圆周运动典型例题学生版(含答案)
高中物理第六章圆周运动考点精题训练(带答案)
![高中物理第六章圆周运动考点精题训练(带答案)](https://img.taocdn.com/s3/m/d8fe1d12b207e87101f69e3143323968001cf466.png)
高中物理第六章圆周运动考点精题训练单选题1、修正带是学生常用的学习工具之一,其结构如图所示,包括上下盖座、大小齿轮、压嘴座等部件,大小齿轮分别嵌合于大小轴孔中,大小齿轮相互啮合,a、b两点分别位于大小齿轮的边缘,则关于这两点的线速度大小、角速度关系说法正确的是()A.线速度大小相等,角速度不等B.线速度大小不等,角速度相等C.线速度大小相等,角速度相等D.线速度大小不等,角速度不等答案:A根据题意可知,大小齿轮由于边缘啮合,所以边缘上的点的线速度大小相等,而齿轮的半径不一样,由公式v=ωr可知,角速度的大小不等。
故选A。
2、如图所示,轻杆一端与一质量为m的小球相连,另一端连在光滑固定轴上,轻杆可在竖直平面内自由转动。
现使小球在竖直平面内做完整的圆周运动,不计空气阻力,重力加速度为g。
下列说法正确的是()A.小球在运动过程中的任何位置对轻杆的作用力都不可能为0B.当轻杆运动到水平位置时,轻杆对小球的拉力大小不可能等于mgC.小球运动到最低点时,对轻杆的拉力可能等于4mgD.小球运动到最低点时,对轻杆的拉力一定不小于6mg答案:BA.小球在轻杆的作用下做圆周运动,在最高点时,若只有重力提供向心力,则小球对轻杆的作用力为0,故A错误;B.假设当轻杆运动到水平位置时,轻杆对小球的拉力等于重力,则有mg=m v2 r此时小球的动能为1 2mv2=12mgr由机械能守恒定律可知,小球不可能运动到最高点,不能完成完整的圆周运动,假设不成立,B正确;CD.若小球恰能完成完整的圆周运动,则在最高点时,小球的速度为0,在最低点时,由机械能守恒得小球的动能为E k=2mgr由F−mg=m v2r=4mg得F=5mg由牛顿第三定律,可知小球对轻杆的作用力最小为5mg,故CD错误。
故选B。
3、关于匀速圆周运动,下列说法正确的是()A.匀速圆周运动是匀速运动B.匀速圆周运动是变速运动C.匀速圆周运动的线速度不变D.做匀速圆周运动的物体必处于平衡状态答案:BABC.匀速圆周运动过程,线速度大小保持不变,方向时刻改变,故匀速圆周运动是变速运动,AC错误,B 正确;D.做匀速圆周运动的物体,所受合外力作为向心力,没有处于平衡状态,D错误。
(完整版)圆周运动典型例题及答案详解
![(完整版)圆周运动典型例题及答案详解](https://img.taocdn.com/s3/m/7aff3fe4561252d380eb6ea0.png)
vA∶vB∶vC=2∶1∶1.
根据向心加速度公式a=ω2R,所以A、B、C三轮边缘向心加速度之比
=8∶4∶2=4∶2∶1.
【例2】【分析】由于木块随圆盘一起作匀速圆周运动,时刻存在着一个沿半径指向圆心的向心加速度,因此,它必然会受到一个沿半径指向中心、产生向心加速度的力——向心力.
【例8】用长L1=4m和长为L2=3m的两根细线,拴一质量m=2kg的小球A,L1和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m如下图(g=10m·s-2)
(1)当竖直杆以的角速度ω匀速转动时,O2A线刚好伸直且不受拉力.求此时角速度ω1.
(2)当O1A线所受力为100N时,求此时的角速度ω2.
D.当转台转速继续增加时,A比B先滑动
【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L,另一端拴住一个质量为500g的小球.小球的初始位置在AB连线上A的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上.
“匀速圆周运动”的典型例题
【例1】如图所示的传动装置中,A、B两轮同轴转动.A、B、C三轮的半径大小的关系是RA=RC=2RB.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?
【例2】一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么
【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?
【例7】如下图所示,自行车和人的总质量为M,在一水平地面运动.若自行车以速度v转过半径为R的弯道.(1)求自行车的倾角应多大?(2)自行车所受的地面的摩擦力多大?
(完整版)圆周运动习题及答案
![(完整版)圆周运动习题及答案](https://img.taocdn.com/s3/m/1aa1df4005087632311212a1.png)
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
高考物理生活中的圆周运动题20套(带答案)含解析
![高考物理生活中的圆周运动题20套(带答案)含解析](https://img.taocdn.com/s3/m/a91950e9f242336c1eb95ece.png)
高考物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m4.如图所示,在竖直平面内固定有两个很靠近的同心圆形轨道,外圆ABCD 光滑,内圆的上半部分B′C′D′粗糙,下半部分B′A′D′光滑.一质量m=0.2kg 的小球从轨道的最低点A 处以初速度v 0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m ,取g=10m/s 2.(1)若要使小球始终紧贴着外圆做完整的圆周运动,初速度v 0至少为多少? (2)若v 0=3m/s ,经过一段时间小球到达最高点,内轨道对小球的支持力F C =2N ,则小球在这段时间内克服摩擦力做的功是多少?(3)若v 0=3.1m/s ,经过足够长的时间后,小球经过最低点A 时受到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保留三位有效数字) 【答案】(1)0v 10m/s (2)0.1J (3)6N ;0.56J 【解析】 【详解】(1)在最高点重力恰好充当向心力2Cmv mg R= 从到机械能守恒220112-22C mgR mv mv =解得010m/s v =(2)最高点'2-CC mv mg F R= 从A 到C 用动能定理'22011-2--22f C mgR W mv mv =得=0.1J f W(3)由0=3.1m/s<10m/s v 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,由于摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做往复运动.设此时小球经过最低点的速度为A v ,受到的支持力为A F212A mgR mv =2-AA mv F mg R= 得=6N A F整个运动过程中小球减小的机械能201-2E mv mgR ∆=得=0.56J E ∆5.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+6.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度 (2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.7.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析
