数学分析简明教程答案14

合集下载

数学分析简明教程答案

数学分析简明教程答案

第十一章 广义积分§11.1 无穷限广义积分1. 求下列无穷积分的值: (1)⎰+∞-2211dx x ; (2)⎰+∞+22)1(1dx x x ;(3))0(02>⎰+∞-a dx xe ax ;(4))0(sin 0>⎰+∞-a bxdx eax;. (5)⎰∞++021dx x x; (6))0,()()(022>+++⎰+∞q p q x p x dx.解 (1)3ln 21)31ln 11(ln 21lim 11lim 112222=-+-=-=-+∞→+∞→+∞⎰⎰A A dx x dx x A A A . (2)2ln 21)2ln 1(ln 21lim )1(1lim )1(1221212=++=+=++∞→+∞→∞+⎰⎰AA dx x x dx x x A A A . (3)a211a 21limlim222=-==-+∞→-+∞→+∞-⎰⎰)(e dx e x dx ex ax A Aax A ax . (4)设⎰+∞-=0sin bxdx e I ax )0(>a ,则)cos sin 1(lim sin lim 000⎰--+∞→-+∞→+-=⎰=A ax A ax A Aax A dx bx e a b bx e a bxdx e I)sin cos (lim 002⎰--+∞→+-=A ax A axA bxdx e b bx e a bI ab a b bxdx eab a b bxdx e a b a b axA axA 22202220222sin sin lim -=-=-=⎰⎰∞+--+∞→,所以 ,22ba bI +=. (5)作变换y x =,则有⎰+++-+--++=+=+⎰⎰dy y y y y y y y y y y dy y y dx x x )21)(21()21(22)21(221212222422 ⎰⎰-+++-+-=)22(21)(2121)21(42222y y d y y y y d ⎰⎰+++++++-)22(2121)21)21(42222y dyy y y y d C y y y y y y +++-++++-=)]12arctan()12[arctan(222121ln 4222C x x x x x xy +++-+++-=)]12arctan()12[arctan(221)21(ln 4222, 所以,)]12arctan()12[arctan(221)21(ln 421222++-+++-=+⎰A A A A A dx x x A)(22)22(22+∞→=+→A πππ,即,π22102=+⎰∞+dx xx . (6) 由于当q p =时,用⎰+=n n x a dxI )(22的地推公式,p x dxp p x x p p x dx q x p x dx +++=+=++⎰⎰2222222121)())((C pxp p p x x p +++=arctan 21212所以,时,0>=q ppp p A p p p A A p p x dx A AA 4)arctan 2121(lim )(lim2022π=++=++∞→+∞→⎰, 当q p ≠时,由于⎰⎰⎰+-+-=++--=++dx p x q x q p q x p x dx q p q p q x p x dx )11(1))(()(1))((222222C pxp q x q q p +--=)arctan 1arctan 1(1, 所以,当q p ≠时,⎰⎰+=+++∞→+∞A A q x dx q x p x dx 02022)(lim ))(( )(2)arctan 1arctan 1(1limq p pq p A p q A q q p A +=--=+∞→π两种情况下,即只要0,>q p ,就有⎰+∞+=++022)(2))((q p pq q x p x dx π. 2. 讨论下列积分的收敛性: (1)⎰+∞+0341x dx ;(2)⎰+∞+031arctan dx x x;(3)⎰∞+121sindx x;(4)⎰+∞+0dx xx sin 11;(5)⎰+∞+022sin 1dx xx x; (6))0,(10>+⎰∞+m n dx xx nm; (7)⎰∞++-0 1242x x dxx ;(8)⎰+∞+13211dx xx ;(9))0(02≥⎰+∞-p dx e x x ;(10)⎰+∞1ln dx x xp; (11)⎰∞+12ln dx x xn (n 是正整数); (12)⎰∞+02sin dx xx; (13)⎰+∞+01cos dx x axn ; (14)⎰+∞+-+1]11)11[ln(dx x x ;(15)⎰+∞+1)1sin 1ln(cos dx xx ;(16)⎰∞+-⎪⎪⎭⎫ ⎝⎛-0dx x x 1222sin 1ln 1. 解 (1)111lim 3434=++∞→x xx ,所以积分⎰+∞+0341x dx 收敛.(2)21arctan lim 32π=++∞→x x x x x ,故所求积分收敛.(3)111sin lim1sin lim 2222==+∞→+∞→x x xx x x ,因此所求积分收敛. (4)0≥∀x ,有011sin 11>+≥+x x x ,且+∞=+=+=++∞→+∞→+∞⎰⎰)1ln(lim 1lim 10A x dx x dxA A A 0,即⎰+∞+01xdx发散,由比较判别法知⎰+∞+0x x dx sin 1发散.(5)0≥∀x ,有01sin 1222>+≥+x x x x x ,而11lim 2=++∞→x xx x ,无穷积分⎰+∞+021dx x x 发散,由比较判别法知⎰+∞+022sin 1dx xx x发散. (6)因为11lim=++∞→nnx x x ,所以, 当1>-m n ,即1+>m n 时,⎰∞++01dx x x nm收敛;当1≤-m n ,即1+≤m n 时,⎰∞++01dx xx nm发散. (7) 11lim 2422=+-+∞→x x x x x ,所以积分收敛.(8)1111lim11lim 323235=+=++∞→+∞→x xx xx x ,所以积分收敛.(9) 因为 =+==++∞→++∞→-+∞→x px x p x xpx ex p e x e x x 122)2(lim lim )(lim 0])[()1)(2(lim ][=-++=-+∞→x p p x ex p p p p , 所以无穷积分收敛.(10) 若1>p ,则可以选取00>ε,使得10>-εp ,由于0ln limln lim 0==+∞→-+∞→εεx xxx x X pp x ,所以⎰+∞1ln dx xxp 收敛; 若1≤p ,则当e x ≥时,p p x x x 1ln ≥,而⎰+∞11dx x p 发散,由比较判别法,⎰+∞1ln dx xx p 发散.从而,⎩⎨⎧≤>⎰∞+.时发散时收敛1p ,,1p ,ln 1dx x x p (11)由于012)1(22lim ln 2lim ln lim ln lim 2121121223=-⋅====+∞→-+∞→+∞→+∞→x n n x x n x x xx x x n x n x n x , 所以无穷积分⎰∞+12ln dx x xn 收敛. (12) 因为xxx x x x x 22cos 2122cos 1sin 2-=-=,而 21)0sin 2(sin 212cos 0≤-=⎰A xdx A,对一切0>A 成立,x21在[1,+)∞单调下降,且当+∞→x 时趋于0,由Dirichlet 判别法⎰+∞122cos dx xx收敛,又⎰+∞12x dx 发散,所以⎰∞+02sin dx x x 发散(0=x 是可去间断点). (13)当1>n 时,由于n nx x ax +≤+111cos ,而⎰+∞+011dx x n 收敛,所以⎰+∞+01cos dx xax n 收敛,故这时不论R a ∈是哪个常数,⎰+∞+01cos dx xaxn均绝对收敛. 当10≤<n 时,若0≠a ,则由于aaA a axdx A 1sin 1cos 0≤=⎰,而n x +11在),0[+∞单调递减,且当+∞→x 时趋于0,由Dirichlet 判别法知,无穷积分收敛,但由于)1(22cos )1(211cos 1cos 2nn n nx ax x x ax x ax +++=+≥+, 则由于⎰+∞+0)1(21dx x n 发散,同样由Dirichlet 判别法知⎰+∞+0)1(22cos dx x ax n 收敛,故⎰∞++021cos dx xax n 发散,由比较判别法知⎰∞++012cos dx x ax n 发散,故这时无穷积分条件收敛. 当10≤<n 且0=a 时,无穷积分为⎰+∞+011dx xn发散. 当0=n 时,无穷积分为⎪⎪⎩⎪⎪⎨⎧=+∞=≠==+∞→+∞→+∞→∞+⎰⎰,02A lim ,0sin 21lim 2cos lim 2cos A A 00a a aA adx ax dx ax A A ,不存在, 故这时,不论a 为何常数,积分发散.当0<n 时,若0=a ,无穷积分为⎰+∞+011dx x n发散.以下假设0≠a ,0820>=∃a πε,N K A ∈∃>∀,0,使得A a a k >-42ππ且142≤⎪⎪⎭⎫ ⎝⎛-na a k ππ,这时 0424282)44(421cos επππππππ==+≥+⎰+-a a a dx xax a a k aa k n, 由Cauchy 收敛原理,⎰+∞+01cos dx x axn 发散. 综上,积分⎰+∞+01cos dx x axn当0>n 时绝对收敛;当10≤<n 且0≠a 时条件收敛;其他时候发散.(14) 因为)1(21))1(11(1)1(21111)11ln(2222xo x x o x x x o x x x x +=+--+-=+-+,所以,⎰+∞+-+1]11)11[ln(dx xx 收敛.(15) 因为xx x xx x x x 1)1sin 1ln(cos lim)1sin 1ln(cos lim +=++∞→+∞→ 11sin1cos 1sin1cos lim )1)(1sin 1(cos )1(1cos )1(1sin lim222=+-=-+-+--=+∞→+∞→x x x x xx x x x x x x x , 所以,⎰+∞+1)1sin 1ln(cos dx xx 发散.(16)因为12sin 1212≤-≤x ,所以,2ln 2sin 1ln 012≤⎪⎪⎭⎫⎝⎛-≤-x .因此,21221222ln 2sin 1ln 12sin 1ln 1x x x x x ≤⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛---, 而⎰+∞122ln dx x 收敛,所以⎰∞+-⎪⎪⎭⎫⎝⎛-0dx x x 1222sin 1ln 1收敛(0=x 是可去间断点). 3.讨论下列无穷积分的收敛性(包括绝对收敛或条件收敛): (1)⎰∞+1dx xx2cos ; (2)⎰+∞1dx x xcos ; (3)⎰+∞1cos dx xx p ; (4)⎰∞++0100cos dx x xx ;(5)⎰+∞2sin ln ln ln xdx xx. 