经济时间序列的季节调整分解和平滑方法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X12的EViews接口菜单只是一个简短的描述,EViews 还提供了一些菜单不能实现的接口功能,更一般的命令接口 程序。
12
调用X12季节调整过程,在序列窗口选择Procs/Seasonal Adjustment / Census X12,打开一个对话框:
13
3. 移动平均方法
X-11法与移动平均法的最大不同是:X-11法中季节 因子年与年有可能不同,而在移动平均法中,季节因子 被假设为是一样的。
SEATS(Signal Extraction in ARIMA Time Series)是基于 ARIMA模型来对时间序列中不可观测成分进行估计。
这两个程序往往联合起来使用,先用TRAMO对数据进 行预处理,然后用SEATS将时间序列分解为趋势要素、循环 要素、季节要素及不规则要素4个部分。
9
§2.2.4 季节调整相关操作 (EViews软件)
4
§2.2.2 X12季节调整方法
美国商务部国势普查局的X12季节调整程序是在X11方 法的基础上发展而来的,包括X11季节调整方法的全部功 能,并对X11方法进行了以下3方面的重要改进:
(1) 扩展了贸易日和节假日影响的调节功能,增加了季 节、趋势循环和不规则要素分解模型的选择功能;
(2) 新的季节调整结果稳定性诊断功能; (3) 增加X12-ARIMA模型的建模和模型选择功能。
3304.66
2405.12
1505.59
606.05 1981 1983 1985 1987 1989 1991 1993 1995 1997
图1 我国工业总产值的时间序列 Y 图形
1.16
图2 工业总产值的趋势·循环要素 TC 图形
1.11
1.06
1.06
0.96
1.00
0.86
0.95
0.76 1981 1983 1985 1987 1989 1991 1993 1995 1997
0.89 1981 1983 1985 1987 1989 1991 1993 1995 1997
源自文库
图3 工业总产值的季节变动要素 S 图形
图4 工业总产值的不规则要素 I 图形 2
季节调整的概念
季节性变动的发生,不仅是由于气候的直接影响, 而且社会制度及风俗习惯也会引起季节变动。经济统计中 的月度和季度数据或大或小都含有季节变动因素,以月份 或季度作为时间观测单位的经济时间序列通常具有一年一 度的周期性变化,这种周期变化是由于季节因素的影响造 成的,在经济分析中称为季节性波动。经济时间序列的季 节性波动是非常显著的,它往往遮盖或混淆经济发展中其 他客观变化规律,以致给经济增长速度和宏观经济形势的 分析造成困难和麻烦。因此,在进行经济增长分析时,必 须去掉季节波动的影响,将季节要素从原序列中剔除,这 就是所谓的“季节调整” (Seasonal Adjustment)。
③ 对数加法模型: ln Yt ln TCt ln St ln It (2.2.3)
④ 伪加法模型: Yt TCt (St It 1)
(2.2.4)
6
例2.1 利用X12加法模型进行季节调整
图2.1a 社会消费品零售总额原序列
图2.1b 社会消费品零售总额的TCI 序列
7
图2.1c 社会消费品零售总额的TC序列
11
2. Census X12方法
EViews是将美国国势调查局的X12季节调整程序直接 安装到EViews子目录中,建立了一个接口程序。 EViews进 行季节调整时将执行以下步骤:
1.给出一个被调整序列的说明文件和数据文件;
2.利用给定的信息执行X12程序;
3.返回一个输出文件,将调整后的结果存在EViews工 作文件中。
经济时间序列的分解
经济指标的月度或季度时间序列包含4种变动要 素:
长期趋势要素T 循环要素C 季节变动要素S 不规则要素I
1
4991.50
单位:亿元
3871.49
2751.49
1631.48
511.47 1981 1983 1985 1987 1989 1991 1993 1995 1997
