(完整版)博弈论知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博弈论知识总结

博弈论概述:

1、博弈论概念: 博弈论:就是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡问题。 博弈论研究的假设:

1、 决策主体是理性的,最大化自己的收益。

2、 完全理性是共同知识

3、 每个参与人被假定为可以对所处环境以及其他参与者的行为形成正确的信念

与预期

2、和博弈有关的变量:

博弈参与人:博弈中选择行动以最大化自己受益的决策主体。 行动:参与人的决策选择 战略:参与人的行动规则,即事件与决策主体行动之间的映射,也是参与人行动的规则。 信息:参与人在博弈中的知识,尤其是其他决策主体的战略、收益、类型(不完全信息)

等的信息。

完全信息:每个参与人对其他参与人的支付函数有准确的了解;完美信息:在博弈过程的任何时点每个参与人都能观察并记忆之前各局中人所选择的行动,否则为不完美信息。

不完全信息:参与人没有完全掌握其他参与人的特征、战略空间及支付函数等信息,即存在着有关其他参与人的不确定性因素。

支付:决策主体在博弈中的收益。在博弈中支付是所有决策主题所选择的行动的函数。 从经济学的角度讲,博弈是决策主体之间的相互作用,因此和传统个人决策存在着区别: 3、博弈论与传统决策的区别:

1、 传统微观经济学的个人决策就是在给定市场价格、消费者收入条件下,最大化自己

效用,研究工具是无差异曲线。可表示为:maxU(P ,I),其中P 为市场价格,I 为消费者可支配收入。

2、 其他消费者对个人的综合影响表示为一个参数——市场价格,所以在市场价格既定

下,消费者效用只依赖于自己的收入和偏好,不用考虑其他消费者的影响。但是在博弈论理个人效用函数还依赖于其他决策者的选择和效用函数。 4、博弈的表示形式:战略式博弈和扩展式博弈

战略式博弈:是博弈问题的一种规范性描述,有时亦称标准式博弈。

战略式博弈是一种假设每个参与人仅选择一次行动或战略,并且参与人同时进行选择的决策模型,因此,从本质上来讲战略式博弈是一种静态模型,一般适用于描述不需要考虑博弈进程的完全信息静态博弈问题。

1、参与人集合 :

2、每位参与人非空的战略集 S i

3、每位参与人定义在战略组合 上的效用函数Ui(s1,s2,…,sn).

扩展式博弈:是博弈问题的一种规范性描述。

与战略式博弈侧重博弈结果的描述相比,扩展式博弈更注重对参与人在博弈过程中遇到决策问题时序列结构的分析。

包含要素:

1、 参与人集合

{1,2,...,}n Γ={1,2,...,}n Γ=11(,...,,...,)n

i i n i s s s s ==∏

2、参与人的行动顺序,即每个参与人在何时行动;

3、序列结构:每个参与人行动时面临的决策问题,包括参与人行动时可供选择的

行动方案、所了解的信息;

4、参与人的支付函数。

比较:

1、战略式博弈从本质上来讲是一种静态模型。

2、扩展式博弈从本质上来讲是一种动态模型。

5、博弈论分类:

按决策主体的行为相互作用时,当事人能否达成一个具有约束力的协议可分为:

1、合作博弈(强调团体理性、团体最优决策、效率)

2、非合作博弈(强调个人理性,个人最优决策)

按参与人行动先后顺序可分为:

1、静态博弈:博弈中参与人同时行动,或者虽然不是同时行动,但是在行动前不知

道其他参与人所选择的行动。

2、动态博弈:参与人的行动有先后顺序,后行动者获得先行动者的行动信息。

按参与人对信息的掌握程度可分为:

1、完全信息:每个参与人对其他所有参与人的特征、战略空间及支付函数有精确的

了解,博弈开始时不存在不确定性因素。

2、不完全信息:参与人没有完全掌握其他参与人的特征、战略空间及支付函数等信

息,即存在着有关其他参与人的不确定性因素。

按决策主体对信息的掌握程度和行动的先后顺序,博弈可以分为:完全信息静态博弈、

6、根据所学这四种博弈的特点对这四种博弈做一个对比分析:

