水吸收氨过程填料吸收塔设计论文

合集下载

(2020年7月整理)氨吸收塔的设计.doc

(2020年7月整理)氨吸收塔的设计.doc

电信工程系毕业设计(论文)学生自拟课题审批表江苏联合职业技术学院江苏省惠山中等专业学校(办学点)毕业设计(论文)任务书设计课题填料吸收塔的设计系部电信工程系专业精细化学品生产技术年级班级姓名学号指导教师职称2014年4月 2 3 日毕业设计(论文)任务书精细化学品生产技术专业G1051 教学班吸收塔课程设计摘要:氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次化工原理课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气,使其达到排放标准。

设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。

引言:填料塔是以塔内装有大量的填料为相间接触构件的汽液传质设备。

填料塔于19世纪中期已应用于工业生产,此后,它与板式塔竞相发展,构成了两类不同的汽液传质设备。

填料塔属于连续接触式的汽液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。

与板式塔相比,填料塔具有以下特点:①生产能力大。

②分离效率高。

③压力降小。

④持液量小。

⑤操作弹性大。

但是,填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效的润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太合适等。

因此,在选择塔的类型时,应根据分离物系的具体情况和操作所追求的目标综合考虑上述各因素。

填料的种类很多,根据装填方式不同,可分为散装填料和规整填料两大类。

散装填料中较为典型的有拉西环填料、鲍尔环填料、阶梯环填料、弧鞍填料、矩鞍填料、金属环矩鞍填料、球形填料。

氨吸收设计论文

氨吸收设计论文

(一)设计方案简介在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气,使其达到排放标准。

一、方案的的确定1.装置流程的确定用水吸收NH属高溶解度的吸收过程,为提高传质效率和分离效率,所以,本实验选用逆流吸收流程。

2.吸收剂的选择吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。

根据本设计要求,选择用清水作吸收剂,且氨气不作为产品, 故采用纯溶剂。

3.操作温度与压力的确定操作温度:20C 操作压力:常压二、填料的类型与选择填料的选择包括确定填料的种类,规格及材料。

填料的种类主要从传质效率,通量,填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d。

填料的材质分为陶瓷、金属和塑料三大类。

根据本设计的要求,选择用塑料散装填料。

本方案选用聚丙烯鲍尔环作为填料设计填,其主要参数如下:三、设计步骤a)查询物性数据b)物料衡算和能量c)确定吸收剂最小用量:d)操作气速u=no (n=0.5~0.85)e)计算填料塔径Df)校核操作气速u<nu F,反之调整n值重复第四步操作g)校核匕山吸收剂用量,反之则调整塔径Dh)确定填料层高度Zi)填料层压降的计算j)辅助设备设计(二)工艺流程图及说明在该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。

清水吸收氨气的填料塔装置设计

清水吸收氨气的填料塔装置设计

第五章 吸收塔塔体材料的选择 .....................................................................................19 5.1 吸收塔塔体材料 ...............................................................................................19 5.2 吸收塔的内径...................................................................................................19 5.3 壁厚的计算 ......................................................................................................19 5.4 强度校核..........................................................................................................19 第六章 封头的选型 .......................................................................................................20 6.1 封头的选型 ......................................................................................................20 6.2 封头材料的选择 ...............................................................................................20 6.3 封头的高..........................................................................................................20 6.4 封头的壁厚 ......................................................................................................20 第七章 管结构 ..............................................................................................................22 7.1 7.2 第八章 第九章 第十章 10.1 10.2 10.3 10.4 10.3 气体和液体的进出的装置 .................................................................................22 塔体各开孔补强设计 ........................................................................................22 填料塔的高度(不含支座) ..............................................................................24 容器的支座与焊接 ............................................................................................26 设备强度及稳定性分析 .....................................................................................27 设计压力的分析 .............................................................................................27 塔的质量分析 .................................................................................................27 圆筒轴向应力校核的分析 ...............................................................................28 风载荷的分析 .................................................................................................30 地震载荷的分析 .............................................................................................32

化工原理课程设计-水吸收氨填料吸收塔设计

化工原理课程设计-水吸收氨填料吸收塔设计

化工原理课程设计-水吸收氨填料吸收塔设计一、背景介绍氨是一种重要的化学制品,用于制造各种类型的化学产品,也可用作氨加热系统的燃料,但它作为强氧化剂挥发到大气中,有害环境,因此必须采取对策进行处理,以保护我们的环境。

水吸收氨填料吸收塔是一种典型的操作过程,通过在塔内部放入一定量的吸收填料,使得氨气更有效地与液体相混合,从而降低氨的挥发率,防止它的溢出。

二、设计目的本设计的目的是设计一种能够有效降低氨气挥发率的水吸收氨填料吸收塔系统。

三、塔结构设计1.水吸收塔的形式:此水吸收塔采用真空反应塔的形式,包括加热装置、塔体及其重要部件。

2.水吸收塔的尺寸:该水吸收塔直径为3m,高度为12m,采用真空式反应塔设计。

3.吸收填料:此设计采用纤维吸收填料,其密度为180 kg/m3,吸附能力0.5%,并选择优质的、耐磨的材料,保证耐久性。

4.液相:选择介质为硝酸钠溶液,介质比重1.1,温度在25℃以下,以确保氨吸收剂的低温稳定性。

5.混合器:采用有效搅拌,减少氨气挥发,氨气完全溶于液体,增加氨气的反应机会,增加吸6.塔内设备:除了加热器,还设有安全阀等设备,以防出现意外。

四、设计步骤1.根据氨吸收水填料吸收塔的工艺特点,研究氨挥发的特性,确定反应条件,估算反应速率和塔的大小及包装密度。

2.确定吸收填料的类型,以保证其对氨气的特性挥发特性。

3.细化设计,考虑塔内混合器及其优势,同时留意水塔设计具体内容,计算安全阀等设备的大小,以及确定塔内设备的位置。

4.确认成本,包括:原材料、安装和实际操作。

五、最终结论本文研究了一套水吸收氨填料吸收塔,设计了其安全阀及其它设备,以及填料的特性,确定了反应条件,估算反应速率,详细设计了塔的形式,尺寸,位置等,通过认真的工作,可以提出设计方案,完成水吸收氨填料吸收塔的设计任务。

