(完整版)高数1全套公式

合集下载

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。

自考高等数学一(微积分)常用公式表

自考高等数学一(微积分)常用公式表

高 数 常 用 公 式 表常用公式表(一)1、乘法公式(1) (a+b )²=a 2+2ab+b 2 (2) (a-b )²=a ²-2ab+b ² (3) (a+b)(a-b)=a ²-b ²(4) a ³+b ³=(a+b)(a ²-ab+b ²) (5) a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1) a 0=1 (a ≠0)(4) a m a n=am+n(7) (ab) n =a n b n1n(2) a一P= aP(a ≠0) (3) a m =m a nm(5) a m÷a n= a n=a m 一na a n(8) ( b ) n = b n(10) a 2 = |a| 3、指数与对数关系:(1)若a b=N ,则 b = log a N (2)若10b=N ,则b=lgN (3)若 e b =N ,则b=㏑N 4、对数公式:(1) log a a b = b , ㏑ e b=b (2) a log aN = N ,eln N=N(3) log a N =ln Nlna(4) a b = e bln a (5) ln MN=ln M +ln N(6) lnM= ln M 一 ln N (7) ln M n = nln M (8)㏑ n M = 1ln M N n5、三角恒等式:(1) (Sin α)²+ (Cos α)²=1 (2) 1+ (tan α)²=(sec α)²(3) 1+(cot α)²=(csc α)² (4)sin acosa = tan a (5) cosasina= cota(6) cot a =1tana (7) csc a = 1cosa (8) sec a =1cosaa(9) ( a ) (6) ( a m ) n=a=am n26、特殊角三角函数值:7.倍角公式:(1) sin 2a = 2sina cosa (2) tan2a =2tana1tan 2a(3) cos2a = cos 2 a sin 2 a = 2cos 2 a 1= 1 2sin 2 a8.半角公式(降幂公式):1 cosa 1+ cosa 1+ cosa sin a (1) ( sin a )2 = 2 (2) ( cos a ) 2 = 2 (3) tan a= sin a = 1+ cosa2 2 29、三角函数与反三角函数关系:(1)若x=siny ,则y=arcsinx (2)若x=cosy ,则y=arccosx (3)若x=tany ,则y=arctanx (4)若x=coty ,则y=arccotx 10、函数定义域求法:1(1)分式中的分母不能为0, ( a α≠0)(2)负数不能开偶次方, ( a α≥0) (3)对数中的真数必须大于 0, (log a N N>0)(4)反三角函数中arcsinx ,arccosx 的x 满足: (--1≤x ≤1) (5)上面数种情况同时在某函数出现时,此时应取其交集。

高中数学必修一公式整理精选全文

高中数学必修一公式整理精选全文

可编辑修改精选全文完整版高中数学必修一公式整理一、几何公式1、直线:(1) 直线的方程是y=kx+b,其中k为斜率,b为y轴截距;(2) 直线的斜率的计算公式:斜率K=(点1的纵坐标减去点2的纵坐标)除以(点1的横坐标减去点2的横坐标)。

2、平面图形(1) 三角形三边关系:任意一边长加上另外两边长,总长度要大于第三边。

(2) 三角形面积公式:面积 = (底边×高)÷2(3) 矩形的面积公式:面积 = 长×宽(4) 圆的面积公式:面积= π × 半径×半径二、代数公式1、平方差(1) 一元二次方程的解法:ax²+bx+c=0,解法为:x={-b±√(b²-4ac) }/2a(2) 二元二次方程的解法:ax²+bxy+cy²+dx+ey+f=0,解法为:x=(-be+√(b²-4ac)(-de+√(d²-4af))/(2a);y=(2a(-be+√(b²-4ac))/(-de+√(d²-4af))。