4204.20 单位:亿元
5
X12季节调整方法的核心算法是扩展的X11季节调整程序。 共包括4种季节调整的分解形式:乘法、加法、伪加法和对数 加法模型。注意采用乘法、伪加法和对数加法模型进行季节 调整时,时间序列中不允许有零和负数。
① 加法模型 ② 乘法模型:
Yt TCt St It Yt TCt St It
(2.2.1) (2.2.2)
图2.1d 社会消费品零售总额 I 序列
8
§2.2.3 TRAMO/SEATS方法
TRAMO(Time Series Regression with ARIMA Noise, Missing Observation, and Outliers)用来估计和预测具有缺失 观测值、非平稳ARIMA误差及外部影响的回归模型。它能 够对原序列进行插值,识别和修正几种不同类型的异常值, 并对工作日变化及复活节等特殊回归因素及假定为ARIMA 过程的误差项的参数进行估计。
3
§2.2 经济时间序列的季节调整方法
§2.2.1 X-11季节调整方法
X-11方法是基于移动平均法的季节调整方法。它的特 征在于除了能适应各种经济指标的性质,根据各种季节调 整的目的,选择计算方式外,在不作选择的情况下,也能 根据事先编入的统计基准,按数据的特征自动选择计算方 式。在计算过程中可根据数据中的随机因素大小,采用不 同长度的移动平均,随机因素越大,移动平均长度越大。 X-11方法是通过几次迭代来进行分解的,每一次对组成因 子的估算都进一步精化。
本节主要介绍利用EViews软件对一个月度或季度时间序 列进行季节调整的操作方法。在EViews工作环境中,打开一 个月度或季度时间序列的工作文件,双击需进行数据处理的 序列名,进入这个序列对象,在序列窗口的工具栏中单击 Proc按钮将显示菜单:
10
1. X11方法
X-11法是美国商务部标准的季节调整方法(乘法模型、加法 模型),乘法模型适用于序列可被分解为季节调整后序列(趋 势·循环·不规则要素项)与季节项的乘积,加法模型适用于序 列可被分解为季节调整后序列与季节项的和。乘法模型只适用 于序列值都为正的情形。
12
调用X12季节调整过程,在序列窗口选择Procs/Seasonal Adjustment / Census X12,打开一个对话框:
13
3. 移动平均方法
X-11法与移动平均法的最大不同是:X-11法中季节 因子年与年有可能不同,而在移动平均法中,季节因子 被假设为是一样的。
SEATS(Signal Extraction in ARIMA Time Series)是基于 ARIMA模型来对时间序列中不可观测成分进行估计。
这两个程序往往联合起来使用,先用TRAMO对数据进 行预处理,然后用SEATS将时间序列分解为趋势要素、循环 要素、季节要素及不规则要素4个部分。
9
§2.2.4 季节调整相关操作 (EViews软件)
4
§2.2.2 X12季节调整方法
美国商务部国势普查局的X12季节调整程序是在X11方 法的基础上发展而来的,包括X11季节调整方法的全部功 能,并对X11方法进行了以下3方面的重要改进:
(1) 扩展了贸易日和节假日影响的调节功能,增加了季 节、趋势循环和不规则要素分解模型的选择功能;
(2) 新的季节调整结果稳定性诊断功能; (3) 增加X12-ARIMA模型的建模和模型选择功能。
3304.66
2405.12
1505.59
606.05 1981 1983 1985 1987 1989 1991 1993 1995 1997
图1 我国工业总产值的时间序列 Y 图形
1.16
图2 工业总产值的趋势·循环要素 TC 图形
1.11
1.06
1.06
0.96
1.00
0.86
0.95
0.76 1981 1983 1985 1987 1989 1991 1993 1995 1997
0.89 1981 1983 1985 1987 1989 1991 1993 1995 1997
源自文库
图3 工业总产值的季节变动要素 S 图形