水吸收氨气填料塔设计

水吸收氨气填料塔设计

前言在近代工业的发展中,塔设备已成为一个非常重要的单元设备,广泛应用于炼油、化工、制药等过程工业上,对吸收、蒸馏和洗涤有着不可或缺的作用。

它性能的优劣、技术水平的高低直接影响到产品的质量、产量、回收率、经济效益等各个方面。

所以研究新型的的塔设备和强化气液两相传质过程及工业生产有着重要的意义。

塔设备主要可分为两种:板式塔和填料塔。

板式塔和填料塔在过去几十年中的发展速度有快有慢,竞争能力时有强弱。

但总的来说,工业生产中因为处理量大所以还是以板式塔为主。

而对于填料塔,一般都是用于小量原料的处理。

但是在近些年来,人们对填料塔进行了大量的研究,却得了突破性的进展,目前应用规模的填料塔最大直径可达14~20m,突破了仅限于小塔的传统观念,并在现代化工生产中得到更为普遍的应用。

对于新型的填料塔来说,它还具有以下几个优点:(1)生产能力大,在需要大理论技术的分离过程中能耗小,可以更容易满足经济的应用热泵得要求。

(2)分离效率高(3)压降小(4)操作弹性大(5)持液量小利用填料塔去分离化工过程中的产物或者处理工业生产中对环境有害的污染物已越来越普遍,而且也趋于主流,对人们的日常生过也起着非常大的作用。

在使用填料塔进行分离物质时,必须事先对整个填料塔进行系统的计算与设计。

结合能效、操作条件、经济等方面去考虑。

充分了解到填料塔中个部分的物料情况和工作效益。

使整个填料塔分离过程能符合安全、环保、节能和高效益,能真正用于工业生产中。

氨是工业生产中一种极为重要的生产原料,在国民经济中占有重要地位。

除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。

合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。

但这种极为重要的化工原料却对人的生命有着严重的危害,如果在工业生产中操作有失误,会威胁这生产人员的性命安全。

化工原理课程设计水吸收氨填料吸收塔设计(1)

化工原理课程设计水吸收氨填料吸收塔设计(1)

化工原理课程设计水吸收氨填料吸收塔设计
(1)
化工原理课程设计——水吸收氨填料吸收塔设计
一、选择填料
本设计所选用的填料为塔形环状填料,其主要优点在于能够提高氨气
与水接触的时间和接触面积,从而提高吸收效率。

其次,填料的表面
积大,对氨气的吸附强度较高。

二、计算填料高度
根据质量平衡公式,吸收塔中氨气的质量=进入氨气的质量-出口氨气
的质量-吸收氨气的质量。

结合我们所设计的填料种类和工艺流程,可
以得到计算填料高度的公式:
θ=(W/N) ln [(C0-C)/(Co-Ct)]
其中,W是空气中氨气的质量流量,单位为kg/h;N是塔形环状填料每立方米的比表面积,单位为m²/m³;C0是氨气从入口口进入吸收器的
浓度,单位为mg/Nm³;Ct是出口处氨气的平均浓度,单位为mg/Nm³;
C是入口处水的浓度,单位为mg/L。

三、塔的直径
根据经验公式可得:填料在瞬间液晶表面液流速等于液降的经验公式。

v=1.2/(μ)½ (ΔP/ρ) ¼
其中,v是液体在塔体内部的平均流速,单位为m/s;μ是液体的粘度,单位为Pa*s;ΔP是液体在塔体内产生的液降,单位为Pa;ρ是液体
的密度,单位为kg/m³。

四、结论
经过以上各个方面的计算和分析,我们得到了适合本工艺流程,并且
具有高效的填料塔高度及塔直径,使本工艺流程吸收效率达到最优化
程度。

我们所选用的填料塔设计方案具有成本低、效率高及运行稳定
等特点,非常符合实际工序的需要。

水吸收氨过程填料吸收塔设计

水吸收氨过程填料吸收塔设计

一、设计任务书(一)设计题目试设计一座填料吸收塔,用于脱除混于空气中的氨气。

混合气体的处理量为1000 m3/h,其中含氨气为8%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数),采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。

(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa)(二)操作条件1.操作压力为常压,操作温度20℃.2.填料类型选用聚丙烯阶梯环填料,填料规格自选。

3.工作日取每年300天,每天24小时连续进行。

(三)设计内容1.吸收塔的物料衡算;2.吸收塔的工艺尺寸计算;3.填料层压降的计算;4.吸收塔接管尺寸计算;5.吸收塔设计条件图;6.对设计过程的评述和有关问题的讨论。

二、设计方案(一)流程图及流程说明该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,和从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。

经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。

(二)填料及吸收剂的选择该过程处理量不大,所用的塔直径不会太大,可选用25×12.5×1.4聚丙烯阶梯环塔填料,其主要性能参数如下:比表面积at :22332/mm空隙率ε:0.90湿填料因子Φ:1172m-填料常数 A:0.204 K:1.75见下图:根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。

