大学物理《弦振动》实验报告文档

合集下载

《弦振动实验报告》

《弦振动实验报告》

《弦振动实验报告》实验人:XXX实验日期:XXX实验目的:1. 通过观察弦线振动现象,掌握振动的基本特性;2. 探究弦线振动与振动频率、弦线长度、弦线张力、弦线质量等因素的关系。

实验器材:1. 弦线和支架;2. 弹性杆;3. 罗盘;4. 直尺;5. 引力秤;6. 钢球;7. 频率计。

实验原理:弦线的振动是一种机械波,具有波动的性质。

弦线的振动由波节和波腹组成,当弦线被扰动时,波从扰动点向两侧传播。

振动频率与弦线的长度、张力和质量有关。

实验步骤:1. 将弹性杆固定在支架上,将挂有钢球的弦线固定在弹性杆上,调整弹性杆的高度,使弦线平行于地面;2. 手按住弦线某一点,使其产生振动,用眼观察该点和其他点的振动现象;3. 使用频率计测量振动的频率;4. 改变弦线的长度,重复步骤2和3,记录频率和弦线长度的关系;5. 改变弦线的张力,重复步骤2和3,记录频率和张力的关系;6. 将钢球挂在弦线上,重复步骤2和3,记录频率和质量的关系。

实验结果:根据实验数据,绘制了频率与弦线长度、张力、质量的关系曲线。

实验结果表明,频率与弦线长度成反比关系,频率与弦线张力成正比关系,频率与弦线质量成反比关系。

实验结论:1. 弦线长度的变化会导致振动频率的变化,长度越短,频率越大;2. 弦线张力的变化会导致振动频率的变化,张力越大,频率越大;3. 弦线质量的变化会导致振动频率的变化,质量越大,频率越小。

实验思考:1. 实验中是否存在系统误差,如何进行准确测量?2. 弦线振动频率与哪些因素有关,有何实际应用?实验改进:1. 改进测量方法,减小误差;2. 增加扰动方式的多样性,观察不同扰动情况下的振动现象。

《弦振动实验报告》

《弦振动实验报告》

《弦振动实验报告》弦振动的研究一、实验目的1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。

2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系,并进行测量。

二、实验仪器弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺三、实验原理为了研究问题的方便,认为波动是从A点发出的,沿弦线朝B端方向传播,称为入射波,再由B端反射沿弦线朝A端传播,称为反射波。

入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,移动劈尖B到适合位置.弦线上的波就形成驻波。

这时,弦线上的波被分成几段形成波节和波腹。

驻波形成如图(2)所示。

设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同振动方向一致的简谐波。

向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。

由图可见,两个波腹间的距离都是等于半个波长,这可从波动方程推导出来。

下面用简谐波表达式对驻波进行定量描述。

设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程图(2)分别为:Y1=Acos2(ft-x/)Y2=Acos[2(ft+x/λ)+]式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。

两波叠加后的合成波为驻波,其方程为:Y1+Y2=2Acos[2(x/)+/2]Acos2ft①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos[2(x/)+/2]|,与时间无关t,只与质点的位置x有关。

由于波节处振幅为零,即:|cos[2(x/)+/2]|=02(x/)+/2=(2k+1)/2(k=0.2.3.…)可得波节的位置为:x=k/2②而相邻两波节之间的距离为:xk+1-xk=(k+1)/2-k/2=/2③又因为波腹处的质点振幅为最大,即|cos[2(x/)+/2]|=12(x/)+/2=k(k=0.1.2.3.)可得波腹的位置为:x=(2k-1)/4④这样相邻的波腹间的距离也是半个波长。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

