七年级上册有理数及其运算小结与复习资料讲解
北师大版初一上册第二章有理数运算的基本概念及运用知识点总结
北师大版初一上册第二章有理数运算的基本概念及运用知识点总结
本文档旨在总结北师大版初一上册第二章有理数运算的基本概念及运用知识点。
以下是总结的主要内容:
1. 有理数的概念
有理数是指可以表示为两个整数的比例的数,包括正有理数、负有理数和零。
2. 有理数的运算
2.1 有理数的加法和减法
有理数的加法和减法遵循以下规则:
- 同号相加减,取绝对值相加减,结果的符号与原来相同。
- 异号相加减,取绝对值相减,结果的符号由绝对值较大的数决定。
2.2 有理数的乘法和除法
有理数的乘法和除法遵循以下规则:
- 同号相乘除,结果为正数。
- 异号相乘除,结果为负数。
3. 分数的概念
分数是指一个整数除以一个非零的整数得到的数,可以表示为a/b的形式,其中a称为分子,b称为分母。
4. 分数的运算
4.1 分数的加法和减法
分数的加法和减法遵循以下规则:
- 先通分,然后对分子进行加减操作,分母保持不变。
4.2 分数的乘法和除法
分数的乘法和除法遵循以下规则:
- 分子相乘除,分母相乘除,得到的结果即为最简分数。
5. 实际问题中的有理数运用
有理数运算在实际问题中的应用非常广泛,例如在温度计中的正负温度表示、人口的正负增长等。
以上就是北师大版初一上册第二章有理数运算的基本概念及运用知识点的总结。
---
注意:本文档的内容仅供参考,具体的教材内容以教材为准。
第二单元有理数及其运算(归纳总结)
2.3×108
天体名称 木星 土星
天王星 海王星
围绕太阳公转的轨道 半长径/km 780 000 000
1 500 000 000
2 900 000 000
4 500 000 000
科学记数法 7.8×108 1.5×109 2.9×109 4.5×109
9. 计算1-2+3-4+5-6+… + 99-100.
23 4
(18) ( -60 )×( 3 5 ).
46
-95
8Байду номын сангаас请用科学记数法表示下表中的数据:
天体名称 水星
围绕太阳公转的轨道 半长径/km
58 000 000
科学记数法 5.8×107
金星
110 000 000
1.1×108
地球
150 000 000
1.5×108
火星
230 000 000
(3)所有有理数都可以用数轴上的点表示.
4.相反数 如果两个数只有符号不同,那么称
其中一个数为另一个数的相反数.
-4 -3 -2 -1 0 1 2 3 4
(1)数a的相反数是-a(a是任意一个有理数); (2)0的相反数是0; (3)若a、b互为相反数,则 a+b = 0.
5.倒数 如果两个有理数的乘积为1,那么称
2
3
4
负数集合
0, 2, 7, 3
整数集合
4. 比较下列每组数的大小:
(1) 1 , 0.009; (2) 8, 7;
100
78
(3)2 ,3 ; 35
(4) 2 1, 2.3. 3
6.在如图所示的圆圈内填上彼此都不相等的数,使 得每条线上的三个数之和为零。你有几种填法?
北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)知识点整理及重点题型梳理]
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《有理数及其运算》全章复习与巩固(提高)【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;作用 举例表示数的性质 0是自然数、是有理数表示没有 3个苹果用+3表示,没有苹果用0表示表示某种状态 00C 表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法把一个大于10的数表示成10na ⨯的形式(其中1≤10a <,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】 (1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a =1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【变式1】选择题(1)已知四种说法:①|a|=a时,a>0; |a|=-a时, a<0.②|a|就是a与-a中较大的数.③|a|就是数轴上a到原点的距离.④对于任意有理数,-|a|≤a≤|a|.其中说法正确的个数是()A.1 B.2 C.3 D.4(2)有四个说法:①有最小的有理数②有绝对值最小的有理数③有最小的正有理数④没有最大的负有理数上述说法正确的是()A.①② B.③④ C.②④ D.①②(3)已知(-ab)3>0,则()A.ab<0 B.ab>0 C.a>0且b<0 D.a<0且b<0(4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是()A.120 B.-15 C.0 D.-120(5)下列各对算式中,结果相等的是()A.-a6与(-a)6 B.-a3与|-a|3 C.[(-a)2]3与(-a3)2 D.(ab)3与ab3【答案】(1)C;(2)C;(3)A;(4)D;(5)C【变式2】(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×108【答案】C.2.(2016•江西校级模拟)如果m,n互为相反数,那么|m+n﹣2016|=________.【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n﹣2016|.【答案】 2016.【解析】解:∵m,n互为相反数,∴m+n=0,∴|m+n﹣2016|=|﹣2016|=2016;故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153 ()( 1.5)() 1244 -÷⨯-÷-()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123= (2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4.(2015•铜仁市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .【答案】0. 【解析】 解:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.