多聚焦图像像素级融合算法研究

合集下载

多聚焦图像融合算法研究

多聚焦图像融合算法研究

本科毕业设计论文题目多聚焦图像融合算法研究专业名称学生姓名指导教师毕业时间毕业 任务书一、题目多聚焦图像融合算法研究二、指导思想和目的要求本题目来源于科研,主要研究多聚焦图像的概念,学习多聚焦图像的常用融合算法,进而实现相关算法。

希望通过该毕业设计,学生能达到:1.利用已有的专业知识,培养学生解决实际工程问题的能力;2.锻炼学生的科研工作能力和培养学生团队合作及攻关能力。

三、主要技术指标1.学习多聚焦图像的特点;2.研究多聚焦图像的融合算法;3.实现多聚焦图像的融合。

四、进度和要求第01周----第02周: 参考翻译英文文献;第03周----第04周: 学习多聚焦图像的特点;第05周----第08周: 研究多聚焦图像的融合算法;第09周----第14周: 编写多聚焦图像的融合程序;第15周----第16周: 撰写毕业设计论文,论文答辩。

五、主要参考书及参考资料1.张德丰.MATLAB 数字图像处理[M].北京:机械工业出版社,2012.2. 敬忠良. 图像融合——理论与应用[M].北京:高等教育出版社,2010.3. 郭雷. 图像融合[M]. 北京:电子工业出版社,2011.4. 孙巍. 孙巍. 像素及多聚焦图像融合算法研究[D].长春:吉林大学,2008.5. 马先喜. 多聚焦图像融合算法研究[D].无锡:江南大学,2012.学生 指导教师 系主任 __ __设计论文摘要图像融合是将同一对象的两个或多个图像按一定规则合成为一幅图像。

其关键是抽取每幅源图像中的清晰区域,并将这些清晰区域以一定的规则融合起来,从而生成一幅清晰且信息量完整的融合图像。

多聚焦图像融合的具体目标在于提高图像的空间分辨率、改善图像的几何精度、增强特征显示能力、改善分类精度、替代或修补图像数据的缺陷等。

本文概括了多聚焦图像融合的一些基本概念和相关的基本知识,对DWT分解的层数和方向子带的个数对融合结果的影响进行了初步的研究。

像素级图像融合及其关键技术研究

像素级图像融合及其关键技术研究

像素级图像融合及其关键技术研究图像融合是将多个相同或不同类型的成像传感器获取的同一场景的多幅图像信息加以综合与提取,从而产生比任何单一图像信息对景物更加精确的描述。

图像融合一般可分为像素级、特征级和决策级图像融合。

本文针对像素级图像融合技术中需要解决的关键问题,重点研究了其中的三项关键技术:像素级图像融合预处理中的图像降噪技术、多聚焦图像融合技术以及全色与多光谱遥感影像融合技术。

主要内容为:1.提出了一种基于人类视觉系统的图像去噪方法。

该方法结合了像素分类与小波变换,在不同的图像区域采用不同的阈值进行去噪,可有效提高图像去噪的效果,同时较好的保持了图像细节。

2.提出了一种有利于图像压缩的小波图像去噪方法以及一种小波系数校验方法。

该去噪方法利用图像小波系数的层内相关性进行图像去噪,并可与后续的图像压缩处理有效结合。

3.提出了一种基于局部区域梯度信息的多分辨率图像融合算法及其改进算法。

改进算法对不同源图像的对应尺度系数进行自适应加权相加,以获得融合后的尺度系数。

这两种方法的融合效果均优于常用融合方法。

4.提出了一种基于离散余弦变换以及一种结合小波变换与离散余弦变换的图像融合新方法。

前者的计算量相对较少,适用于实时处理,而后者则能有效提高图像融合的质量。

5.提出了一种基于支持向量机与图像块分割的自适应图像融合策略。

该方法依据多聚焦源图像块所在的位置,采用不同大小的图像块进行自适应融合处理,可有效提高图像的融合效果。

6.提出了一种结合块分割与多分辨率分析的多聚焦图像融合方法。

该方法可与现有的基于多分辨率分析的多聚焦图像融合方法相结合,能有效提高这些方法的融合效果。

7.提出了一种基于离散余弦变换与IHS(Intensity-hue-saturation,IHS)变换的多光谱与全色遥感影像融合方法及其改进算法。

这两种方法可直接在离散余弦变换域进行遥感影像融合,适合压缩格式的遥感影像快速融合。

利用这两种方法的思想在空域结合基于IHS变换的融合方法,仅需较小的计算量,在提高融合图像空间分辨率的同时,保持了绿色植被区域的光谱特性。

像素级图像融合方法及应用研究

像素级图像融合方法及应用研究

像素级图像融合方法及应用研究图像融合技术(Image Fusion Technology)作为多传感器信息融合的一个非常重要的分支——可视信息的融合,近二十年来,引起了世界范围内的广泛关注和研究热潮。

图像融合就是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理,以获取对同一场景的更为准确、更为全面、更为可靠的图像描述。

图像融合的目的是充分利用多个待融合源图像中包含的冗余信息和互补信息,融合后的图像应该更适合于人类视觉感知或计算机后续处理。

像素级图像融合是在基础层面上进行的图像融合,它能够提供其它层次上的融合处理所不具有的更丰富、更精确、更可靠的细节信息,有利于图像的进一步分析、处理与理解,它在整个图像融合技术中是最为复杂、实施难度最大的融合处理技术。