2、二次函数(1) 二次函数公式:y=ax²+bx+c,其中a不等于0(2) 二次函数的对称轴:x轴的方程为: x= -b/2a(3) 二次函数的极值的计算:极值的 x 值为: -b/2a , 极值的 y 值为:y=a(-b/2a)²+b(-b/2a)+c三、数列公式1、等差数列公式(1) 求和公式:Sn=n(a1+an)/2,其中n为项数,a1为首项,an为末项;(2) 首项公式:a1=Sn/n-(n-1)d,其中n为项数,Sn为该数列的前n项和,d为公差;(3) 末项公式:an=a1+(n-1)d,其中a1为首项,n为项数,d为公差;(4) 公差公式:d=(an-a1)/(n-1),其中an为末项,a1首项,n为项数;2、等比数列的公式(1) 求和公式:Sn=a1(1-qn)/(1-q),其中a1为首项,q为公比,n为项数;(2) 首项公式:a1=Sn(1-q)/(1-qn),其中Sn为该数列的前n项和,q为公比,n为项数;(3) 末项公式:an=a1q(n-1),其中a1为首项,q为公比,n为项数;(4) 公比公式:q=(an/a1)^(1/(n-1)),其中an为末项,a1首项,n 为项数;。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

高数一全套公式

高数一全套公式

初等数学基础知识一、三角函数1 .公式同角三角函数间的基本关系式:平方关系:sin A2( a )+cos A2( a )=tan^2( a )+1= sec A2( ;cOt A2( a )+1= csc A2( a) 商的关系:tan a =sin a /cos a ot a =cos a /sin a倒数关系:tan a・ cot a; =sin a・ csc a =1cos a・ sec a =1三角函数恒等变形公式:两角和与差的三角函数:cos( a + 3 )=cos a・ coin Ba・ sin 3cos( a 3 )=cos a・ cos 3 +sin a・ sin 3sin( a±3 )=sin a・ cos 3 土 cos a・ sin 3tan( a + 3 )=(tan a +tan -tan(a^ tan 3)tan( a 3 )=(tan -tan 3 )/(1+tan a・ tan 3)倍角公式:sin(2 a )=2sin a・ cos acos(2 a )=cosA2( -s)n人2( a )=2cosA2( -a=1- 2si门人2( a)tan(2 a )=2tan a #1 门人2( a )]半角公式:sinA2( a /2X1-C0S a )/2cosA2( a /2)=(1+cos a )/2tan A2( a /2)=(1cos a )/(1+cos a)tan( a /2)=sin a /(1+cos ot-()os1a )/sin a万能公式:sin a =2tan( a /2)/[1+ta门人2( a /2)]cos a =[1-tanA2( a /2)]/[1+ta门人2( a /2)]tan a =2tan( a /2)/{t1a门人2( a /2)]积化和差公式:sin a・cos 3 =(1/2){sin(a + 3-)+s]n( acos a・sin 3=(1/2){sin(-si a+ a))]cos a・cos 3 =(1/2){cos( a + 3 )+^$1 asin a・sin-(1=){cos( a +-co)( a- 3 )] 和差化积公式:sin a +sin 3 =2sin{( a + 3 )/2]cos{)/2] asin asin3 =2cos[( a + 3 )/2]sin{© )/2}x cos a +cos 3 =2cos[( a + 3 )/2]cos{(3 )2 cos a-cos 3=2S in{(a + 3 )/2]sin{- 3 )/a2.特殊角的三角函数值f (衿、0 (0=)JI■6(30 JJT~4(45)JI~3(60 °)31"2(90°)cos日 1 73/2 V2/2 1/2 0si n日0 1/2 v'2 / 2 V3/2 1tan日0 1/V3 1 不存在cot日不存在43 1 1小0只需记住这两的三角值。

高数公式大全(全)

高数公式大全(全)

高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

(完整word版)高数公式大全(全)(word文档良心出品)

(完整word版)高数公式大全(全)(word文档良心出品)