【总结升华】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 举一反三:【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(1)数形结合思想:已知有理数a 、b 在数轴上对应点的位置如图所示,且|a|>|b|,求|a|-|a+b|-|b-a|的值.A .2b+aB .2b-aC .aD .b(2)分类讨论思想:已知a 是任一有理数,试比较|a|与-2a 的大小. (3)转化思想:1(999)35⎛⎫-÷-⎪⎝⎭.【答案与解析】解:(1)从数轴上a、b两点的位置可以看出a<0,b>0,且|a|>|b|,所以|a|-|a+b|-|b-a|=-a+a+b-b+a=a.(2)a可能是正数,0或负数,这就需要分类讨论:当a>0时,|a|=a>0,-2a<0,所以|a|>-2a;当a=0时,|a|=0,-2a=0,所以|a|=-2a;当a<0时,|a|=-a>0,-2a>0,又-a<-2a,所以|a|<-2a.综上所述:当a≥0时, |a|≥-2a;当a<0时,|a|<-2a.(3)1(999)(10001)(35)35⎛⎫-÷-=-+⨯-⎪⎝⎭(1000)(35)1(35)34965=-⨯-+⨯-=.【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来.举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是()A .1 B .1 C .1 D .1 【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.。
北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)知识点整理及重点题型梳理]
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《有理数及其运算》全章复习与巩固(提高)【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;作用 举例表示数的性质 0是自然数、是有理数表示没有 3个苹果用+3表示,没有苹果用0表示表示某种状态 00C 表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法把一个大于10的数表示成10na ⨯的形式(其中1≤10a <,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】 (1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a =1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【变式1】选择题(1)已知四种说法:①|a|=a时,a>0; |a|=-a时, a<0.②|a|就是a与-a中较大的数.③|a|就是数轴上a到原点的距离.④对于任意有理数,-|a|≤a≤|a|.其中说法正确的个数是()A.1 B.2 C.3 D.4(2)有四个说法:①有最小的有理数②有绝对值最小的有理数③有最小的正有理数④没有最大的负有理数上述说法正确的是()A.①② B.③④ C.②④ D.①②(3)已知(-ab)3>0,则()A.ab<0 B.ab>0 C.a>0且b<0 D.a<0且b<0(4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是()A.120 B.-15 C.0 D.-120(5)下列各对算式中,结果相等的是()A.-a6与(-a)6 B.-a3与|-a|3 C.[(-a)2]3与(-a3)2 D.(ab)3与ab3【答案】(1)C;(2)C;(3)A;(4)D;(5)C【变式2】(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×108【答案】C.2.(2016•江西校级模拟)如果m,n互为相反数,那么|m+n﹣2016|=________.【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n﹣2016|.【答案】 2016.【解析】解:∵m,n互为相反数,∴m+n=0,∴|m+n﹣2016|=|﹣2016|=2016;故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153 ()( 1.5)() 1244 -÷⨯-÷-()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123= (2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4.(2015•铜仁市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .【答案】0. 【解析】 解:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.【总结升华】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 举一反三:【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(1)数形结合思想:已知有理数a 、b 在数轴上对应点的位置如图所示,且|a|>|b|,求|a|-|a+b|-|b-a|的值.A .2b+aB .2b-aC .aD .b(2)分类讨论思想:已知a 是任一有理数,试比较|a|与-2a 的大小. (3)转化思想:1(999)35⎛⎫-÷-⎪⎝⎭.【答案与解析】解:(1)从数轴上a、b两点的位置可以看出a<0,b>0,且|a|>|b|,所以|a|-|a+b|-|b-a|=-a+a+b-b+a=a.(2)a可能是正数,0或负数,这就需要分类讨论:当a>0时,|a|=a>0,-2a<0,所以|a|>-2a;当a=0时,|a|=0,-2a=0,所以|a|=-2a;当a<0时,|a|=-a>0,-2a>0,又-a<-2a,所以|a|<-2a.综上所述:当a≥0时, |a|≥-2a;当a<0时,|a|<-2a.(3)1(999)(10001)(35)35⎛⎫-÷-=-+⨯-⎪⎝⎭(1000)(35)1(35)34965=-⨯-+⨯-=.【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来.举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是()A .1 B .1 C .1 D .1 【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.。