本文的研究工作主要是围绕像素级的图像融合展开的,针对像素级图像融合技术中需要解决的关键问题,重点研究了像素级图像融合的算法及其实现以及图像融合质量的综合评价问题,同时还对图像融合的预处理技术以及像素级图像融合技术的初步应用做了探讨。

本论文的主要研究内容和研究成果如下:(1) 在深入理解图像融合技术基本理论的基础上,针对传统基于塔型分解和基于小波变换图像融合方法的分解方式不能很好地适用于高频段包含大量重要信息的图像融合这一问题,提出了一种基于离散小波包变换的图像融合方法,该方法能够对图像的高频部分进行更为细致的划分,从而有利于在融合过程中提取源图像的重要细节信息,实验结果表明该方法能够有效地提高图像的融合质量。

为了进一步改善图像的融合效果以及融合算法的性能,本文还提出了一种新的基于区域特征选择的图像融合规则。

该规则不仅计算简单,而且能够在融合图像中保留较多的重要特征和细节信息,通过针对不同类型多源图像的融合仿真实验,结果表明该融合规则具有良好的融合性能。

(2) 针对在图像融合过程中,采用传统基于卷积运算的小波变换处理大量的图像数据时,存在的计算复杂、运算所需内存较多、无法实现在线快速的图像处理等缺陷,提出了一种基于第二代小波变换的图像融合方法。

像素级多聚焦图像融合算法研究

像素级多聚焦图像融合算法研究

像素级多聚焦图像融合算法研究
在变换域方面,提出了两种基于Q-Shif双树复数小波变换(Q-Shif DT-CWT)的融合算法。

针对低频系数和高频系数的不同特点,算法一分别采用邻域梯度取大(NGMS)和模值取大(MVMS)融合准则进行系数融合。

在算法一的基础上,算法二采用合成图像模值取大(SI-MVMS)准则对高频系数进行融合。

两种融合算法提高了系数选取的准确性,其中算法二融合图像质量更高。

在空间域方面,提出了基于非下采样Contourlet变换(NSCT)的空间域融合算法。

该算法采用NSCT提取源图像细节信息,通过合成图像绝对值取大(SI-AVMS)准则得到融合决策图来“指导”源图像中像素点的选取。

算法利用NSCT良好的细节表现力,克服了传统空间域融合算法在细节表现力上的不足。

由于不存在反变换,避免了对源图像信息的破坏。

在彩色多聚焦图像融合方面,提出了基于NSCT的空间域彩色多聚焦图像融合算法。

该算法根据亮度分量的融合情况“指导”源彩色图像的三个分量中像素点的选取,其中亮度分量采用基于NSCT的空间域融合算法进行融合。

该算法避免了传统融合算法容易出现的颜色失真和模糊现象。

多聚焦图像融合算法的研究

多聚焦图像融合算法的研究

多聚焦图像融合算法的研究SANY GROUP system office room 【SANYUA16H-分类号:********U D C:******-***-(20**)****-0密级:公开编号:********************大学学位论文多聚焦图像融合算法研究论文作者姓名:申请学位专业:申请学位类别:指导教师姓名(职称):论文提交日期:多聚焦图像融合算法研究摘要光学成像系统焦距确定后,只有成像在景深区间内的空间点能够清晰成像。

实际应用中对某个场景的物体成像时,由于被照场景中各物体与成像镜头的物距各异,所成的像不是全都清晰的。

为了获取清晰的全场景图像,需要对场景中不同的物体分别聚焦,获取每个物体的图像,并将其融合在一起,即多聚焦图像融合技术。

研究了多聚焦图像融合的基本理论,特别是空间域和变换域的融合方法;阐述了有关小波变换(WT)的融合理论,该办法通过对原始图像实施小波分解,将解析后的低、高频区域作相应的变换,高低频区域分别使用不同的融合规则,然后用修正后的小波子区域融合成新图像。