![高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析](https://img.taocdn.com/s3/m/ebda8691f78a6529647d53b9.png)
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .3.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。
物理生活中的圆周运动练习题20篇含解析
![物理生活中的圆周运动练习题20篇含解析](https://img.taocdn.com/s3/m/bea8e59abed5b9f3f80f1c49.png)
物理生活中的圆周运动练习题20篇含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤4.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零;(3)转台从静止开始加速到角速度3ω=.【答案】(1)1gLμω=(2)233g Lω=(3)132mgL ⎛ ⎝【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1gLμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.5.三维弹球()3DPinball 是Window 里面附带的一款使用键盘操作的电脑游戏,小王同学受此启发,在学校组织的趣味运动会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1m kg =的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 进入水平桌面BC ,从C 点水平抛出.已知半圆型轨道OA 和AB 的半径分别为0.2r m =,0.4R m =,BC 为一段长为 2.0L m =的粗糙水平桌面,小弹珠与桌面间的动摩擦因数为0.4μ=,放在水平地面的矩形垫子DEFG 的DE 边与BC 垂直,C 点离垫子的高度为0.8h m =,C 点离DE 的水平距离为0.6x m =,垫子的长度EF 为1m ,210/.g m s =求:()1若小弹珠恰好不脱离圆弧轨道,在B 位置小弹珠对半圆轨道的压力;()2若小弹珠恰好不脱离圆弧轨道,小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离;()3若小弹珠从C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.【答案】(1)6N (2)0.2m (3)26/m s 【解析】 【分析】(1)由牛顿第二定律求得在A 点的速度,然后通过机械能守恒求得在B 点的速度,进而由牛顿第二定律求得支持力,即可由牛顿第三定律求得压力;(2)通过动能定理求得在C 点的速度,即可由平抛运动的位移公式求得距离;(3)求得不飞出垫子弹珠在C 点的速度范围,再通过动能定理求得初速度范围,即可得到最大初速度. 【详解】(1)若小弹珠恰好不脱离圆弧轨道,那么对弹珠在A 点应用牛顿第二定律有2Amv mg R=, 所以,2/A v gR m s ==;那么,由弹珠在半圆轨道上运动只有重力做功,机械能守恒可得:2211222B A mv mv mgR =+,所以,2425/B A v v gR m s =+=; 那么对弹珠在B 点应用牛顿第二定律可得:弹珠受到半圆轨道的支持力26BN mv F mg N R=+=,方向竖直向上;故由牛顿第三定律可得:在B 位置小弹珠对半圆轨道的压力6N N F N ==,方向竖直向下;(2)弹珠在BC 上运动只有摩擦力做功,故由动能定理可得:221122C B mgL mv mv μ-=-,所以,2/C v m s ==;设小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离为d ,那么由平抛运动的位移公式可得:212h gt =,0.8C x d v t v m +===, 所以,0.2d m =;(3)若小弹珠从C 点水平抛出后不飞出垫子,那么弹珠做平抛运动的水平距离0.6 1.6m s m ≤≤;故平抛运动的初速度'C s v t== 所以,1.5/'4/C m s v m s ≤≤;又有弹珠从O 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得:()2201122'22C mg R r mgL mv mv μ--=-; 所以,0/v s ==,0//s v s≤≤,所以小弹珠被弹射装置弹出时的最大初速度为/s ; 【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.6.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R7.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =8.三维弹球(DPmb1D 是Window 里面附带的一款使用键盘操作的电脑游戏,小明同学受此启发,在学校组织的趣味班会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1kg 的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =5m 的粗糙水平面,与一倾角为45°的斜面CD 相连,圆弧OA 和AB 的半径分别为r =0.49m ,R =0.98m ,滑块与BC 段的动摩擦因数为μ=0.4,C 点离地的高度为H =3.2m ,g 取10m/s 2,求(1)要使小弹珠恰好不脱离圆弧轨道运动到B 点,在B 位置小滑块受到半圆轨道的支持力的大小;(2)在(1)问的情况下,求小弹珠落点到C 点的距离?(3)若在斜面中点竖直立一挡板,在不脱离圆轨道的前提下,使得无论弹射速度多大,小弹珠不是越不过挡板,就是落在水平地面上,则挡板的最小长度d 为多少?