二、四种博弈类型具体分述

1、完全信息静态博弈

1.1完全信息静态博弈特点:每个参与人对其他所有参与人的特征、战略空间及支付

函数有精确的了解,博弈开始时不存在不确定性因素,参与人同时行动或者不是同时行动但是后行动者不知道行动者的行动信息。战略和行动相同。

1.2 完全信静态博弈相关概念:

以新产品开发博弈举例说明:

参与人:参与人1和2。 参与人的集合卡表示为:Γ={1,2,…n}.表示所有参与人的集合,在新产品开发博弈中为:Γ={1,2}

行动:开发、不开发。

Ai 表示参与人行动的集合。新产品开发博弈中参与人的行动集合为A1=A2={a,b},其中a 为开发,b 为不开发。

a={a1,a2…an}表示参与人的行动组合。新产品开发博弈中为:A={(a,a ),(a,b),(b,a),(b,b)} 战略:参与人的行动规则。

在博弈中的战略可以定义为从观测集到行动集的映射关系,即: Si:Xi —Ai 。用Si={si}表示参与人所有战略的集合。

在n 人博弈中,用S=(s 1,s 2,s 3…,s n )表示 n 个参与人的战略组合,它表示博弈中每个参与人采取战略si 的一种博弈情形。

在完全信息静态博弈中,由于不存在决策时序上的差异,所有参与人在同一决策时点即博弈开始的那一时刻决策,因此,所有参与人面临的决策情形都只有一种,所以,参与人的战略集与行动集相同。

支付:是指参与人在博弈中的所得。一般情况下也是用效用函数来表示参与人在博弈中的所得。因此,参与人的支付就可表示为一种特定博弈情形下参与人得到的确定效用水平或期望效用水平。支付一般用ui(1,2,…,n)表示参与人i 的支付(效用水平),支付组合u=(u1,u2,…un)表示参与人在特定博弈情形下所得到的支付,其中为参与人i 的支付。因此,参与人 i=(i=1,2,…,n)的支付就可表示为:ui=ui(s i ,s -i ).

信息:是参与人所具有的有关博弈的所有知识,如有关其它参与人行动或战略的知识、有关参与人支付的知识等等。在“新产品开发博弈”中,如果两个企业都知道市场需求,那么这样的博弈情形就是我们前面所提到的完全信息假设;如果两个企业中至少有一个不知道市场需求,那么这样的博弈情形就是我们前面所提到的不完全信息假设。

1.3 纯战略纳什均衡

纯战略:参与人在给定信息下只选择一种特定(或确定性)的战略 混合战略:混合战略解释了一个参与人对其他参与人所采取的行动的不确定性,它描述了参与人在给定信息下以某种概率分布随机地选择不同的行动或战略。

纯战略纳什均衡中包括:占有均衡、重复剔除劣战略均衡、一般纯战略纳什均衡等。

1、占优均衡 占优战略:参与人的最优战略si *与其他参与人的选择 s -i 无关。无论其他参与人选择什么战略,参与人的最优战略总是唯一的,这样的最优战略称之为“占优战略”。

在n 人博弈中,如果对于所有的其他参与人的选择s -i ,si *都是参与人 i 的最优选择 则称si *为参与人的占优战略。 在n 人博弈中,如果对所有参与人都存在占优战略si *,则占优战略组合si*=(s1 * si2*,…, sn *)称为占优战略均衡。如果所有参与人都有占优战略存在,那么占优战略均衡就是唯一的所有理性参与人可以预测到的博弈结果。

2、重复剔除劣战略

如果在一个博弈中,参与人不存在占优战略,但是参与人i 存在两个战略,其中一 个战略叫另一个战略的所得效用要大,则理性的参与人绝对不会选择战略。

严格劣战略:

*(,)(,)i

i

i

i

i

i

u s s u s s -->(,)(,)

i i i i i i u s s u s s --'''>(,)(,)i i i i i i u s s u s s --'''>(,)(,)

i i i i i u s s u s s --'''≥

相关文档
最新文档