][)220,,111x x ∈∈⇒+∞⇒()[0f x ===,)+∞,所以函数值域为R ,故②正确.③虽然[1x ∈-,0)时,函数单调递减,当(0x ∈,1]时,函数单调递减,但在定义域上不是减函数,故③错误.④由于定义域为[1-,0)(0⋃,1],()11f x x x==+-,则()()f x f x -=-,()f x 是奇函数,其图象关于原点对称,故④正确.故答案为:①②④. 【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、值域、函数的定义域与对称性,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.18.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.19.-1或3【分析】解方程用列举法表示集合AB 由即得解【详解】集合若故a=-1或3故答案为:-1或3【点睛】本题考查了集合的包含关系考查了学生概念理解数学运算能力属于基础题解析:-1或3 【分析】解方程,用列举法表示集合A ,B ,由B A ≠⊂,即得解. 【详解】 集合2|230{1,3}Ax x x ,{}|0{}B x x a a =-==若B A ≠⊂,故a =-1或3 故答案为:-1或3 【点睛】本题考查了集合的包含关系,考查了学生概念理解,数学运算能力,属于基础题.20.①②③【分析】①根据得到方程无实根推出或;再由此判断根的个数即可判断①;②取分别判断根的个数即可判断②;③取分别判断根的个数即可判断③;④当时方程有三个根所以由此求根的个数即可判断④【详解】①当时方解析:①②③ 【分析】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取240a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a c b c ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.【详解】①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立; ②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立;③当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错;故答案为:①②③ 【点睛】本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型.三、解答题21.(1)2610p p y p-=-,定义域为()0,6;(2)2p =时,公司销售金额最大.【分析】(1)由题可得第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,则可得出对该商品征收的税; (2)由1y ≥可得25p ≤≤,销售收入()100(6)()2510p g p p p-=≤≤-单调递减,即可求出最值. 【详解】解:(1)依题意,第二个月该商品销量为()122p -万件, 月销售收入为100(122)202p p-⋅-万元,当地政府对该商品征收的税为100(122)(6)20210010p py p p p p=-⋅⋅=-⋅--(万元).所以所求函数为2610p p y p-=-. 由60p ->及0p >得,所求函数的定义域为()0,6.(2)由1y ≥得26110p p p-≥-化简得27100p p -+≤, 即(2)(5)0p p --≤,解得25p ≤≤, 所以当25p ≤≤,税收不少于1万元;第二个月,当税收不少于1万元时,公司的销售收入为()100(6)()2510p g p p p-=≤≤-,因为100(6)400()1001010p g p p p -==+--在区间[]2,5上是减函数,所以max ()(2)50g p g ==(万元). 所以当2p =时,公司销售金额最大.【点睛】本题考查函数的实际应用,解题的关键是正确理解题目,建立正确的函数关系式,根据函数的单调性求最值.22.(1)(())1f f e =;(2)图象见解析,递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)3【分析】(1)分段函数求值,根据x 的范围代入即可;(2)画出函数图象,结合图象求出函数单调性;(3)写出(())f f x 分段函数,根据(())f f x x =,求出解的个数 【详解】解:(1)因为1e >,所以1()2f e ln e ==,所以1(())()12f f e f ==. (2)()|()1|F x f x =-,所以函数图象如下所示:递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)根据题意,012x,(())(22)f f x ln x =-,当112x <<,(())42f f x x =-,当1x e ,(())22f f x lnx =-,当012x时,由(())(22)f f x ln x x =-=,记()(22)g x ln x x =--,则()g x 在1[0,]2上单调递减,且(0)20g ln =>,11()022g =-<, 故()g x 在1[0,]2上有唯一零点1x ,即函数()f x 在1[0,]2上有唯一的二阶不动点1x . 