三、工艺计算(一)基础物性数据 1.液相物性数据3998.2(/)L kg m ρ=6100410() 3.6(/)L Pa s kg m h μ-=⨯⋅=272.6(d y n /c )940896(/)L m k g h σ==931.7610(/)L D m s -=⨯2. 气相物性数据混合气体平均密度:31.166(/)v kg m ρ=c σ=427680(2/kg h )空气黏度:51.8110()0.065(/)v Pa s kg m h μ-=⨯⋅= 273K ,101.3Kpa.氨气在空气中扩散系数:200.17(/)D m s = (二)物料衡算,确定塔顶、塔底的气液流量和组成20℃,101.3Kpa 下氨气在水中的溶解度系数 30.725/H kmol m kpa =998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯进塔气相摩尔比: 10.080.087010.08Y ==-出塔气相摩尔比:20.00020.00020010.0002Y ==- 对于纯溶剂吸收过程,进塔液相组成:20X =混合气体流量 :1100027341.59629322.4V ⨯==⨯ kmol/h进塔惰性气体流量: 41.596(10.08)38.268V =⨯-= kmol/h吸收过程属于低浓度吸收,平衡关系为直线,最小液气比可按下式计算:12min 120.08700.0002000.752(0.0870/0.754)0e Y Y L V x X --⎛⎫=== ⎪--⎝⎭ 11e Y x m =取操作液气比为最小液气比的1.5倍,可得吸收剂用量为:0.75238.268 1.543.166/L Kmol h =⨯⨯= 根据全塔物料衡算式:()()()121212120.08700.0002000.07700.752 1.5V Y Y L X X V Y Y X LX L-=---=+==⨯液气比 :43.166180.6661000 1.166l v W W ⨯==⨯ (三)塔径的计算 1.塔径的计算考虑到填料塔内塔的压力降,塔的操作压力为101.3KPa()()()()33330.08170.922928.04/101.31028.0410 1.166/8.314527320998.2/v L M Kg Kmol PM Kg m RT Kg m ρρ-=⨯+⨯=⨯⨯⨯∴===⨯+=液体密度可以近似取为采用贝恩----霍夫泛点关联式:112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛点率为0.6. 即 0.60.6 3.017 1.810/f u u m s ==⨯=()4410000.4423.14 1.8103600sV D m u⨯===π⨯⨯圆整后取 ()()0.4400D m mm ==2.泛点率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85范围之间) 3.填料规格校核:40016825D d ==> 4.液体喷淋密度校核:取最小润湿速率为:)/(08.0)(3min h m m L W ⋅=23223/t a m m = 所以得32min min ()0.0822317.84/()W t U L a m m h =⋅=⨯=⋅263220.78543.16618998.2 6.17510/()0.7850.4hL U D m m h =⋅⨯⨯==⨯⋅⨯min U U >故满足最小喷淋密度的要求.(四)填料层高度计算 1.传质单元高度计算273K ,101.3kpa 下,氨气在空气中的扩散系数20.17(/)o D cm s =.由3/2000V p T D D p T ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则293K ,101.3kpa 下,氨气在空气中的扩散系数20.189(/)v D cm s =293K ,101.3kpa 下,氨气在水中的扩散系数()921.7610/L D m s -=⨯ (查化工原理附录)*110.7540.07700.0581Y mX ==⨯= *220Y mX ==脱吸因数为:0.7540.6680.752 1.5mV S L ===⨯ 气相总传质单元数为:()*12*221ln 11OGY Y N S S S Y Y ⎡⎤-=-+⎢⎥--⎣⎦=()10.08700ln 10.6680.66810.6680.0002000-⎡⎤-+⎢⎥--⎣⎦=14.992气相总传质单元高度采用修正的恩田关联式计算:0.050.20.10.752221exp 1.45w c L t L L t L t L L L t L a U a U U a a a g σσμρσρ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭液体质量通量为:22243.166186186.21/()0.7850.7850.4L L W U Kg m h D ⨯===⋅⨯⨯ 气体质量通量为:2221000 1.1669283.44/()0.7850.7850.4v v W U Kg m h D ⨯===⋅⨯⨯ 故20.750.10.052820.24276806186.216186.212231exp{ 1.45()()()940896223 3.6998.2 1.27106186.21()}998.29408962230.2476w t a a -⨯=--⨯⨯⨯⨯⨯⨯⨯⨯⨯=气膜吸收系数:10.7310.74340.2379283.440.0652230.1891036000.2372230.0658.3142931.1660.189103600 0.1273V V t V G t V V V U a D k a D RT μμρ--⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=液膜吸收系数:211323121833290.00956186.21 3.6 3.6 1.27100.00950.2476223 3.6998.2998.2 1.761036000.3037(/)L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫=⨯⨯⨯ ⎪⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=查表得ψ=1.35 故1.1G G W K a K a ψ==0.1273⨯0.2476⨯223⨯ 1.11.35=9.778()3/Kmol m h kpa ⋅⋅ 0.4L L W K a K a ψ==0.3037⨯0.2476⨯223⨯0.41.35=18.907()3/kmol m h kpaf =fuu =0.733>0.5 以下公式为修正计算公式:1.419.50.5G G f u K a K a u ⎡⎤⎛⎫'⎢⎥=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦()()1.4319.50.2339.77821.864/Kmol m h kpa ⎡⎤=+⨯⨯⎣⎦=⋅⋅2.219.50.5L L f u K a K au ⎡⎤⎛⎫⎢⎥'=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦()()2.2319.50.23318.90726.194/kmol m h kpa =+⨯⨯=则 111G G L K a K a HK a =+'' (H 为溶解度系数);=11121.8640.72526.194+⨯=10.1633/()Kmol m h kpa ⋅⋅由 OG Y G V VH K a K aP ==ΩΩ=238.26810.163101.30.7850.4⨯⨯⨯=0.296m 2. 填料层高度的计算由 0.29614.992 4.438OG OG Z H N m =⋅=⨯= 取上下活动系数为1.51.5 1.5 4.438 6.657Z m Z'==⨯=故 取填料层高度为7m.查[2]化工原理课程设计213页表5-41散装填料分段高度推荐值查得:塑料阶梯环 h/D ⊂8~15 max 6h m ≤ 取h/D=10 得 h=10⨯0.4=4m故 填料层需要分为二段,高度分别为3.5m. (五) 填料塔压降的计算采用Eckert 通用关联图计算填料层压降横坐标为:0.50.51.1660.666998.2V LVL WW ρρ⎛⎫⎛⎫=⨯ ⎪ ⎪⎝⎭⎝⎭=0.0228查[2]P 215表5-44得:189P m -Φ=纵坐标为:220.20.22.212891 1.166 1.0040.05239.81998.2V P L L u g ρψμρΦ⨯⨯⋅⋅=⨯⨯=查图得859.81833.85/Pp a m Z∆=⨯= 填料层压降为:833.857 5.84P pa Kpa ∆=⨯=Eckert 图(六) 吸收塔的主要接管尺寸的计算 1、气体进料管由于常压下塔气体进出口管气速可取12~20/m s ,故若取气体进出口流速近似为16m/s ,则由公式24V q d u π=可求得气体进出口内径为41000/3600148.710.78516V q d mm u π===⨯ 采用直管进料,由《化工原理》 第三版 上册 [谭天恩等主编 化学工业出版社]P269查得选择1563mm mm Φ⨯热轧无缝钢管,则 2241000/3600'15.73/0.785(0.1560.0032)V q u m s d π===⨯-⨯(在符合范围内) 气体进出口压降:进口:()221111.16615.73144.2522p u Pa ρ∆==⨯⨯= 出口:()222110.50.5 1.16615.7372.1322p u Pa ρ∆=⨯=⨯⨯⨯=2、液体进料管由于常压下塔液体进出口管速可取13/m s ,故若取液体进出口流速近似为 2.6m/s ,则由公式24V q d u π=可求得液体进出口内径为46186.210.029998.236000.785 2.6V q d m u π===⨯⨯⨯ 采用直管进料,由《化工原理》第三版 上册 [谭天恩等主编 化学工业出版社]P368查得选择384mm mm Φ⨯热轧无缝钢管,则 2246186.21/(998.23600)' 2.44/0.785(0.0380.0042)V q u m s d π⨯===⨯-⨯(在符合范围内) (七)吸收塔设计条件图表 吸收塔类型聚丙烯阶梯环吸收填料塔混合气体处理量(m 3/h ) 1000 塔径D (m ) 0.4 填料层高度Z (m ) 7 气相总传质单元高度(m ) 0.296 气相总传质单元数 14.992 泛点气速(m/s ) 3.017 泛点率 0.733 压降(kpa ) 5.15 操作压力(kpa ) 101.3 操作温度(℃) 20 填料直径(mm ) 25 孔隙率ε0.90水吸收氨吸收塔设计填料比表面积a(㎡/m 3) 223 填料常数A 0.204 填料常数K1.75四、符号说明a ——填料层的有效传质比表面积(m ²/m ³)w a ——填料层的润滑比表面积m ²/m ³A ——吸收因数;无因次d ——填料直径,mm ;p d ——填料当量直径,mmD ——扩散系数,m ²/s ; 塔径E ——亨利系数,KPag ——重力加速度,kg/(m².h)H ——溶解度系数,kmol /(m ³.KPa)OG H ——气相总传质单元高度,mG k ——气膜吸收系数, kmol /(m ³.s.KPa)OG N ——气相总传质系数,无因次L k ——气膜吸收系数, kmol /(m ³.s.KPa)R ——气体通用常数,8.314kJ/(kmol.K)S ——解吸因子T ——温度,0Cu ——空塔速度,m/sf u ——液泛速度,m/sV ——惰性气体流量,kmol/hS V ——混合气体体积流量,m 3/h1V ——混合气体流量,kmol/hL ——是吸收液量 kmol/hΦ——填料因子, m-1S L ——吸收剂用量kmol/h; kmol/sΦp ——压降填料因子, m -1Ψ——液体密度校正系数x ——溶质组分在液相中的摩尔分率 无因次y ——溶质组分在液相中的摩尔分率 无因次Z ——填料层高度 mmin ——最小的max ——最大的μ——粘度 Pa.sρ——密度 kg/m 3σ——表面张力 N/mε——孔隙率m ——相平衡常数,无因次五、对设计过程的评述水吸收氨吸收塔设计这次我的课程设计题目是水吸收氨过程填料塔的设计,这是关于吸收中填料塔的设计。