精心整理高数公式大全1.基本积分表:三角函数的有理式积分:·诱导公式:⎰⎰⎰⎰+-==+==Cctgx xdx x dx C tgx xdx x dx csc sin sec cos 2222C tgx x xdx Cx ctgxdx C x tgxdx ++=+=+-=⎰⎰⎰sec ln sec sin ln cos ln·和差角公式:2sin2sin2coscos2cos2cos2coscos2sin2cos2sinsin2cos2sin2sinsinβαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctgctgctgctgctgtgtgtgtgtg±⋅=±⋅±=±=±±=±1)(1)(sinsincoscos)cos(sincoscossin)sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式:3021),,(z y x F M z y x =⎪⎩⎪⎨⎧=曲面在点空间曲线方向曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsAdvAdsRQPdsAdsnAzRyQxPdsRQPRdxdyQdzdxPdydzdvzRyQxPnndiv)coscoscos(...,0div,div)coscoscos()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:。

高等数学公式大全(几乎包含了所有)

高等数学公式大全(几乎包含了所有)

高等数学公式大全令狐采学1、导数公式:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ2、基本积分表:3、三角函数的有理式积分:一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式: ·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

(完整版)高数1全套公式

(完整版)高数1全套公式

一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值1。

高数(一)全公式

高数(一)全公式

初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]co sα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2.特殊角的三角函数值θ)(θf0 )0(6π )30( 4π )45( 3π )60( 2π)90(θcos 1 2/32/2 2/10 θsin 0 2/12/22/3 1 θtan 0 3/1 1 3不存在 θcot不存在313/1只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。

(完整版)高数1全套公式

(完整版)高数1全套公式
0(>式等不次二元一a
02>cbxax 2121)(xxxxxx>或<< abx2 Rx 02<cbxax 21xxx x x
因式分解与乘法公式
2
22
22
322
322
2233
2233
22(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()
222(abababaabbabaabbabababaabbababaabbaababbabaababbababcabbcca 2
竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割
b42 0 0 0
0(2>一元二次函数acbxaxy
.1x
2cbxax一元二次方程
acbbx2422,1有二互异实根
abx2)(2,1有一根有二相等实根 无实根 1 45 2 1 45 1 2 30 60 3 2x 1x
、1()dxxdx(为任意常数);
、()lnxxdaaadx,特别地,当ea时,()xxdeedx;
、1(log)
adxdxxa,特别地,当ea时,1(ln)dxdxx;
、(sin)cosdxxdx;

)sindxxdx;
、2(tan)secdxxdx;
、2(cot)cscdxxdx;


数 10logaaxya R y=logax
xa>10<a<1O(1,0)xy
过点1,0. 1a单增. 10a单减.
log1,log10,,0logloglog,logloglog,loglog,loglog0,1,loglog(0)
0)
aaaaaaaapaacacxaxaMNMNMNMMNNMPMbbcaaxxaxx

高中数学必修一公式大全

高中数学必修一公式大全

高中数学必修一公式大全全文共四篇示例,供读者参考第一篇示例:高中数学必修一公式大全高中数学是我们学习的一门基础学科,掌握好数学知识对我们的学习和未来的发展至关重要。

在高中阶段,数学被划分为必修一和必修二两部分,其中必修一主要包括代数、函数、数列和不等式等内容。

在这篇文章中,我们将为大家整理高中数学必修一的常用公式,希望对大家学习和复习数学知识有所帮助。

一、代数部分公式1. 二次函数一般式:y=ax^2+bx+c2. 一元二次方程求根公式:x=\frac{-b±\sqrt{b^2-4ac}}{2a}3. 重要恒等式:(a+b)^2=a^2+2ab+b^24. 二次方程判别式:Δ=b^2-4ac1. 定义域和值域的定义:- 定义域:函数能够取值的集合- 值域:函数所有可能的输出值的集合2. 奇函数和偶函数的性质:- 奇函数:f(-x)=-f(x)- 偶函数:f(-x)=f(x)3. 函数的复合与反函数:- 复合函数:(f◦g)(x)=f[g(x)]- 反函数:f(f^(-1)(x))=x4. 函数的性质之一致性与不一致性- 一致性:若f(x)=g(x),则等式两边分别代入相同的值时,结果相等- 不一致性:若f(x)=g(x),则一定存在某一值x使得f(x)≠g(x)1. 等差数列求和公式:Sn=\frac{n(a1+an)}{2}2. 等比数列求和公式:Sn=\frac{a1(1-q^n)}{1-q}3. 通项公式:- 等差数列:an=a1+(n-1)d- 等比数列:an=a1*q^(n-1)4. 递推公式:- 等差数列:an=an-1+d- 等比数列:an=an-1*q四、不等式部分公式1. 绝对值不等式的性质:- |a|<b等价于-b<a<b- |a|>b等价于a<-b或者a>b2. 一元一次不等式解法:- 含有绝对值的一元一次不等式:|ax+b|<c等价于-b<ax+b<c和-b>ax+b>-c3. 一元二次不等式解法:- 一元二次不等式ax^2+bx+c<0或者ax^2+bx+c>0的解法以上是高中数学必修一的部分公式,这些公式是我们学习数学时常用到的基础知识,希望大家能够掌握好这些知识,为学习和考试打下坚实的基础。