当112x <<时,由(())42f f x x x =-=,得到方程的根为223x =,即函数()f x 在1(,1)2上有唯一的二阶不动点223x =. 当1x e 时,由(())22f f x lnx x =-=,记()22h x lnx x =--,则()h x 在[1,]e 上单调递减,且()110h =>, ()0h e e =-<,故()h x 在[1,]e 上有唯一零点3x ,即函数()f x 在[1,]e 上有唯一的二阶不动点3x . 综上所述,函数()f x 的二阶不动点有3个. 【点睛】(1)这是分段函数求值,基础题;(2)含绝对值的函数单调性的判断,比较容易;(3)这道题难点是要写出(())f f x 分段函数,根据(())f f x x =,求出解的个数,一定注意x 的范围.23.(1)(5,5)- (2)奇函数,见解析 【分析】(1)若()f x 有意义,则需满足505xx->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可. 【详解】 (1)由题,则505xx->+,解得55x -<<,故定义域为()5,5- (2)奇函数,证明:由(1),()f x 的定义域关于原点对称, 因为()()33355log log log 1055x xf x f x x x+--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数 【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明. 24.(1)12-;(2)1-. 【分析】(1)根据()()()4log 41xf x kx k R =++∈的图象关于y 轴对称.得到()()f x f x -=,再利用待定系数法法求解.(2)由(1)知()42=+⋅xx g x m ,[]20log 3x ∈,,令2x t =,[]13t ∈,得到2=+⋅y t m t ,然后利用二次函数的图象和性质求解.【详解】 (1)()()()4log 41x f x kx k R =++∈的图象关于y 轴对称.∴函数()f x 是偶函数.()()f x f x ∴-=,即()()44log 41log 41xx kx kx -+-=++,即()()()44log 411log 41xxk x kx +-+=++,即210k +=,12k ∴=-;(2)()1242142()+=+⋅-=+⋅f x xx x x g x m m ,[]20log 3x ∈,,设2x t =,则[]13t ∈,, 2∴=+⋅y t m t 在[]13t ∈,上最小值为0,又22()24m m y t =+-,[]13t ∈,,当12m-≤ 即2m ≥-时,1t =时10min y m =+=, 1m ∴=-,符合,当132m -<-< 即62m -<<-时,2m t =-时,204min m y =-=,0m ∴= 不符合,当32m-≥ 即6m ≤-时,3t =时,930min y m =+=, 3m ∴=-,不符合, 综上所述m 的值为1-. 【点睛】本题主要考查偶函数的应用,对数运算以及二次函数的图象和性质的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题. 25.(1)是;答案见解析;(2)1m -. 【分析】(1)特殊值验证使得()()f x f x -=-即可;(2)因为函数满足新定义,则问题由存在问题转化为求函数值域问题,进而可以求解.【详解】解:(1)因为()2cos()2cos()2(22323f πππππ-=--=+=⨯=()2cos()2223f πππ=-==()()22f f ππ-=-, 所以存在02=x π使得函数()f x 为“M 类函数”;(2)由已知函数1()423x x f x m +=--满足:()()f x f x -=-,则化简可得:442(22)60x x x x m --+-+-=⋯①令222x x t -=+,则2442x x t -+=-,所以①可化为:2280t mt --=在区间[2,)+∞上有解可使得函数()f x 为“M 类函数”, 即18()2m t t=-在[2,)+∞有解, 而函数18()2t t -在[2,)+∞上单调递增,所以当2t =时,有最小值为18(2)122-=-, 所以1m -,故实数m 的取值范围为:[1-,)+∞.【点睛】本题考查了新定义的函数问题以及函数的有解问题,涉及到求函数的值域问题. 求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. 26.()[)()13,3,()1,3R A B C A B ⋃=-⋂= ()20a =【分析】(1)先求集合B,再根据交集、并集以及补集得定义求结果,(2)先根据条件化为集合关系,再结合数轴求实数a 的取值范围.【详解】(1){()(){}[]||3103,1A x y x x x ===+-≥=-当1a =时,{}{}()222|60|602,3B x x ax a x x x =--<=--<=-, 所以[)3,3,A B ⋃=-因为()()(),31,R C A =-∞-⋃+∞,所以()()1,3R C A B ⋂=(2)因为()R C A B B ⋂=,所以R B C A ⊆,当B =∅时,0a =,满足条件,{}()220|602,3a B x x ax a a a >=--<=-当时,不满足条件,因此0a =.【点睛】防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.。