七年级(上)数学《第二章 有理数及其运算》复习
七年级(上)数学《第二章 有理数及其运算》复习行为培养习惯,习惯养成性格,性格决定命运。
第一部分,知识要点一、负数,有理数的分类1、负数的意义:上升1m 表示为+1m ,则下降2m 表示为2m -。
2、某品牌纯净水标着505±ml ”,则这瓶纯净水最多 55 ml ,最少 45 ml 。
3、0π⎧⎪⎧⎪⎪⎪⎨⎪⎨⎪⎩⎪⎪⎪⎪⎩正整数整数有理数负整数分数(有限小数和循环小数属分数,但是无限不循环小数,不是分数)4、非负数即不是负数,包括0和正数。
5、因为a 可以表示正数、0和负数,所以a 不一定是正数,-a 不一定是负数。
二、数轴 1、数轴的三要素:正方向、原点和单位长度。
在数轴上,右边的数总比左边的数大。
最小的正整数是 1 ,最大的负整数是1-。
2、相反数:两个数只有符号不同,我们称一个是另一个的相反数。
2和-2,a 和-a ,2x y z --和2x y z -++。
3、0的相反数等于它本身的数是0。
两个相反数相加等于0.4、x +y 的相反数是x y --,a -b 的相反数是a b -+。
5、(1)a>0时,-a<0; (2)a<0时,-a>0;(3)a =0时,-a=0.6、表示互为相反数的两个点位于原点的两侧,且到原点的 距离 相等。
7、符号的化简:-(-2)=2;-(+2)=2-;-(x +y )=x y --.三、绝对值1、在数轴上,一个数a 所对应的点到原点的 距离 叫做该数的绝对值。
记作:||a 。
任何数的绝对值一定 大于或等于 0,即:||0a ≥.2、(0)||(0)(0)a a a a a a a >⎧⎪==⎨⎪<⎩,正数的绝对值等于它本身,0的绝对值等于0,负数的绝对值等于它的相反数3、绝对值等于它的本身的数是正数或0 ;绝对值等于它的相反数的数是负数或0 。
4、|x|=3,则x =3±。
⎧⎪⎨⎪⎩正有理数有理数0负有理数5、两个负数,绝对值大的反而小。
七年级上册数学有理数知识点总结
七年级上册数学有理数知识点总结有理数是整数和分数的统称,包括正整数、负整数、零以及各种分数。
在七年级数学教学中,学生会学习有理数的四则运算、绝对值、比较大小、混合运算等知识点。
下面是七年级上册数学有理数知识点的总结。
一、有理数的概念1.整数的概念:自然数、零和负整数的集合。
2.分数的概念:整数和整数的商。
3.有理数的概念:整数和分数的统称。
二、有理数的表示1.整数的表示:正数用正号“+”表示,负数用负号“-”表示。
2.分数的表示:分子、分母表示分数。
3.有理数的表示:可以用数轴、分数形式或小数形式进行表示。
三、有理数的比较1.同号比较:绝对值大,数值大。
2.异号比较:绝对值大者为负。
四、有理数的加法和减法1.同号整数相加减:绝对值相加减,符号不变。
2.异号整数相加减:绝对值相减,取绝对值大的符号。
3.分数相加减:通分之后,分子相加减,分母不变。
五、有理数的乘法1.乘法的性质:同号得正,异号得负。
2.绝对值的乘法:绝对值相乘。
六、有理数的除法1.除法的性质:除法可看作乘法的倒数。
2.被除数为零的情况:被除数为零,商也为零。
七、有理数的混合运算1.先乘除后加减:乘除优先级高于加减。
2.小数、分数和整数的混合运算。
八、有理数的应用1.有理数的数轴表示。
2.有理数在实际问题中的应用。
以上是七年级上册数学有理数知识点的总结,有理数是数学学习中非常重要的概念,学好有理数的知识对学生以后学习代数、方程等数学知识有很大的帮助。
在学习过程中,学生需要多做题,多进行实际应用,才能更好地掌握有理数的知识。
七年级数学第二章有理数及其运算知识总结+教师用
有理数及其运算知识总结一、本章知识概述本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分:主要内容是有理数的有关概念.首先是理解有理数的意义及分类,判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量.其次是认识数轴,用数轴上的点表示有理数,借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,利用数轴比较有理数的大小.第三是理解绝对值的概念及求一个数的绝对值,利用绝对值比较两个负数的大小,通过应用题解决实际问题,体会绝对值的意义和作用.第二部分:学习有理数的加减法运算,通过探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,利用有理数的加法法则进行有理数的加法运算,并利用运算律简化运算;通过探索有理数减法法则的过程,理解有理数的减法法则,利用有理数的减法法则进行有理数的减法运算;利用有理数的加、减法法则进行包括整数、分数或小数的有理数的加减混合运算,并适当利用运算律简化运算;综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.第三部分:主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力 .根据有理数乘法法则进行有理数的乘法运算,运用乘法运算律简化计算;根据有理数除法法则进行有理数的除法运算,求有理数的倒数;根据有理数乘方的意义进行有理数的乘方运算,通过实例感受当底数大于1时,乘方运算结果的快速增长.根据有理数混合运算顺序的规定,进行有理数加、减、乘、除、乘方的混合运算,在运算过程中,合理使用运算律简化运算;使用计算器进行有理数的加、减、乘、除、乘方运算,使用计算器进行实际问题的复杂运算.二、重点知识归纳及讲解1、正数和负数的概念比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略.对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数.2、有理数的概念及分类整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和负整数;负整数包括负整数和负分数.到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为 1的分数,但本章中的分数是指不包括分母是1的分数.