(完整版)高数一全套公式

(完整版)高数一全套公式

初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

o
x
极限的计算方法 一、初等函数: 1.lim C C(C是常值函数)
2.若 f x M(即 f x 是有界量),lim (0 即 是无穷小量), lim f x
0,
特别 : f x C lim C 0
fx
3.若 f x M(即 f x 是有界量) lim
0,
特别 : f x C C 0
lim C 0
2.特殊角的三角函数值
f( ) cos sin tan cot
0 (0 )
1 0 0 不存在
6
(30 ) 3/ 2 1/ 2
1/ 3 3
4
( 45 ) 2 /2 2 /2
1 1
3
( 60 ) 1/ 2 3/ 2
3 1/ 3
2
( 90 )
0 1 不存在 0
只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值
(3)、 d( ax ) a x ln adx ,特别地,当 a e时, d (ex ) exdx ;
(4)、 d(log a x)
1 dx ,特别地,当 a e 时, d (ln x) 1 dx ;
1。
45 2
1
60
2 1
45
30
1 3 诱导公式:
3
函数
角A
sin cos tg ctg
-α 90 °- α 90 °+ α 180 °-α 180 °+α 270 °-α 270 °+α 360 °-α 360 °+α
-sin α cos α -tg α -ctg α cos α sin α ctg α tg α cos α -sin α -ctg α -tg α sin α -cos α -tg α -ctg α -sin α -cos α tg α ctg α -cos α -sin α ctg α tg α -cos α sin α -ctg α -tg α -sin α cos α -tg α -ctg α sin α cos α tg α ctg α
记忆规律: 竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割
即第一象限全是正的,第二象限正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的)
二、一元二次函数、方程和不等式
b 2 4ac
0
0
一元二次函数 y ax 2 bx c(a>0)
一元二次方程 ax 2 bx c 0
x1
x2
x1.2
有二互异实根 b b 2 4ac
x1, 2 2a
有二相等实根 (有一根 ) b
x1,2 2a
0 无实根



ax 2 bx c>0




ax 2 bx c<0
( a> 0)
(x1<x2 ) x<x1或 x> x2
x1 x x2
b x
2a x
三、 因式分解与乘法公式
(1)a2 b2 (a b)( a b) (2) a2 2ab b2 (a b) 2 (3)a2 2ab b2 ( a b)2 (4) a3 b3 ( a b)( a2 ab b2) (5)a3 b3 ( a b)( a2 ab b2) (6) a3 3a2b 3ab2 b3 (a b)3 (7) a3 3a2b 3ab2 b3 (a b)3 (8)a2 b2 c2 2ab 2bc 2ca (a b c)2 (9) an bn ( a b)( an 1 a n 2b L ab n 2 b n 1),( n 2)
T.
x
在每个周期
内单增
y
-
O
奇函数.
T.
x
在每个周期
内单减.
y
/2
-1
o
1
x
- /2
奇函数. 单增.
y.
2
2


1,1
弦 y arccosx




切 y arctanx
R


y
/2
-1
o1
x
单减. 0y .
y
/2
o
x
- /2
奇函数. 单增.
y.
2
2


切 y arccot x
R


y
单减.
/2
0y .
gx
2型
A.忽略掉分子 , 分母中可以忽略掉的较低阶的无穷大 , 保留最高阶的无穷大
B.分子 , 分母同除以最高阶无穷大后 , 再化简计算 .
C.洛必达法则 .
3