弦振动的研究实验报告

弦振动的研究实验报告

弦振动的研究实验报告实验目的:通过实验研究弦的振动特性,并分析弦振动时的动力学特点。

实验装置和材料:1. 弦:选用一根细长的弹性绳或细细的金属丝作为实验弦。

2. 振动源:使用一个固定在实验台上的振动源,可以通过电机或手动方式产生振动。

3. 能量传输装置:使用一个振动传输装置,将振动传输到实验弦上,如夹子、固定块等。

4. 振动探测器:使用一个合适的装置或传感器,用于测量弦的振动状态,如光电传感器、激光干涉仪等。

5. 数据采集设备:使用一个数据采集器,将振动数据进行记录和分析。

实验步骤:1. 将实验弦固定在实验台上,并将振动源固定在一端,确保弦能够自由振动。

2. 施加适量的拉力到弦上,以保证弦的紧绷度。

3. 使用振动源产生一定频率和振幅的振动,并将振动传输到实验弦上。

4. 启动数据采集设备记录弦的振动数据,包括振动频率、振幅和相位等。

5. 根据需要,可以改变振动源的频率和振幅,记录不同条件下的振动数据。

6. 对实验数据进行分析,绘制振动频率与振幅的关系图,并分析振动的谐波特性。

实验结果与分析:1. 实验数据表明,弦的振动频率与振幅呈正相关关系,即振动频率随着振幅的增加而增加。

2. 弦振动呈现出谐波特性,即振动状态可分解为基频振动和多个谐波振动的叠加。

3. 弦的振动模式与弦长度、拉力和材料特性有关,可以通过改变这些参数来调节振动频率和振幅。

结论:通过实验研究弦的振动特性,我们发现弦振动具有谐波特性,振动频率与振幅呈正相关关系。

弦的振动模式受到弦长度、拉力和材料特性的影响。

这些实验结果对于理解弦乐器的音色产生原理和振动系统的动力学特性具有重要意义。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的'信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

大学物理弦振动实验报告

大学物理弦振动实验报告

大学物理弦振动实验报告大学物理弦振动实验报告一、实验目的1.通过实验观察弦振动现象,了解弦振动的基本规律;2.学习使用振动测量仪器,掌握振动信号的测量方法;3.分析弦振动的影响因素,加深对振动理论的理解。

二、实验原理弦振动是指一根张紧的弦在垂直于弦的方向上做往返运动。

根据牛顿第二定律和胡克定律,可以得到弦振动的微分方程。

当弦的振动幅度较小时,可近似认为弦的质量分布是均匀的,此时弦振动的微分方程可简化为波动方程。

波动方程描述了波在弦上的传播过程,其解为一系列正弦波的叠加。

三、实验器材1.弦振动实验装置;2.振动测量仪器(如示波器、频率计等);3.砝码、尺子、计时器等辅助工具。

四、实验步骤1.预备工作:检查实验装置是否完好,调整弦的张紧程度,确保弦在垂直方向上做往返运动。

2.实验操作:(1)使用尺子测量弦的长度L和张紧力T,记录数据;(2)将振动测量仪器连接到弦振动实验装置上,调整仪器参数,使仪器正常工作;(3)在弦的端点施加一个初始扰动,使弦开始振动;(4)观察并记录弦的振动情况,如振幅、频率等;(5)改变弦的张紧力T或长度L,重复步骤(3)和(4),记录数据。

3.数据处理:整理实验数据,分析弦振动的影响因素。

4.实验总结:根据实验结果,得出实验结论。

五、实验结果与分析1.实验数据记录:2.实验结果分析:(1)由实验数据可知,当弦长L和张紧力T发生变化时,弦的振幅A 和频率f也会发生变化。

这说明弦的振动受到弦长和张紧力的影响。

(2)根据波动方程,弦振动的频率f与张紧力T和弦长L之间的关系为:f=1/2L√(T/μ),其中μ为弦的线性密度。

由实验数据可知,当张紧力T增大时,频率f增大;当弦长L增大时,频率f减小。

这与波动方程的预测结果相符。

(3)实验中还发现,当弦的振幅A较大时,弦的振动会出现非线性效应,如振幅衰减、频率变化等现象。

这说明在实际情况中,需要考虑非线性因素对弦振动的影响。

六、实验结论与讨论1.通过本次实验,我们观察到了弦振动的现象,了解了弦振动的基本规律。

弦振动实验报告

弦振动实验报告

弦振动的研究一、实验目的1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。

2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系,并进行测量。

三、波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2 (ft-x/ )Y2=Acos[2 (ft+x/λ)+ ]式中A为简谐波的振幅,f为频率, 为波长,X为弦线上质点的坐标位置。

两波叠加后的合成波为驻波,其方程为:Y1+Y2=2Acos[2 (x/ )+ /2]Acos2 ft ①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2 (x/ )+ /2] |,与时间无关t,只与质点的位置x有关。