通常把正整数和零统为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.3、数轴的概念及画法规定了原点、正方向和单位长度的直线叫做数轴.数轴的概念中包含有三层含义:一是说数轴是一条直线,可以向两端无限延伸;二是说数轴具有原点,正方向和单位长度三要素,三者缺一不可;三是说数轴原点的选定,正方向的取向、单位长度大小的确定,是根据实际需要规定的.画数轴的步骤:(1)画一条直线,一般画成水平的直线;(2)在直线上选取一点为原点,用实心点表示,在原点下边标上0;(3)用箭头表示正方向,一般规定向右为正;(4)选取适当的长度为单位长度,用细短线画出,并在下边标上对应的数.4、相反数的概念如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等,这就是相反数的几何意义.一般地,数a的相反数是-a,这里a表示任意一个数,可以是正数、负数或零,还可以代表任意一个代数式,表示或求一个数的相反数,只要在这个数的前面添上一个“-”号就可以了.相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数;不能理解为只要符号不同的两个数就互为相反数,只有符合不同的两个数是说除了符号不同以外完全相同.5、绝对值的概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值记作“|a|”.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,这就是绝对值的代数意义,也可表示为:6、绝对值的有关性质(1)对任意有理数a,都有|a|≥0;(2)若|a|=0,则a=0;(3)若|a|=|b|,则a=b或a=-b;(4)若|a|=b(b>0),则a=±b;(5)若|a|+|b|=0,则a=0且b=0;(6)对任意有理数a,都有|a|=|-a|.7、有理数大小的比较法则在数轴上表示的两个数,右边的数总比左边的数大;正数都大于 0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小 .8、有理数加法法则同号两数相加,取相同的符号,并把绝对值相加 .异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并把较大的绝对值减去较小的绝对值.一个数同 0相加,仍得这个数.9、有理数加法运算律加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)10、有理数减法法则减去一个数,等于加上这个数的相反数,即: a-b=a+(-b).11、代数和的意义几个正数或负数的和叫做代数和,代数和一般用省略加号、括号的和的形式来表示,代数和不仅表示有理数相加的结果,而且还可表示加法运算.12、有理数加减混合运算步骤(1)把加减混合运算统一成加法;(2)写成省略加号、括号的代数和;(3)利用加法法则及运算律进行计算.13、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得0.14、多个非零因数相乘,积的符号规律n个不等于零的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数的个数为偶数个时,积为正.n个数相乘,有一个因数为0,积就为0.15、有理数乘法的运算律(1)交换律:两个因数相乘,交换因数的位置,积不变.即a·b=b·a;(2)结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即(a·b)·c=a·(b·c);(3)分配律:一个数同两个数的和相乘,等于把这个数分别同这两数相乘,再把所得的积相加.即a(b +c)=ab+ac.16、倒数的概念乘积为1的两个有理数互为倒数.即当a·b=1时,a与b互为倒数.由于任何一个有理数与0的积为0,不可能是1,所以0没有倒数.倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的倒数为1a.17、有理数的除法法则除以一个数等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都得0.18、利用除法化简分数除法可以写成几种不同的形式,例如:6÷3可以写成63,还可写成6∶3.说明除法可以表示成分数和比的形式;反过来,分数和比可化为除法,由于除法、分数和比可以互化,所以可以利用除法化简分数.19、乘方的概念求几个相同因数的积的运算,叫做乘方,即在n a中,a叫做底数,n叫做指数,n a叫做幂.na的读法有两种:(1)读作a的n次幂.(2)读作a的n次方.20、有理数的乘方法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.21、学记数法a 的形式,其中a的整数位数只有一位,这种记数的方法,叫做学记数把一个大于10的数记成10n法.22、有理数的混合运算有理数的运算中,加减为一级运算,乘除为二级运算,乘方(及开方——乘方的逆运算,以后将讲到)为三级运算.对于有理数的混合运算,要特别注意运算顺序及正确使用符号法则确定各步运算结果的符号.有理数的运算顺序是:先算乘方,再算乘除,最后算加减,对于同级运算,一般从左到右依次进行.如果有括号,就先算括号内的,且一般先算小括号内的,再算中括号内的,最后算大括号内的.如果能利用运算律简化计算,可变更上面的运算顺序,灵活处理.三、难点知识剖析1、负数的产生及其意义随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,为了满足实际需要,引入了负数、负数是由于实际需要产生的,负数也是客观存在的数 .正数和负数通常表示具有相反意义的量,若正数表示某种意义的量,则负数就表示其相反意义的量,反之亦然 .2、数集的概念把一些数放在一起,就组成一个数的集合,简称数集、所有的有理数组成的数集叫做有理数集,类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,等等 .3、多重符号的化简规律单独一个有理数前面的“+”号和“-”号,一般都是性质符号,读作“正”号或“负”号 .括号前是“+”号时,去掉括号和“+”号后,括号内的数不变,括号前是“-”号时,去掉括号和“-”号后,括号内的数就变成它的相反数 .在一个数的前面添加一个“+”号,仍然与原数相同;在一个数的前面添加一个“-”号,就成为原数的相反数 .4、两个负有理数的大小比较两个负有理数的大小比较与其它数一样,可以利用数轴找准两个负有理数在数轴上的对应点,右边的数总比左边的数大 .