【答案】44.1,(2) 6.2m ;(3) 0.8m 【解析】 【详解】(1)弹珠恰好通过最高点A 时,由牛顿第二定律有:mg =m 2Av r从A 点到B 点由机械能守恒律有:mg×2R =221122B A mv mv 在B 点时再由于牛顿第二定律有:F N ﹣mg =m 2Bv R联立以上几式可得:F N =5.5N ,v B 44.1m/s ,(2)弹珠从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点 则水平方向:x =v′B t 竖直方向:y =H =212gt 又:x =y 解得:v′B =4m/s而v B >v′B =4m/s ,弹珠将落在水平地面上, 弹珠做平抛运动竖直方向:H =212gt ,得t =0.8s 则水平方向:x =v B t 421025故小球落地点距c 点的距离:s =22x H + 解得:s =6.2m(3)临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:v′B =4m/s则从C 点至挡板最高点过程中水平方向:x'=v′B t' 竖直方向:y′=2H ﹣d =212gt ' 又:x'=2H 解得:d =0.8m9.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :t =y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =10.如图所示,光滑圆弧的圈心为O ,半径3m R =,圆心角53θ=︒,C 为圆弧的最低点,C 处切线方向水平,与一足够长的水平面相连.从A 点水平抛出一个质量为0.3kg 的小球,恰好从光滑圆弧的B 点的切线方向进人圆弧,进人圆弧时无机械能损失.小球到达圆弧的最低点C 时对轨道的压力为7.9N ,小球离开C 点进人水平面,小球与水平面间的动摩擦因数为0.2.(不计空气阻力,g 取210m/s ,sin530.8︒=,cos530.6︒=),求:(1)小球到达圆弧B 点速度的大小; (2)小球做平抛运动的初速度0v ; (3)小球在水平面上还能滑行多远.【答案】(1)5m/s B v =;(2)03m/s v =;(3)12.25x m = 【解析】 【详解】(1)对C 点小球受力分析,由牛顿第二定律可得:2Cv F mg m R-=解得7m /s c v =从B 到C 由动能定理可得:2211(1)22c B mgR cos mv mv θ-=- 解得:5m /s B v =(2)分解B 点速度0cos 3m /s B v v θ==(3)由C 至最后静止,由动能定理可得:2102c mgx mv μ-=-解得12.25m x =。
高考物理生活中的圆周运动题20套(带答案)含解析
![高考物理生活中的圆周运动题20套(带答案)含解析](https://img.taocdn.com/s3/m/40627c4949649b6649d74784.png)
则有
mvP=MvQ
解得
vP=1 m/s
对P、Q和弹簧组成的系统,由能量守恒定律有
解得
Ep=3 J
9.如图所示,将一质量m=0.1 kg的小球自水平平台顶端O点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A并沿斜面下滑,斜面底端B与光滑水平轨道平滑连接,小球以不变的速率过B点后进入BC部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h=3.2 m,斜面高H=15 m,竖直圆轨道半径R=5 m.取sin 53°=0.8,cos 53°=0.6,g=10 m/s2,求:
F=59.04N
由牛顿第三定律得:粘合体S对轨道的压力F′=59.04N,方向沿OB向下。
8.如图所示,在光滑水平桌面EAB上有质量为m=2 kg的小球P和质量为M=1 kg的小球Q,P、Q之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E处放置一质量也为M=1 kg的橡皮泥球S,在B处固定一与水平桌面相切的光滑竖直半圆形轨道。释放被压缩的轻弹簧,P、Q两小球被轻弹簧弹出,小球P与弹簧分离后进入半圆形轨道,恰好能够通过半圆形轨道的最高点C;小球Q与弹簧分离后与桌面边缘的橡皮泥球S碰撞后合为一体飞出,落在水平地面上的D点。已知水平桌面高为h=0.2 m,D点到桌面边缘的水平距离为x=0.2 m,重力加速度为g=10 m/s2,求:
小物块经过B点时,有:
解得:
根据牛顿第三定律,小物块对轨道的压力大小是62N
(2)小物块由B点运动到C点,根据动能定理有:
在C点,由牛顿第二定律得:
代入数据解得:
根据牛顿第三定律,小物块通过C点时对轨道的压力大小是60N
(3)小物块刚好能通过C点时,根据
高中物理生活中圆周运动试题(有答案和解析)
![高中物理生活中圆周运动试题(有答案和解析)](https://img.taocdn.com/s3/m/3e2ca659dd3383c4ba4cd243.png)
高中物理生活中的圆周运动试题( 有答案和分析 )一、高中物理精讲专题测试生活中的圆周运动1.圆滑水平面AB 与竖直面内的圆形导轨在 B 点连结,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如下图.松手后小球向右运动离开弹簧,沿圆形轨道向上运动恰能经过最高点C, g 取 10 m/s 2.求:(1)小球离开弹簧时的速度大小;(2)小球从 B 到 C 战胜阻力做的功;(3)小球走开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【分析】【剖析】【详解】(1)依据机械能守恒定律E p=1mv12 ?①212Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能经过最高点,故mg m v22④R由②③④得W f=24 J(3)依据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球离开弹簧的过程中只有弹簧弹力做功,依据弹力做功与弹性势能变化的关系和动能定理能够求出小球的离开弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,依据小球恰巧能经过最高点的条件获得小球在最高点时的速度 ,进而依据动能定理求解从 B 至 C 过程中小球战胜阻力做的功 ;(3)小球走开 C 点后做平抛运动 ,只有重力做功,依据动能定理求小球落地时的动能大小2.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3)72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.3.如下图,竖直平面内的圆滑的正上方, AD 为与水平方向成3/4 的圆周轨道半径为R, A 点与圆心O 等高, B 点在 O θ =45°角的斜面, AD 长为 72 R.