由于波节处振幅为零,即:|cos[2 (x/ )+ /2] |=02 (x/ )+ /2=(2k+1) / 2 ( k=0. 2. 3. … )可得波节的位置为:x=k /2 ②而相邻两波节之间的距离为:x k+1-x k =(k+1) /2-k / 2= / 2 ③又因为波腹处的质点振幅为最大,即|cos[2 (x/ )+ /2] | =12 (x/ )+ /2 =k ( k=0. 1. 2. 3. )可得波腹的位置为:x=(2k-1) /4 ④这样相邻的波腹间的距离也是半个波长。

因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。

在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为:L=n / 2 ( n=1. 2. 3. … )由此可得沿弦线传播的横波波长为:=2L / n ⑤式中n为弦线上驻波的段数,即半波数。

弦振动试验实验报告

弦振动试验实验报告

弦振动试验一、实验目的1.观察在弦线上形成的驻波2.用弦驻波法测量张紧弦线上驻波的波长3.研究弦线上张力与弦线上驻波波长之间的关系;4.研究均匀弦线横波的传播速度与张力、弦线密度之间的关系二、数据处理1.在张力一定的条件下(加9个砝码),求波的传播速度 l=80cm T=1.89Nn f(HZ) λ=2l/n ν=f λ 速度均值v(cm/s)1 29 160 46404643.5562 58 80 46403 87 53.33333 46404 116 40 46405 144 32 46086 176 26.66667 4693.333保持弦长l =80cm 不变,改变频率f ,速度的均值为46.43556m/sf=160Hz T=1.89Nn l λ=2l/n ν=f λ 速度均值v (cm/s )1 14 28 44804545.7782 28 28 44803 42 28 44804 57 28.5 4560 5 72 28.8 46086 87.5 29.16667 4666.667保持频率f =160Hz 不变,改变弦线长度l ,速度的均值为45.45778m/s2.求横波的波长与弦线中的张力的关系f=160Hz M1=100gn l λ=2l/n波长均值λ ̄3 34.5 23 22.933334 46 235 57 22.8f=160Hz M1=120gn l λ=2l/n波长均值λ ̄24.261113 36.5 24.333334 48.5 24.255 60.5 24.2f=160Hz M1=140gn l λ=2l/n波长均值λ ̄3 38.5 25.666625.5222274 51 25.55 63.5 25.4f=160Hz M1=160gn l λ=2l/n波长均值λ ̄27.327783 41 27.333334 54.5 27.255 68.5 27.4f=160Hz M1=180gn l λ=2l/n波长均值λ ̄3 42 28 28.216674 56.5 28.255 71 28.4f=160Hz M1=200gn l λ=2l/n波长均值λ ̄3 43.5 29 28.983334 57.5 28.755 73 29.2λlgλT lgT22.93333 1.360467 1.09 0.03742628.21667 1.384911 1.29 0.1105925.52222 1.406918 1.49 0.17318627.32778 1.436604 1.69 0.22788728.21667 1.450506 1.89 0.27646228.98333 1.462148 2.09 0.3201461.48Y=0.00358X+1.345431.461.441.42λgl1.401.381.360.000.050.100.150.200.250.300.35lgT由以上可知,波长的对数和张力的对数成线性关,且相关的线性方程是:Y=0.0035X+1034543.。

2020年大学物理《弦振动》实验报告

2020年大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1-------------------------------------------------------①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ--------------------------------------------------------②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2或λ=2*L/n代入③得γn=2L------------------------------------------------------④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。

弦的振动实验报告

弦的振动实验报告

弦的振动实验报告
实验目的
根据弦振动的微分方程和边界条件,计算弦振动的固有频率和振型,与实验结果对比,研究弦振动与结构及预紧力的参数关系。

实验内容
研究弦振动的固有频率与边界条件及弦的预紧力的关系,观察弦的节点及波峰波谷的形状。

实验原理
实验原理如图1所示,弦为一端固定,另一端悬挂重物(砝码),弦上固定有几种质量块,通过对弦上质量块激励,可以获得弦振动的共振频率;改变重物的质量,可以改变弦的预紧力,从而改变弦的共振频率。