解 (1)xxx x x x x 22cos 2122cos 1cos 2+=+=, 由于⎰+∞121dx x 发散,而⎰+∞1dx xx 22cos 收敛(Dirichlet 判别法),因此,⎰∞+1dx x x 2cos 发散.(2)由Dirichlet 判别法知⎰+∞1dx xxcos 收敛,但由于x x x x 2cos cos ≥,而由(1),⎰∞+1dx x x2cos 发散,故由比较判别法知⎰∞+1cos dx x x 发散,因而⎰+∞1dx xx cos 条件收敛.(3)1>p 时,由于p p x x x 1cos ≤对一切),1[+∞∈x 成立,所以⎰+∞1cos dx x x p绝对收敛.10≤<p 时,用Dirichlet 判别法知⎰+∞1dx xxp cos 收敛,但由于 pp p px x x x x x x 22cos 21cos cos 2+=≥,同样用Dirichlet 判别法知⎰+∞122cos dx x xp 收敛,而⎰+∞121dx x p 发散,故由比较判别法知⎰∞+1cos dx x x p发散,所以这时⎰+∞1cos dx x xp条件收敛. 0=p 时,⎰+∞1cos xdx 发散.0<p 时,亦发散(用Cauchy 收敛原理即可).所以,⎰+∞1cos dx xxp 当1>p 时绝对收敛;10≤<p 时条件收敛;0≤p 时发散. (4)⎰⎰∞+∞++=+11100cos 100cos dx x x x x dx x x x ,由于⎰+∞1cos dx x x 收敛,100+x x 单调递减有界,故由Abel 判别法,⎰∞++1100cos dx x x x 收敛,从而⎰∞++0100cos dx x xx 也收敛,但)100(22cos )100(2100cos 100cos 2+++=+≥+x xx x x x x x x xx ,同样⎰∞++0)100(22cos dx x x x 收敛,但⎰∞++0)100(2dx x x发散,所以⎰∞++0100cos dx x x x 发散.因此,⎰∞++0100cos dx x xx 条件收敛.(5)⎰⎰+∞+∞=22ln ln ln ln sin sin ln ln ln dx x x x x xdx x x,用Dirichlet 判别法知⎰+∞2ln sin dx xx 收敛,而由于)(0ln ln ln +∞→→x xx ,因而xx ln ln ln 有界,且由于23)(ln 2ln ln 2ln ln ln x x xx x -=⎪⎪⎭⎫⎝⎛,当2e e x ≥小于零,故当2e e x ≥时,xx ln ln ln 单调递减,由Abel 判别法,⎰+∞2sin ln ln ln xdx xx收敛.但xx x x x x x x x x x ln 22cos )ln (ln ln 2ln ln sin ln ln ln sin ln ln ln 2-=≥, 同样用Abel 判别法,⎰∞+2ln 22cos ln ln dx xx x 收敛,而⎰∞+2ln 2ln ln dx xx 发散(当x 充分大时,xx x 1ln ln ln ≥),故⎰∞+22sin ln ln ln xdx x x 发散,由比较判别法,dx x x x ⎰∞+2sin ln ln ln 发散,无穷积分⎰+∞2sin ln ln ln xdx xx条件收敛. 4.设)()()(x g x h x f ≤≤,+∞<≤x a ,)(,x h 在任意有限区间],[A a 可积,又⎰+∞adx x f )(和⎰+∞adx x g )(收敛.求证⎰+∞adx x h )(收敛.证明 由于)()()(x g x h x f ≤≤,+∞<≤x a ,所以,)()()()(0x f x g x f x h -≤-≤,+∞<≤x a ,又⎰+∞adx x f )(和⎰+∞adx x g )(收敛,故⎰+∞-adx x f x g )]()([也收敛,因而由比较判别法,⎰+∞-adx x f x h )]()([收敛.而)()]()([)(x f x f x h x h +-=, 所以,dx x f x f x h dx x h aa⎰⎰+∞+∞+-=)}()]()({[)(收敛.5. 证明定理11.2,并举例说明其逆是不成立的.证明 定理11.2 若⎰+∞adx x f )(收敛,则⎰+∞adx x f )(收敛.证法1、由于⎰+∞adx x f )(收敛,有无穷限积分的Cauchy 原理,0A ,0>∃>∀ε,当A A A >''',时,有ε<⎰'''A A )(dx x f ,从而当A A A >''',时,有ε<≤⎰⎰''''''A A A A dx x f dx x f )()(,同样由无穷积分的Cauchy 收敛原理,知⎰+∞adx x f )(收敛.证法2、由于),[,)()()(∞+∈≤≤-a x x f x f x f ,由第4题结论知,⎰+∞adx x f )(收敛.其逆是不成立的.例如,3(2)题中积分⎰+∞1dx xxcos 收敛,但⎰∞+1cos dx x x 发散. 6. 若)(x f 在),[∞+a 上单调下降,且积分⎰+∞adx x f )(收敛,求证:0)(lim =+∞→x xf x .证明 由于⎰+∞adx x f )(收敛,故依)(x f 在),[∞+a 上单调下降知,),[∞+∈∀a x ,有0)(≥x f ,否则,若),[0∞+∈∃a x ,使0)(0<x f ,则01x x >∀,有0)()(01<≤x f x f ,因而0x b >∀,有)+∞→∞-→-+≤+=⎰⎰⎰⎰b x b x f dx x f dx x f dx x f dx x f bax abx x a())(()()()()(000, 与⎰+∞adx x f )(收敛相矛盾.由无穷积分的Cauchy 收敛原理00>∃>∀A ,ε,当A A ,A >'''时,有2)(A A ε<⎰'''dx x f ,所以,当A 2>x 时,有2)(2ε<⎰xxdt t f ,由⎰<⇒<≤x x x xf dt t f x f x 2)(2)()(2εε,因此,0)(lim =+∞→x xf x .7. 设)(x f 在),0[+∞上一致连续,并且积分⎰+∞)(dx x f 收敛.证明0)(lim =+∞→x f x .如果仅仅知道积分⎰+∞)(dx x f 收敛,以及)(x f 在),0[+∞上连续,0)(≥x f ,是否仍有0)(lim =+∞→x f x ?证明 证法1、由)(x f 在),0[+∞上一致连续,0 0>∃>∀δε,(不妨设εδ≤),当),0[,21∞+∈x x ,δ≤-21x x 时,2)()(21ε<-x f x f ,又由⎰+∞)(dx x f 收敛,对上述0>δ,,0>∃N ,当N x x >21,时,有2)(221δ<⎰x xdx x f .N x >∀,取N x x >21,,使得21x x x <<,且δ=-12x x ,则由⎰⎰⎰⎰+-==21212121)()()()()(x x x x x x x x dt t f dt t f dt x f dt x f x f δ22)()()(22121δδε+<+-≤⎰⎰x x x x dt t f dt t f x f ,所以,当N x >时,εδε≤+<22)(x f ,因此,0)(lim =+∞→x f x .证法2、假设0)(lim ≠+∞→x f x ,则00>∃ε,0>∀A ,存在与A 有关的A x >0,使00)(ε≥x f .不妨设00)(ε≥x f ,由)(x f 在),0[+∞上一致连续,0>∃δ,当a x x ≥''',,且δ<''-'x x 时,2)()(0ε<''-'x f x f .故当),(00δδ+-∈x x x 时,2)()(00ε<-x f x f ,所以,22)()(00εε≥->x f x f ,因此δεδδ000)(≥⎰+-x x dx x f ,与⎰+∞)(dx x f 收敛矛盾,从而0)(lim =+∞→x f x .如果仅仅知道积分⎰+∞)(dx x f 收敛,以及)(x f 在),0[+∞上连续非负,则0)(lim =+∞→x f x 不成立.例如⎪⎪⎩⎪⎪⎨⎧-++⋃∈===∞=+,其他线性,,]211,21[]21,0[,0,),2,1(,1)(11 n n n n n x n n x x f则121)(10==∑⎰∞=+∞n n dx x f ,即⎰+∞0)(dx x f 收敛,显然)(x f 在),0[+∞上连续非负,但)(lim x f x +∞→不存在.8. 设⎰+∞adx x f )(与⎰+∞'adx x f )(收敛,求证:0)(lim =+∞→x f x .证明 由于⎰+∞'adx x f )(收敛,因而,))()((lim )(lim )('lima f x f t f dt t f x xa x xax -==+∞→+∞→+∞→⎰存在,因而)(lim x f x +∞→存在,设l x f x =+∞→)(lim ,若0≠l ,不妨设0>l ,则a A >∃0且00>A ,当0201,A A A A >>时,02)(>>lx f .又⎰+∞a dx x f )(收敛,故0>∀ε,a A >∃1且01>A ,当11,A A A A >''>'时,有ε<⎰'''AAdx x f )(.令},m ax {10A A A =,则当AA >'时,A A >'2,因此以下二式同时成立:ε<>'⎰''A A dx x f lA f 2)(,2)(.故022)(22>'=>⎰⎰''''A ldx l dx x f A A A A , 所以,ε<'A l2,但这是矛盾的,因此0)(lim =+∞→x f x .9.设)(x f 单调下降趋于0, )(x f '在),0[∞+连续.求证:⎰+∞'02sin )(xdx x f收敛.证明⎰⎰⎰+∞→+∞→+∞='='AA AA x xdf xdx x f xdx x f 020202)(sin limsin )(limsin )(⎰⎰+∞+∞→=-=022sin )(]2sin )(sin )([lim xdx x f xdx x f A A f A A ,由于0>∀A ,1)12(cos 212sin 0≤--=⎰A xdx A,由Dirichlet 判别法,⎰+∞02sin )(xdx x f 收敛,因而⎰+∞'02sin )(xdx x f 收敛.10.设)(x f 和)(x g 是定义在),[∞+a 上的函数,且在任何有限区间],[A a 上可积.证明:若⎰+∞adx x f )(2与⎰+∞adx x g )(2收敛,则⎰+∞+adx x g x f 2)]()([与⎰+∞adx x g x f )()(也收敛.证明 由于)]()([21)()(22x g x f x g x f +≤及)()(x g x f 在任何有限区间],[A a 上可积,⎰+∞adx x f )(2与⎰+∞adx x g )(2收敛,由比较判别法知⎰+∞adx x g x f )()(收敛,因而⎰+∞adx x g x f )()(收敛.