一个质量为m 的小球(视为质点)在 A 点正上方 h 处由静止开释,自由着落至 A 点后进入圆形轨道,并能沿圆形轨道抵达 B 点,且抵达 B 处时小球对圆轨道的压力大小为mg,重力加快度为g,求:(1)小球到 B 点时的速度大小vB(2)小球第一次落到斜面上 C 点时的速度大小v(3)改变 h,为了保证小球经过 B 点后落到斜面上,h 应知足的条件【答案】 (1) 2gR (2)10gR (3) 3R h 3R2【分析】【剖析】【详解】(1)小球经过 B 点时,由牛顿第二定律及向心力公式,有2mg mg mv BR解得v B2gR(2)设小球走开 B 点做平抛运动,经时间t ,着落高度y,落到 C 点,则y 1gt 2 2y cot v B t两式联立,得2v B24gRy4Rg g对小球着落由机械能守恒定律,有1mv B2mgy 1 mv222解得vv22gy2gR8gR 10gRB(3)设小球恰巧能经过 B 点,过 B 点时速度为 v1,由牛顿第二定律及向心力公式,有mg m v12R又mg (h R)1mv122得h 3 R2能够证明小球经过 B 点后必定能落到斜面上设小球恰巧落到 D 点,小球经过 B 点时速度为 v2,飞翔时间为 t ,(72R2R)sin 1 gt22(72R2R)cos v2t解得v2 2 gR又mg (h R)1mv222可得h3R故 h 应知足的条件为 3 R h 3R2【点睛】小球的运动过程能够分为三部分,第一段是自由落体运动,第二段是圆周运动,此机遇械能守恒,第三段是平抛运动,剖析清楚各部分的运动特色,采纳相应的规律求解即可.4.如下图,长为3l 的不行伸长的轻绳,穿过一长为l 的竖直轻质细管,两头分别拴着质量为m、2m的小球 A 和小物块B,开始时 B 静止在细管正下方的水平川面上。
(典型题)高中物理必修二第六章《圆周运动》测试题(有答案解析)(1)
![(典型题)高中物理必修二第六章《圆周运动》测试题(有答案解析)(1)](https://img.taocdn.com/s3/m/53f4cb2784254b35effd34f5.png)
一、选择题1.如图所示,一圆盘绕过O点的竖直轴在水平面内旋转,角速度为ω,半径R,有人站在盘边缘P点处面对O随圆盘转动,他想用枪击中盘中心的目标O,子弹发射速度为v,则()A.枪应瞄准O点射击B.枪应向PO左方偏过θ角射击,cosRvωθ=C.枪应向PO左方偏过θ角射击,tanRvωθ=D.枪应向PO左方偏过θ角射击,sinRvωθ=2.轻杆长为L,并带着质量为m的小球在竖直平面内以速度v=gL做匀速圆周运动,小球在a、b、c、d四个位置时,不计空气阻力,下列说法正确的是()A.在a点,轻杆对球有作用力B.在b点,杆对球的作用力指向圆心C.在c点,杆对球的作用力大小为mgD.在d2mg3.火车转弯时,如果铁路弯道的内、外轨一样高,则外轨对轮缘(如左图所示)挤压的弹力F提供了火车转弯的向心力(如图中所示),但是靠这种办法得到向心力,铁轨和车轮极易受损。
在修筑铁路时,弯道处的外轨会略高于内轨(如右图所示),当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的侧向挤压,设此时的速度大小为v,重力加速度为g,以下说法中正确的是()A.该弯道的半径R=2 v gB.当火车质量改变时,规定的行驶速度也将改变C.当火车速率大于v时,外轨将受到轮缘的挤压D.按规定速度行驶时,支持力小于重力4.中学生常用的学习用具修正带的结构如图所示,包括上下盖座,大小齿轮,压嘴座等部件。
大小齿轮分别嵌合于大小轴孔中,大小齿轮相互吻合,a,b点分别位于大小齿轮的边缘。
c点在大齿轮的半径中点,当修正带被匀速拉动进行字迹修改时()A.大小齿轮的转向相同B.a点的线速度比b点大C.b、c两点的角速度相同D.b点的向心加速度最大5.如图所示,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针)。
某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()A.B.C .D .6.我国将在2022年举办冬季奥运会,届时将成为第一个实现奥运“全满贯”国家。
高中物理必修二第六章圆周运动经典大题例题(带答案)
![高中物理必修二第六章圆周运动经典大题例题(带答案)](https://img.taocdn.com/s3/m/b73faba905a1b0717fd5360cba1aa81145318f7a.png)
高中物理必修二第六章圆周运动经典大题例题单选题1、离心现象在生活中很常见,比如市内公共汽车在到达路口转弯前,车内广播中就要播放录音:“乘客们请注意,车辆将转弯,请拉好扶手”。
这样做可以()A.使乘客避免车辆转弯时可能向前倾倒发生危险B.使乘客避免车辆转弯时可能向后倾倒发生危险C.使乘客避免车辆转弯时可能向转弯的内侧倾倒发生危险D.使乘客避免车辆转弯时可能向转弯的外侧倾倒发生危险答案:D车辆转弯时,如果乘客不能拉好扶手,乘客将做离心运动,向外侧倾倒发生危险。
故选D。
2、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt 解得水平位移x=2√3R故选A。
3、已知某处弯道铁轨是一段圆弧,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢底面与水平面夹角)为θ,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为()A.√gRsinθB.√gRcosθC.√gRtanθD.√gR答案:C受力分析如图所示当内外轨道不受侧向挤压时,列车受到的重力和轨道支持力的合力充当向心力,有F n=mg tan θ,F n=m v2R解得v=√gR tanθ故选C。
4、做匀速圆周运动的物体,它的加速度大小必定与()A.线速度的平方成正比B.角速度的平方成正比C.运动半径成正比D.线速度和角速度的乘积成正比答案:DA.根据a=v2 r可知只有运动半径一定时,加速度大小才与线速度的平方成正比,A错误;B.根据a=ω2r可知只有运动半径一定时,加速度大小才与角速度的平方成正比,B错误;C.根据,a=ω2ra=v2r当线速度一定时,加速度大小与运动半径成反比;当角速度一定时,加速度大小与运动半径成正比,C错误;D.根据a=ω2r,v=ωr联立可得a=vω可知加速度大小与线速度和角速度的乘积成正比,D正确。
物理生活中的圆周运动题20套(带答案)
![物理生活中的圆周运动题20套(带答案)](https://img.taocdn.com/s3/m/764c4db8dd36a32d72758188.png)
【详解】
(1)滑块在传送带上运动的加速度为 a=μg=3m/s2;则加速到与传送带共速的时间
t v0 1s 运动的距离: x 1 at2 1.5m ,
a
2
以后物块随传送带匀速运动到 B 点,到达 B 点时,由牛顿第二定律: F mg m v02 R
解得 F=28N,即滑块滑到 B 点时对半圆轨道的压力大小 28N.