两个负有理数的大小比较,还可以利用绝对值,求这两个数的绝对值,比较两个数绝对值的大小,绝对值大的反而小 .5、有关绝对值的计算及化简灵活正确运用绝对值的代数意义及有关性质 .6、积的符号的确定方法有理数乘法与算术中的乘法的区别在于积的符号.几个正数与负数相乘时积的符号法则:几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数有偶数个数,积为正;几个数相乘,有一个因数为0,积为0,根据积的符号法则,在有理数乘法中,不管有多少个不为0的数相乘,都应该首先根据负因数的个数一次性地先确定积的符号,这样做的好处是既简练又准确.7、几个非0的有理数相除,商的符号的确定几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如: (-12)÷(-2)÷(-3)——三个负数:负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数:正=+(12÷2÷3)=28、有理数混合运算中应注意的问题(1)要注意运算顺序;(2)要灵活运用运算定律进行简便运算,不要搞错符号,特别是乘方的符号;(3)要灵活进行小数、分数的互化;(4)互为相反数的和,互为倒数的积,有因数为零,特殊运算先行结合.典型例题例1:一个物体沿着南北两个相反方向运动,如果把向南的方向规定为正,那么走 6km,走-4.5km,走0km的意义各是什么?分析:正数与负数可表示具有相反意义的量,正数表示向南运动,则负数表示向北运动 .0表示原地不动,0表示正数与负数的分界,在实际问题中也有确定的意义.解:走 6km表示物体向南走6km;走- 4.5km表示物体向北走4.5km;走 0km表示物体原地不动.例2:某老师把某一小组五名同学的成绩简记为:+ 10、-5、0、+8、-3,又知记为0的实际成绩表示90分,正数表示超过90分,则这五位同学的平均成绩为多少分?分析:由题意先求出这五位同学的实际成绩,如简记为+ 10的学生实际成绩为100,然后再求平均成绩.解:依题意知,五位同学在实际成绩分别为:100、85、90、98、87,其平均成绩为:1(10085909887)92().5++++=分例3:如图所示的数轴上, A、B、C、D、E各点分别表示什么数?分析:根据各点在原点的左侧,右侧还是在原点上,来确定数是负数,正数还是 0,根据各点距离原点多少个长度单位,来确定数的值.解:点A表示数132;点B表示数12;点C表示数0;点D表示-3;点E 表示数142-. 例4:在数轴上画出表示下列各数的点,并用“<”连接起来;分析:首先画出数轴,三要素要齐全;再把各数在数轴上的对应点找出来;然后根据这些数在数轴上的位置顺序比较大小,再用“<”连接起来.解:这些数在数轴上的表示如图所示.它们从小到大的排列为:111132101242242<-<-<<<< 例5:利用绝对值比较下列有理数的大小 .(1)-0.6,-60234(2) ,,345--- 分析:比较负数的大小,先求出各数的绝对值,关键是比较绝对值的大小,绝对值大的反而小,比较分数大小,一般要化成同分母的分数来比较 .解:(1)|-0.6|=0.6, |-60|=60∵ 0.6<60,∴ -0.6>-60.224033454448(2) ||||||336044605560404548 ,606060234 .345---<<∴->->-==,==,==, 例6:已知 |a +2|+|b -3|=0,求a 和b 的值.分析:由绝对值的非负性可知, |a +2|≥0,|b -3|≥0,而且只有当|a +2|和|b -3|都等于0时,|a +2|+|b -3|=0才成立,因为只有0的绝对值等于0,所以a=-2,b=3.解:∵ |a +2|+|b -3|=0,又 ∵ |a+2|≥0,|b -3|≥0,∴ |a +2|=0,|b -3|=0.∴ a +2=0,b -3=0.∴ a=-2,b=3.例7:计算分析:进行有理数加减混合运算时,应先把加减运算统一成加法运算,再写成省略加号和括号的代数和,最后运用有理数的加法法则及运算律进行计算,能够简化运算的尽量简化运算 .解:(1)原式=(-5)+(-3)+(-9)+(+7)=-5-3-9+7=(-5-3-9)+7=-17+7=-1034210(2)()()()()10757++++-+-原式=例8:计算题:2322232183(1)(1)(1)(0.51);362141(2)(3)12(2).3(2)÷-+⨯------÷--- 268491(1)()()3721168471 76834922 (2)29(8)1⨯-+⨯---++-⨯-----解:原式==121=1684-6原式====-1 注:(1)要按运算顺序进行计算.(2)乘方时要看清楚底数与指数,先确定幂的符号.例9:计算题:242112518(1){[(2)]()(2)}();23639131(2)0.25()(1)(12 3.75)24.283--÷---÷--÷-⨯-++-⨯112518(1){[2)]()2)}()23639251 []631 3 3131 (2)16(1)124224 3.7521683+÷-+÷-⨯⨯⨯⨯-⨯⨯-+⨯+⨯-⨯解:原式=169=(-)+2(-)589=(-5+2)(-)889=(-)(-)38=原式=4 1+33+56-900== 注:第(1)小题先由里及外逐层去掉括号,同时把除法转化为乘法进行运算,第(2)小题应用乘法分配律使运算得以简化.例10:用学记数法表示下列各数.(1)270.3; (2)3870000;(3)光的速度约为300 000 000米/秒;(4)0.5×9×1000000; (5)10.解:(1)270.3=2.703×100=2.703×102.(2)3870000=3.87×1000000=3.87×106.(3)300000000=3×100000000=3×108.(4)0.5×9×1000000=4.5×106.(5)10=1×10.说明:学记数法a ×10n 中,a 是小于10且大于等于1的数,n 比原数位的整数位数少1,比如:3870000000是10位数,指数n 就是9.这就是说n 等于原数的整数位数减1,而不是比所有的数位和少1.如179.4=1.794×102,而不是179.4=1.794×103.例11:某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6 ℃,若该地地面温度为21 ℃,高空某处温度为-39 ℃,求此处的高度是多少千米?解: 1×{[21-(-39)]÷6}=1×(60÷6)=10(千米)因此:此处的高度是10千米.。