化工原理课程设计(水吸收氨填料吸收塔设计)

化工原理课程设计(水吸收氨填料吸收塔设计)

水吸收氨填料吸收塔设计1 题目含氨为5%的混合气体, 处理量为500m3/h, 尾气中含氨低于0.02%,采用清水进行吸收, 吸收剂的用量为最小用量的1.5倍. (均为体积分数).,2 设计任务和操作条件:(1)操作压力常压。

(2)操作温度 20℃(3)年工作300天,每天24小时运行.3 填料类型 聚丙烯阶梯环填料,规格自选.4 设计内容(1)吸收塔的物料衡算(2)填料层压降的计算(3)液体分布器的简单设计(4)吸收塔塔体工艺尺寸的计算(5)绘制分布器施工图(6)对本设计进行评述5 基础数据20℃下氨在水中的溶解度系数为0.725Kmol/( m3. kpa)一吸收工艺流程的确定采用常规逆流操作流程.流程如下。

二物料计算(l). 进塔混合气中各组分的量取塔平均操作压强为101.3kPa,故:混合气量= 500()×= 20.80kmol/h混合气中氨量=20.80×0.543 =1.129 kmol/h = 19.2kg/h混合气中空气量=20.80-1.129 = 19.671kmol/h=570.5kg/h (2).混合气进出塔的(物质的量)组成==0.05430;(3).混合气进出塔(物质的量比)组成Y1==0.0574Y2=(1-)=0.0574×=0.0002296(以塔顶排放气体中氨含量0.02%计)三 平衡曲线方程查表知:20℃时,氨在水中的亨利系数E=277.3Kpa;m = = = 2.737故操作线方程为:Y=2.737X.吸收剂(水)的用量Ls由操作线方程知:当Y1=0.0574时,X1*=0.021,计算最小吸收剂用量=19.671×=53.77 kmol/h取安全系数为1.5,则Ls=1.5×53.77=80.65kmol/h = 1451.7kg/h依物料衡算式塔底吸收液浓度= 19.671×= 0.014四塔径计算塔底气液负荷大,依塔底条件(混合气20℃),101.325kPa图1 通用压降关联图(1).采用Eckert通用关联图法(图1)计算泛点气速①有关数据计算塔底混合气流量V`S=570.5+19.2=589.7kg/h吸收液流量L`=1451.7kg/h进塔混合气密度=×=1.206kg/(混合气浓度低,可近似视为空气的密度)吸收液密度=998.2kg/吸收液黏度=1.005 mP a·s经比较,选DN38mm聚丙烯阶梯环。