代入数据解得:v0=4m/s,
对小球,由牛顿第二定律得:F﹣m0g=m0 v02 l
代入数据解得:F=30N
(2)小球
C
与
A
碰撞后向左摆动的过程中机械能守恒,得:
1 2
mvC2
mgh
所以: vC 2gh 2100.2 2m/s
小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m0v0=﹣m0vc+mvA 代入数据解得:vA=1.5m/s (3)物块 A 与木板 B 相互作用过程,系统动量守恒,以 A 的速度方向为正方向, 由动量守恒定律得:mvA=(m+M)v 代入数据解得:v=0.5m/s
3.如图所示,在光滑的圆锥体顶部用长为
的细线悬挂一质量为
的小球,
因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为 线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知
,物体绕轴
,
重力加速度 g 取
若北小球运动的角速度
,求此时细线对小球的拉力大小。
【答案】 【解析】 【分析】 根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥 体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小 球的拉力大小。 【详解】 若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:
圆周运动经典习题(附答案详解)
![圆周运动经典习题(附答案详解)](https://img.taocdn.com/s3/m/01b382a2bed5b9f3f80f1c4e.png)
1. 在观看双人花样滑冰表演时, 观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°重力加速度为g = 10 m/s A.受到的拉力约为C.向心加速度约为图 4 — 2— 112. 中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故. 家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八 次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调 查,画出的现场示意图如图 4 — 2 — 122,若已知女运动员的体重为 35 kg ,据此可估算该女运动员( ) 350 2 N B .受到的拉力约为350 N由图可知汽车在拐弯时发生侧翻是因为车做离心运动 由图可知汽车在拐弯时发生侧翻是因为车做向心运动 公路在设计上可能内(东)高外(西)低 公路在设计上可能外(西)高内(东)低图 4— 2 — 123.如图4 — 2 — 13所示,质量为 m 的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为 R 的匀速圆周运动,已知重力加速度为最高点时盒子与小球之间恰好无作用力,则 g ,空气阻力不计,要使在 A. 该盒子做匀速圆周运动的周期一定小于 )R B. C. D. R盒子在最低点时盒子与小球之间的作用力大小可能小于 盒子在最低点时盒子与小球之间的作用力大小可能大于该盒子做匀速圆周运动的周期一定等于2mg2mg4.图示所示,为某一皮带传动装置.主动轮的半径为 转速为n ,转动过程中皮带不打滑.下列说法正确的是B .从动轮做逆时针转动 r 2 D.从动轮的转速为 nr 1r i , 从动轮的半径为 ( ) 图 4— 2- 13S 已知主动轮做顺时针转动,A.从动轮做顺时针转动r 1C.从动轮的转速为 n 「2 2所示.交警根据图示作出以下判断,你认为正确的是()A.B.C.D.R 的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图 4— 2 — 17所示,那么( ) A. 因为速率不变,所以石块的加速度为零 B. 石块下滑过程中受的合外力越来越大 C. 石块下滑过程中受的摩擦力大小不变D. 石块下滑过程中的加速度大小不变,方向始终指向球心6.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发事故的主要原因是其中一列列车转弯时超速行驶.如图4— 2— 18所示,是一种新型高速列车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以 360 km/h 的速度在水平面内转弯,弯道半径为1.5 km ,则质量为75 kg 的乘客在列车转弯过程中所受到的合外力为( )A. 500 NB . 1 000 NC. 500 2 ND. 07.如图4 — 2 — 19甲所示,一根细线上端固定在 S 点,下端连一小铁球 A,让小铁球在水平面内做匀速圆周 运动,此装置构成一圆锥摆 (不计空气阻力)•下列说法中正确的是( )A. 小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用B. 小球做匀速圆周运动时的角速度一定大于 g (l 为摆长)C. 另有一个圆锥摆,摆长更大一点,两者悬点相同,如图4— 2— 19乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则B 球的角速度大于 A 球的角速度D. 如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等&汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿 半径方向受到的摩擦力分别为 Ff 甲和Ff 乙以下说法正确的是( ) A. Ff 甲小于Ff 乙 B. Ff 甲等于Ff 乙 C. Ff 甲大于Ff 乙 D. Ff 甲和Ff 乙大小均与汽车速率无关 9. 在高速公路的拐弯处,通常路面都是外高内低.如图 4-2— 20所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为 R 的圆周运动.设内外路面高度差为 h ,路5.质量为m 的石块从半径为图 4 — 2 — 18 图 4— 2—19基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()10. 如图4— 2-24所示,一个竖直放置的圆锥筒可绕其中心 OO 转动,筒内壁粗糙, 筒口半径和筒高分别为R 和H,筒内壁A 点的高度为筒高的一半.内壁上有一质量为 m 的小物块随圆锥筒一起做匀速转动,则下列说法正确的是( )A.小物块所受合外力指向 0点B. 当转动角速度 3=鲁日时,小物块不受摩擦力作用C.当转动角速度 3> [日时,小物块受摩擦力沿D. 当转动角速度 3< —争%寸,小物块受摩擦力沿不可伸长的轻绳连接质量分别为m 、m B 的A 、B 两小球,两小球在绳子拉力的作用下,绕绳子上的某点0以不同的线速度做匀速圆周运动,圆心 0与桌面中心重合,已知 0.5 kg , L = 1.2 m, L Ao = 0.8 m, a = 2.1 m , h = 1.25 m , A 球的速度大小 V A = 0.4 m/s ,重力加速度 g 取10 m/s 2,求: (1) 绳子上的拉力 F 以及B 球的质量 m ;(2) 若当绳子与 MN 平行时突然断开,则经过 1.5 s 两球的水平距离;(与地面撞击后。