设计了计算机模拟实验,对几种基于小波的多聚焦图像融合算法进行了模拟并给出了结果评价,实验结果证实了文中方法的有效性。

关键词:多聚焦图像融合;小波变换;图像重构;质量评价;融合规则Theresearchonmulti-focusimagefusionalgorithmAbstractAfterdeterminingthefocallengthoftheopticalimagingsystem,onlywhenimagingin thespacepointofthedepthoffocuscanbeclearlyimaged.Intherealprocessoftheimage-forming,becauseofthedifferenceoftheobjectdistancebetweenthethingsandimaginglens inthescenewhichbefocused,theimage-formingtocertainsceneisnotallclear.Toobtainclearpanorama,wecanrespectivelyfocuso nthedifferentobjectsinthescene,getalltheimagesoftheobjectandmixthemtogether,thisis so-calledmulti-focusimagefusiontechnology.Thebasictheoryofmulti-focusimagefusion,especiallythespatialdomainandtransformdomainfusionmethod;Exp oundedaboutthewavelettransform(WT)fusiontheory,theapproach,theoriginalimageby waveletdifferentiation,willberesolvedafterthelow-frequencyregionforthecorrespondingconversion,high-frequencyregionsareusingdifferentfusionrules,thencorrectedwaveletsub-regionalintegrationintoanewimage.Designofcomputersimulationexperiments,severalf usionalgorithmbasedonwaveletmulti-focusimagesaresimulatedandgivestheresultsoftheevaluation,experimentalresultsconfi rmedthevalidityofthemethod.Keywords:multi-focusimagefusion;wavelettransform;imagereconstruction;qualityevaluation;fusionrul e目录论文总页数:33页1引言11.1课题研究背景及意义 (1)1.2图像融合技术的研究现状及问题 (1)1.3图像融合的层次 (2)1.4论文的内容结构安排 (4)2多聚焦图像的融合算法42.1多聚焦图像成像理论基础 (4)2.2多聚焦图像的融合方法 (5)2.2.1一般常用的融合算法简介 (5)IHS彩色空间的融合算法 (5)Brovey变换算法 (8)加权平均图像融合算法 (9)采用PCA算法的图像融合方法 (9)智能图像融合算法 (11)2.2.2图像的变换域融合方法 (12)金字塔融合方法 (13)基于小波变换的算法 (15)3小波变换融合算法153.1小波变换概述 (15)3.2小波变换分析 (16)3.2.1连续小波变换 (17)3.2.2离散小波变换 (17)3.3二维离散小波变换及其Mallat算法 (17)3.4图像融合的离散多小波变换 (18)3.4.1多小波概念简述 (18)3.4.2多小波变换 (18)3.5小波包算法 (19)3.5.1小波包的定义 (19)3.5.2小波包的分解与重构算法 (20)3.5.3小波包的融合思想 (20)3.6各种方法比较 (21)3.7多聚焦图像融合的规则 (21)3.7.1低频系数融合规则 (21)3.7.2高频系数融合规则 (21)4多聚焦图像融合质量的评价224.1融合图像质量的定性评价 (22)4.2融合图像质量的定量评价 (23)5理论模拟实验结果及分析245.1不同小波分解方法比较 (24)5.2不同分解层数的比较 (25)5.3不同目标图像比较 (27)6总结29参考文献30致谢32声明331引言1.1课题研究背景及意义随着经济的发展,科技的日新月异,各种不同传感器的使用范围逐渐扩大。

多视角图像融合算法综述

多视角图像融合算法综述

多视角图像融合算法综述图像融合是一种将多幅图像融合成一幅结果图像的技术。

随着科技的发展和人们对图像质量的要求不断提高,多视角图像融合算法成为了研究热点。

本文将对多视角图像融合算法进行综述,分析其各种方法和应用。

1. 引言多视角图像融合算法的研究与应用涉及多个领域,包括计算机视觉、图像处理、机器学习等。

其主要目标是能够合成一幅更加清晰、更具信息丰富性的图像,并能够从多个视角中获取更多的细节。

多视角图像融合算法可应用于许多领域,如遥感图像、医学影像等。

2. 多视角图像融合算法的分类2.1 基于传统图像处理的方法传统的图像处理方法主要包括像素级融合、变换域融合和区域级融合三种。

2.1.1 像素级融合像素级融合是一种将多个图像的像素进行简单叠加或加权求和的方法。

这种方法简单直观,易于实现,但容易导致图像失真和信息丢失。

2.1.2 变换域融合变换域融合是基于图像的频域变换,如小波变换和离散余弦变换(DCT)。

通过对不同图像进行变换域分析和合成,可以达到多视角图像融合的目的。

然而,变换域融合方法对不同图像的频谱分量有一定假设,因此可能导致失真。

2.1.3 区域级融合区域级融合方法是基于图像的区域分割和匹配,将不同图像中相似的区域进行融合。

这种方法能够更好地保留图像的细节和结构,但需要进行复杂的图像分割和匹配,计算复杂度较高。

2.2 基于深度学习的方法近年来,深度学习在图像处理领域取得了重大突破。

多视角图像融合算法也开始采用基于深度学习的方法。

2.2.1 卷积神经网络(CNN)卷积神经网络是一种可以自动学习图像特征的神经网络。

通过训练大量的图像数据,CNN可以学习到图像中的细节和结构,并将多个视角的图像进行融合。

2.2.2 生成对抗网络(GAN)生成对抗网络是一种通过两个神经网络进行对抗训练的模型。

其中一个网络为生成器,负责生成合成图像;另一个网络为判别器,负责判断生成的图像是否真实。

通过不断迭代训练,GAN可以生成更加真实且细节丰富的多视角图像。

基于SIFT和小波多尺度分析的多聚焦图像融合方法研究的开题报告

基于SIFT和小波多尺度分析的多聚焦图像融合方法研究的开题报告

基于SIFT和小波多尺度分析的多聚焦图像融合方法研究的开题报告一、研究背景及意义随着数字图像处理和计算机视觉技术的快速发展,多聚焦图像成为了一种常见且有效的图像获取方式。

多聚焦图像是指在特定场景下,通过调整相机焦距或移动相机在不同位置拍摄同一场景的多张图像,得到焦距不同、聚焦点不同的、具有不同清晰度的多张图像。

多聚焦图像可以更加清晰地反映物体表面的纹理和细节,提供更加充分的信息,有利于后续图像分析、处理和应用。

但是在实际应用中,由于环境的复杂性、图像像素的差异等原因,多聚焦图像之间存在差异,如图像的亮度、对比度、色彩等方面的变化,直接对多聚焦图像进行融合,可能会出现不连续、不自然的过渡或失真的情况。