高一数学必修1期末试卷及答案

高一数学必修1期末试卷及答案

高一数学必修1期末试卷及答案高中数学必修一期末试卷一、选择题。

(共12小题,每题5分)1、设集合A={x| x>-1},则()A、XXXB、2 ∉AC、2∈AD、2 ∈ { }改写:集合A由所有大于-1的实数x组成。

2.下列四组函数中,表示同一函数的是( ).A.f(x)=|x|,g(x)=x-1/x-1B.f(x)=log2(x+1),g(x)=2log2(x-1)C.f(x)=x2-1/x2-1,g(x)=x-1D.f(x)=g(x)改写:哪一组函数表示同一个函数?3、设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A、{1,2}B、{1,5}C、{2,5}D、{1,2,5}改写:如果A和B的交集是{2},那么A和B的并集是什么?4、函数f(x)=(x-1)/(x-2)的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)改写:函数f(x)=(x-1)/(x-2)的x的取值范围是什么?5、设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()删除:题目中的图形6、三个数7.3,0.3,㏑0.3,的大小顺序是()A、7>0.3>㏑0.3B、7>0.3>㏑0.3C、0.3>7>㏑0.3D、㏑0.3>7>0.3>3改写:将三个数按照从大到小的顺序排列。

7、若函数f(x)=x+x-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2f(1.25)=-0.984f(1.438)=0.165f(1.5)=0.625f(1.375)=-0.260f(1.4065)=-0.052那么方程x+x-2x-2=0的一个近似根(精确到0.1)为()A、1.2B、1.3C、1.4D、1.5改写:使用二分法逐次计算函数f(x)=x+x-2x-2的一个正数零点附近的函数值,给出下表:x。

人教版高中数学必修一综合测试题及答案

人教版高中数学必修一综合测试题及答案

人教版高中数学必修一测试题一一、选择题(本大题共10小题,每小题5分,共60分)1.已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 ( )A.{x |x ∈R }B.{y |y ≥0}C.{(0,0),(1,1)}D.∅2. 函数2x y -=的单调递增区间为 ( )A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 3. 下列四个函数中,在(0,+∞)上为增函数的是 ( )A.f (x )=3-xB.f (x )=x 2-3xC.f (x )=-11+xD.f (x )=-|x |4.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上递减,则a 的取值范围是 ( )A.[-3,+∞]B.(-∞,-3)C.(-∞,5]D.[3,+∞)5..当10<<a 时,在同一坐标系中,函数x y a y a xlog ==-与的图象是 ( ).A B C D 6. 函数y =1-x +1(x ≥1)的反函数是 ( )A.y =x 2-2x +2(x <1)B.y =x 2-2x +2(x ≥1)C.y =x 2-2x (x <1)D.y =x 2-2x (x ≥1)7. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤48.某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折 优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是 ( )A.413.7元B.513.7元C.546.6元D.548.7元9. 二次函数y =ax 2+bx 与指数函数y =(ab )x的图象只可能是 ( )D10. 已知函数f (n )=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f (8)等于 ( )A.2B.4C.6D.711、如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图, 则a,b,c,d 的大小顺序( ) A 、a<b<c<d B 、a<b<d<cC 、b<a<d<cD 、b<a<c<d12.已知0<a<1,b<-1,函数f(x)=a x +b 的图象不经过: ( )A.第一象限;B.第二象限;C.第三象限;D.第四象限二、填空题(本大题共4小题,每小题5分,共20分) 13.已知f (x )=x 2-1(x <0),则f -1(3)=_______. 14. 函数)23(log 32-=x y 的定义域为______________15.某工厂8年来某产品产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产; ④第3年后,这种产品年产量保持不变. 以上说法中正确的是_______.16. 函数y =⎪⎩⎪⎨⎧>+≤<+≤+1)( 5-1),(030),(32x x x x x x 的最大值是_______.三、解答题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修1数学试题
试卷说明:本卷满分150分,考试时间120分钟。

一、选择题。

(共12小题,每题5分)
1、若集合{}|13A x x =≤≤,{}|2B x x =>,则A
B =( )·
A .{}x|x>2
B .{}x|x 1≥
C .{}x|2x<3≤
D . {}x|2<x 3≤
2、设f (x )是定义在R 上奇函数,且当x >0时,)2(,32)(--=f x f x
则等于( ) A .-1
B .
411 C .1 D .-4
11 3、函数2
1
)(--=
x x x f 的定义域为( ) A 、 [1,2) B 、(1,+∞) C 、 [1,2)∪(2,+∞) D 、[1,+∞)
4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )
5、设
()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( )
A 、f(xy)=f(x)f(y)
B 、f(x+y)=f(x)+f(y)
C 、f(x+y)=f(x)f(y)
D 、f(xy)=f(x)+f(y)
6、设0.32
22,0.3,log 0.3a b c ===,则,,a b c 的大小关系是( )
A .a b c <<
B .c b a <<
C .c a b <<
D .a c b <<
7、函数y=ax 2
+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( )
A 、b>0且a<0
B 、b=2a<0
C 、b=2a>0
D 、a ,b 的符号不定
8、函数2,0
2,0
x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )
9、若2
log 13a
<,则a 的取值范围是( ) A. 2(,1)3 B. 2(,)3+∞ C. 2(0,)(1,)3+∞ D. 22
(0,)(,)33
+∞
10、若奇函数()f x 在区间[3,7]上是增函数且最小值为5,则()f x 在区间[]7,3--上是( )
A .增函数且最大值为5-
B .增函数且最小值为5-
C .减函数且最小值为5-
D .减函数且最大值为5- 11、函数()312f x ax a =+-在区间[1,1]-上存在0x ,使00()0(1)f x x =≠±,则a 的取值范围是( )
A .115a -<<
B .1a <- C.15a > D. 1
15
a a ><-或
12、已知(),()log (01)x
a f x a g x x a a ==>≠且,若(2)(2)0f g <,那么()f x 与()g x 在同一坐标系内
的图象可能是( )
二、填空题(共4题,每题5分)
13、f(x)的图像如下图,则f(x)的值域为 ; 14、已知幂函数()y f x =的图象过点(2,2),则
(8)f = 。