圆周运动典型例题50道
![圆周运动典型例题50道](https://img.taocdn.com/s3/m/bd44ea0632687e21af45b307e87101f69e31fb1d.png)
圆周运动典型例题50道1. 一质点绕一个定半径圆轨道做匀速圆周运动,已知质点每秒的线速度为8 m/s,求质点的角速度。
答案:2 rad/s2. 一个自行车轮子的半径为0.5 m,自行车轮子的角速度为5 rad/s,求自行车轮子的线速度。
答案:2.5 m/s3. 一个半径为2 m的圆盘以每分钟180转的角速度旋转,求圆盘上一点的线速度。
答案:376.99 m/min4. 一个转速为1200 rpm的转盘半径为0.1 m,求转盘上一点的线速度。
答案:125.66 m/s5. 一个半径为3 m的汽车轮胎正在行驶,已知轮胎转速为100 rpm,求汽车轮胎的线速度。
答案:31.42 m/s6. 一个质点以半径为4 m的圆轨道做匀速圆周运动,已知质点的线速度为10 m/s,求质点的角速度。
答案:2.5 rad/s7. 一个自行车轮子的半径为0.2 m,自行车轮子的线速度为3 m/s,求自行车轮子的角速度。
答案:15 rad/s8. 一个半径为5 m的圆盘上一点的线速度为20 m/s,求圆盘的角速度。
答案:4 rad/s9. 一个转盘上一点的线速度为10 m/s,转盘的半径为2 m,求转盘的角速度。
答案:5 rad/s10. 一个汽车轮胎的线速度为20 m/s,轮胎半径为2 m,求汽车轮胎的角速度。
答案:10 rad/s11. 一个半径为3 m的旋转半球的角速度为2 rad/s,求旋转半球上一点的线速度。
答案:6 m/s12. 一个旋转圆环的半径为1 m,旋转圆环的线速度为10 m/s,求旋转圆环的角速度。
答案:10 rad/s13. 一个直径为10 cm的转盘上一点的线速度为5 m/s,求转盘的角速度。
答案:10 rad/s14. 一个转速为500 rpm的圆盘上一点的线速度为4 m/s,求圆盘的半径。
答案:0.51 m15. 一个半径为2 m的转盘上一点的线速度为8 m/s,求转盘的转速。
答案:60 rpm16. 一个转速为1000 rpm的汽车轮胎的线速度为5 m/s,求汽车轮胎的半径。
圆周运动单元测试卷(含答案解析)
![圆周运动单元测试卷(含答案解析)](https://img.taocdn.com/s3/m/0b040c745fbfc77da369b19b.png)
一、第六章圆周运动易错题培优(难)1.如图所示,水平的木板B托着木块A一起在竖直平面内做圆心为O的匀速圆周运动,Oa水平,从最高点b沿顺时针方向运动到a点的过程中()A.B对A的支持力越来越大B.B对A的支持力越来越小C.B对A的摩擦力越来越小D.B对A的摩擦力越来越大【答案】AD【解析】【分析】【详解】由于始终做匀速圆周运动,合力指向圆心,合力大小不变,从最高点b沿顺时针方向运动到a点的过程中,合力的水平分量越来越大,竖直向下的分量越来越小,而合力由重力,支持力和摩擦力提供,因此对A进行受力分析可知,A受到的摩擦力越来越大,B对A的支持力越来越大,因此AD正确,BC错误。
故选AD。
2.如图所示,质量相等的A、B两个小球悬于同一悬点O,且在O点下方垂直距离h=1m 处的同一水平面内做匀速圆周运动,悬线长L1=3m,L2=2m,则A、B两小球()A.周期之比T1:T2=2:3 B.角速度之比ω1:ω2=1:1C.线速度之比v1:v283D.向心加速度之比a1:a2=8:3【答案】BC【解析】【分析】【详解】AB.小球做圆周运动所需要的向心力由重力mg和悬线拉力F的合力提供,设悬线与竖直方向的夹角为θ。
对任意一球受力分析,由牛顿第二定律有:在竖直方向有F cosθ-mg =0…①在水平方向有224sin sin F m L Tπθθ= …②由①②得2T = 分析题意可知,连接两小球的悬线的悬点距两小球运动平面的距离为h =L cosθ,相等,所以周期相等T 1:T 2=1:1角速度2Tπω=则角速度之比ω1:ω2=1:1故A 错误,B 正确; C .根据合力提供向心力得2tan tan v mg mh θθ= 解得tan v =根据几何关系可知1tan hθ==2tan hθ==故线速度之比12v v =:故C 正确;D .向心加速度a=vω,则向心加速度之比等于线速度之比为12a a =:故D 错误。
高三物理圆周运动实例分析试题答案及解析
![高三物理圆周运动实例分析试题答案及解析](https://img.taocdn.com/s3/m/ac04a72c3069a45177232f60ddccda38376be132.png)
高三物理圆周运动实例分析试题答案及解析1.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是()=A.小球通过最高点时的最小速度vmin=B.小球通过最低点时的最小速度vminC.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力【答案】C【解析】此问题中类似于“轻杆”模型,故小球通过最高点时的最小速度为零,选项A 错误;如果小球在最高点的速度为零,则在最低点时满足:,解得,选项B错误;小球在水平线ab以下的管道中运动时,由于向心力的方向要指向圆心,则管壁必然是提供指向圆心的支持力,故只有外侧管壁才能提供此力,所以内侧管壁对小球一定无作用力,选项C正确,D错误。
【考点】圆周运动的规律;机械能守恒定律。
2.如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F一v2图象如图乙所示。
不计空气阻力,则A.小球的质量为B.当地的重力加速度大小为C.v2=c时,杆对小球的弹力方向向下D.v2=2b时,小球受到的弹力与重力大小不相等【答案】AC【解析】A、在最高点,若v=0,则N=mg=a;若N=0,则,解得,,故A正确,B错误;C、由图可知:当v2<b时,杆对小球弹力方向向上,当v2>b时,杆对小球弹力方向向下,所以当v2=c时,杆对小球弹力方向向下,所以小球对杆的弹力方向向上,故C正确;D、若c=2b.则,解得N=a=mg,故D错误.【考点】圆周运动及牛顿定律的应用。
3.如图,在一半经为R的球面顶端放一质量为m的物块,现给物块一初速度v,,则A.若,则物块落地点离A点B.若球面是粗糙的,当时,物块一定会沿球面下滑一段,再斜抛离球面C.若,则物块落地点离A点为RD.若移,则物块落地点离A点至少为2R【答案】D【解析】当,物块将离开球面做平抛运动,由y=2R=gt2/2,x=vt,得x=2R,A错误,D正确;若,物块将沿球面下滑,若摩擦力足够大,则物块可能下滑一段后停下来,若摩擦力较小,物块在圆心上方球面上某处离开,斜向下抛,落地点离A点距离大于R,B、C错误。
2021-2022学年人教版必修二高一物理6-4生活中圆周运动导与练(学生版)