因此,如何对多聚焦图像进行有效的融合,提高图像的质量和清晰度,成为了图像处理和计算机视觉领域的热点问题之一。

二、研究目标本文旨在研究一种基于SIFT和小波多尺度分析的多聚焦图像融合方法,实现对多张聚焦图像进行有效、自然的融合,提高图像质量和清晰度。

具体研究目标如下:1. 基于SIFT算法提取图像的特征点,对于多张聚焦图像进行配准和对齐。

2. 利用小波变换进行多尺度分析,得到多聚焦图像在不同尺度下的细节信息和边缘特征。

3. 结合多余度小波理论,对多张聚焦图像进行分解和重构,得到逐层分解的图像序列。

4. 基于逐层分解后的图像序列,对每个分解层选取最优的聚焦区域进行融合,得到最终融合图像。

三、研究内容和关键技术本文的研究内容主要包括以下方面:1. SIFT算法的研究和实现2. 小波变换的原理和多尺度分析方法的研究3. 多余度小波的理论和实现4. 基于SIFT和小波多尺度分析的多聚焦图像融合算法的研究和实现本文主要涉及的关键技术包括:SIFT算法的特征提取和匹配,小波变换的多尺度分解和重构,多余度小波的理论和应用,以及多聚焦图像的融合算法实现。

四、预期成果本文预期达到以下成果:1. 实现了基于SIFT和小波多尺度分析的多聚焦图像融合算法;2. 通过实验验证了该算法的有效性和优越性,比较其与常见的多聚焦图像融合方法的差异和优劣;3. 发表一篇学术论文,交流研究成果。

多聚焦图像融合方法仿真研究

多聚焦图像融合方法仿真研究

度不高等问题 , 为了提高图像 的清晰度 , 提出了一种改进 的多小波变换多 聚焦 图像 融合算法 。首先利用不 同的小波对待融 合 图像进行小波分解 , 采用多尺度双结构元对输入图像 进行滤 波, 在融合规则选 择中 , 采用加权平均法选 择高频系数 , 采用 绝对值取大方法选择低频 系数 。对多组多聚焦图像进行实验 , 实验表明采用该方法 能够 更好的保 留图像边缘 信息 , 融合效 果明显优 于传统 的图像融合方法。 关键 词 : 图像融合 ; 边缘检测算子 ; 多小波变换 ; 熵值
图像融合 …是信息 融合 的重要分 支和研 究热 点。其 目 的是对多 幅源 图像 的信息进行提取和综合 , 以获得 对某一地
区或 目标更准确 、 更全 面和更 可靠 的描述 , 而实现 对图像 从 的进一步分析 和理解 , 目标 的检测 、 或 识别 与跟踪 。 目前 图
fr t n wi e tre e t ,a d te i g u in rs l r et rt a h r d t n li g e f so t o s o ma i t b t f cs n h ma e f s e u t a e b t n t eta i o a ma u in meh d . o h e o s e h i
中 图 分 类号 :T 3Байду номын сангаас1 P 9 文 献 标 识 码 : B
M u t —f c sI g so i l t n l — o u ma e Fu i n S mu a i i o
B in—c e g , I i AO Ja h n D NG We
( . i guM rieIstt, e a m n fnom t nE g er g T i o i gu2 10 C ia 1 J n s a t ntue D pr et fr a o n i e n , a huJ ns 1 , hn ; a im i t oI i n i z a 17

多聚焦图像融合研究的开题报告

多聚焦图像融合研究的开题报告

多聚焦图像融合研究的开题报告1.研究背景及意义多聚焦图像融合是一种图像处理技术,它可以将多张焦距不同的图像融合成一张图像。

多聚焦图像融合技术在计算机视觉、机器视觉、图像处理等领域都有广泛的应用。

多聚焦图像融合技术可以用于智能监控监测、医学影像处理、航空航天图像处理和机器人视觉导航等。

因此,多聚焦图像融合技术的研究具有重要的理论和应用意义。

2.研究内容和目标本次研究旨在探究多聚焦图像融合技术,通过综述各种融合算法在不同场景下的优缺点,提出一种高效、准确的多聚焦图像融合算法。

具体包括以下研究内容:(1) 综述多聚焦图像融合技术的研究现状和发展历程,总结各类融合算法的原理和特点。

(2) 提出一种基于深度学习的多聚焦图像融合算法,通过构建卷积神经网络模型,实现自适应加权和自适应选择的多聚焦图像融合。

(3) 在常见的多聚焦图像数据集上进行实验,验证所提出的多聚焦图像融合算法的有效性和优越性。

3.研究方法和方案(1) 综述多聚焦图像融合技术的研究现状和发展历程,总结各类融合算法的原理和特点。

此外,该过程还需要对焦距差异度量方法进行研究。

(2) 提出一种基于深度学习的多聚焦图像融合算法。

本研究意图采用现代计算机视觉中广泛使用的卷积神经网络方法,构建自适应加权和自适应选择的多聚焦图像融合算法。

(3) 在常见的多聚焦图像数据集上进行实验。

选用经典的Lytro数据集(LFSD)进行测试,并实现定量和定性的评估。

4.预期结果及意义本次研究预期将提出一种新的基于深度学习的多聚焦图像融合算法,该算法将同时改进现有的自适应加权和自适应选择的多聚焦图像融合方法,提高多焦距图像的重建质量和保真度。