水吸收氨气过程填料吸收塔的设计

水吸收氨气过程填料吸收塔的设计

水吸收氨气过程填料吸收塔的设计首先,填料的选择是填料吸收塔设计中的重要环节。

常见的填料材料有陶瓷球、塑料球和金属填料等。

对于水吸收氨气来说,一般采用塑料球填料更为常见,其表面积大、孔隙率高,能够有效增加气液接触面积,提高氨气的吸收效率。

在填料选择时,还需要考虑填料的耐腐蚀性能、压降、堵塞等指标,以确保填料的稳定性和使用寿命。

其次,填料层高度的确定是填料吸收塔设计过程中的另一个重要参数。

填料层高度对气液接触效果有较大影响,一般情况下,填料层高度越大,气液接触面积越大,吸收效果越好,但也会增加设备的高度和投资成本。

因此,在实际设计中需要综合考虑填料层高度与吸收效果之间的平衡,确定合适的填料层高度。

液汽比是填料吸收塔设计中的另一个重要参数。

液汽比是指单位时间内液相流量与气相流量的比值。

液汽比过低会导致塔底压力升高,氨气吸收效果差;而液汽比过高则会造成能力浪费,并增加后续处理设备的负担。

根据经验,通常液汽比在1.5-2.5之间较为合适,具体的值可根据实际情况进行调整。

气液流速是填料吸收塔设计的另一关键参数。

气液流速需要根据填料类型、填料层高度等因素进行合理的选择。

一般情况下,流速过大会导致气液分布不均匀,造成液滴的飞散和带走气相成分,从而降低吸收效果;而流速过小则会增加填料吸附液膜的厚度,增加冲击损失,影响气液接触效果。

通常,气相的流速在1-2.5m/s之间,液相的流速在0.2-0.5m/s之间较为合适。

此外,填料吸收塔的设计还需要考虑塔的结构设备、排污系统、压力控制、温度控制等方面的设计。

塔的结构设备需要保证填料的安装、拆卸和清洗的便利性;排污系统需要保证吸收剂的及时排出,防止堵塞和腐蚀;压力和温度控制需要根据实际情况进行合理的设定,以确保塔内各部分工作状态的稳定性和安全性。

综上所述,水吸收氨气的填料吸收塔设计需要考虑填料选择、填料层高度、液汽比、气液流速等多个因素,并根据实际情况进行合理的选择和设计。

填料吸收塔设计范文

填料吸收塔设计范文

填料吸收塔设计范文在化工领域中,填料吸收塔是一种常用的设备,用于气体与液体之间的质量传输与反应,广泛应用于化工、环保、能源等行业。

填料吸收塔的设计在保证工艺效果的前提下,应尽可能降低能耗和成本,提高设备的稳定性和可靠性。

本文将通过一个填料吸收塔的设计范文,阐述填料吸收塔的设计原则和具体步骤。

一、填料吸收塔的设计原则1.安全性原则:填料吸收塔应符合工业安全规范,具备强大的抗压能力和良好的防腐性能。

2.高效性原则:填料吸收塔应具备高效的传质传热性能,满足工艺效果的要求。

3.节能性原则:填料吸收塔的设计应尽可能降低能耗,提高设备的能源利用效率。

4.经济性原则:填料吸收塔设计应根据具体的经济指标,选择合适的材料和工艺方案。

二、填料吸收塔的设计步骤1.确定工艺要求:根据具体的工艺需求,确定填料吸收塔处理的物料成分、流量及温度等参数。

2.选择填料:根据工艺要求,选择适合的填料材料。

填料的选择应考虑填料的比表面积、孔隙率、耐腐蚀性能等因素。

3.确定填料层高度:根据传质反应和传热要求,确定填料层在填料吸收塔中的高度。

填料层高度的确定应结合工艺要求和经验数据进行综合考虑。

4.计算填料吸收塔的尺寸:根据工艺要求和设计参数,计算填料吸收塔的直径和高度。

在计算过程中,需要考虑填料的容积和压降等因素。

5.确定塔板设计:根据工艺要求和填料高度,确定填料吸收塔的塔板类型和布置。

塔板的设计应考虑液体和气体相分离、气液流量分布和均匀分布等因素。

6.确定塔顶和底部结构:根据填料吸收塔的高度和压力,确定塔顶和底部的设计。

塔顶设计应包括气体入口、气体出口和废气排放等要素。

7.完成细节设计:根据填料吸收塔的各项设计参数,完成塔内部和外部的细节设计。

细节设计包括各种连接件、防腐处理、支撑结构等。

8.进行模拟和计算:根据填料吸收塔的设计参数,进行模拟和计算,验证设计的合理性和可行性。

9.编写设计报告:将填料吸收塔的设计过程和结果整理成设计报告,包括设计计算数据、图纸和说明等内容。

氨气吸收(清水)化工原理课程设计 (2)精选全文

氨气吸收(清水)化工原理课程设计 (2)精选全文

可编辑修改精选全文完整版设计任务书(一)设计题目试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。

混合气体的处理量为2200m3/h,其中含氨为8%(体积分数),混合气体的进料温度为25℃。

要求:氨气的回收率达到97% 。

(二)操作条件(1)操作压力:常压(2)操作温度:20℃(3)采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。

(20C°氨在水中的溶解度系数为H=0.725kmol/m3.kPa)(三)填料类型采用散装聚丙烯DN阶梯环填料。

50(四)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图(7)吸收塔接管尺寸计算;(8)设计参数一览表;(9)绘制生产工艺流程图(A3号图纸);(10)绘制吸收塔设计条件图(A3号图纸);(11)对设计过程的评述和有关问题的讨论。

目录1. 设计方案简介 (1)1.1设计方案的确定 (1)1.2填料的选择 (1)2. 工艺计算 (2)2.1 基础物性数据 (2)2.1.1液相物性的数据 (2)2.1.2气相物性的数据 (2)2.1.3气液相平衡数据 (2)2.1.4 物料衡算 (3)2.2 填料塔的工艺尺寸的计算 (4)2.2.1 塔径的计算 (4)2.2.2 填料层高度计算 (5)2.2.3 填料层压降计算 (8)2.2.4 液体分布器简要设计 (8)3. 辅助设备的计算及选型 (9)3.1 填料支承设备 (9)3.2填料压紧装置 (10)3.3液体再分布装置 (10)4. 设计一览表 (10)5. 后记 (11)6. 参考文献 (11)7. 主要符号说明 (12)8. 附图(工艺流程简图、主体设备设计条件图) (13)1.设计方案简介1.1设计方案的确定本设计任务为吸收空气中的氨气。

用水吸收氨气属易溶解的吸收过程,所以本次设计的吸收剂为清水。

吸收氨过程填料塔的设计、吸收塔设计(完整版)

吸收氨过程填料塔的设计、吸收塔设计(完整版)

目录1. 设计任务书 (1)2. 设计方案简介 (2)2.1 吸收流程的确定 (2)2.2 吸收剂的选择 (2)2.3 操作温度与压力 (3)2.4 塔填料的选择 (3)2.5 初步流程图 (3)3. 工艺计算 (4)3.1 基础物性数据 (4)3.1.1 液相物性的数据 (4)3.1.2 气相物性数据 (5)3.1.3 气液相平衡数据 (5)3.1.4 物料衡算 (5)3.2 填料塔的工艺尺寸的计算 (6)3.2.1 塔径的计算 (6)3.2.2 填料层高度计算 (8)3.2.3 填料层压降计算 (10)3.2.4 吸收塔接管尺寸的计算 (11)4. 辅助设备的计算及选型 (12)4.1 除沫器 (12)4.2 液体分布装置 (13)4.3 液体再分布器 (15)4.4 填料压紧装置 (15)4.5 填料支承装置 (16)4.6 气体的进出口装置 ................................................................ 错误!未定义书签。

