六年级学而思奥数

合集下载

2017年深圳小学六年级学而思奥数超常班而选拔考试卷答案

2017年深圳小学六年级学而思奥数超常班而选拔考试卷答案
11:56
11. 艾迪有两组不同的砝码,第一组砝码为 1g,2g,4g,…,512g 各一个,共 10 个;第二组砝码为 1g,3g,
9g,…,19683g 各两个,共 20 个.艾迪将第一组砝码全部放在天平的左边,那么天平的右边需要放 ________个砝码,才能使得天平恰好平衡. 【答案】7 【解析】左边的重量为:1+2+…+512=512×2-1=1023(g),右边要称出将 1023 转化为 3 进制:
【解析】 SBEG
SBEF

SEFG
SBFG
S长ABCD
1 2
70 ,则 SBEG
70 - SBEF
70 - 6 4 2 58
6. 已知三个连续的自然数的乘积为 1320,这三个数的和为________.
【答案】33
【解析】1320=23 3 5 11 ,此时和为 10+11+12=33
1 2 3 4 6 7 8 9 11 99 1 2 3 4 6 7 8 9 1119 5 10 15 20
13. 如下图,正方形 ABCD 中, F 是 AD 靠近 A 的三等分点, E 是 BC 靠近 C 的三等分点, G 是 BF 的中点.若
已知正方形 ABCD 的面积为 120,则三角形 BEG 的面积是________.
AF
D
数, c d 进 7 位,不可能; d 为奇数, c d 进 2 位. c 4 时, d 至少为 5.154 e= 1 , e 为偶数, 4 e 进 1
位,则 e 4 ,乘积最小为154 542 83468
16. 1+2+…+63=2016,2016 最多能拆成 63 个连续的非零自然数的和;2+3+4+5+6=20,20 最多能拆成 5 个连续

学而思奥数第六级第六讲逻辑思维综合(邹、陈、罗)

学而思奥数第六级第六讲逻辑思维综合(邹、陈、罗)

学而思奥数第六级第六讲 逻辑推理综合逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。

对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。

本讲我们主要从各个角度总结逻辑推理的解题方法。

一、 列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、 假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、 计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.一、 列表推理法【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?例题精讲知识结构【例2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【巩固】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【例3】甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:.【巩固】甲、乙、丙三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴丙比大队长的成绩好.⑵甲和中队长的成绩不相同.⑶中队长比乙的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【例4】甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说.他们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵甲会日语,丁不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日、法两种语言.请问:甲、乙、丙、丁各会哪两种语言?【巩固】宝宝、贝贝、聪聪每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们,此外:⑴数学博士夸跳高冠军跳的高⑵跳高冠军和大作家常与宝宝一起看电影⑶短跑健将请小画家画贺年卡⑷数学博士和小画家关系很好⑸贝贝向大作家借过书⑹聪聪下象棋常赢贝贝和小画家问:宝宝、贝贝、聪聪各有哪两个外号吗?【例5】六年级四个班进行数学竞赛,小明猜想比赛的结果是:3班第一名,2班第二名,1班第三名,4班第四名.小华猜想比赛的结果是:2班第一名,4班第二名,3班第三名,1班第四名.结果只有小华猜到的4班为第二名是正确的.那么这次竞赛的名次是班第一名,班第二名,班第三名,班第四名。

【推荐】六年级学而思奥数

【推荐】六年级学而思奥数

11111123420261220420L +++++ 第一讲 小升初计算重点考查内容(一)抵消思想——裂项36579111357612203042++++++1111112123123100+++++++++++L L222222222222233333333333331121231234122611212312341226L L L +++++++++-+-+-+++++++++测试题【例1】(★★)11111 1357911_____.612203042+++++=计算A.53614B.7512C.4121D.1712【例2】(★★★)计算:2337911345122030+++++=( )A.3227B.4112C.4121D.2312【例3】(★★★★)11111_____12123123412310+++++=+++++++++LLA.1113B.111C.712D.2011【例4】(★★★★)计算:2222222222221324351820213141191++++++++=----L()A.72019B.15138190C.1402D.73620本讲学习重点:1.海哥、海马学奥数时的那点笑话~2.整体约分与连锁约分技巧(2010第8届·走进美妙的数学花园·六年级初赛)211354117997⎛⎫⎛⎫+÷+⎪ ⎪⎝⎭⎝⎭【附加练习】2129476122323791113791113⎛⎫⎛⎫+++÷+++⎪ ⎪⎝⎭⎝⎭第二讲小升初计算重点考查内容(二)抵消思想——约分(2009·数学解题能力展示·读者评选活动小学六年级组初赛试题)89109101110111211121378910111178910++++++++-+--+-124248361210020040013926183927100300900⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯L L【附加练习】1246248123612181002004006001369261218391827100300600900⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯L L一根铁丝,第1次截去总长度的212,第2次截去剩余长度的213,第3次截去剩余长度的214…第2008次截去剩余长度的212009,此时该铁丝还剩2010厘米,那么该铁丝原长为______厘米?【附加练习】1111111113243520072009⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯⨯+ ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭L已知135979924698100A ⨯⨯⨯⨯⨯L =,24696983579799B ⨯⨯⨯⨯⨯L =,110C =。