![2021-2022学年人教版必修二高一物理6-4生活中圆周运动导与练(学生版)](https://img.taocdn.com/s3/m/9363e216773231126edb6f1aff00bed5b9f3739d.png)
【知识清单】火车转弯1.火车车轮的特点火车的车轮有凸出的轮缘,火车在铁轨上运行时,车轮与铁轨有水平与竖直两个接触面,这种结构特点,主要是避免火车运行时脱轨,如图所示。
2.火车弯道的特点弯道处外轨高于内轨,火车在行驶过程中,重心高度不变,即火车的重心轨迹在同一水平面内,火车的向心加速度和向心力均沿水平面指向圆心。
3.火车转弯的向心力来源火车速度合适时,火车只受重力和支持力作用,火车转弯时所需的向心力完全由支持力和重力的合力来提供。
如图所示。
即mg tan θ=m v 20R ,解得v 0=gR tan θ。
4.轨道轮缘压力与火车速度的关系(1)当火车行驶速率v 等于规定速度v 0时,内、外轨道对轮缘都没有侧压力。
(2)当火车行驶速度v 大于规定速度v 0时,火车有离心运动趋势,故外轨道对轮缘有侧压力。
(3)当火车行驶速度v 小于规定速度v 0时,火车有向心运动趋势,故内轨道对轮缘有侧压力 二、汽车过拱形桥汽车过拱形桥汽车过凹形路面受力分析向心力 F n =mg -F N =mv 2rF n =F N -mg =m v 2r对桥(路面)的压力F N ′=mg -mv 2rF N ′=mg +m v 2r结论汽车对桥的压力小于汽车的重力,而且汽车速度越大,汽车对桥的压力越小汽车对路面的压力大于汽车的重力,而且汽车速度越大,汽车对路面的压力越大离心运动1.物体做离心运动的原因提供向心力的合力突然消失,或者合力不足以提供所需的向心力.2.离心运动、近心运动的判断:物体做圆周运动时出现离心运动还是近心运动,由实际提供的合力F 合和所需向心力(m v 2r 或mω2r )的大小关系决定.(如图6所示)(1)当F 合=mω2r 时,“提供”等于“需要”,物体做匀速圆周运动; (2)当F 合>mω2r 时,“提供”超过“需要”,物体做近心运动; (3)当0≤F 合<mω2r 时,“提供”不足,物体做离心运动.【考点分析】命题点一火车转弯例1(2022·全国·浙江省新昌中学高一)如图所示,铁路在弯道处的内外轨道高低是不同的,已知内外轨组成的轨道平面与水平面的夹角为θ,弯道处的圆弧半径为R ,若质量为m 的火车以速度v 通过某弯道时,内外轨道均不受侧压力作用,下面分析正确的是( )A .sin v gR θB .若火车速度大于v 时,火车将受到外轨侧压力作用,其方向平行轨道平面向外C .为解决火车高速转弯时外轨受损这一难题,可以适当增大弯道半径或适当增加内外轨的高度差D .无论火车以何种速度行驶,对内侧轨道都有侧压力例2.(2022·全国·高一专题练习)近年来我国高速铁路发展迅速,现已知某新型国产机车总质量为m ,如图已知两轨间宽度为L ,内外轨高度差为h ,重力加速度为g ,如果机车要进入半径为R 的弯道,请问,该弯道处的设计速度最为适宜的是( )A 22gRh L h -B 22gRh L R -C 22gR L h h-D gRhL命题点二圆锥摆问题例1(2022·河北·高三学业考试)如图所示,“V”形光滑导电支架下端用铰链固定于绝缘水平面上,支架两臂与水平面间的夹角均为53°,两臂粗细均匀,支架的AB 臂上套有一根原长为l 的轻弹簧,轻弹簧的下端固定于“V”形支架下端,上端与一可视为质点的金属小球相接,小球与支架接触良好,小球可以随支架一起绕中轴线OO '转动,该臂上端有一使弹簧不会脱离AB 的挡板(图中未画出),支架上端A 、C 之间通过导线接入理想电源和理想电流表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动专题总结知识点一、匀速圆周运动1、定义:质点沿圆周运动,如果在相等的时间里通过的 相等,这种运动就叫做匀速周圆运动。
2、运动性质:匀速圆周运动是 运动,而不是匀加速运动。
因为线速度方向时刻在变化,向心加速度方向,时刻沿半径指向圆心,时刻变化3、特征:匀速圆周运动中,角速度ω、周期T 、转速n 、速率、动能都是恒定不变的;而线速度v 、加速度a 、合外力、动量是不断变化的。
4、受力提特点: 。
随堂练习题1.关于匀速圆周运动,下列说法正确的是( )A .匀速圆周运动是匀速运动B .匀速圆周运动是匀变速曲线运动C .物体做匀速圆周运动是变加速曲线运动D .做匀速圆周运动的物体必处于平衡状态2.关于向心力的说法正确的是( )A .物体由于作圆周运动而产生一个向心力B .向心力不改变做匀速圆周运动物体的速度大小C .做匀速圆周运动的物体的向心力即为其所受合外力D .做匀速圆周运动的物体的向心力是个恒力3.在光滑的水平桌面上一根细绳拉着一个小球在作匀速圆周运动,关于该运动下列物理量中不变的是(A )速度 (B )动能 (C )加速度 (D )向心力知识点二、描述圆周运动的物理量⒈线速度⑴物理意义:线速度用来描述物体在圆弧上运动的快慢程度。
⑵定义:圆周运动的物体通过的弧长l ∆与所用时间t ∆的比值,描述圆周运动的“线速度”,其本质就是“瞬时速度”。
⑶方向:沿圆周上该点的 方向⑷大小:=v =⒉角速度⑴物理意义:角速度反映了物体绕圆心转动的快慢。
⑵定义:做圆周运动的物体,围绕圆心转过的角度θ∆与所用时间t ∆的比值⑶大小:=ω = ,单位: (s rad )⒊线速度与角速度关系:⒋周期和转速:⑴物理意义:都是用来描述圆周运动转动快慢的。
⑵周期T :表示的是物体沿圆周运动一周所需要的时间,单位是秒;转速n (也叫频率f ):表示的是物体在单位时间内转过的圈数。
n 的单位是 (s r )或 (m in r )f 的单位:赫兹Hz ,Tf 1= 5、两个结论⑴凡是直接用皮带传动(包括链条传动、齿轮咬合、摩擦传动)的两个轮子,两轮边缘上各点的 大小相等;⑵凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点 相等(轴上的点除外)(共轴转动)。
6、向心加速度: ⑴物理意义:描述速度 变化快慢的物理量 ⑵方向:总是指向 ,时刻在变化。
⑶大小:=a = = =7、向心力(物体以v 做匀速率圆周运动,需要F 或者由几个力的合力提供向心力,线速度、角速度、半径、物体质量的改变引起了向心力的改变)(1)定义:质点做圆周运动时,受到的总是沿着半径方向指向 的力,是 力。
(2)作用效果:产生 加速度,只改变线速度的 ,不改变线速度的 。
(3)大小:==ma F = = =(4)来源:向心力是按 命名的力,不是某种 的力,可以由几个力的 力或某一个力的 力提供;在匀速圆周运动中 力提供向心力;变速圆周运动中的合外力并不指向圆心,这时合外力可以分解为互相垂直的两个力:跟圆周相切的分力r F 和指向圆心方向的分力n F ,n F 产生了 加速度,与速度垂直,改变了速度 ,r F 产生 加速度,切向加速度与物体的速度方向在一条直线上,它改变了速度的 。