4.7封头的选择............................................................................ 错误!未定义书签。

4.8人孔的选择 (17)4.9 法兰的选择........................................................................... 错误!未定义书签。

4.10 塔底液保持管高度............................................................... 错误!未定义书签。

4.11 塔附属高度计算 (18)4.12 离心泵的选型...................................................................... 错误!未定义书签。

水吸收氨过程填料吸收塔设计

水吸收氨过程填料吸收塔设计

一、設計任務書(一)設計題目試設計一座填料吸收塔,用於脫除混於空氣中的氨氣。

混合氣體的處理量為1000 m3/h,其中含氨氣為8%(體積分數),要求塔頂排放氣體中含氨低於0.02%(體積分數),採用清水進行吸收,吸收劑的用量為最小用量的1.5倍。

(20℃氨在水中的溶解度係數為H=0.725kmol/(m3.kPa)(二)操作條件1.操作壓力為常壓,操作溫度20℃.2.填料類型選用聚丙烯階梯環填料,填料規格自選。

3.工作日取每年300天,每天24小時連續進行。

(三)設計內容1.吸收塔的物料衡算;2.吸收塔的工藝尺寸計算;3.填料層壓降的計算;4.吸收塔接管尺寸計算;5.吸收塔設計條件圖;6.對設計過程的評述和有關問題的討論。

二、設計方案(一)流程圖及流程說明該填料塔中,氨氣和空氣混合後,經由填料塔的下側進入填料塔中,與從填料塔頂流下的清水逆流接觸,在填料的作用下進行吸收。

經吸收後的混合氣體由塔頂排除,吸收了氨氣的水由填料塔的下端流出。

(二)填料及吸收劑的選擇該過程處理量不大,所用的塔直徑不會太大,可選用25×12.5×1.4聚丙烯階梯環塔填料,其主要性能參數如下:比表面積at :22332/mm空隙率ε:0.90濕填料因數Φ:1172m-填料常數 A:0.204 K:1.75見下圖:根據所要處理的混合氣體,可採用水為吸收劑,其廉價易得,物理化學性能穩定,選擇性好,符合吸收過程對吸收劑的基本要求。

三、工藝計算(一)基礎物性數據 1.液相物性數據3998.2(/)L kg m ρ=6100410() 3.6(/)L Pa s kg m h μ-=⨯⋅=272.6(d y n /c )940896(/)L m k g h σ==931.7610(/)L D m s -=⨯2. 氣相物性數據混合氣體平均密度:31.166(/)v kg m ρ=c σ=427680(2/kg h )空氣黏度:51.8110()0.065(/)v Pa s kg m h μ-=⨯⋅= 273K ,101.3Kpa.氨氣在空氣中擴散係數:200.17(/)D m s =(二)物料衡算,確定塔頂、塔底的氣液流量和組成20℃,101.3Kpa 下氨氣在水中的溶解度係數 30.725/H kmol m kpa =998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯進塔氣相摩爾比: 10.080.087010.08Y ==-出塔氣相摩爾比:20.00020.00020010.0002Y ==- 對於純溶劑吸收過程,進塔液相組成:20X =混合氣體流量 :1100027341.59629322.4V ⨯==⨯ kmol/h進塔惰性氣體流量: 41.596(10.08)38.268V =⨯-= kmol/h吸收過程屬於低濃度吸收,平衡關係為直線,最小液氣比可按下式計算:12min 120.08700.0002000.752(0.0870/0.754)0e Y Y L V x X --⎛⎫=== ⎪--⎝⎭ 11e Y x m =取操作液氣比為最小液氣比的1.5倍,可得吸收劑用量為:0.75238.268 1.543.166/L Kmol h =⨯⨯= 根據全塔物料衡算式:()()()121212120.08700.0002000.07700.752 1.5V Y Y L X X V Y Y X LX L-=---=+==⨯液氣比 :43.166180.6661000 1.166l v W W ⨯==⨯ (三)塔徑的計算 1.塔徑的計算考慮到填料塔內塔的壓力降,塔的操作壓力為101.3KPa()()()()33330.08170.922928.04/101.31028.0410 1.166/8.314527320998.2/v L M Kg Kmol PM Kg m RT Kg m ρρ-=⨯+⨯=⨯⨯⨯∴===⨯+=液体密度可以近似取为採用貝恩----霍夫泛點關聯式:112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛點率為0.6. 即 0.60.6 3.017 1.810/f u u m s ==⨯=()4410000.4423.14 1.8103600s V D m u ⨯===π⨯⨯ 圓整後取 ()()0.4400D m mm ==2.泛點率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85範圍之間) 3.填料規格校核:40016825D d ==> 4.液體噴淋密度校核:取最小潤濕速率為:)/(08.0)(3min h m m L W ⋅=23223/t a m m = 所以得32min min ()0.0822317.84/()W t U L a m m h =⋅=⨯=⋅263220.78543.16618998.2 6.17510/()0.7850.4hL U D m m h =⋅⨯⨯==⨯⋅⨯min U U >故滿足最小噴淋密度的要求.(四)填料層高度計算 1.傳質單元高度計算273K ,101.3kpa 下,氨氣在空氣中的擴散係數20.17(/)o D cm s =.由3/2000V p T D D p T ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,則293K ,101.3kpa 下,氨氣在空氣中的擴散係數20.189(/)v D cm s =293K ,101.3kpa 下,氨氣在水中的擴散係數()921.7610/L D m s -=⨯ (查化工原理附錄)*110.7540.07700.0581Y mX ==⨯= *220Y mX ==脫吸因數為:0.7540.6680.752 1.5mV S L ===⨯ 氣相總傳質單元數為:()*12*221ln 11OGY Y N S S S Y Y ⎡⎤-=-+⎢⎥--⎣⎦=()10.08700ln 10.6680.66810.6680.0002000-⎡⎤-+⎢⎥--⎣⎦=14.992氣相總傳質單元高度採用修正的恩田關聯式計算:0.050.20.10.752221exp 1.45w c L t L L t L t L L L t L a U a U U a a a g σσμρσρ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭液體品質通量為:22243.166186186.21/()0.7850.7850.4L L W U Kg m h D ⨯===⋅⨯⨯ 氣體品質通量為:2221000 1.1669283.44/()0.7850.7850.4v v W U Kg m h D ⨯===⋅⨯⨯ 故20.750.10.052820.24276806186.216186.212231exp{ 1.45()()()940896223 3.6998.2 1.27106186.21()}998.29408962230.2476w t a a -⨯=--⨯⨯⨯⨯⨯⨯⨯⨯⨯=氣膜吸收係數:10.7310.74340.2379283.440.0652230.1891036000.2372230.0658.3142931.1660.189103600 0.1273V V t V G t V V V U a D k a D RT μμρ--⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=液膜吸收係數:211323121833290.00956186.21 3.6 3.6 1.27100.00950.2476223 3.6998.2998.2 1.761036000.3037(/)L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫=⨯⨯⨯ ⎪⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=查表得ψ=1.35 故1.1G G W K a K a ψ==0.1273⨯0.2476⨯223⨯ 1.11.35=9.778()3/Kmol m h kpa ⋅⋅ 0.4L L W K a K a ψ==0.3037⨯0.2476⨯223⨯0.41.35=18.907()3/kmol m h kpaf =fuu =0.733>0.5 以下公式為修正計算公式:1.419.50.5G G f u K a K a u ⎡⎤⎛⎫'⎢⎥=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦()()1.4319.50.2339.77821.864/Kmol m h kpa ⎡⎤=+⨯⨯⎣⎦=⋅⋅2.219.50.5L L f u K a K au ⎡⎤⎛⎫⎢⎥'=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦()()2.2319.50.23318.90726.194/kmol m h kpa =+⨯⨯=。