学而思小学奥数知识点梳理

学而思小学奥数知识点梳理

学而思小学奥数知识点梳理学而思教材编写组前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。

概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。

形如:,则。

5.定义新运算6.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如:=100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。

奥数 六年级 千份讲义 25 1[1].学而思杯考前辅导

奥数 六年级 千份讲义 25 1[1].学而思杯考前辅导

模块一、计算【例 1】(2008年学而思杯6年级1试第1题)计算:11111200820092010201120121854108180270++++= 。

【例 2】(2009年学而思杯6年级第6题)计算:1122426153577++++=____。

【例 3】(2008年学而思杯6年级第1题)计算:3413441344413444444441344444444412389275277527775277777777527777777775+⨯+⨯++⨯+⨯=。

【巩固】(第五届《小数报》数学竞赛初赛计算题第3题)计算:11111 123420 261220420 +++++学而思杯考前辅导【巩固】 计算:1111111315356399143195++++++【巩固】 111111212312100++++++++++【巩固】234501(12)(12)(123)(123)(1234)(12349)(12350)++++⨯++⨯++++⨯+++++++⨯++++【巩固】 111111212312100++++++++++【巩固】234501(12)(12)(123)(123)(1234)(12349)(12350)++++⨯++⨯++++⨯+++++++⨯++++【巩固】 (仁华学校入学测试题) 22222211111131517191111131+++++=------ .【巩固】 计算:222222223571512233478++++⨯⨯⨯⨯【巩固】 计算:222222222231517119931199513151711993119951++++++++++=----- .【巩固】计算:222212350133********++++=⨯⨯⨯⨯.【巩固】11111 (......) 1200722006(2008)200622007120071111 (......) 20081200622005(2007)20061n nn n+++++-⨯⨯⨯-⨯⨯+++++⨯⨯⨯-⨯【巩固】1 2【例 4】(2009年学而思杯6年级第1题)a=10.8+10.98+10.998+10.9998+10.99998,的整数部分是。

学而思小学奥数36个专题总汇(下)

学而思小学奥数36个专题总汇(下)