通过观察可以了解弦的振型。

图1 实验装置简图
实验仪器
测试实验装置如图2所示,左侧为悬挂的重物。

取不同的悬挂重物,可以获得不同的预紧力,测取不同预紧力下弦的共振频率,可以得到弦的振动频率与预紧力的关系。

图2 实验装置图
图3 实验装置局部放大图
实验步骤
1:用非接触式激振器对准悬索的某一质量块,并保持初始间隙4-5mm,用标准砝码组弦丝张力1Kg.
2:激振器接入正弦信号后,对系统产生正弦激振力,系统将发生振动,激振信号频率由低到高缓慢调节,观察质量块的振动幅值及系统的振动形态,即可打找到系统在张力为1Kg时各阶固有频率和主振型.
3:然后增加砝码分别为2、3、4、5Kg,用同样的方法可找到张力为2、3、4、5Kg时的保阶固有频率和主振型。

实验数据记录和整理
通过眼睛观察弦在不同频率下的振动形态,得到其共振频率。

改变预紧力(增加砝码数),得到其固有频率。

表一不同预紧力下的弦的固有频率
砝码数/个2 3 4 5
一阶固有频率
/Hz
图4可观察得到的一阶振型。

大学物理实验报告-弦振动

大学物理实验报告-弦振动

华南理工大学实验报告课程名称:大学物理实验理学院系数学专业创新班姓名任惠霞实验名称弦振动实验日期 2011.9. 6 指导老师(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得------------------------------------------------------- ③又有L=n*λ/2 或λ=2*L/n 代入③得------------------------------------------------------ ④四实验内容和步骤1.研究和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

弦振动实验报告

弦振动实验报告

弦振动的研究一、实验目的1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。

2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系,并进行测量。

三、波,射波.表示.波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2 (ft-x/ )Y2=Acos[2 (ft+x/λ)+ ]式中A为简谐波的振幅,f为频率, 为波长,X为弦线上质点的坐标位置。

两波叠加后的合成波为驻波,其方程为:Y1+Y2=2Acos[2 (x/ )+ /2]Acos2 ft ①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2 (x/ )+ /2] |,与时间无关t,只与质点的位置x有关.由于波节处振幅为零,即:|cos[2 (x/ )+ /2] |=02 (x/ )+ /2=(2k+1) / 2 (k=0. 2。

3。

… )可得波节的位置为:x=k /2 ②而相邻两波节之间的距离为:x k+1-x k =(k+1) /2-k / 2= / 2 ③又因为波腹处的质点振幅为最大,即|cos[2 (x/ )+ /2]|=12 (x/ )+ /2 =k (k=0. 1。

2. 3. )可得波腹的位置为:x=(2k-1) /4 ④这样相邻的波腹间的距离也是半个波长.因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。

在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为:L=n / 2 (n=1。

2. 3. … )由此可得沿弦线传播的横波波长为:=2L / n ⑤式中n为弦线上驻波的段数,即半波数。

《弦振动实验报告》

《弦振动实验报告》

《弦振动实验报告》弦振动的研究一、实验目的1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。

2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系,并进行测量。

二、实验仪器弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺三、实验原理为了研究问题的方便,认为波动是从A点发出的,沿弦线朝B端方向传播,称为入射波,再由B端反射沿弦线朝A端传播,称为反射波。

入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,移动劈尖B到适合位置.弦线上的波就形成驻波。

这时,弦线上的波被分成几段形成波节和波腹。

驻波形成如图(2)所示。

设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同振动方向一致的简谐波。

向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。

由图可见,两个波腹间的距离都是等于半个波长,这可从波动方程推导出来。

下面用简谐波表达式对驻波进行定量描述。

设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程图(2)分别为:Y1=Acos2?(ft-x/?)Y2=Acos[2?(ft+x/λ)+?]式中A为简谐波的振幅,f为频率,?为波长,X为弦线上质点的坐标位置。

两波叠加后的合成波为驻波,其方程为:Y1+Y2=2Acos[2?(x/?)+?/2]Acos2?ft①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos[2?(x/?)+?/2]|,与时间无关t,只与质点的位置x有关。