水吸收氨气过程填料吸收塔的设计

水吸收氨气过程填料吸收塔的设计

水吸收氨气过程填料吸收塔的设计一、水吸收氨气过程水吸收氨气是一种常见的空气污染治理方法,其主要原理是利用水溶液与氨气发生化学反应,将其转化为无害的物质。

具体过程如下:1. 水溶液与氨气接触:将水溶液喷淋到填料层中,使其与上升的废气充分接触。

2. 化学反应:在接触过程中,水溶液中的OH-离子与NH3分子发生反应,生成NH4+离子。

反应式如下:NH3 + H2O → NH4+ + OH-3. 吸收效果:通过不断喷淋和填料层的作用,废气中的NH3被逐渐吸收,并转化为无害物质。

二、填料吸收塔的设计填料吸收塔是实现水吸收氨气过程的主要设备之一。

其设计需要考虑以下几个方面:1. 填料选择:填料是实现废气和水溶液接触的关键因素之一。

常见的填料有环形塔环、球形塞、波纹板等。

选择合适的填料可以提高吸收效率和降低能耗。

2. 填料层数:填料层数的多少直接影响吸收效果,一般情况下填料层数越多,吸收效果越好。

但是填料层数过多会增加设备高度和造价,需要根据实际情况进行设计。

3. 喷淋方式:喷淋方式也是影响吸收效率的重要因素。

常见的喷淋方式有顶部喷淋、侧面喷淋、中心喷淋等。

不同的喷淋方式适用于不同的填料和气体流量。

4. 水溶液浓度:水溶液浓度对吸收效率也有很大影响。

一般情况下,水溶液浓度在5%~10%之间较为合适,超过10%会增加能耗和造价。

5. 设备尺寸:填料吸收塔的尺寸需要根据废气流量、水溶液流量和吸收效率等因素进行计算。

一般情况下,设备高度在5~15m之间,直径在1~3m之间。

三、总结水吸收氨气过程是一种有效的空气污染治理方法,在填料吸收塔设计中需要考虑填料选择、填料层数、喷淋方式、水溶液浓度和设备尺寸等因素。

通过合理的设计和操作,可以实现高效的氨气吸收和空气治理效果。

水吸收氨气填料塔课程设计

水吸收氨气填料塔课程设计
水吸收氨气填 料塔课程设计
引言 1 设计目标 3 填料塔结构设计 5
-
目录
2 填料塔简介 4 工艺流程设计 6 总结与展望
1
引言
引言
在当前的工业生产中,氨气的吸收和分离是一个重要
1
的环节
氨气是一种常见的工业气体,广泛应用于化工、制药、
2
农业等领域
为了实现高效、环保的氨气吸收,本课程设计旨在设
3
计和优化水吸收氨气的填料塔
2
填料塔简 介
填料塔简介
1
填料塔是化工生产中常用的设备之一, 主要用于气液或液液之间的传质和传
热过程
填料塔的核心部件是填料,它提供了 气液接触和反应的表面
2
3
通过选择合适的填料和操作条件,可 以有效地提高传质和传热的效率
3
设计目标
设计目标
本课程设计的主 要目标是
设计目标
6
总结与展 望
总结与展望
1
通过本次课程设计,我们了解了水来自收氨气的 工艺流程和填料塔的结构设计
2
在实际应用中,还需要根据具体条件进行工艺
参数的优化和设备的选型
3
未来,随着技术的进步和应用需求的提高,水 吸收氨气的填料塔将会更加高效、环保和节能
恳请各位导师批评指正
感谢您的聆听
汇报人:XXXX
指导老师:XXX
工艺流程设计
吸收过程
在填料塔内,氨气与水逆流接触,发生吸收 反应。吸收后的溶液从塔顶流出,进入后续 处理单元。未被吸收的气体从塔顶排出,进 入回收系统
工艺流程设计
工艺参数控制
工艺参数如温度、压力、流量等应进行实时监测和控制 ,以确保吸收过程的稳定性和高效性。可以通过调节氨 气流量、水流量以及塔内温度和压力等参数来优化吸收 效果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、设计任务书(一)设计题目试设计一座填料吸收塔,用于脱除混于空气中的氨气。

混合气体的处理量为1000 m3/h,其中含氨气为8%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数),采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。

(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa)(二)操作条件1.操作压力为常压,操作温度20℃.2.填料类型选用聚丙烯阶梯环填料,填料规格自选。