又)()()(2)()]()([222x g x g x f x f x g x f ++=+,所以⎰+∞+adx x g x f 2)]()([也收敛.11.证明:(1)设)(x f 在),0[∞+连续,且k x f x =+∞→)(lim ,则)0(ln ])0([)()(0>>-=-⎰+∞a b abk f dx x bx f ax f ; (2)若上述条件k x f x =+∞→)(lim 改为⎰+∞a dx xx f )(存在)0(>a ,则)0.(ln )0()()(0>>=-⎰+∞a b abf dx x bx f ax f . 证明(1)当+∞<∆<<δ0时,积分 ⎰⎰⎰⎰⎰∆∆∆∆∆-=-=-b b a a dz zz f dz z z f dx x bx f dx x ax f dx x bx f ax f δδδδδ)()()()()()( ⎰⎰⎰⎰∆∆∆∆--=b a b a b a b a z dzf z dz f dz zz f dz z z f )()()()(ηξδδδδ ),(ln )(ln )(∆≤≤∆≤≤-=b a b a abf a b f ηδξδηξ,所以,⎰⎰∆+∞→∆+∞-=-δdx xbx f ax f dx x bx f ax f )()(lim )()(0ab f f a b f a b f ln )](lim )(lim [)ln )(ln)((lim 00ηξηξδδ+∞→∆→→+∞→∆-=-=++由于+→0δ时,+→0ξ;+∞→∆时,∞→+η,所以abk f a b f f dx x bx f ax f ln ])0([ln )](lim )(lim [)()(0-=-=-+∞→∆→∆+⎰ηξδδ. (2) 用(1),当+∞<∆<<δ0时,有⎰⎰⎰∆∆∆-=-δδδb a b a dz zz f dz z z f dx x bx f ax f )()()()( )()(ln )(δξδξb a dz zz f a b f b a ≤≤-=⎰∆∆,令+∞→∆→+,0δ取极限,由于⎰+∞a dx x x f )(存在,故)(0)(+∞→∆→⎰∆∆b a dz zz f ,所以,abf dx x bx f ax f ln )0()()(0=-⎰+∞.§11.2 瑕积分1. 下列积分是否收敛?若收敛求其值. (1)⎰210cot xdx ;(2)⎰1ln xdx ;(3)⎰-axa dx 0;(4)⎰-11dx xx. 解 (1) +∞=-=++→→⎰)sin ln 21sin (ln lim cot lim 0210ηηηηxdx ,所以,⎰210cot xdx 发散.(2)1)1ln (lim )ln (lim ln lim 01101-=+--=-=+++→→→⎰⎰ηηηηηηηηηdx x x xdx ,所以⎰1ln xdx收敛, 且⎰-=11ln xdx .(3)a a dt t t xa dx aa 2)(22lim lim 0=-=-=-⎰⎰++→-→ηηηηη,所以⎰-a xa dx0收敛,且⎰=-aa xa dx2. (4)ηηηηηηηη-→-→-→⎪⎭⎫ ⎝⎛+-=+=-+++⎰⎰1020102220101arctan lim )1(2lim 1lim t t t dt t t dx xx2)1(1arctanπηηηη=---=,所以dx x x ⎰-11收敛 ,且其值为2π. 2.讨论下列积分的收敛性: (1)dx xx ⎰123sin ;(2)⎰-1032)1(x x dx ;(3)⎰-1021ln dx x x;(4)⎰2022cos sin πx x dx; (5)⎰1ln dx x p;(6)⎰-20cos 1πdx xxm; (7)⎰10ln x dx ;(8)⎰πsin xdx ;(9)⎰1ln xdx xα;(10)⎰---111ln dx xx x q p ;(11)⎰20tan πdx x ; (12)⎰20sin ln cos πxdx x .解(1)因为2123231sin xxx xx =≤,]1,0(∈∀x ,由dx x⎰11收敛及比较判别法,知 dx xx ⎰123sin 收敛.(2)⎰⎰⎰-+-=-12132210321032)1()1()1(x x dx x x dx x x dx ,]21,0(∈x 时,32332322)211(1)1(1xdxx x x =-≤-,由于⎰2103232dx x收敛,可得⎰-21032)1(x x dx 收敛 ;]1,21(∈x 时,33323214)1(211)1(1xdx x x x -=-⎪⎭⎫⎝⎛≤-,由于dx x⎰-2103314收敛,可得⎰-12132)1(x x dx 收敛,所以⎰-1032)1(x x dx 收敛.(3)⎰-1021ln dx x x 只有瑕点1,0==x x 是可去奇点.因为当210≤<x 时, x x x ln 341ln 2-≤-成立,故由比较判别法知⎰-1021ln dx x x收敛(绝对收敛).(4)12sin 4lim cos sin 1lim 2202220==++→→x x x x x x x ,所以,⎰2022cos sin πxx dx 发散. (5)若0<p ,则由于)0(0ln +→→x x p知0=x 是可去间断点, 而1=x 是瑕点 ,这时由于)1()1(~)]1(1ln[ln -→--+=x x x xp pp,故当01<<-p 时,⎰1ln dx x p收敛,1-≤p 时,发散.若0=p ,则是常义积分11=⎰dx 存在.当0>p 时, 1=x 是可去间断点, 而0=x 是瑕点,由于0ln lim 21=+→px xx ,所以⎰1ln dx x p收敛.(6)mm x xx x 2sin 2cos 12=-, 当2≤m 时,+→0x 时该式极限为0或21存在,故这时0=x 不是瑕点,这是常义积分.当2>m 时, 由于21cos 1lim 20=--→+mm x x x x ,所以, 当12<-m 即32<<m 时,瑕积分⎰-2cos 1πdx x xm收敛,当12≥-m 即3≥m 时发散. (7)1ln 1)1(lim 1=---→xx x ,所以⎰10ln x dx 发散. (8)⎰⎰⎰+=ππππ22sin sin sin xdx x dx xdx ,因为1sin 1lim 210=+→xxx , 1sin 1)(lim 21=--→xx x ππ,所以⎰20sin πxdx ,⎰ππ2sin xdx 均收敛,故⎰πsin xdx 收敛.(9)当0>α时,由于0ln lim 0=+→x x x α,故是常义积分.当0=α时,1))1(ln (lim ln lim ln 011-=---==++→→⎰⎰εεεεεεxdx xdx ,所以积分收敛.当01<<-α时 ,00>∃ε,使101000<+-<⇒->->εαεα,而()0ln lim ln lim 000=-=++→+-→x x x x x x x εαεα,所以,⎰1ln xdx xα收敛.当 1-≤α 时,+∞==++→-→x x x xx x ln lim ln lim 0αα,由1≥-α知,⎰1ln xdx x α发散.(10) 当q p =时被积函数为0,故积分值为0.由于在相差一个负号的意义下,qp ,对称,故可只考虑q p >的情形.这时,)1(ln ln 111-=-----qp q q p x xx x x x ,若1>q ,则0=x 不是瑕点,因而积分为常义积分,积分值存在. 若1<q ,则被积函数为)1(ln 11---qp qx xx . ① 当11<-q 即0>q 时,故00>∃ε,使110<+-εq ,而⎰+-110εq x dx 收敛,xx ln 0ε单调增加(在)1,0(),且当+→0x 时趋于0,故由此得xx ln 0ε有界,因而由Abel 判别法知dx x x q ⎰-101ln 1收敛,又1--qp x 在)1,0(单调增加且有界,故知⎰---101)1(ln 1dx x xx q p q 即⎰---111ln dx xx x q p 收敛.② 当11>-q 即 0<q 时, 01>∃ε,使111>--εq ,因而)1(ln 11)1(ln 11111-=------q p q qp q x xx x x x x εε, 而 +∞=--→+)1(ln 1lim 10q p x x x x ε,故有10<<δ,当δ<<x 0时,1)1(ln 11>--qp x xx ε,因而1111)1(ln 1ε---->-q qp q xx x x ,所以积分 ⎰---1011ln dx x x x q p 发散. ③ 当11=-q 时,即0=q 时,由于当]21,0(∈x 时,0ln <x 而1121-≥-⎪⎭⎫⎝⎛--q p qp x ,故当]21,0(∈x 时,⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛≥---121ln 1)1(ln 1qp qp x x x x x ,由于 -∞=-==++→→⎰⎰)ln ln 2ln (ln lim ln 1lim ln 10210210εεεεdx xx dx x x发散,故由比较判别法,⎰--21)1(ln 1dx x xx qp 发散,因而⎰--10)1(ln 1dx x x x q p 发散.若1=q ,积分为⎰--10)1(ln 1dx x x qp ,这时0)1(ln 1lim 0=--→+q p x x x,故0=x 不是瑕点,积分是常义积分,因而存在.综上,瑕积分⎰---111ln dx xx x q p 当0>>q p 时收敛,q p >且0≤q 时发散;对称地,瑕积分⎰---111ln dx xx x q p 当0>>p q 时收敛,p q >而0≤p 时发散;q p =时,亦收敛.(11)解法1、令t x =tan ,则2tan t x =,2arctan t x =,dt ttdx 412+=,且当0=x 时,0=t ;2π=x 时,+∞=t .瑕积分⎰⎰∞++=0422012tan dt tt dx x π化为了无穷积分.由于212lim 422=++∞→t t t t , 故广义积分⎰∞++04212dt tt 收敛,即⎰20tan πdx x 收敛. 解法2、由于1sin )2sin()2(lim tan )2(lim 212212=--=---→→x x x x x x x πππππ,所以⎰20tan πdx x收敛.(12)由于0sin ln cos lim 0=+→x x x x ,故⎰20sin ln cos πxdx x 收敛.实际上,1)cos sin ln sin (lim sin ln cos lim sin ln cos 202020-=--==⎰⎰⎰++→→πεεπεεπεεxdx xdx x xdx x .3.判别敛散性: (1)⎰∞+-⎪⎭⎫ ⎝⎛-12111ln dx x ; (2)⎰+∞--01dx e x x p ;(3)⎰∞+0)(arctan dx x x pq; (4)⎰+∞+0)1ln(dx xx p;(5)⎰+∞1ln x x dxq p ;(6)⎰+∞+0qp xx dx; (7)⎰+∞--032)2()1(x x x dx ;(8)⎰∞-0ln dx x e x .