练习题1.一个物体以角速度ω做匀速圆周运动时,下列说法中正确的是 ( )A .轨道半径越大线速度越大B .轨道半径越大线速度越小C .轨道半径越大周期越大D .轨道半径越大周期越小2.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的有 ( )A .时针和分针角速度相同B .分针角速度是时针角速度的12倍C .时针和分针的周期相同D .分针的周期是时针周期的12倍3.质点做匀速圆周运动时,下列说法正确的是( )A .线速度越大,周期一定越小B .角速度越大,周期一定越小C .转速越大,周期一定越小D .圆周半径越小,周期一定越小4.关于匀速圆周运动的角速度与线速度,下列说法中正确的是( )A .半径一定,角速度与线速度成反比B .半径一定,角速度与线速度成正比C .线速度一定,角速度与半径成反比D .角速度一定,线速度与半径成正比5.A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A ∶s B =2∶3,转过的角度之比ϕA ∶ϕB =3∶2,则下列说法正确的是( )A .它们的半径之比R A ∶RB =2∶3 B .它们的半径之比R A ∶R B =4∶9C .它们的周期之比T A ∶T B =2∶3D .它们的周期之比T A ∶T B =3∶26.如图所示装置中,三个轮的半径分别为r 、2r 、4r ,b 点到圆心的距离为r ,求图中a 、b 、c 、d 各点的线速度之比、角速度之比、向心加速度之比。
a7.如图3-4所示的皮带转动装置,左边是主动轮,右边是一个轮轴,2:1:=c A R R ,3:2:=B A R R 。
假设在传动过程中皮带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。
8.图示为某一皮带传动装置。
主动轮的半径为r 1,从动轮的半径为r 2。
已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑。
下列说法正确的是( )。
A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为21r r n D .从动轮的转速为12r r n 9.图3-7中圆弧轨道AB 是在竖直平面内的1/4圆周,在B 点,轨道的切线是水平的。
一质点自A点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B 点时的加速度大小为______,刚滑过B 点时的加速度大小为_____。
10.甲、乙两名滑冰运动员,kg M 80=甲,kg M 40=乙,面对面拉着弹簧秤做匀速圆周运动的滑冰表演,两人相距0.9m ,弹簧秤的示数为9.2N ,下列判断中正确的是( )A. 两人的线速度相同,约为40m/sB. 两人的角速度相同,为6rad/sC. 两人的运动半径相同,都是0.45mD. 两人的运动半径不同,甲为0.3m ,乙为0.6m11.在地球上,赤道附近的物体A 和北京附近的物体B 随地球的自转而做匀速圆周运动,则( )A .物体A 与物体B 的向心力都指向地心B .物体A 的线速度的大小小于物体B 的线速度的大小C .物体A 的角速度的大小小于物体B 的角速度的大小D .物体A 的向心加速度的大小大于物体B 的向心加速度的大小12.如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动,下列说法正确的是( )A 、物体受重力、向心力、摩擦力三个力B 、物体受重力、弹力、摩擦力三个力C 、物体受重力、弹力、向心力、摩擦力D 、物体受重力、弹力、向心力、三个力13.如图所示,A、B、C三个物体放在旋转圆台上,动摩擦因数均为μ,A的质量为2m ,B、C质量均为m ,A、B离轴R,C离轴2R,则当圆台旋转时(设A、B、C都没有滑动),A、B、C三者的滑动摩擦力认为等于最大静摩擦力,下列说法正确的是( )图3-7A B 图3-4A. C物的向心加速度最大;B. B物的静摩擦力最小;C. 当圆台转速增加时,C比A先滑动;D. 当圆台转速增加时,B比A先滑动。
14.在光滑的水平面上,用长为l 的细线拴一质量为m 的小球,以角速度ω做匀速圆周运动,下列说法中正确的是A .l 、ω不变,m 越大线越易被拉断B .m 、ω不变,l 越小线越易被拉断C .m 、l 不变,ω越大线越易被拉断D .m 不变,l 减半角速度加倍时,线的拉力不变15.有一种大型游戏器械,它是一个圆筒形容器,筒壁竖直,游客进入容器后靠筒壁站立.当圆筒开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为A .游客处于超重状态B .游客处于失重状态C .游客受到的摩擦力等于重力D .筒壁对游客的支持力等于重力16.关于变速圆周运动的向心力的说法中正确的是( )A 物体除其他力外,还受到一个向心力的作用B 物体所受的合力等于向心力C 向心力的大小一直在变化D 变速圆周运动的合力的方向不指向圆心17.如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g ,估算该女运动员 ( ) A .受到的拉力为 3 GB .受到的拉力为2GC .向心加速度为3gD .向心加速度为2g18.质量为m 的小球,用长为l 的细线悬挂在O 点,在O 点的正下方l2处有一光滑的钉子P ,把小球拉到与钉子P 等高的位置,摆线被钉子挡住.如图让小球从静止释放,当小球第一次经过最低点时( )A .小球运动的线速度突然减小B .小球的角速度突然减小C .小球的向心加速度突然减小D .悬线的拉力突然增大19.如图4-3-11所示,长为L 的细绳一端固定,另一端系一质量为m 的小球.给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ.下列说法中正确的是A.小球受重力、绳的拉力和向心力作用B.小球只受重力和绳的拉力作用C.θ越大,小球运动的速度越大D.θ越大,小球运动的周期越大20 长为L的细线,拴一质量为m的小球,一端固定于O点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L与竖直方向的夹角是α时,求:(1)线的拉力F;(2)小球运动的线速度的大小;(3)小球运动的角速度及周期。
21 .如图17所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半。
内壁上有一质量为m的小物块。
求①当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;②当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度。
22 如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()A.球A的角速度一定大于球B的角速度B.球A的线速度一定大于球B的线速度C.球A的运动周期一定小于球B的运动周期D.球A对筒壁的压力一定大于球B对筒壁的压力知识点三、竖直面内圆周运动的常用模型:轻绳模型轻杆模型过拱桥轻绳外轨道(无支撑的情况)轻杆管道(有支撑的情况)无约束的①gRv>时绳子或轨道对物体的弹力为方向②gRv=时绳子或轨道对物体的弹力为③gRv<时,物体★gRv=是物体能否在竖直面上能过最高点(能完成完整的圆周运动)的最小速度。