新北师大版七年级上册有理数运算数学知识点总结
第二章 有理数及其运算学问要点有理数:整数和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因此有理数集的数可分为正有理数、负有理数和零3种数(1)自然数:数0,1,2,3,……叫做自然数.(2)正整数:+1,+2,+3,……叫做正整数;负整数:-1,-2,-3,……叫做负整数。
(3〕整数:正整数、0、负整数统称为整数。
(4〕分数:正分数、负分数统称为分数。
1、相反数:只有符号不同的两个数叫做互为相反数,a+b=0⇔a 、b 互为相反数.零的相反数是零2、数轴:规定了原点、正方向和单位长度的直线叫做数轴〔画数轴时,三要素缺一不行〕。
〔1〕任何一个有理数都可以用数轴上的一个点来表示。
〔2〕在数轴上表示的两个数,右边的数总比左边的数大。
〔3〕正数都大于0,负数都小于0;正数大于一切负数。
3、倒数:乘积为1的两个有理数数互为倒数,即ab=1⇔a 、b 互为倒数.倒数等于本身的数是1和-1。
0没有倒数。
4、肯定值:在数轴上,一个数所对应的点及原点的间隔 ,叫做该数的肯定值,正数的肯定值是它本身;负数的肯定值是它的相反数;0的肯定值是0。
互为相反数的两个数的肯定值相等。
任何数的肯定值总是非负数,即|a|≥05、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数比较大小,肯定值大的反而小。
、有理数的运算: 〔1〕五种运算:加、减、乘、除、乘方有理数加法法那么:同号两数相加,取一样的符号,并把肯定值相加。
异号两数相加,肯定值值相等时和为0;肯定值不等时,取肯定值较大的数的符号,并用较大的肯定值减去较小的肯定值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法那么:减去一个数,等于加上这个数的相反数!有理数乘法法那么:两数相乘,同号得正,异号得负,并把肯定值相乘。
任何数及0相乘,积仍为0。
注:几个因式都不为零时,积的符号由负因式的个数确定.奇数个负数为负,偶数个负数为正。
北师大版初一上册第二章有理数及其运算知识点总结
北师大版初一上册第二章有理数及其运算知识点总结有理数可以分为正整数、负整数、零、正分数、负分数等几种类型。
其中,正整数和零都是正数,而负整数和负分数则是负数。
数轴是一条直线,规定了原点、正方向和单位长度。
任何一个有理数都可以用数轴上的一个点来表示,而在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于0,负数都小于0,正数大于一切负数。
相反数是指符号相反的两个数,零的相反数是零。
任意一个有理数a的相反数是-a,而0的相反数是0.如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1,而零没有倒数。
绝对值是一个数所对应的点与原点的距离,在数轴上表示。
对任何有理数a,总有|a|≥0.零的绝对值是它本身,也可看成它的相反数。
若|a|=a,则a≥0;若|a|=-a,则a≤0.若a>0,则|a|=a;若a<0,则|a|=-a;若a=0,则|a|=0.有理数的比较大小有几个规则:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
有理数的运算包括加、减、乘、除和乘方。
在运算顺序上,先算乘方,再算乘除,最后算加减。
如果有括号,就先算括号里面的。
对只含乘除或只含加减的运算,应从左往右运算。
在加法法则中,同号两数相加取相同的符号,并把绝对值相加;异号两数相加取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0.减法法则是减去一个数,等于加上这个数的相反数。
乘法法则是两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同相乘,都得0.在除法法则中,除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于的数,都得0.有理数的乘方是指将有理数连乘若干次的操作。
其中,正数的任何次幂都是正数,例如2的3次方等于8,而负数的奇次幂是负数,例如-2的3次方等于-8,负数的偶次幂是正数,例如-2的4次方等于16.这些规律需要我们在进行有理数的乘方运算时注意。
数学 第二单元 有理数及其运算 知识点汇总
七年级-上册
七年级上册-第二章 有理数及其运算
七年级上册-第二章 有理数及其运算
1.有理数 2.数轴 3.绝对值 4.有理数的加法 5.有理数的减法 6.有理数的加减混合运算 7.水位的变化 8.有理数的乘法 9.有理数的除法 10.有理数的乘方 11.科学记数法
七年级上册-第二章 有理数及其运算
思维导图
七年级上册-第二章 有理数及其运算
正数和负数的概念
⒈正数和负数的概念 负数:比 0 小的数 正数:比 0 大的数 0 既不是正数,也不是负数。 注意: ①字母 a 可以表示任意数,当 a 表示正数时,-a 是负数;当 a 表示负数时,-a 是正数;当 a 表示 0 时,-a 仍是 0。 (如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a, -a 就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2. 具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量, 比如:零上 8℃表示为: +8℃; 零下 8℃表示为: -8℃ 3. 0 表示的意义 ⑴0 表示“ 没有”,如教室里有 0 个人,就是说教室里没有人; ⑵0 是正数和负数的分界线,0 既不是正数,也不是负数。
七年级第二章有理数及其运算知识点总结
1、有理数的分类2、数轴:规定了( )的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,并能灵活运用。
1)任何一个有理数都可以用数轴上的一个点来表示2)在数轴上表示的两个数,( )的数总比( )的数大3)正数都( )0,负数都( )0;正数( )一切负数; 3、相反数:( )叫做互为相反数,零的相反数是( ) 1)数a 的相反数是( )(a 是任意一个有理数) 3)若a 、b 互为相反数,则a+b=( ).4、倒数:如果a 与b 互为倒数,则有ab=( ),反之亦成立。