经实验验证,在定量和定性指标下与目前广受欢迎的多聚焦图像融合方法相比,所提出的新算法具有更好的准确性和效率,具有较高的理论和实际应用价值。

基于NSST的SPCNN多聚焦图像融合算法研究

基于NSST的SPCNN多聚焦图像融合算法研究

基于NSST的SPCNN多聚焦图像融合算法研究基于NSST的SPCNN多聚焦图像融合算法研究随着科学技术的快速发展,数字图像处理领域得到了广泛的应用和关注。

在实际应用中,多聚焦图像融合技术是一项重要的任务,它能够将多幅聚焦图像融合为一幅全局清晰的图像,提高图像的质量和细节丰富性。

相比于传统的多聚焦图像融合算法,基于NSST的SPCNN多聚焦图像融合算法是一种较为先进和有效的方法。

本文就基于NSST的SPCNN多聚焦图像融合算法进行了详细的研究和分析。

首先,我们需要了解什么是多聚焦图像。

多聚焦图像是指在同一场景下,通过不同的焦距或焦平面位置所拍摄得到的图像。

这些图像在某些区域具有较高的清晰度,而在其他区域具有较低的清晰度。

我们的目标就是将这些图像融合成一幅全局清晰度较高的图像。

传统的多聚焦图像融合算法主要有基于像素的方法和基于频域的方法。

基于像素的方法将多幅图像的像素进行加权平均得到最终图像,而基于频域的方法则是将多幅图像的频域信息进行加权平均。

虽然这些方法在一定程度上可以实现图像融合,但是由于无法准确提取不同焦距下的图像细节信息,其融合结果可能会产生模糊或边缘不清晰的问题。

基于NSST的SPCNN多聚焦图像融合算法能够有效地解决传统方法的问题。

NSST是一种非平稳信号的局部时频变换方法,它能够提取出图像的局部时频信息,从而得到更加准确的图像分析结果。

SPCNN是指分割模型与卷积神经网络相结合的一种图像处理方法,它能够有效地捕捉图像的纹理和细节特征。

基于NSST的SPCNN多聚焦图像融合算法将这两种方法相结合,能够充分利用图像的时频信息和纹理特征,得到更加清晰、细节丰富的融合结果。

具体来说,基于NSST的SPCNN多聚焦图像融合算法主要分为以下几个步骤:首先,对多幅聚焦图像进行NSST变换,得到图像的局部时频信息。

然后,利用SPCNN模型对每个时频区域进行图像分割,得到每个区域的纹理特征。

接下来,将分割和纹理特征信息输入到卷积神经网络中,进行特征提取和融合。

基于深度学习的多聚焦图像融合算法研究

基于深度学习的多聚焦图像融合算法研究

基于深度学习的多聚焦图像融合算法研究基于深度学习的多聚焦图像融合算法研究摘要:随着数字图像技术的快速发展,人们对于图像质量和清晰度的要求越来越高。

然而,在真实世界中,由于拍摄环境、设备限制以及摄影师技术等因素的影响,很难获得完美的图像。

因此,图像融合技术应运而生。

本文基于深度学习的多聚焦图像融合算法进行了研究。

通过在多聚焦图像中融入深度学习的方法,提出了一种有效的图像融合算法,可以提高图像的质量和清晰度。

1.引言在数字摄影技术中,多聚焦图像是指通过不同焦距或焦点设置,拍摄到同一场景的一系列图像。

每张图像都有不同的焦点,导致其中一部分图像清晰而其他部分模糊。

图像融合技术旨在将这些不同焦点的图像合成一张清晰的图像,从而提高图像的质量和清晰度。

2.传统的图像融合算法传统的图像融合算法主要基于局部特征提取和加权融合的方式进行,例如像素级、小波变换和拉普拉斯金字塔等方法。

这些方法多数是基于特定的图像统计学和人类视觉机理,对于一些场景和图像的复杂性无法适应,导致图像融合质量有限。

3.深度学习在图像融合中的应用深度学习作为一种强大的机器学习方法,在图像处理领域取得了显著的成果。

它可以通过学习数据的非线性特征,提取图像的高层次语义信息。

在图像融合中,深度学习可以通过训练神经网络来学习图像的细节和结构信息,从而实现更好的图像合成效果。

4.多聚焦图像融合算法基于深度学习的多聚焦图像融合算法主要包括以下几个步骤:(1)数据预处理:对多聚焦图像进行预处理,包括去噪、图像增强和对齐等操作,以提高后续算法的性能。

(2)特征提取:利用深度学习中的卷积神经网络(CNN)提取每张图像的特征表示,以获取图像的高层次语义信息。

(3)特征融合:将不同焦点的图像特征进行融合,以得到更全面的图像信息。

(4)重建图像:利用卷积神经网络通过图像特征进行重建,得到一张清晰的图像。

5.实验结果与分析本文针对多聚焦图像融合问题进行了一系列实验,并采用PSNR和SSIM指标评估了算法的性能。

多聚焦图像融合算法

多聚焦图像融合算法

多聚焦图像融合算法张攀【摘要】Multi-focus image fusion is to combine information from two or multiple images of the same scene but different focus points for producing a merged image, which makes fused images more clear. The representative algorithms of multi-focus image fusion are swarm intelligence algorithm fusion methods, which achieve good effect, such as genetic algorithm (GA), particle swarm optimization (PSO) and so on. Currently, the optimization of swarm intelligence algorithms to improve and accelerate the integration of image speed is a major research direction.%多聚焦图像融合,是将两幅(或多幅)对同一场景的各个目标,聚焦不同的图像融合成一幅清晰的新图像.在多聚焦图像融合中,典型的群智能算法图像融合方法取得了较好的效果,如遗传算法、粒子群算法等.目前,对群智能算法的优化改进,加快图像的融合速度是一个主要的研究方向.【期刊名称】《微型电脑应用》【年(卷),期】2012(028)009【总页数】3页(P59-60,封3)【关键词】多聚焦图像融合;粒子群优化【作者】张攀【作者单位】上海交通大学,上海,200240【正文语种】中文【中图分类】TP390 引言随着计算机技术、传感器技术以及信息处理技术的不断发展,图像融合作为信息融合的一种强有力的工具,在自动目标识别、军事以及医学图像等领域有着广泛的应用。