解(1)⎰⎰⎰∞+--∞+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-221212112111ln 11ln 11ln dx x dx x dx x ,对⎰⎰∞+∞+-⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-2222111ln 11ln dx x dx x ,由于122111lim )11ln(lim 33222=⋅-=⎥⎦⎤⎢⎣⎡--+∞→+∞→x x x x x x x ,所以,⎰∞+-⎪⎭⎫ ⎝⎛-22111ln dx x 收敛. 对⎰⎰⎰⎰--=--=⎪⎭⎫ ⎝⎛--2122121222121)1ln(ln 21ln 11ln dx x xdx dx x x dx x ,前一项为定积分,后一项以1=x 为瑕点.由于⎰⎰⎰-++=-2121212)1ln()1ln()1ln(dx x dx x dx x ,前一项为常义积分,而对后一项,由于0)1ln()1(lim 211=--+→x x x ,故⎰-21)1ln(dx x 收敛,因此⎰⎪⎭⎫ ⎝⎛--212111ln dx x 收敛,最后知道⎰∞+-⎪⎭⎫ ⎝⎛-12111ln dx x 收敛.(2)当1≥p 时,⎰+∞--01dx e x x p 是一无穷积分,收敛.当1<p 时,⎰⎰⎰+∞----+∞--+=111101dx e x dx e x dx e x x p x p x p ,后者为无穷积分收敛;对于前者,由于1)(lim 110=---→+x p px e x x,所以当11<-p ,即10<<p 时,⎰--11dx e x x p 收敛,当11≥-p ,即0≤p 时,⎰--11dx e xxp 发散.从而,当0>p 时,⎰+∞--01dx e x x p 收敛,当0≤p 时发散.(3)由于当0→x 时,x x →arctan ,所以当p q >时,pq pq x x x -~)(arctan ,)0(+→x ;p q =时,1)(arctan lim 0=+→pqx x x .故当p q ≥时,上述积分只是无穷积分而无瑕点.若1>p 且p q ≥,由qpp q x x x ⎪⎭⎫⎝⎛≤21)(arctan π≤x p 1)2(πq,收敛;若10≤<p 且p q ≥,则由)1(1)(arctan ≥≥x xx x pp q ,发散; 若0=p 且p q ≥时,当x 充分大时,)1(1)(arctan ≥≥x xx pq这时无穷积分发散; 若0<p 且p q ≥时,显然发散.当p q <时,积分可分为⎰⎰∞++110)(arctan )(arctan dx x x dx x x p qp q ,对于前者,pqx x )(arctan 与qp x -1是同阶无穷大量,故当10<-<q p ,即1+<<q p q 时收敛,而当1≥-q p 即1+≥q p 时发散.对于后者,同样在1>p 时收敛,1≤p 时发散.综上,当1+<<q p q 且1>p 时积分收敛,当p q <而1≤p 时积分发散. 因此,当1>≥p q 或1+<<q p q 且1>p 时积分收敛,其他情况发散.即当11+<<q p 时积分收敛,其他情况积分发散.(4)⎰⎰⎰+∞+∞+++=+11)1ln()1ln()1ln(dx xx dx xx dx xx ppp,因为1)1ln(lim 1=+-→+xx x pp x ,故前一积分当11<-p 即2<p 时收敛,当2≥p 时发散.而对后一积分,若1>p ,则00>∃ε,使得10>-εp ,且0)1ln(lim 0=++∞→εxx x ,故当x 充分大时,001)1ln(1)1ln(εεε--<+=+p p p x x x x x x ,由比较判别法,积分收敛.当1≤p 时,x x x p1)1ln(≥+(1-≥e x 时),所以这时积分发散. 因此,当21<<p 时,原积分收敛,否则发散. (5)⎰⎰⎰+∞+∞+=2211ln ln ln xx dxx x dx x x dx q p q p q p , 对于前者,因为0ln 1)1(lim 211=-+→xx x qp x ,故总是收敛的; 对于后者,1>p 或1=p 而1>q 时收敛,其他发散.故⎰+∞1ln x x dxq p 当1>p 或1=p 而1>q 时收敛,对于其他情况均发散.(6)⎰⎰⎰+∞+∞+++=+1100qp q p q p x x dx x x dx x x dx , 若q p =,则前者要求1<=q p 收敛,后者要求1>=q p 收敛,故这时积分发散.由q p ,的对称性,只需考虑q p >的情况.对于前者由)1(11+=+-qp q q p x x x x ,故当1<q 时收敛,1≥q 时发散.而对于后者,由于)1(11p q p q p x x x x -+=+,故当1>p 时收敛,1≤p 时发散.故⎰+∞+0qp xx dx当1>p 且1<q 或1<p 且1>q 时收敛,其他情况下均发散. (7)⎰⎰⎰--+--=--∞+2321322103232)2()1()2()1()2()1(x x x dx x x x dx x x x dx⎰⎰+∞--+--+33232332)2()1()2()1(x x x dx x x x dx由于332321)2()1(lim =--+→x x x xx , 1)2()1()1(lim32321=---→x x x x x ,33231221)2()1(2lim=---→x x x x x , 1)2()1(1lim 3234=--+∞→x x x xx ,以上四个积分均收敛,故原积分收敛.(8)令t x =-,则-∞=x 时,+∞=t ,当0=x 时,0=t 仍记t 为x .⎰⎰⎰⎰⎰+∞--+∞-∞+-∞-+==-=11ln ln ln ln ln xdx e xdx e xdx e xdx e dx x e x xxxx.由于当x 充分大时,21ln xx ex≤-,而⎰+∞121dx x 收敛,故⎰+∞-1ln xdx e x收敛,又0ln lim 0=-→+x e x x x ,故⎰-1ln xdx e x 亦收敛,所以⎰⎰+∞-∞-=00ln ln xdx e dx x e x x 收敛.4.讨论下列积分的收敛性与绝对收敛性: (1)⎰+∞2sin dx x ;(2)⎰∞+0sin dx x x q p,其中0>p ; (3))0(1sin 0≥+⎰∞+q dx xxx qp ; (4)⎰∞++0)1sin(dx xx x n . 解 (1)由于0sin lim 0=+→xx x ,所以0=x 不是瑕点,由Dirichlet 判别法,无穷积分⎰+∞sin dx xx 收敛,因此,⎰⎰⎰⎰+∞+∞→+∞→+∞→===00002sin 21sin lim 212sin limsin lim2dt ttdt t t t dtt dx x A A A A AA所以,⎰+∞2sin dx x 收敛.但xx xxx xx 22cos 21sin sin 2-=≥,由于⎰+∞121dx x发散,同样用Dirichlet 判别法知⎰+∞122cos dx xx 收敛,故⎰+∞-1)22cos 21(dx xx x发散,由比较判别法知⎰∞+1sin dx xx 发散,因而⎰∞+0sin dx xx 发散,但⎰⎰⎰+∞→+∞→+∞→==A A AA AA dt tt dt t tdx x 002sin lim 212sin limsin lim不存在,故⎰+∞2sin dx x 发散,因而⎰+∞2sin xdx 条件收敛.(2)⎰⎰⎰∞+∞++=1100sin sin sin dx xx dx x x dx x x q pq p q p,先考虑⎰10sin dx x x q p ,由于pp x x ~sin )0(+→x ,所以q p x x sin 与p q x-1是同阶变量)0(+→x ,从而当1<-p q 时,即1+<p q 时该积分收敛,1+≥p q 时积分发散.且由于0sin ≥qpxx ,故是绝对收敛的. 再看⎰⎰⎰∞+-+∞+-∞+==1111111sin 11sin sin dt xtp dt t p x t x t dx x x pq p p q pqp ,故当011>-+p q 时,即1>+p q 时积分收敛,否则发散.且当1>q 时绝对收敛,11≤<-q p 条件收敛.所以当p q p +<<-11时,积分收敛,否则发散. 当p q +<<11时绝对收敛,11≤<-q p 时条件收敛.(3)⎰⎰⎰∞+∞++++=+11001sin 1sin 1sin dx xx x dx x x x dx x xx q pq p q p , 先考虑积分⎰+11sin dx x x x q p ,由于111sin lim 1sin lim 010=+=+++→--→q x q p p x xx x x x x x ,所以积分⎰+11sin dx x xx qp 仅当11<--p 即2->p 时收敛,且是绝对收敛的,而当2-≤p 时发散.再考虑积分⎰∞++11sin dx x x x qp ,若q p ≥,则1>∀A ,必存在正整数N ,使A N >+42ππ,且当42ππ+≥N x 时,恒有311>+q p x x .于是对42ππ+='N A ,22ππ+=''N A ,有 62sin 311sin =>+⎰⎰''''''A A A A qp xdx dx x x x ,由Canchy 收敛原理,积分⎰∞++11sin dx x xx qp 发散.若1-<q p ,取0>ε,使1-<+q p ε,即1>--εp q ,由于0sin 1lim sin 1lim =+=++∞→--+∞→εεxxx x x x x xq q x q p p q x ,所以,积分⎰∞++11sin dx x xx qp 绝对收敛.现设q p q <≤-1.先证⎰∞++11sin dx x x x qp 发散.事实上,此时,可取10>A ,使当A x ≥0时,3111>++qp xx ,故有 +∞=≥+=+⎰⎰⎰∞+∞++∞+00sin 31sin 11sin 1A A q p A qp dx x xdx x x xx dx x x x , 从而⎰∞++11sin dx xx x qp 发散.再证⎰∞++11sin dx x xx qp 收敛.若0=q ,则01<≤-p 此时积分⎰⎰∞+∞+=+11sin 211sin xdx x dx xx x pq p 收敛;若0>q ,由于[]0)1()()1(21<+--='+-q qp q p x x p q p x x x (当x 充分大时),故当x 充分大时,函数qpxx +1单调递减趋于0,而2cos 1cos sin 1≤-=⎰A xdx A有界,故积分⎰∞++11sin dx x xx qp 收敛.于是,得到⎰∞++01sin dx xxx qp 当2->p 且1+>p q 时绝对收敛;当2->p ,1+<<p q p 时条件收敛,其他情况发散.(4)当0≤n 时,积分是发散的当0>n 时,先考虑积分⎰∞++a n dx xx x )1sin( ()1>a .由于 ⎰⎰∞+∞+-+-=+a n a n dx xx x x x dx xx x )11()1sin()11()1sin(22,。