15、函数12
()log (21)f x x =-的定义域是 。

16、函数()log (23)1a f x x =-+的图像恒过定点P ,则点P 的坐标是 。

三、解答题(本大题共6小题,满分70分,解答题写出必要的文字说明、推演步骤。


17、(本题10分)设全集为R ,{}73|<≤=x x A ,{}102|<<=x x B ,求()R C A B 及()R C A B
18、(每题5分,共10分)不用计算器求下列各式的值
⑴ ()()
1
223
02
1329.63 1.548--⎛⎫
⎛⎫ ⎪ ⎪⎝⎭⎝⎭
---+
⑵ 74
log 2327
log lg 25lg 473
+++
19、(本题满分12分)已知定义在(1,1)-上的奇函数()f x ,在定义域上为减函数,且
(1)(12)0f a f a -+->,求实数a 的取值范围。

20、(本题12分)设2 2 (1)
() (12)2 (2)x x f x x x x x +≤-⎧⎪=-<<⎨
⎪≥⎩

(1)在下列直角坐标系中画出()f x 的图象; (2)若()3g t =,求t 值; (3)用单调性定义证明在[)2,+∞时单调递增。

21、(本题12分)已知函数f(x)=㏒a 12-x
, ,0(>a 且)1≠a , (1)求f(x)函数的定义域。

(2)求使f(x)>0的x 的取值范围
22、(本题满分14分)已知定义在R上的函数1
()21
x
f x a =-
+是奇函数,其中a 为实数。

(1)(4分)求a 的值;
(2)(5分)判断函数()f x 在其定义域上的单调性并证明; (3)(5分)当0m n +≠时,证明
()()
(0)f m f n f m n
+>+。

必修一数学参考答案
13、[-4,3] 14、 15、1
(,1]2
16、 (2,1)
三、 解答题(共44分) 17、 解:}102|{)
(≥≤=⋃x x x B A C R 或 }10732|{)(<≤<<=⋂x x x B C R 或
18、解(1)原式=232
21
)2
3()827(
1)49(--+-- =232
32
12)23()23(1)23(-⨯-⨯+-- =22)2
3()23(123--+-- =21
(2)原式=2)425lg(33log 4
3
3
+⨯+ =210lg 3log 2413++- =4
152241=++- 19、解:由已知条件有
(1)(12)0(1)(12)
f a f a f a f a -+->⇒->--()f x 是奇函数(12)(21)f a f a ∴--=-
(1)(21)
f a f a ∴->-()f
x 为其定义域上的减函数,212132111021
3121101
a a a a a a a a ⎧
>⎪-<-⎧⎪⎪
∴-<-<⇒<<⇒<<⎨⎨⎪⎪-<-<<<⎩⎪

∴实数a 的取值范围为2
(,1)3
20 21解:(1)12-x >0⇒2x -1),这个函数的定义域是(∞+⇒>⇒>000x (2)㏒a 12-x >0,当a>1时,12-x >1;1>⇒x 当0<a<1时,12-x <1且x>010<<⇒x
22题:(本题满分14分)
解:⑴
()f x 的定义域为R ,(0)f ∴有意义。

又()f x 为奇函数,(0)0f ∴=
即 01(0)021
f a =-=+。

解得1
2a =
⑵ 证明:任取12,x x R ∈,且12x x <
则1
2121111
()()()()221221
x x f x f x -=---++122
11211222121(21)(21)x x x x x x -=-=++++ 121212,22,220x x x x x x <∴<∴-<又1212(21)0,(21)0(21)(21)0x x x x +>+>∴++> 12()()0f x f x ∴->()f x ∴是R 上的增函数。

⑶ 证明:()f x 在R 上为增函数且为奇函数(0)0,()()f f n f n ∴=-=-
当0m n +>时,得m n >- ()()()f m f n f n ∴>-=-即()()()()0f m f n f m f n >-⇒+> ()()0f m f n m n
+∴>+当0m n +<时,得m n <-()()()f m f n f n ∴<-=-即
()()()()0f m f n f m f n <-⇒+< ()()0f m f n m n +∴>+所以,当0m n +≠时,有()()(0)f m f n f m n
+>+。

相关文档
最新文档