图4 工业总产值的不规则要素 I 图形 2
季节调整的概念
季节性变动的发生,不仅是由于气候的直接影响, 而且社会制度及风俗习惯也会引起季节变动。经济统计中 的月度和季度数据或大或小都含有季节变动因素,以月份 或季度作为时间观测单位的经济时间序列通常具有一年一 度的周期性变化,这种周期变化是由于季节因素的影响造 成的,在经济分析中称为季节性波动。经济时间序列的季 节性波动是非常显著的,它往往遮盖或混淆经济发展中其 他客观变化规律,以致给经济增长速度和宏观经济形势的 分析造成困难和麻烦。因此,在进行经济增长分析时,必 须去掉季节波动的影响,将季节要素从原序列中剔除,这 就是所谓的“季节调整” (Seasonal Adjustment)。
③ 对数加法模型: ln Yt ln TCt ln St ln It (2.2.3)
④ 伪加法模型: Yt TCt (St It 1)
(2.2.4)
6
例2.1 利用X12加法模型进行季节调整
图2.1a 社会消费品零售总额原序列
图2.1b 社会消费品零售总额的TCI 序列
7
图2.1c 社会消费品零售总额的TC序列
11
2. Census X12方法
EViews是将美国国势调查局的X12季节调整程序直接 安装到EViews子目录中,建立了一个接口程序。 EViews进 行季节调整时将执行以下步骤:
1.给出一个被调整序列的说明文件和数据文件;
2.利用给定的信息执行X12程序;
3.返回一个输出文件,将调整后的结果存在EViews工 作文件中。
经济时间序列的分解
经济指标的月度或季度时间序列包含4种变动要 素:
长期趋势要素T 循环要素C 季节变动要素S 不规则要素I
1
4991.50
单位:亿元
3871.49
2751.49
1631.48
511.47 1981 1983 1985 1987 1989 1991 1993 1995 1997
4204.20 单位:亿元
5
X12季节调整方法的核心算法是扩展的X11季节调整程序。 共包括4种季节调整的分解形式:乘法、加法、伪加法和对数 加法模型。注意采用乘法、伪加法和对数加法模型进行季节 调整时,时间序列中不允许有零和负数。
① 加法模型 ② 乘法模型:
Yt TCt St It Yt TCt St It
(2.2.1) (2.2.2)
图2.1d 社会消费品零售总额 I 序列
8
§2.2.3 TRAMO/SEATS方法
TRAMO(Time Series Regression with ARIMA Noise, Missing Observation, and Outliers)用来估计和预测具有缺失 观测值、非平稳ARIMA误差及外部影响的回归模型。它能 够对原序列进行插值,识别和修正几种不同类型的异常值, 并对工作日变化及复活节等特殊回归因素及假定为ARIMA 过程的误差项的参数进行估计。
3
§2.2 经济时间序列的季节调整方法
§2.2.1 X-11季节调整方法
X-11方法是基于移动平均法的季节调整方法。它的特 征在于除了能适应各种经济指标的性质,根据各种季节调 整的目的,选择计算方式外,在不作选择的情况下,也能 根据事先编入的统计基准,按数据的特征自动选择计算方 式。在计算过程中可根据数据中的随机因素大小,采用不 同长度的移动平均,随机因素越大,移动平均长度越大。 X-11方法是通过几次迭代来进行分解的,每一次对组成因 子的估算都进一步精化。
本节主要介绍利用EViews软件对一个月度或季度时间序 列进行季节调整的操作方法。在EViews工作环境中,打开一 个月度或季度时间序列的工作文件,双击需进行数据处理的 序列名,进入这个序列对象,在序列窗口的工具栏中单击 Proc按钮将显示菜单:
10
1. X11方法
X-11法是美国商务部标准的季节调整方法(乘法模型、加法 模型),乘法模型适用于序列可被分解为季节调整后序列(趋 势·循环·不规则要素项)与季节项的乘积,加法模型适用于序 列可被分解为季节调整后序列与季节项的和。乘法模型只适用 于序列值都为正的情形。