基于引导滤波的多聚焦图像融合算法

基于引导滤波的多聚焦图像融合算法

基于引导滤波的多聚焦图像融合算法基于引导滤波的多聚焦图像融合算法摘要:多聚焦图像融合是在不同的焦点距离下拍摄的多幅图像中,提取出最清晰的目标区域并进行融合的过程。

本文提出了一种基于引导滤波的多聚焦图像融合算法。

首先,对输入的多幅图像进行图像拼接,然后将图像分解为低频部分和高频部分。

接下来,利用引导滤波对高频部分进行边缘保留平滑滤波,并根据引导图像对分解后的低频部分进行加权融合。

实验结果表明,所提出的算法在多聚焦图像融合中具有较好的效果和性能。

关键词:多聚焦图像融合;引导滤波;边缘保留平滑;加权融合1 引言随着数字摄影技术的日益发展,多聚焦图像融合技术得到了广泛的应用。

在多聚焦图像中,不同的焦点距离下拍摄的图像往往存在部分区域模糊不清的问题。

为了获得最清晰的目标区域,需要将多个图像进行融合,突出目标的清晰度。

因此,多聚焦图像融合成为了一个重要的研究领域。

早期的多聚焦图像融合算法主要采用像素级融合或频域融合方法,但这些方法往往会导致图像细节丢失或者产生伪影。

为了解决这些问题,引导滤波方法被引入到多聚焦图像融合中。

引导滤波是一种边缘保留平滑滤波方法,能够在保持图像细节的同时进行滤波操作。

因此,基于引导滤波的多聚焦图像融合算法能够有效地提升图像的清晰度和质量。

2 方法和原理2.1 图像拼接对于输入的多幅图像,首先需要进行图像拼接。

根据图像拍摄时的焦点距离不同,不同区域的图像质量不同,需要将这些图像进行整合。

通过拼接图像,可以获得一张包含所有焦点距离下目标区域的图像。

2.2 图像分解拼接后的图像需要进行分解,分解为低频部分和高频部分。

低频部分包含了图像的整体信息,而高频部分则包含了细节信息。

通过分解图像,可以对不同频率的信息进行独立处理,进一步提高图像融合的效果。

2.3 引导滤波对高频部分进行引导滤波,通过保留边缘信息的同时进行平滑滤波。

引导滤波基于引导图像,在滤波过程中利用引导图像的信息进行滤波操作。

通过引导滤波,可以同时保留图像的边缘细节和纹理信息,避免了常规滤波方法产生的细节丢失或伪影问题。

多聚焦图像融合的理论及算法研究

多聚焦图像融合的理论及算法研究

多聚焦图像融合的理论及算法研究多聚焦图像融合的理论及算法研究摘要:多聚焦图像融合是指将多个对同一场景进行拍摄的图像通过融合算法得到一幅具有更全局清晰度和更高对比度的图像。

本文首先介绍了多聚焦图像融合的背景和意义,然后详细介绍了多聚焦图像融合的理论模型和算法,最后对其应用领域进行了讨论。

1. 引言多聚焦图像融合是计算机视觉领域的一个研究热点,其意义在于通过综合多个对同一场景进行拍摄的图像,提取出其中各个焦点下清晰度和对比度较高的部分,以得到一幅更优秀的图像。

多聚焦图像融合的研究对于改善图像质量、提高图像的清晰度和对比度具有重要意义。

本文旨在探讨多聚焦图像融合的理论及其相关算法。

2. 多聚焦图像融合的理论模型多聚焦图像融合的理论模型主要由以下几个方面构成:2.1 图像采集多聚焦图像融合的基础是通过拍摄多张在不同焦点下的图像来获取到完整的场景信息。