第13讲植树问题内容概述几何图形的设计与构造,本讲讲解一些有关的植树问题.典型问题1.今有10盆花要在平地上摆成5行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:2.今有9盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:3.今有10盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行·【分析与解】如下图所示:4.今有20盆花要在平地上摆成18行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:5.今有20盆花要在平地上摆成20行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:第14讲数字谜综合内容概述各种具有相当难度、求解需要综合应用多方面知识的竖式、横式、数字及数阵图等类型的数字谜问题.典型问题1.ABCD表示一个四位数,EFG表示一个三位数,A,B,C,D,E,F,G代表1至9中的不同的数字.已知ABCD+EFG=1993,问:乘积ABCD×EFG的最大值与最小值相差多少?【分析与解】因为两个数的和一定时,两个数越紧接,乘积越大;两个数的差越大,乘积越小.A显然只能为1,则BCD+EFG=993,当ABCD与EFG的积最大时,ABCD、EFG最接近,则BCD尽可能小,EFG尽可能大,有BCD最小为234,对应EFG为759,所以有1234×759是满足条件的最大乘积;当ABCD与EFG的积最小时,ABCD、EFG差最大,则BCD尽可能大,EFG尽可能小,有EFG最小为234,对应BCD为759,所以有1759×234是满足条件的最小乘积;它们的差为1234×759—1759×234=(1000+234)×759一(1000+759)×234=1000×(759—234)=525000.2.有9个分数的和为1,它们的分子都是1.其中的5个是13,17,19,111,133另外4个数的分母个位数字都是5.请写出这4个分数.【分析与解】 l一(13+17+19+111+133)=210133711⨯⨯⨯⨯=1010335711⨯⨯⨯⨯⨯需要将1010拆成4个数的和,这4个数都不是5的倍数,而且都是3×3×7×1l的约数.因此,它们可能是3,7,9,11,21,33,77,63,99,231,693.经试验得693+231+77+9=1010.所以,其余的4个分数是:15,115,145,1385.3.请在上面算式的每个方格内填入一个数字,使其成为正确的等式.【分析与解】1988=2×2×7×7l=4×497,112+14=13,在等式两边同时乘上1497,就得1 5964+11988=11491.显然满足题意.又135+114=110,两边同乘以1142,就得14970+11988=11420.显然也满足.13053+11988=11204,18094+11988=11596均满足.4.小明按照下列算式:乙组的数口甲组的数○1=对甲、乙两组数逐个进行计算,其中方框是乘号或除号,圆圈是加号或减号他将计算结果填入表14—1的表中.有人发现表中14个数中有两个数是错的请你改正.问改正后的两个数的和是多少?【分析与解】 甲组的前三个数0.625,23,914都是小于1的数,21732与这三个数运算后,得5.05,45164,4516;不论减1还是加l 后,这三个数都比21732大,而这是21732与小于1的数运算的结果,因此可以猜想方框内是除号.现在验算一下:21732÷0.625=8132×85=8120=4.05; 21732÷23=8132×32=31564; 21732÷914=8132×149=6316=31516;21732÷3=2732.从上面四个算式来看,圆圈内填加号,这样有三个结果是对的,而4516是错的. 按照算式乙组的数÷甲组的数+1…………………………* 2÷3+1=123,显然不为 1.5,上面已认定3是正确的,因此,只有把2改为 1.5,才有1.5÷3+1=112,而1.5÷0.625+l=3.4,1.5÷23+1=3.25.由此可见,确定的算式*是正确的.表中有两个错误,4516应改为41516,2应改为1.5, 41516+112=5+15816=6716. 改正后的两个数的和是6716.5.图14—3中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个项点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法:如果不能,请说明理由.(2)能否使8个三角形顶点上数字之和各不相同?如果能,请给出填数方法;如果不能,请说明理由.【分析与解】 (1)无论怎样填法,都不可以使八个三角形顶点上数字之和相等.事实上,假设存在某种填法使得八个三角形顶点上数字之和都相等,不妨设每个三角形顶点上数字之和为k.在计算八个三角形顶点上数字之和时,大正方形四个顶点上每个数字恰好使用过一次;中正方形四个顶点上每个数字各使用过三次;小正方形四个顶点上每个数字各使用过二次.因此,这八个三角形顶点上数字之和的总和为:8k=(1+2+3+4)+3×(1+2+3+4)+2×(1+2+3+4),即8k=60,k不为整数,矛盾,所以假设是错误的. (2)易知:不可能做到三角形的三个顶点上数字完全相同,所以三角形顶点上数字之和最小为 1 +1+2=4,最大为3+4+4=11.而4~11共8个数,于是有可能使得8个三角形顶点上数字之和各不相同,可如下构造,且填法不惟一.图(a)和图(b)是两种填法.6.图14—5中有11条直线.请将1至11这11个数分别填在11个圆圈里,使每一条直线上所有数的和相等.求这个相等的和以及标有*的圆圈中所填的数.【分析与解】表述1:设每行的和为S,在左下图中,除了a出现2次,其他数字均只出现了1次,并且每个数字都出现了,于是有4S=(1+2+3+…+11)+a=66+a;在右上图中除了a出现5次,其他数字均只出现了1次,并且每个数字都出现了,于是有5S=(1+2+3+…11)+4a=66+4a.综合以上两式466(1) 5664(2) S aS a=+⎧⎨=+⎩,①×5-②×4得66-11a=0,所以a=6,则S=18.考虑到含有*的五条线,有4*+(1+2+3+4+…+11)-t=5S=90.即4*-t=24,由t是1~11间的数且t≠*,可知*=7,而每行相等的和S为18.表述2:如下图所示,在每个圆圈内标上字母,带有*的圆圈标为x,首先考虑以下四条直线:(h、f、a),(i、g、a),(x、d、b),(j、e、c),除了标有a的圆圈外,其余每个圆圈都出现了一次,而标有a的圆圈出现了两次,设每条直线上数字之和为S,则有:(1+11)×11÷2+a=4S,即66+a=4S.再考虑以下五条直线:(h、f、a),(i、g、a),(j、x、a),(e、d、a),(c、b、a),同理我们可得到66+4a=5S.综合两个等式6646645a Sa S+=⎧⎨+=⎩,可得a为6,每条直线上和S为18.最后考虑含x的五条直线:(x、h),(x、g、f),(j、x、a),(x、d、b),(i、x、c).其中除了x 出现了5次,e没有出现,其他数字均只出现了一次,于是可以得到:66+4x-e=5S=90,即4x-e=24,由e是1—11间的数且e≠x可知x=7.即每行相等的和S为18,*所填的数为7.7.一个六位数,把个位数字移到最前面便得到一个新的六位数,再将这个六位数的个位数字移到最前面又得到一个新的六位数,如此共进行5次所得的新数连同原来的六位数共6个数称为一组循环数.已知一个六位数所生成的一组循环数恰巧分别为此数的l倍,2倍,3倍,4倍,5倍,6倍,求这个六位数.【分析与解】方法一:17=..0.142857,27=..0.285714,37=..0.428571,47=..0.571428,57=.. 0.714285,67=..0.857142。