数学分析简明教程第二版第二篇课后答案

数学分析简明教程第二版第二篇课后答案

第二章 函数§1 函数概念1.证明下列不等式: (1) y x y x -≥-;(2) n n x x x x x x +++≤+++ 2121;(3) )(2121n n x x x x x x x x +++-≥++++ . 证明(1)由 y y x y y x x +-≤+-=)(,得到y x y x -≤-,在该式中用x 与y 互换,得到 x y x y -≤-,即y x y x --≥-,由此即得,y x y x -≥-.(2)当2,1=n 时,不等式分别为212111,x x x x x x +≤+≤,显然成立. 假设当k n =时,不等式成立,即 k k x x x x x x +++≤+++ 2121,则当1+=k n 时,有121121121121121)()(+++++++++=++++≤++++≤++++=++++k k k k k k k k k k x x x x x x x x x x x x x x x x x x x x有数学归纳法原理,原不等式成立.(3)n n n x x x x x x x x x x x x +++-≥++++=++++ 212121)( )(21n x x x x +++-≥ . 2.求证bb aa ba b a +++≤+++111.证明 由不等式 b a b a +≤+,两边加上)(b a b a ++后分别提取公因式得,)1()()1(b a b a b a b a +++≤+++,即bb aa ba b ba a ba b a ba b a +++≤+++++=+++≤+++111111.3.求证22),max(ba b a b a -++=; 22),min(ba b a b a --+=. 证明 若b a ≥,则由于b a b a -=-,故有22),max(b a b a a b a -++==,22),min(b a b a b b a --+==, 若b a <,则由于)(b a b a --=-,故亦有22),max(b a b a b b a -++==,22),min(ba b a a b a --+==, 因此两等式均成立.4.已知三角形的两条边分别为a 和b ,它们之间的夹角为θ,试求此三角形的面积)(θs ,并求其定义域.解 θθsin 21)(ab s =,定义域为开区间),0(π. 5.在半径为r 的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数的定义域.解 设内接圆柱高为x ,则地面半径为422x r r -=',因而体积)4(222x r x x r V -='=ππ,定义域为开区间)2,0(r .6.某公共汽车路线全长为km 20,票价规定如下:乘坐km 5以下(包括km 5)者收费1元;超过km 5但在km 15以下(包括km 15)者收费2元;其余收费2元5角. 试将票价表为路程的函数,并作出函数的图形.解 设路程为x ,票价为y ,则⎪⎩⎪⎨⎧≤<≤<≤<=.2015,5.2,155,2,50,1x x x y函数图形见右图.7.一脉冲发生器产生一个三角波.若记它随时间t 的变化规律为)(t f ,且三个角分别有对应关系0)0(=f ,20)10(=f ,0)20(=f ,求)200()(≤≤t t f ,并作出函数的图形.解 ⎩⎨⎧≤<-≤≤=.2010,240,100,2)(t t t t t f函数图形如右图所示.8.判别下列函数的奇偶性:(1)12)(24-+=x x x f ; (2)x x x f sin )(+=; (3)22)(x e x x f -=;(4))1lg()(2x x x f ++=.解(1)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有)(121)(2)()(2424x f x x x x x f =-+=--+-=-,即得12)(24-+=x x x f 是偶函数. (2)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有)()sin (sin )sin()()(x f x x x x x x x f -=+-=--=-+-=-,因此,x x x f sin )(+=是奇函数.(3)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有)()()(222)(2x f e x e x x f x x ==-=----,即22)(x e x x f -=是偶函数.(4)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,)()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-因此,)1lg()(2x x x f ++=是奇函数.9.判别下列函数是否是周期函数,若是,试求其周期: (1)2cos )(x x f =; (2)3sin 22cos )(x x x f +=; (3)x x f 4cos )(π=;(4)x x f tan )(=.解(1)不是.若为周期函数,设周期为T ,则R x ∈∀,有)()(x f T x f =+,即22cos )cos(x T x =+,移项并使用三角公式化简得,0)2sin()2sin(222=+++T Tx T Tx x ,由R x ∈的任意性知道这是不可能的,故2cos )(x x f =不是周期函数.(2)是.周期为ππ4212=和ππ6312=的最小公倍数π12. (3)是.周期是842=ππ.(4)定义域是使0tan ≥x 的一切x 的取值,即},2{)(Z k k x k x f D ∈+<≤=πππ,由于)(f D x ∈∀,必有)(f D x ∈+π,且)(tan )tan()(x f x x x f ==+=+ππ,因此x x f tan )(=是周期函数,周期为π.10.证明21)(xxx f +=在),(∞+-∞有界. 证明 实际上,),(∞+-∞∈∀x ,都有21112111)(2222=++⋅≤+=+=xx x x x x x f , 由定义,21)(xxx f +=在),(∞+-∞有界. 11.用肯定语气叙述函数无界,并证明21)(x x f =在)1,0(无界. 解 叙述:若X x M M ∈∃>∀,0,使得M x f M >)(,则称函数)(x f 在X 无界.0>∀M ,要使M x x f >=21)(,只须Mx 1<,取)1,0(11∈+=M x M ,则有M M x x f MM >+==11)(2,所以21)(x x f =在)1,0(无界. 12.试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.证明 设)(,)(x g x f 是定义于X 偶函数,)(,)(x x h ϕ是定义于X 奇函数.则由于以下事实)()()()(x g x f x g x f =--,)()()]()][([)()(x x h x x h x x h ϕϕϕ=--=--, )()()]()[()()(x h x f x h x f x h x f -=-=--,知两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.13.设)(x f 为定义在),(∞+-∞内的任何函数,证明)(x f 可分解成奇函数和偶函数之和.证明 由于)(x f 的定义域为),(∞+-∞,故)(,),(x f x -∞+-∞∈∀有意义. 令2)()()(x f x f x g -+=,2)()()(x f x f x h --=,则)(x g 是偶函数,)(x h 是奇函数,且有)()()(x h x g x f +=.14.用肯定语气叙述:在),(∞+-∞上 (1) )(x f 不是奇函数; (2) )(x f 不是单调上升函数; (3) )(x f 无零点; (4) )(x f 无上界.解 (1)),(0∞+-∞∈∃x ,使得)()(00x f x f -≠-,则)(x f 在),(∞+-∞不是奇函数;(2)),(,21∞+-∞∈∃x x ,虽然21x x <,但)()(21x f x f >,则)(x f 在),(∞+-∞不是单调上升函数;(3)),(∞+-∞∈∀x ,均有0)(≠x f ,则)(x f 在),(∞+-∞无零点;(4)),(,),(∞+-∞∈∃∞+-∞∈∀b x b ,使得b x f b >)(,则)(x f 在),(∞+-∞无上界.§2 复合函数与反函数1.设xxx f +-=11)(,求证x x f f =))((. 证明 ()x f 定义域为1-≠x 的一切实数,因此1-≠∀x ,有()()()()x xx x x xx x x x x x f x f x f f =+-++++-+=+-++--=+-=11111111111111.2.求下列函数的反函数及其定义域: (1) +∞<<⎪⎭⎫⎝⎛+=x x x y 1,121; (2) ()+∞<<∞--=-x e e y x x,21; (3) ⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x y x 4,2,41,,1,2解(1)变形为0122=+-yx x ,解得12-+=y y x ,由于()+∞∈∀=⋅⋅≥⎪⎭⎫ ⎝⎛+=,1,11221121x xx x x y 成立,因此函数⎪⎭⎫ ⎝⎛+=x x y 121,+∞<<x 1的反函数为()∞+∈-+=,1,12x x x y .(2)变形得,0122=--xxye e,解出1244222++=++=y y y y e x,即()1ln 2++=y y x ,因此原来函数的反函数为()∞+∞-∈++=,,)1ln(2x x x y .(3)当1<<∞-x 时,1,<<∞-=y y x ,当41≤≤x 时,161,≤≤=y y x ,而当+∞<<x 4时,16,log 2>=y y x .所以反函数为⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x x y 16,log ,161,,1,2定义域为()+∞∞-,.3.设()x f ,()x g 为实轴上的单调函数,求证))((x g f 也是实轴上的单调函数. 证明 设()x f ,()x g 为实轴上的单调增函数,即()2,1,,=+∞∞-∈∀i x i ,且,21x x < 有()()()()2121,x g x g x f x f ≤≤,因此))(())((21x g f x g f ≤,即))((x g f 也是单调增函数.同理可证:当()x f ,()x g 为实轴上的单调减函数时,))((x g f 也是单调增函数;当()x f 为增函数,而()x g 为减函数或()x f 为减函数,而()x g 为增函数时,))((x g f 均为减函数.因此,()x f ,()x g 为实轴上的单调函数时,))((x g f 也是实轴上的单调函数. 4.设()⎩⎨⎧>≤--=.0,,0,1x x x x x f ()⎩⎨⎧>-≤=.0,,0,2x x x x x g , 求复合函数))((x g f ,))((x f g .解 有复合函数的定义,立即可得⎩⎨⎧>-≤--=,0,1,0,1))((2x x x x x g f ()⎪⎩⎪⎨⎧>-≤≤----<<∞-+-=.0,,01,1,1,1))((22x x x x x x x f g5.设21)(xx x f +=,求))((x f f f n次.解 2222221111)(1)())((xx x xx xx f x f x f f +=+++=+=,归纳法假设21))((kx xx f f f k +=次, 则有222)1(111)1()))((())((kx x kx xkx xf x f f f f x f f f k k +++=+==+ 次次2)1(1xk x ++=,依归纳法原理,知21))((nxx x f f f n +=次.6.设x x x f --+=11)(,试求))((x f f f n次.解 ⎪⎩⎪⎨⎧>≤≤--<-=1,2,11,2,1,2)(x x x x x f , ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=21,2,2121,4,21,2))((x x x x x f f ,归纳法假设 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----111121,2,2121,2,21,2))((k k k kk k x x x x x f f f 次,则当1+=k n 时,有⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-==++,21,2,2121,2,21,2)))((())((1)1(kk k k k k k x x x x x f f f f x f f f 次次 所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----.次111121,2,2121,2,21,2))((n n n n n n x x x x x f f f 7.设x x f -=11)(,求))((x f f ,)))(((x f f f ,))(1(x f f . 解 x x f -=11)(定义域1≠x 的一切实数,)(11))((x f x f f -=要求1)(≠x f 且1≠x ,因此xxxx f x f f -=--=-=11111)(11))((,0≠x 且1≠x ; ))((11)))(((x f f x f f f -=要求1))((≠x f f 且0≠x ,1≠x ,因此x xx x f f x f f f =--=-=111))((11)))(((,21≠x ,0≠x 且1≠x ; )(111))(1(x f x f f -=要求1≠x 且1)(1≠x f ,因此 xx x f x f f 1)1(11)(111))(1(=--=-=,0≠x 且1≠x .§3 初等函数1.对下列函数分别讨论函数的定义域和值域,奇偶性,周期性,有界性,并作出函数的图形:(1) x y =;(2) ][x x y -=;(3) x y tan =; (4) )2(x x y -=;(5) x y 2sin =;(6) x x y cos sin +=.解(1)定义域),(∞+-∞=D ,值域),0[)(∞+=X f ,是偶函数,无界非周期函数; (2)定义域),(∞+-∞=D ,值域)1,0[)(=X f ,既非奇函数也非偶函数,是周期为1的有界周期函数;(1)题图 (2)题图(3)定义域),(∞+-∞=D ,值域),()(∞+-∞=X f ,是偶函数,无界非周期函数; (4)定义域]2,0[=D ,值域]1,0[)(=X f ,既非奇函数也非偶函数,是有界非周期函数;(3)题图 (4)题图(5)定义域),(∞+-∞=D ,值域]1,0[)(=X f ,是偶函数,是周期为π的有界周期函数;(6)定义域),(∞+-∞=D ,是偶函数.由于x x x x x y 2sin 1cos sin 2cos sin 222+=++=,所以212≤≤y ,并注意到0≥y ,得到函数的值域]2,1[)(=X f ,因而是有界函数.因为)(cos sin sin cos )2cos()2sin()2(x y x x x x x x x y =+=-+=+++=+πππ,所以函数x x y cos sin +=是周期为2π的周期函数.2.若已知函数)(x f y =的图形,作函数)(1x f y =,)(2x f y -=,)(3x f y --=的图形,并说明321,,y y y 的图形与y 的图形的关系.解 由于⎩⎨⎧<-≥==0)(,)(,0)(,)()(1x f x f x f x f x f y ,故其图形是将函数)(x f y =的图形在x轴上方部分的不动,在x 轴下方的部分绕x 轴旋转180后即得;)(2x f y -=的图形是将函数)(x f y =的图形绕y 轴旋转 180后得到的;)(3x f y --=的图形是将函数)(x f y =的图形在坐标平面内绕坐标原点旋转 180后得到的.3.若已知函数)(x f ,)(x g 的图形,试作函数])()()()([21x g x f x g x f y -±+=的图形,并说明y 的图形与)(x f 、)(x g 图形的关系.解 由于)}(),(max{)()(,)(,)()(,)(])()()()([21x g x f x g x f x g x g x f x f x g x f x g x f =⎩⎨⎧<≥=-++,)}(),(min{)()(,)(,)()(,)(])()()()([21x g x f x g x f x f x g x f x g x g x f x g x f =⎩⎨⎧<≥=--+, 因而极易由函数)(x f ,)(x g 的图形作出两函数])()()()([21x g x f x g x f y -±+=的图形,也知其关系.4. 作出下列函数的图形:(1) x x y sin =;(2) xy 1sin=. 解 图形如下.(1)题图 (2)题图5.符号函数⎪⎩⎪⎨⎧<-=>==,0,1,0,0,0,1sgn x x x x y试分别作出x sgn ,)2sgn(x ,)2sgn(-x 的图形.解x sgn )2sgn(x)2sgn(-x6.作出下列函数的图形: (1) x y cos sgn =;(2) ⎥⎦⎤⎢⎣⎡-=22][x x y .解(1)(2)数学分析续论A 卷复习资料一. 计算题1. 求函数3311(,)f x y x y y x=+在点(0,0)处的二次极限与二重极限. 解: 333311(,)sinf x y x y x y y x ==,因此二重极限为0. 因为33011x x y y x →+与33011y x y y x→+均不存在,故二次极限均不存在。