图像的采集需要借助于多焦点摄像机或者通过改变焦距和光圈来实现。

在采集图像时需要注意避免运动模糊或者拍摄角度的变化。

2.2 图像预处理图像采集后,为了使融合算法更好地处理图像信息,需要进行预处理操作。

常见的预处理有:直方图均衡化、噪声去除、梯度增强等。

2.3 图像对齐多个拍摄的图像由于手持拍摄或其他因素的原因可能存在微小的位移或姿态差异,因此需要对图像进行对齐。

图像对齐的目的是将多个图像的对应区域位置对齐,以便进行后续的像素级融合。

2.4 图像融合图像融合是多聚焦图像研究的核心任务,其目标是通过融合算法将多个图像中焦点准确、清晰、鲜明的部分提取出来,并融合成一幅高质量的图像。

常见的图像融合方法有:加权平均法、频域滤波法、小波变换法等。

3. 多聚焦图像融合的算法研究在多聚焦图像融合的研究中,有许多算法被提出并取得了一定的成果。

以下是几种常见的算法:3.1 加权平均法加权平均法是最简单、直观的融合算法,它假设多张图像的清晰部分大小、位置相似,并通过对清晰度进行加权平均来得到最终图像。

小波域多聚焦图像融合算法的研究的开题报告

小波域多聚焦图像融合算法的研究的开题报告

小波域多聚焦图像融合算法的研究的开题报告一、选题背景图像融合技术是当前计算机图像处理领域的热点之一,广泛应用于军事、航天、医学、环境监测、城市管理等领域。

多聚焦图像融合是图像融合技术中的一种,它可以将多幅焦距不同的图像融合成一幅多聚焦图像,保留各幅图像中的清晰区域,具有很高的应用价值。

传统的多聚焦图像融合算法主要集中在空域和频域,但这些算法存在图像失真、计算量大等问题。

小波变换是一种能够将信号分解为不同频率的分量的变换方法,具有多分辨率分析的特点,可用于图像的压缩、降噪、边缘检测等操作。

因此,将小波变换应用于多聚焦图像融合算法中,可以克服传统算法的缺陷,实现更加准确的多聚焦图像融合。

二、选题目的本课题旨在研究小波域多聚焦图像融合算法,将多幅图像融合成一幅清晰度更高的多聚焦图像,达到如下目标:(1)开发一种高效的小波域多聚焦图像融合算法,减少计算量,提升融合质量。

(2)优化算法的图像失真问题,使融合后的图像更加真实、自然。

(3)测试和验证算法在不同场景下的效果,并与传统算法进行对比。

三、主要内容和技术路线本课题的主要研究内容包括以下几个方面:(1)小波域多聚焦图像融合算法的设计基于小波变换的多聚焦图像融合算法,需要对多幅图像进行小波分解,获取各层精细度和模糊度系数,通过系数加权融合得到多聚焦图像。

本课题将研究如何设计合适的小波变换算法,以及如何结合加权函数进行图像融合。

(2)算法的实现与优化实现小波域多聚焦图像融合算法需要进行软、硬件平台的选择和优化,避免算法的计算量过大和内存使用过度。

(3)算法的测试和分析使用公开的数据集对算法进行测试,从视觉效果和定量分析两个角度对算法的性能进行评价。

四、预期成果预期实现以下成果:(1)设计并实现一种高效、准确的小波域多聚焦图像融合算法。

(2)对算法进行测试和验证,明确各项性能指标以及优缺点。

(3)获得多篇会议或期刊论文,并将算法应用于实际场景中。

多聚焦图像融合方法综述

多聚焦图像融合方法综述

多聚焦图像融合方法综述摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。

然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。

最后提出了一些图像融合方法的评价方法。

关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法1、引言按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。

图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。

该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。

它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。

Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。

作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。

图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即:(1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙;(2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。