倒数等于本身的数是( )。
零没有倒数。
5、绝对值:在数轴上,( ),叫做该数的绝对值。
数a 的绝对值记作( ) 1) 对任何有理数a,总有︱a ︱( )02)零的绝对值时它本身可看成它的相反数,若|a|=a ,则a ( )0;若|a|=-a ,则a ( )0。
3)若a >0,则︱a ︱= ;若a <0,则︱a ︱= ;若a =0,则︱a ︱= ;6、有理数比较大小: 1)正数 零,负数 零,正数 一切负数; 2)数轴上的两个点所表示的数,右边的总比左边的( ) ; 3)两个负数,绝对值大的 ( )。
7、有理数的运算 :(1)五种运算:加、减、乘、除、乘方 (2)有理数的运算顺序先算 ,再算 ,最后算 ,如果有括号,就先算括号里面的,对只含乘除,或只含加减的运算,应 运算。
有理数有理数(3)运算法则1)有理数加法法则①同号两数相加,()②异号两数相加,取()的符号,并();互为相反数的两数相加得();2)有理数减法法则:减去一个数,(). 即a-b=(3)有理数的乘法法则:两数相乘,同号(),异号(),并();任何数同0相乘,( . )①几个不等于0的数相乘,积的符号由()决定,当()时,积为负;当( )时,积为正.②几个数相乘,有一个因数为0,积就为( )4)有理数除法法则①除以一个数等于( );②两数相除,( )0除以任何一个不等于0的数,( )5)有理数的乘方正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.(4)运算律加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律。
《有理数及其运算》全章复习与巩固(基础)知识讲解
《有理数及其运算》全章复习与巩固(基础)责编:杜少波【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-. 2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;。
七年级上册有理数及其运算知识点
七年级上册有理数及其运算知识点全文共5篇示例,供读者参考七年级上册有理数及其运算知识点篇1整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:am+an=a(m+n)(am)n=amn(a/b)n=an/bn 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
七年级上册有理数及其运算知识点篇21.字母表示数1)字母表示运算律2)字母表示计算公式字母可以表示任何数2.代数式1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等.2)书写要求:①字母与字母相乘时,乘号通常简写作“ ”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”②除法一般写成分数形式③ 如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起来再写单位。
北师大版七年级上册第二章有理数及其运算知识点总结
正整数(自然数)正整数正数整零正分数数负整数有理零有理数数正分数负整数负数分负分数负分数数2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,并能灵活运用。
1)任何一个有理数都可以用数轴上的一个点来表示2)在数轴上表示的两个数,右边的数总比左边的数大3)正数都大于 0,负数都小于 0;正数大于一切负数;3、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零1)数 a 的相反数是 -a(a 是任意一个有理数)2)0 的相反数是0.正整数(自然数)正整数正数整零正分数数负整数有理零有理数数正分数负整数负数分负分数负分数数2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,并能灵活运用。
1)任何一个有理数都可以用数轴上的一个点来表示2)在数轴上表示的两个数,右边的数总比左边的数大3)正数都大于 0,负数都小于 0;正数大于一切负数;3、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零1)数 a 的相反数是 -a(a 是任意一个有理数)2)0 的相反数是0.正整数(自然数)整零数负整数有理数正分数分负分数数正数正整数正分数有理零数负整数负数负分数2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,并能灵活运用。
1)任何一个有理数都可以用数轴上的一个点来表示2)在数轴上表示的两个数,右边的数总比左边的数大3)正数都大于 0,负数都小于 0;正数大于一切负数;3、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零1)数 a 的相反数是 -a(a 是任意一个有理数)2)0 的相反数是0.正整数(自然数)整零数负整数有理数正分数分负分数数正数正整数正分数有理零数负整数负数负分数2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
针对训练
4.2015年末上海市常住人口总数为2415.27万 人,用科学记数法表示为 2.41527×107 人.
5.将数13 445 000 000 000km用科学记数法 表示___1_.3_445×__1_0_1_6__m.
注意统一单位
考点五 有理数的计算
例5 计算:
(1)
23Leabharlann 9422 3…};
正分数集合:{ 3 ,3 1 ,0.1008, 54
负分数集合:{ 0.92,4.95,
…}; …}.
[解析] 根据正数、负数、整数和分数的定义,严格
区别.注意零既不是正数,也不是负数,但是整数.
针对训练
2.将下列各数分别填入下列相应的圈内:
3.5,-3.5 ,0,|-2|,
-2 ,-1 3,5
(×)
考点二 有理数的分类
例 2 把下列各数填在相应的括号内:-16,26,
-12,-0.92, 35,0,314,0.1008,-4.95.
正数集合:{ 26,3,31,0.1008, 54
…};
负数集合:{ 2 6 , 1 2 , 0 .9 2 , 4 .9 5 ,…};
整数集合:{ 26,26,12,0,
2.a与n的取法 在a×10n形式中,n的值是原数整数位数 减1,a则是将原数保留一位整数得来的.