由于波节处振幅为零,即:|cos[2?(x/?)+?/2]|=02?(x/?)+?/2=(2k+1)?/2(k=0.2.3.…)可得波节的位置为:x=k?/2②而相邻两波节之间的距离为:xk+1-xk=(k+1)?/2-k?/2=?/2③又因为波腹处的质点振幅为最大,即|cos[2?(x/?)+?/2]|=12?(x/?)+?/2=k?(k=0.1.2.3.??)可得波腹的位置为:x=(2k-1)?/4④这样相邻的波腹间的距离也是半个波长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020
大学物理《弦振动》实验报告文

Contract Template
大学物理《弦振动》实验报告文档
前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。

按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。

体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解
本文内容如下:【下载该文档后使用Word打开】
(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)
一.实验目的
1.观察弦上形成的驻波
2.学习用双踪示波器观察弦振动的波形
3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系
二.实验仪器
XY弦音计、双踪示波器、水平尺
三实验原理
当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有
惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。

理论和实验证明,波在弦上传播的速度可由下式表示:
=
ρ
1
-------------------------------------------------------①
另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:
v=λγ--------------------------------------------------------②
将②代入①中得γ
=λ1
-------------------------------------------------------③ρ1
又有L=nλ/2或λ=2L/n代入③得γ
n=2L
------------------------------------------------------④ρ1
四实验内容和步骤
1.研究γ和n的关系
①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。

②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。

将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn 图线,导出γ和n的关系。

2.研究γ和T的关系保持L=60.00cm,ρ
1保持不变,将1kg的砝码依次挂在第1、2、3、4、5槽内,测出n=1
时的各共振频率。

计算lgr和lgT,以lg2为纵轴,lgT为横轴作图,由此导出r和T的关系。

3.验证驻波公式
根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式。

1、弦长l1、波腹数n的
五数据记录及处理
1.实验内容1-2数据T=1mgρ1=5.972k g/m
数据处理:
由matlab求得平均数以及标准差1.平均数x1=117.56002.标准差σx=63.8474
最小二乘法拟合结果:LinearmodelPoly1:f(x)=p1x+p2
Coefficients(with95%confidencebounds):p1=40.38(39.97,40.7 9)p2=-3.58(-4.953,-2.207)
Goodnessoffit:SSE:0.508R-square:1
AdjustedR-square:1RMSE:0.4115
此结果中R-square:1AdjustedR-square:1说明,此次数据没有异常点,并且这次实验数据n与γ关系非常接近线性关系,并可以得出结论:n与γ呈正比。

2.实验内容
3.4数据
1.平均数x1=6
2.20xx2.标准差σx=308.2850
最小二乘法拟合结果:LinearmodelPoly1:f(x)=p1x+p2
Coefficients(with95%confidencebounds):p1=0.4902(0.4467,0. 5336)p2=1.574(1.553,1.595)Goodnessoffit:SSE:0.0001705R-square:0.9977
AdjustedR-square:0.9969RMSE:0.007539
由分析可知,此次数据中并没有异常点,并且进行线性拟合后R-square:0.9977AdjustedR-square:0.9969,因为都极其接近1,所以说此次拟合进行的非常成功,由此我们可以得出相应的结论:lgT与lgγ是线性关系。

六.结论
验证了弦振动的共振频率与张力是线性关系
也验证了弦振动的共振频率与波腹数是线性关系。

七.误差分析
在γ和n关系的实验中,判断是否接近共振时,会有一些误差,而且因为有外界风力等不可避免因素,所以可能会有较小误差。

在γ与T实验中,由于摩擦力,弦不是处于完全水平等可能产生较小的误差。

附录(Matlab代码)
%%实验1%一
A=[137.2276.93117.14158.15198.5];
p1=mean(A(:,2));%平均数q1=sqrt(var(A(:,2)));%标准差 figure
plot(A(:,1),A(:,2),'o')holdonlsline
xlabel('n波腹数');
ylabel('γ(Hz)频率');title('γ和n的关系');
[kb]=polyfit(A(:,1),A(:,2),1);%拟合直线
%二
%T(kg)LgT(kg)γ(Hz)Lgγ(Hz)B=[10.0037.21.5720.353.61.7330.4865.01.8140 .6072.51.8650.7082.71.92];
x=B(:,1);y=B(:,3);
figure
loglog(x,y)%x,y都为对数坐标plot(B(:,2),B(:,4),'o')holdonlsline
xlabel('T拉力');
ylabel('γ(Hz)频率');title('γ和T的关系')。

相关文档
最新文档