通过分式通分或无理函 数有理化 , 转化为 " 0 " 型或 " " 型 0
, 再化简计算
1 4 0 转化为 0
00 10
5 00 型 求对数 0
6
型 0
求对数
0
1
7 1 型 通过 lim 1 x x e 或求对数来计算 . x0
二、分段函数: 分段点的极限用左 , 右极限的定义来求解 .
基本初等函数的导数公式
(1) (C) 0 , C 是常数
(2) (x )
x1
(3) (a x ) ax ln a ,特别地,当 a e 时,( ex) ex
单增; 0 时在 R
单减.
y 0.
过点 0,1 .
a 1单增.
0 a 1单减.
am an
am
n
,
a a
m n
am n, am n
am n
对 y log a x
数 a0
R
函 a1 数
y
y=log ax
a>1
O
(1,0)
x
0<a<1 y=log ax
过点 1,0 .
a 1单增. 0 a 1单减. log a a 1,log a 1 0,
a— 边长
符号
C= 4a S =a 2
周长 C 和面积 S
长方形
a 和 b-边长
三角形
平行四边形 菱形 梯形 圆
a,b,c -三边长 h- a 边上的高 s-周长的一半 A,B,C -内角 其中 s=(a+b+c)/2
a,b -边长 h- a 边的高 α-两边夹角
a-边长 α-夹角 D -长对角线长 d-短对角线长
一、三角函数
1.公式 同角三角函数间的基本关系式: ·平方关系: sin^2( α )+cos^2( α );=t1an^2( α )+1=sec^2( α; c)ot^2( α )+1=csc^2( α) ·商的关系: tan α =sin α /cos αcot α =cos α /sin α ·倒数关系: tan α· cot α; =1sin α· csc α; =1cos α· sec α =1 三角函数恒等变形公式: ·两角和与差的三角函数: cos( α +β )=cos α· c-soisnβα· sin β cos( α-β )=cos α· cos β +sin α· sin β sin( α±β )=sin α· cos β± cos α· sin β tan( α +β )=(tan α +tan β-ta)n/(1α· tan β) tan( α-β )=(tan -αtan β )/(1+tan α· tan β) 倍角公式: sin(2 α )=2sin α· cos α cos(2 α )=cos^2( α-s)in^2( α )=2cos^2( -α1=)1- 2sin^2( α) tan(2 α )=2tan α-/t[a1n^2( α )] ·半角公式: sin^2( α /2)(=1- cos α )/2 cos^2( α /2)=(1+cos α )/2 tan^2( α /2)=(1-cos α )/(1+cos α) tan( α /2)=sin α /(1+cos α-c)o=s(1α )/sin α ·万能公式: sin α =2tan( α /2)/[1+tan^2( α /2)] cos α =[1-tan^2( α /2)]/[1+tan^2( α /2)] tan α =2tan( α /2)/-[t1an^2( α /2)] ·积化和差公式: sin α· cos β =(1/2)[sin( α +β-)β+s)i]n( α cos α· sin β =(1/2)[sin( - sαin(+βα- β))] cos α· cos β =(1/2)[cos( α +β )+-cβos)]( α sin α· sin-β(1/=2)[cos( α +-βco)s( α-β )] ·和差化积公式: sin α +sin β =2sin[( α +β )/2]c-oβs[()/2] α sin α-sin β =2cos[( α +β )/2]sin-[β( )/2α] cos α +cos β =2cos[( α +β )/2]cos-[β( )/2α] cos α-cos β=-2sin[( α +β )/2]sin[-(β )/2α]
C 4.lim
0
C0 C0
5.未定式
1 0型 0
A.分子 , 分母含有相同的零因式 , 消去零因式 B.等价无穷小替换 (常用 sin x ~ x, ex 1 ~ x,ln x
1 ~ x)
fx
fx
C.洛必达法则 :要求 f x , g x 存在 , 且 lim
相关文档
最新文档