数值分析简明教程第二版课后习题答案高等教育出版社

数值分析简明教程第二版课后习题答案高等教育出版社

算法1、 (,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分误差1.(,题8)已知e=…,试问其近似值7.21=x ,71.22=x ,x 2=,718.23=x 各有几位有效数字并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=-K x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析简明教程答案(尹小玲 邓东皋)

数学分析简明教程答案(尹小玲 邓东皋)
n n n

un vn un vn .
n 1 n 1 n 1



D
4.设级数 un 各项是正的, 把级数的项经过组合而得到的新级数 U n ,即
n 1 n 1


U n 1 ukn 1 ukn 2 ukn1 , n 0,1, 2, , 其中k0 0, k0 k1 k2 kn kn 1 . 若级数 U n收敛,证明原来的级数也收敛。
(2)
n 1

1 4n 2 1

1 1 1 2 n 1 2n 1 2n 1

1 1 1 1 1 1 1 1 lim 1 2 n 3 3 5 5 7 2n 1 2n 1 1 1 1 lim 1 . 2 n 2n 1 2
n
于是可得 Sn 由于 r 1,因此有
r
n 1

n
r cos x r 2 . 1 r 2 2r cos x
2.讨论下列级数的敛散性: (1) n ; n 1 2n 1

lim
n 1 0, 故原级数发散。 n 2n 1 2 由于级数 lim cos
第十章 数项级数
§1 级数问题的提出
1.证明:若微分方程xy '' y ' xy 0有多项式解 y a0 a1 x a2 x 2 an x n ; 则必有ai 0, i 1, 2, , n. 证明:若y a0 a1 x a2 x 2 an x n 微分方程的一个解, 那么 y ' a1 2a2 x 3a3 x 2 nan x n 1 y '' 2a2 6a3 x n(n 1)an x n 2 ; 于是可得 xy '' 2a2 x 6a3 x 2 n(n 1)an x n 1 xy a0 x a1 x 2 a2 x 3 an x n 1. 因此可知 xy '' y ' xy a1 (4a2 a0 ) x (9a3 a1 ) x 2 (n 2 an an 2 ) x n 1 an x n 0 那么由多项式相等可知有 a1 0 2 n an an 2 0 a 0 n 递推可知有ai 0, i 1, 2, , n成立。 n 2.

数学分析课后习题答案--高教第二版(陈纪修)--14章

数学分析课后习题答案--高教第二版(陈纪修)--14章
0
a
ww
2
2π ( (1 + a 4 ) 3 − 1) 。 3a 2
w. kh d
= 2b ∫ sin t a 2 + (b 2 − a 2 ) cos 2 t dt
0
πHale Waihona Puke aw .解质量 m = ∫ ρds = b ∫0 sin t a 2 sin 2 t + b 2 cos 2 t dt

co m
Σ
∫∫ ( x
Σ
2
+ y + z )dS = ∫∫ a dS = 4πa 4 ,
2 2 2 Σ
所以
⎛ x2 y2 z2 ⎞ 13 13 4 2 ⎜ ∫∫ ⎜ 2 + 3 + 4⎟ ⎟dS = 12 ∫∫ x dS = 9 πa 。 ⎠ Σ ⎝ Σ 1 (6)由对称性,有 ∫∫ x 3 dS = 0 , ∫∫ y 2 dS = ∫∫ ( x 2 + y 2 )dS ,再由 2 Σ Σ Σ 1 zdS = ∫∫ ( x 2 + y 2 )dS ,得到 ∫∫ 2 Σ Σ
⎧ x = (b + a cos φ ) cos ϕ , ⎪ (6) 环面 ⎨ y = (b + a cos φ ) sin ϕ , 0 ≤ φ ≤ 2π , 0 ≤ ϕ ≤ 2π , 其中 0 < a < b 。 ⎪ z = a sin φ , ⎩
解(1) A = ∫∫ 1 + a 2 ( x 2 + y 2 )dxdy
4. 求下列第一类曲面积分: (1) ∫∫ ( x + y + z )dS ,其中∑是左半球面 x 2 + y 2 + z 2 = a 2 , y ≤ 0 ;

数学分析简明教程答案(尹小玲 邓东皋)

数学分析简明教程答案(尹小玲 邓东皋)

第九章 再论实数系§1 实数连续性的等价描述2211.{}({},{})1(1).1; sup 1,inf 0;(2)[2(2)]; sup ,inf ;1(3),1,(1,2,); sup ,inf 2;1(4)[1(1)]; n n n n n n n n n n k k n n n n x x x x x x nx n x x x k x k x x k n x n ++∞-∞=-===+-=+∞=-∞==+==+∞=+=+- 求数列的上下确界若无上下确界则称,是的上下确界: sup 3,inf 0;(5) sup 2,inf 1;12(6)cos ; sup 1,inf .132n n n n n n n n x x x x x n n x x x n π=====-===-+2.(),(1)sup{()}inf (); (2)inf{()}sup ().(1)sup{()},.,();.0,()..,();.x Dx Dx Dx Dx Df x D f x f x f x f x A f x i x D f x A ii x D f x A i x D f x A ii εεε∈∈∈∈∈-=--=-=-∀∈-≤∀>∃∈->-∀∈≥-∀>设在上定义求证:证明:设即有对有 对使得 于是有对有 对0,().inf (),inf (),sup{()}inf ()x Dx Dx Dx Dx D f x A A f x A f x f x f x ε∈∈∈∈∃∈<-+-==--=-使得 那么即因此有成立。