3.工作日取每年300天,每天24小时连续进行。

(三)设计内容1.吸收塔的物料衡算;2.吸收塔的工艺尺寸计算;3.填料层压降的计算;4.吸收塔接管尺寸计算;5.吸收塔设计条件图;6.对设计过程的评述和有关问题的讨论。

二、设计方案(一)流程图及流程说明该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。

经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。

(二)填料及吸收剂的选择该过程处理量不大,所用的塔直径不会太大,可选用25×12.5×1.4聚丙烯阶梯环塔填料,其主要性能参数如下:比表面积at :22332/mm空隙率ε:0.90湿填料因子Φ:1172m-填料常数 A:0.204 K:1.75见下图:根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。

三、工艺计算(一)基础物性数据1.液相物性数据3998.2(/)L kg m ρ= 6100410() 3.6(/)L Pa s kg m h μ-=⨯⋅= 272.6(d y n /c )940896(/)L m k g h σ== 931.7610(/)L D m s -=⨯2. 气相物性数据 混合气体平均密度:31.166(/)v kg m ρ=c σ=427680(2/kg h )空气黏度:51.8110()0.065(/)v Pa s kg m h μ-=⨯⋅=273K ,101.3Kpa.氨气在空气中扩散系数:200.17(/)D ms =(二)物料衡算,确定塔顶、塔底的气液流量和组成20℃,101.3Kpa 下氨气在水中的溶解度系数 30.725/H kmol m kpa = 998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯进塔气相摩尔比: 10.080.087010.08Y ==- 出塔气相摩尔比:20.00020.00020010.0002Y ==- 对于纯溶剂吸收过程,进塔液相组成:20X =混合气体流量 :1100027341.59629322.4V ⨯==⨯ kmol/h 进塔惰性气体流量: 41.596(10.08)38.268V =⨯-= kmol/h吸收过程属于低浓度吸收,平衡关系为直线,最小液气比可按下式计算:12min 120.08700.0002000.752(0.0870/0.754)0e Y Y L V x X --⎛⎫=== ⎪--⎝⎭ 11e Y x m =取操作液气比为最小液气比的1.5倍,可得吸收剂用量为:0.75238.268 1.543.166/L Kmol h =⨯⨯=根据全塔物料衡算式:()()()121212120.08700.0002000.07700.752 1.5V Y Y L X X V Y Y X LX L -=---=+==⨯液气比 : 43.166180.6661000 1.166l v W W ⨯==⨯ (三)塔径的计算1.塔径的计算考虑到填料塔内塔的压力降,塔的操作压力为101.3KPa()()()()33330.08170.922928.04/101.31028.0410 1.166/8.314527320998.2/v L M Kg Kmol PM Kg m RT Kg m ρρ-=⨯+⨯=⨯⨯⨯∴===⨯+=液体密度可以近似取为采用贝恩----霍夫泛点关联式:112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=- 3.017/f u m s = ()0.50.85f u u =-取泛点率为0.6. 即 0.60.6 3.017 1.810/f u u m s ==⨯=()4410000.4423.14 1.8103600s V D m u ⨯===π⨯⨯ 圆整后取 ()()0.4400D m mm ==2.泛点率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85范围之间) 3.填料规格校核: 40016825D d ==> 4.液体喷淋密度校核:取最小润湿速率为:)/(08.0)(3min h m m L W ⋅=23223/t a m m = 所以得32min min ()0.0822317.84/()W t U L a m m h =⋅=⨯=⋅263220.78543.16618998.2 6.17510/()0.7850.4hL U D m m h =⋅⨯⨯==⨯⋅⨯ min U U >故满足最小喷淋密度的要求.(四)填料层高度计算1.传质单元高度计算273K ,101.3kpa 下,氨气在空气中的扩散系数20.17(/)o D cm s =.由3/2000V p T D D p T ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则293K ,101.3kpa 下,氨气在空气中的扩散系数20.189(/)v D cm s =293K ,101.3kpa 下,氨气在水中的扩散系数()921.7610/L D m s -=⨯ (查化工原理附录)*110.7540.07700.0581Y mX ==⨯=*220Y mX ==脱吸因数为:0.7540.6680.752 1.5mV S L ===⨯ 气相总传质单元数为:()*12*221ln 11OG Y Y N S S S Y Y ⎡⎤-=-+⎢⎥--⎣⎦=()10.08700ln 10.6680.66810.6680.0002000-⎡⎤-+⎢⎥--⎣⎦ =14.992气相总传质单元高度采用修正的恩田关联式计算:0.050.20.10.752221exp 1.45w c L t L L t L t L L L t L a U a U U a a a g σσμρσρ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭液体质量通量为:22243.166186186.21/()0.7850.7850.4L L W U Kg m h D ⨯===⋅⨯⨯ 气体质量通量为:2221000 1.1669283.44/()0.7850.7850.4v v W U Kg m h D ⨯===⋅⨯⨯ 故20.750.10.052820.24276806186.216186.212231exp{ 1.45()()()940896223 3.6998.2 1.27106186.21()}998.29408962230.2476w t a a -⨯=--⨯⨯⨯⨯⨯⨯⨯⨯⨯=气膜吸收系数:10.7310.74340.2379283.440.0652230.1891036000.2372230.0658.3142931.1660.189103600 0.1273V V t V G t V V V U a D k a D RT μμρ--⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭= 液膜吸收系数:211323121833290.00956186.21 3.6 3.6 1.27100.00950.2476223 3.6998.2998.2 1.761036000.3037(/)L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=查表得ψ=1.35 故1.1G G W K a K a ψ==0.1273⨯0.2476⨯223⨯ 1.11.35=9.778()3/Kmol m h kpa ⋅⋅0.4L L W K a K a ψ==0.3037⨯0.2476⨯223⨯0.41.35=18.907()3/kmol m h kpaf =fu u =0.733>0.5 以下公式为修正计算公式:1.419.50.5G G f u K a K a u ⎡⎤⎛⎫'⎢⎥=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ()()1.4319.50.2339.77821.864/Kmol m h kpa ⎡⎤=+⨯⨯⎣⎦=⋅⋅2.219.50.5L L f u K a K a u ⎡⎤⎛⎫⎢⎥'=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦ ()()2.2319.50.23318.90726.194/kmol m h kpa =+⨯⨯=。

相关文档
最新文档