考点讲练
考点一 有理数的基本概念
例1 下列叙述正确的有( D )
①零是整数中最小的数;②有理数中没有最大的数;
③正数的绝对值是负数;④正数的相反数是负数.
A.3个
B.4个
C.1个 D.2个
【解析】 整数分为正整数,零,负整数,负整数比零
解:将各数在数轴上表示出来,右边的大于左
边的,然后从大到小排列
-3.5
-2
1
3 5
1 3 0 0.5
|-2|
-4 -3 -2 -1 0 1 2
3.5 34
3 .5 2 0 .5 0 1 1 3 2 3 .5 . 35
考点四 科学记数法
例4 在我国南海某海域探明可燃冰储量约有
194亿立方米,数字194亿用科学记数法表示正
2.有理数的减法
减法法则: 减去一个数,等于加上这个数的相反数.
3.有理数的乘法
(1)乘法法则
乘法的交换律
(2)乘法的运算律 乘法的结合律
乘法对加法的分配律 4.有理数的除法
除法法则: 除以一个数,等于乘以这个数的倒数.
5.有理数的乘方 乘方运算规律:
a 幂
n指
数
(1)正数的任何次幂都是__正__数___. 底数
;
(2)1416232;
(3)52258(2)154;
(4)3510.55 32.
解 : (1)原 式 =894=8; 49
(2)原 式 = 11 ( 29 ) = 17=1;
6
66
(3 )原 式 = 5 2 2 5 8 1 2 1 5 4 = 5 2 1 = 2 3 ;
确的是( A )
A.1.94×1010
B.0.194×1010
C.19.4×109
D.1.94×109
解析:194亿=19 400 000 000,根据科学记数法表示数 的规律,当原数大于10时,10的幂指数n=原数整数位 数-1,则194亿=1.94×1010.故选A.
[归纳总结] 用科学记数法表示一个大于10的数,就是把这个数 表示为a×10n(其中a是整数位数只有一位的数,n是 正整数)的形式.因此,准确地理解科学记数法的概 念,紧紧抓住a,n的条件是解决此类题的关键.
( 4 ) 原 式 = 3 5 1 0 .2 5 3 2 = 2 2 2 2 5 1 2 = 2 1 2 1 5 .
解:如图,将a,-a,b,-b表示在数轴上, 所以b<-a<a<-b.
[归纳总结]
比较字母的大小,一般可以根据已知条件,在 数轴上找出合适的点,将需要比较大小的字母 表示出来,从而把比较有理数大小的问题直观 形象化,达到快速、有效解决问题的目的.
针对训练
3.请你将下面的数用“>”连接起来
3.5,3.5,0,2,2,1,13,0.5 35
(2)负数的偶次幂是__正__数___,负数的奇次幂是负__数__.
(3)0的任何正整数次幂都是_0__.
(4)a的偶次幂是_非__负__数____,即an≥0(其中n为偶数).
6.有理数的混合运算
有理数混合运算的顺序:
先算乘方,再算乘除,最后算加减;如果
有括号,先算括号里面的.
四、科学记数法 1.科学记数法的概念 一个大于10的数可以表示成a×10n的形式, 其中1≤a<10,n是正整数,这种记数方法叫做科 学记数法.
小;有理数没有最大的数,也没有最小的数;正数的
绝对值是正数,正数的相反数是负数.因此只有②④
正确.
针对训练
1.判断: ①不带“-”号的数都是正数 (× ) ②如果a是正数,那么-a一定是负数( √ ) ③不存在既不是正数,也不是负数的数(×)
④一个有理数不是正数就是负数 ( ×)
⑤ 0℃表示没有温度
七年级上册有理数及其运算小结 与复习
二、数轴 1.数轴的概念
规定了原点、正方向、单位长度的直线叫 做数轴. 2.用数轴上的点表示有理数
任何一个有理数都可以用数轴上的一个点 来表示.
3.比较有理数的大小 (1)数轴上两个点表示的数,右边的总比左边的大.
(2)正数大于0,0大于负数,正数大于负数.
三、绝对值 1.相反数的概念及性质 (1)只有符号不同的两个数叫做互为相反数 (2)互为相反数的两个数到原点的距离相等
1 3
,0.5
正 数 3.5 |-2|, 0.5
负 数
-3.5
,-2
,-1 3,5
1 3
整 数
0,|-2| ,-2
分 数
3.5,-3.5,
-1 3 5
,-
1 ,0.5 3
考点三 利用数轴比较有理数的大小
例3 设a>0,b<0,且|a|<|b|,用“<”号把a,-a,b,-b连 接起来. [解析] 由a>0,b<0,可知a为正数,-a为负数,b 为负数,-b为正数.又由|a|<| b |可知,b的绝对值 大于a的绝对值,可以在数轴上画出示意图,根据数 轴上右边的数大于左边的数来比较.
2.绝对值的概念及性质 (1)一个数在数轴上对应的点到原点的距离 叫做这个数的绝对值 (2)一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数. 0的绝对值是0.
3.比较两个负数的大小 两个负数,绝对值大的反而小.
三、有理数的运算
1.有理数的加法
(1)加法法则
加法的交换律
(2)加法的运算律 加法的结合律