(2)inf{()},.,();.0,()..,();.0,().sup (),sup (),x Dx Dx DB f x i x D f x B ii x D f x B i x D f x B ii x D f x B B f x A f x εεεε∈∈∈=-∀∈-≥∀>∃∈-<+∀∈≤-∀>∃∈>---==-设即有对有 对使得 于是有对有 对使得 那么即因此有inf{()}sup ()x Dx Df x f x ∈∈-=- 成立。

数学分析简明教程答案

数学分析简明教程答案

第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132-++++='n n x na x a x a a y , 22432)1(1262--++++=''n n x a n n x a x a a y .从而 134232)1(1262--++++=''n n x a n n x a x a x a y x , 且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解 设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++-+-+--=⨯⨯⨯++--=⨯+--=⨯+--=-++++-+--=⨯⨯++-=⨯+--=+-=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+-1)15)(45(1n n n ; (2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ; (4)∑∞=-1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+-=n n , 所以级数的和51=S . (2)由于⎪⎭⎫⎝⎛+--=-121121211412n n n ,故)(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+--++-+-=n n n n S n .所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=⎪⎭⎫ ⎝⎛-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++= ,则 14322222226242221++-++++=n n n nn S , 故1432222222222212121+-+++++=-=n n n n n n S S S 1432222121212121+-⎪⎭⎫ ⎝⎛+++++=n n n112222112112121+---⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=-=-=-∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→, 因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rS nk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=-112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n nn; (3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+-=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 111111131212111→+-=+-++-+-=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++--)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=--1122)12(1n n n ; (3)∑∞=--112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=-+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=-+15sin ))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sin n n n ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+122111n n .解(1)∑∞=+121n nn .由于111lim2=+∞→nnn n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=--1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤---, 而级数∑∞=1222n n 收敛,由比较判别法知,原级数收敛. (3)∑∞=--112n n n n .由于02112lim ≠=--∞→n n n n ,所以级数∑∞=--112n n nn 发散.(4)∑∞=12sin n nπ.由于ππ=∞→n n n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故n nn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nn n ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n nn .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n n nn ,故原级数收敛.(9)∑∞=-+12)1(2n nn. 方法1因为∑∑∑∞=∞=-∞=-+=-+11112)1(212)1(2n n n n n n nn ,而∑∞=-1121n n 和∑∞=-12)1(n n n 均收敛,故∑∞=-+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤-+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=-+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn n n n nn n n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=-+15sin))1(3(n nnn π.由于4)1(3≤-+n,因此,若∑∞=15sin 4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n .由于21121sin 2lim 11cos 1lim22==⎪⎭⎫ ⎝⎛-∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sin lim2=∞→n n n n ,而级数∑∞=121n n收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim <=∞→nn n n ,故由根式判别法知,级数∑∞=12n nn 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=-+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=-⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛-+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n n n 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n n n 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n ne e e n n ne n n n n n nn n222!1212>=⎪⎭⎫⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n n n n n .因为101)(lim 1lim 22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n n n n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛-+122312n n n n .由于1322312lim2312lim 2<=-+=⎪⎭⎫⎝⎛-+∞→∞→n n n n n n n n ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim 222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753-⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=-⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=-⎪⎭⎫ ⎝⎛-+⋅⋅=-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛-+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛. (6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp-+---=-=⋅=--+--⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x -==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122-==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n n n 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π; (3)∑∞=+--+111ln)1(n p n n n n ; (4)∑∞=++-+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+-11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于 ⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+--+111ln)1(n p n n n n .由于0)1(>-+pn n ,011ln <+-n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++=+---+121ln 1111ln)1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+--+n n n n p与121+p n 是同阶无穷小量,因而当112>+p ,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++-+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++-+=++-+))(()12(2422b n n a n b n n a n ba n a ++++++++-+-=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qpn n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=-==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰-∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p--∞→--=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>-<∞+=-.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散.(2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=-=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qpn n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→qn n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>-=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ-==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >qn n σ,从而σ-≥1)(ln 1n n u n ,而由(1)知∑∞=-11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡-=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛++⋅-=⎪⎪⎭⎫⎝⎛-∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +-++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++-++⋅++=--∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+-++=-∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++-++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅-++=+n n n nn n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+--⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛-∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+-=+--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n ,所以当11>+-βα,即βα<时级数收敛;当11<+-βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++-++++++-++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++-+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max (1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max (1∑∞=n n nv u一定发散.事实上,0),m ax (≥≥n n n u v u ,而∑∞=1n n u 发散,故),max (1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=---+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(--++-+-=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++-- 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++-- 211212)(,即nna a a n S S S S n S n nn n n +++=++++--- 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=-=⎪⎭⎫⎝⎛++++--=+++-∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n na 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=-1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+-+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=-+12)1(2n nn,由于21232)1(22121→≤-+=≤=nn n n n n n a , 故21lim =∞→n n n a ,而 613221,231223************=⋅==⋅=++--m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim 2=∞→n n n n ;(2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n an ,由于)(0)12)(22(!1∞→→++=+n a n n u u nn n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>-=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=--=->l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>-=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=-+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nnp pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+-1100)1(n nn n;(2)∑∞=12sin ln n n n n π; (3)∑∞=++++-1131211)1(n nnn ;(4)∑∞=-+-2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π;(6)∑∞=--12)1(3)1(n n n n ;(7))0()1(1>-∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=-12cos )1(n nnn; (10)∑∞=-12sin )1(n nn n;(11))0(sin)1(1≠-∑∞=x nxn n ; (12)∑∞=+-12)1()1(n n n n; (13)++--+++--++--1111131131121121n n ; (14))0(1)1(11>+-∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+-1100)1(n nn n.令100)(+=x x x f ,则2)100(2100)(+-='x x x x f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于⎩⎨⎧∈-=-∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=---=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f -=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++-1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=-+-2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---=-+⋅-=-+-2311)1(1)1(1)1()1(11)1()1()1(nO n n n O n n nn n nn n n nnn ,而级数∑∞=-2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n发散,因而原级数发散. (5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n -+-=-++=+ππππnn n ++-=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin 2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=--12)1(3)1(n n n n .由于∑∑∞=∞=-=-112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>-∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=-12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin --+++-+-=n n 1sin )12sin(-+=n ,故1sin 11sin 21sin )12sin(2cos 1≤-+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=-12cos )1(n n n n 收敛,从而原级。

数值分析简明教程 - 课后答案

数值分析简明教程 - 课后答案

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析简明教程答案

数学分析简明教程答案

第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132-++++='n n x na x a x a a y , 22432)1(1262--++++=''n n x a n n x a x a a y .从而 134232)1(1262--++++=''n n x a n n x a x a x a y x , 且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解 设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++-+-+--=⨯⨯⨯++--=⨯+--=⨯+--=-++++-+--=⨯⨯++-=⨯+--=+-=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+-1)15)(45(1n n n ; (2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ; (4)∑∞=-1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+-=n n , 所以级数的和51=S . (2)由于⎪⎭⎫⎝⎛+--=-121121211412n n n ,故)(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+--++-+-=n n n n S n .所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=⎪⎭⎫ ⎝⎛-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++= ,则 14322222226242221++-++++=n n n nn S , 故1432222222222212121+-+++++=-=n n n n n n S S S 1432222121212121+-⎪⎭⎫ ⎝⎛+++++=n n n112222112112121+---⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=-=-=-∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→, 因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rS nk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=-112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n nn; (3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+-=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 111111131212111→+-=+-++-+-=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++--)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=--1122)12(1n n n ; (3)∑∞=--112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=-+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=-+15sin ))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sin n n n ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+122111n n .解(1)∑∞=+121n nn .由于111lim2=+∞→nnn n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=--1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤---, 而级数∑∞=1222n n 收敛,由比较判别法知,原级数收敛. (3)∑∞=--112n n n n .由于02112lim ≠=--∞→n n n n ,所以级数∑∞=--112n n nn 发散.(4)∑∞=12sin n nπ.由于ππ=∞→n n n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故n nn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nn n ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n nn .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n n nn ,故原级数收敛.(9)∑∞=-+12)1(2n nn. 方法1因为∑∑∑∞=∞=-∞=-+=-+11112)1(212)1(2n n n n n n nn ,而∑∞=-1121n n 和∑∞=-12)1(n n n 均收敛,故∑∞=-+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤-+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=-+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn n n n nn n n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=-+15sin))1(3(n nnn π.由于4)1(3≤-+n,因此,若∑∞=15sin 4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n .由于21121sin 2lim 11cos 1lim22==⎪⎭⎫ ⎝⎛-∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sin lim2=∞→n n n n ,而级数∑∞=121n n收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim <=∞→nn n n ,故由根式判别法知,级数∑∞=12n nn 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=-+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=-⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛-+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n n n 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n n n 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n ne e e n n ne n n n n n nn n222!1212>=⎪⎭⎫⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n n n n n .因为101)(lim 1lim 22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n n n n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛-+122312n n n n .由于1322312lim2312lim 2<=-+=⎪⎭⎫⎝⎛-+∞→∞→n n n n n n n n ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim 222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753-⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=-⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=-⎪⎭⎫ ⎝⎛-+⋅⋅=-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛-+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛. (6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp-+---=-=⋅=--+--⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x -==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122-==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n n n 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π; (3)∑∞=+--+111ln)1(n p n n n n ; (4)∑∞=++-+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+-11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于 ⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+--+111ln)1(n p n n n n .由于0)1(>-+pn n ,011ln <+-n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++=+---+121ln 1111ln)1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+--+n n n n p与121+p n 是同阶无穷小量,因而当112>+p ,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++-+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++-+=++-+))(()12(2422b n n a n b n n a n ba n a ++++++++-+-=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qpn n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=-==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰-∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p--∞→--=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>-<∞+=-.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散.(2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=-=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qpn n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→qn n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>-=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ-==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >qn n σ,从而σ-≥1)(ln 1n n u n ,而由(1)知∑∞=-11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡-=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛++⋅-=⎪⎪⎭⎫⎝⎛-∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +-++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++-++⋅++=--∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+-++=-∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++-++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅-++=+n n n nn n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+--⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛-∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+-=+--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n ,所以当11>+-βα,即βα<时级数收敛;当11<+-βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++-++++++-++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++-+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max (1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max (1∑∞=n n nv u一定发散.事实上,0),m ax (≥≥n n n u v u ,而∑∞=1n n u 发散,故),max (1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=---+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(--++-+-=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++-- 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++-- 211212)(,即nna a a n S S S S n S n nn n n +++=++++--- 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=-=⎪⎭⎫⎝⎛++++--=+++-∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n na 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=-1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+-+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=-+12)1(2n nn,由于21232)1(22121→≤-+=≤=nn n n n n n a , 故21lim =∞→n n n a ,而 613221,231223************=⋅==⋅=++--m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim 2=∞→n n n n ;(2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n an ,由于)(0)12)(22(!1∞→→++=+n a n n u u nn n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>-=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=--=->l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>-=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=-+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nnp pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+-1100)1(n nn n;(2)∑∞=12sin ln n n n n π; (3)∑∞=++++-1131211)1(n nnn ;(4)∑∞=-+-2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π;(6)∑∞=--12)1(3)1(n n n n ;(7))0()1(1>-∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=-12cos )1(n nnn; (10)∑∞=-12sin )1(n nn n;(11))0(sin)1(1≠-∑∞=x nxn n ; (12)∑∞=+-12)1()1(n n n n; (13)++--+++--++--1111131131121121n n ; (14))0(1)1(11>+-∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+-1100)1(n nn n.令100)(+=x x x f ,则2)100(2100)(+-='x x x x f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于⎩⎨⎧∈-=-∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=---=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f -=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++-1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=-+-2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---=-+⋅-=-+-2311)1(1)1(1)1()1(11)1()1()1(nO n n n O n n nn n nn n n nnn ,而级数∑∞=-2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n发散,因而原级数发散. (5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n -+-=-++=+ππππnn n ++-=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin 2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=--12)1(3)1(n n n n .由于∑∑∞=∞=-=-112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>-∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=-12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin --+++-+-=n n 1sin )12sin(-+=n ,故1sin 11sin 21sin )12sin(2cos 1≤-+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=-12cos )1(n n n n 收敛,从而原级。