2、空域中的图像融合把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。

像素级图像融合研究

像素级图像融合研究

像素级图像融合研究图像融合作为一个新兴的科研领域有着广阔的发展前景。

它通过提取和综合来自多个传感器图像的信息,获得对同一场景(或目标)的更为准确、全面、可靠的图像描述,以便对图像进行进一步的分析、理解以及目标的检测、识别或跟踪。

可以预见,随着多传感器图像融合相关理论的不断发展和完善,它在军事、遥感、机器人、医学图像处理以及计算机视觉等领域必将有着更广泛的应用前景。

经过将近三十年的发展,图像融合技术的研究已经形成了一定的规模,国内外已开发出多种融合系统,但这并不表明该项技术已经完善。

从目前的情况来看,图像融合技术还存在许多理论和技术方面的问题有待解决。

尤其需要指出的是图像融合技术在国内所进行的研究相对于国际上的研究工作起步较晚,还处于落后状态。

因此迫切需要进行广泛深入的基础理论和基础技术的研究工作。

本文围绕像素级图像融合问题,应用自动聚焦、神经网络、多尺度分解等理论和方法对像素级图像融合进行了深入、系统地研究。

在第二章和第三章中,首先研究了基于空间域(图像块分割)的图像融合方法;在第四章中,本文研究了基于多尺度分解(小波)的图像融合方法。

在对多尺度分解方法的研究中,本文研究了图像低频部分的融合,同时也研究了高频部分的融合;在第五章中,本文还研究了图像融合的客观评价指标。

本文的主要研究成果如下:1.针对多聚焦图像融合中图像块(或者像素)的清晰度的评价进行了研究。

将图像的清晰度评判与自动聚焦领域的聚焦评价函数相结合,在多聚焦图像融合中使用聚焦评价函数来评价图像块(或者像素)的清晰度。

给出了在多聚焦图像融合中评估聚焦评价函数的方法,并评估了这些聚焦评价函数用在多聚焦图像融合中的性能。

由该评估方法得到的结果对多聚焦图像融合算法有一定的指导意义。

同时,该评估方法也可用在自动聚焦领域对聚焦评价函数进行评估。

2.将拉普拉斯算子作为图像块的清晰度评价指标,结合基于生物视觉的脉冲耦合神经网络,提出了一种新的多聚焦图像融合方法。

多聚焦图像融合算法研究答辩稿

多聚焦图像融合算法研究答辩稿

由表中所得仿真数据可知,本章主要研究的基于DWT 分解多聚焦图像融合算法无论在信息熵、空间频率还是清 晰度上都大于平均法及加权平均法,融合效果较为理想, 达到了预期的效果。 结论:经小波变换后所得的融合图像较好地保存了原
始图像中的清晰区域,较单纯的加权平均法取得
了较为满意的效果。
五、致谢感ຫໍສະໝຸດ 各位老师的教导与指正,祝身 体健康、工作顺利!!
3.主观评价 (1)加权法所得的融合图像均有模糊区域,效果一般。
(2)单层DWT分解所得的融合图像较平均法和加权平均法 较好,但整体效果不够清晰。
(3)二层DWT分解和三层DWT分解所得的融合图像均较 为清晰,三层DWT分解所得图像更胜一筹。 (4)当DWT分解层数大于三层时,随着分解层数的增加, 所得融合图像的效果会有所增强,但效果不明显;同时会 出现重影等不良影响。 4.客观评价(如表4-1)
(m, n)
二、融合算法分类与概述
算法分类与描述 目前像素级多聚焦图像融合算法主要分为两 类:空间域多聚焦图像融合算法和变换域多聚焦 图像融合算法。 1.空间域多聚焦图像融合算法
(1)基于像素点的融合
该类算法是根据各个源图像中对应位置上每个像素点的灰度 特征值进行融合的。计算公式为:
F (m, n) wA (m, n) LA (m, n) wB (m, n) LB (m, n)
论文题目:多聚焦图像融合算法研究
指导教师:

班级: 学生: 学号: 日期:2014年6月16日
LOGO
一、研究概述
研究背景与意义 自第有一台具光学镜头相机的出现开始,便 出现了能生成场景中物体信息的图像。由于光学 镜头的景深有限,使得在拍摄时很难获取一幅所 有景物都聚焦清晰的图像。这样,多聚焦图像融 合技术应用而生。 随着科技的进步,多聚焦图像融合技术越来 越多地用于多频谱图像理解、目标识别、机器视 觉及医学图像处理等领域。这一技术定将在现代 医疗、军事侦查、产品防伪及文化艺术方面发挥 愈发重要的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多聚焦图像像素级融合算法研究
多聚焦图像融合是多源图像融合领域的一个重要分支,主要用于同一光学传感器在相同成像条件下获取的聚焦目标不同的多幅图像的融合处理。

由于聚焦范围有限,光学成像系统不能将焦点内外的所有目标同时清晰成像,导致图像分析时需要耗费大量时间和精力。

多聚焦图像融合是一种解决光学成像系统聚焦范围局限性问题的有效方法,可以有效提高图像信息的利用率,扩大系统工作范围,增强系统可靠性,更加准确的描述场景中的目标信息。

目前,该技术广泛应用于交通、医疗、物流、军事等领域。

多聚焦图像像素级融合是多聚焦图像融合的基础,它获得的原始信息最多,能够提供更多的细节信息。

如何准确定位并有效提取源图像中的聚焦区域是多聚焦图像像素级融合的关键。

由于受图像内容复杂性影响,传统的多聚焦图像像素级融合方法很难对源图像中聚焦区域准确定位,且融合图像质量并不理想。

本论文针对现有多聚焦图像像素级融合方法存在的不足,在空间域内对多聚焦图像像素级融合算法进行了深入研究。

论文主要研究内容如下:1、提出了基于鲁棒主成分分析(Robust Principal Component Analysis, RPCA)与脉冲耦合神经网络(Pulse Coupled Neural Network, PCNN)的多聚焦图像融合算法。

根据RPCA构建的低维线性子空间可表示高维图像数据,增强目标特征信息,对噪声具有鲁棒性的特点,将源图像在RPCA分解域的稀疏特征作为PCNN神经元的外部输入,并根据PCNN神经元的点火频率来定位源图像中的聚焦区域,增强了融合算法对噪声的鲁棒性,提高了融合
图像质量。

2、提出了基于RPCA与四叉树分解相结合的多聚焦图像融合算法。

利用源图像稀疏矩阵的区域一致性进行块划分,有利于提高聚焦区域信息提取的完整性和准确性。

此外,四叉树分解用树结构存储图像块划分结果,有利于提高源图像递归剖分的效率。

该算法在自适应确定最优分块大小的基础上,利用稀疏矩阵各稀疏矩阵子块的局部特征检测源图像的聚焦区域,抑制了“块效应”对融合图像质量的影响,取得了良好的融合效果。

3、提出了基于图像分解的多成分图像融合算法。

利用基于
(Rudin-Osher-Fatemi, ROF)模型的Split Bregman算法将源图像分解为卡通和纹理部分,用卡通成分和纹理成分中像素邻域窗口的梯度能量(Energy of image Gradient, EOG)检测聚焦区域像素,并根据融合规则对这些像素进行融合,将融合后的卡通和纹理部分合并实现图像融合。

该算法提高了融合算法对源图像几何特征描述的完整性,提升了融合算法性能,改善了融合图像的视觉效果。

4、提出了基于非负矩阵分解(Negative Matrix Factorization, NMF)和聚焦区域检测的多聚焦图像融合算法。

利用NMF的纯加性和稀疏性,对多聚焦图像进行初始融合,利用初始融合图像与源图像间的差异图像的局部梯度特征检测聚焦区域,根据融合规则将检测到的聚焦区域进行合并得到最后的融合图像。

该算法提高了聚焦区域检测准确性,改善了传统NMF融合算法所得融合图像对比度,提高了融合图像质量。

最后,对本文的主要研究工作和创新点进行总结,并对未来研究方向进行了展望。

相关文档
最新文档