数值分析简明教程课后习题答案

数值分析简明教程课后习题答案

比较详细的数值分析课后习题答案0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析简明教程答案14

数学分析简明教程答案14
, .
(2)由于 是 的奇函数,因此 , .
, ,
且 在 可微,因此
, .
(3) ,
, ,
, ,
由于 在 可微,故
, .
(4) ,
, ,
, ,
且 在 上逐段可微,连续,故


2.求下列周期函数的Fourier级数:
(1) ;
(2) .
解(1)这是周期为 的函数,且 在 连续,逐段可微,又是偶函数,故 , .

, ,
所以,
, .

所以, , .
(2) ,

, ,
所以,
~ .
由于 在 逐段可微,而
, ,
因此,


2.由展开式

(1)用逐项积分法求 , , 在 中的Fourier展开式;
(2)求级数 , 的和.
解(1)
, ,
所以,
, .
, ,
, .
, ,
所以,
, .
(2)由于 ,故只须求出 即可.在(1)中最后一式,令 ,得到
第十四章傅里叶级数
§1三角级数与傅里叶级数
1.证明:
(1) 是 上的正交系;
(2) 是 上的正交系;
(3) 是 上的正交系;
(4) 不是 上的正交系.
证明(1) ,有

所以, 是 上的正交系.
(2) ,有

பைடு நூலகம்所以, 是 上的正交系.
(3)由于 ,有

又, ,有

故 是 上的正交系.
(4)因为 ,因此 不是 上的正交系.

这是在和号中后一积分中令 换元后得到的.由此得

数值分析简明教程第二版(王超能)习题答案24页全解word版[1]

数值分析简明教程第二版(王超能)习题答案24页全解word版[1]

数值分析简明教程第二版(王超能)习题答案24页全解0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=-K x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数值分析简明教程第二版课后习题答案(供参考)

数值分析简明教程第二版课后习题答案(供参考)

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=-K x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5) f (x) sin x ( x ) ;
(6) f (x) x cos x ( x ) ;
(7)
f
(x)
x,
0 ,
x 0, 0 x;
(8) f (x) 2 x 2 ( x ) ;
(9) f (x) sgn cos x ;
(10) f (x) x (0 x 2 ) . 2
2
6 k2
)
,k
1,
2,,
所以,
f
(x)
x3

n1
2 n
(1)n1 (
2
6 n2
) sin
nx
( x ) .
(3) f (x) 是偶函数,故 bn 0 , n 1, 2 , .
a0
1
cos
x 2
dx
4

an
1
cos
x 2
cos nxdx
(1) n1 4 (4n2 1)
0
0
[0 , ] 上的正交系.
2. 求下列周期为 2 的函数的 Fourier 级数:
n
(1)三角多项式 Pn (x) (ai cos ix bi sin ix) ; i 1
(2) f (x) x3 ( x ) ; (3) f (x) cos x ;
2 (4) f (x) eax ( x ) ;
证明 (1) m , n N , m n ,有
sin mx sin nxdx 1
[cos(m n)x cos(m n)x]dx
0
20
1 2
[
m
1
n
sin(m
n)
x
0
m
1
n
sin(m
n)
x
0
]
0Leabharlann ,所以, sin x , sin 2x ,, sin nx , 是[0 , ] 上的正交系.
(2) k , n N , k n ,有
2
sin(2k
1)x sin(2n
1) xdx
1
2 [cos 2(k n)x cos 2(k n 1)x]dx
0
20
1[
1
sin 2(k n)x 2
1
sin 2(k n 1)x 2 ] 0 ,
2 2(k n)
0 2(k n 1)
(x)
sin
x
~2
1
cos
x
2
n2
(1) n n2
1
1
1
cos
nx

( x )
(6) f (x) 是奇函数,故 an 0 , n 0 , 1, 2 , ,
bn
2
x cos x sin nxdx
0
1
0
x[sin(
n
1) x
sin(
n
1) x ]dx
2
1 2 (
可得三角多项式 Pn (x) 的 Fourier 级数为
Pn
(
x)

0 2
( k
k 1
cos kx
k
sin kx)
a0
n
(ak
k 1
cos kx bk
sin kx) .
(2) ak
1
x3 cos kxdx 0 , k 0 , 1, 2 , ,
bk
1
x3
sin
kxdx
2 k
(1)k1 (
解 (1)利用三角函数系的正交性,极易得到
0
1
Pn (x)dx
1
a0
2
2a0 ,
k
1
1 Pn (x) cos kxdx
0 ,
ak cos 2 kxdx ak ,
0 k n, k n,
k
1
Pn (x) cos kxdx
1 0 ,
bk
sin 2
kxdx
bk
,
0 k n, k n,
(1) k a2 k2
(a cos kx
k
sin kx)
,
a
0
,
1 ,
a 0.
(5) f (x) 是偶函数,故 bn 0 , n 1, 2 , ,
a0
2
0
sin
xdx
4

an
2
0
sin
x
cos
nxdx
1
,
2[(1) n1
(n2 1)
1]
,
n 1, n 1,
所以,
f
sin(m
n)
x
0
]
0

又, n N ,有
cos nxdx
0
1 n
sin
nx
0
0,
故1, cos x , cos 2x ,, cos nx , 是[0, ] 上的正交系.
( 4 ) 因 为
sin xdx
cos x
2 0 , 因 此 1, sin x , sin 2x ,, sin nx , 不 是

bn
1
f
(x)
sin
nxdx
1
0
x sin nxdx (1)n1 , n
因此,
f
(x)
x 0
, ,
0
x x
0,~
4
n1
(
(1)n n 2
1
cos
nx
(1) n1 n
sin
nx) .
(8) f (x) 为偶函数,故 bn 0 , n 1, 2 , ,
, 1)
n
n
n 2 1
n 1, ,n 2,
n 1, 2, .
所以,
f
(x)
x cos
x

1 2
sin
x
2
n2
(1)n n n2 1
sin
nx

(
x )
(7) a0
1
f (x)dx
1
0
xdx , 2
an
1
f
(x) cos nxdx
1
0
x
cos
nxdx
(1)n 1 n 2
, n 1, 2, ,
因此,
f
(x)
cos
x 2
2

4
n1
(1) 4n 2
n1
1
cos
nx

(4) a0
1
f
( x)dx
1
e ax dx
2 a
(e a
2 ,
ea ) ,
a0, a0,
ak
1
f (x) cos kxdx
1
e ax
cos kxdx
(1)k a
(a
第十四章 傅里叶级数
§1 三角级数与傅里叶级数
1. 证明:
(1) sin x , sin 2x ,, sin nx , 是[0 , ] 上的正交系; (2) sin x , sin 3x ,, sin(2n 1)x , 是[0, ] 上的正交系;
2 (3)1, cos x , cos 2x ,, cos nx , 是[0, ] 上的正交系; (4)1, sin x , sin 2x ,, sin nx , 不是[0 , ] 上的正交系.
0
所以, sin x , sin 3x ,, sin(2n 1)x , 是[0, ] 上的正交系. 2
(3)由于 m , n N , m n ,有
cos mx cos nxdx 1
[cos(m n)x cos(m n)x]dx
0
20
1 2
[
m
1
n
sin(
m
n)
x
0
m
1
n
2
k
2
)
0 ,
(e a
e a
)
,
a0, a0,
bk
1
f
(x)
sin
kxdx
1
e ax
sin
kxdx
(1)k k
(a
2
k
2 )
0 ,
(e a
ea ) ,
a0, a0,
k 1, 2, .
所以,当 x 时,
f
(x)
e ax

2 a
sh(a )
2
sh(a )
k 1
相关文档
最新文档