奥数1-6年级课表及学费 (学而思)

奥数1-6年级课表及学费  (学而思)
44课时
170元\2课时
1500元\22课时
2500元\期
4300元\年级
四年级(下)
试听:环形跑道(一)、(23)环形跑道(二)、(24)加乘原理与归纳递推、(25)操作问题、(26)流水行船初步、(27)构造与论证之奇偶分析(一)、(28)构造与论证之奇偶分析(二)、(29)多位数计算、(30)容斥原理初步(一)、(31)容斥原理初步(二)、(32)应用题综合、(33)数列与数表(一)、(34)排列(一)、(35)排列(二)、(36)组合(一)、(37)组合(二)、(38)统筹与最优化、(39)小数计算(春季课程)、(40)几何计数、(41)格点与割补、(42)等积变形(一)、(43)等积变形(二)、(44)综合复习
四年级、五年级、六年级学生每次课2小时(2课时,每课时60分钟)
44课时
注意:
奥数学费折扣说明
(1)报22课时可打8.8折
(2)报一学期可打8.5折
(3)报一学年可打8折
奥数特惠试听班399元=6课时(3次课),随同年龄正课班同学试听学习!若试听后满意,需要报正课的同学,399元可以抵扣正课学费!
上课时间说明:一年级、二年级、三年级学生每次课1.5小时(2课时,每课时45分钟)
44课时
二年级(上)
试听:加减法巧算(一) 、(1)动手操作问题、(2)有趣乘法、(3)有趣除法、(4)你有几种答案、(5)推理故事和图文算式、(6)图形的等积变换、(7)巧数图形、(8)数学家小故事、(9)阶段复习、(10)加减法巧算(二)、(11)巧填算符(一)、(12)图形数一数、(13)有趣的一笔画、(14)图形找规律、(15)数列找规律、(16)数字拆分、(17)合理安排、(18)火柴棒中的数学、(19)排列的学问、(20)趣题巧解、(21)有趣的植树问题、(22)阶段复习

学而思小学奥数知识点梳理(大纲设计视图)

学而思小学奥数知识点梳理(大纲设计视图)

学而思小学奥数知识点梳理学而思教材编写组侍春雷前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。

概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。

形如:,则。

5.定义新运算6.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如:=100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。

学而思六年级暑假b班奥数

学而思六年级暑假b班奥数

学而思六年级暑假b班奥数
【实用版】
目录
1.学而思六年级暑假 b 班的概述
2.奥数的定义和意义
3.学生们在这个班级的学习情况和成果
4.学而思对于学生的帮助和影响
正文
学而思六年级暑假 b 班奥数
学而思六年级暑假 b 班是一个针对小学生的奥数培训班。

在这个班
级中,学生们不仅能够学习到奥数的基础知识,还能够通过各种练习和比赛,提升自己的奥数水平。

奥数,全称为奥林匹克数学竞赛,是一项针对中学生的数学竞赛。

奥数的题目往往比一般的数学题目更加复杂和困难,需要学生们运用更高深的数学知识和思维方式来解决。

对于学生而言,参加奥数竞赛不仅能够提升自己的数学能力,还能够锻炼自己的逻辑思维和解决问题的能力。

在学而思六年级暑假 b 班中,学生们能够学习到各种奥数的基础知识,如代数、几何、组合等。

同时,学生们还能够通过各种练习和比赛,提升自己的奥数水平。

在这个班级中,学生们不仅能够学习到奥数的知识,还能够享受到学习奥数的乐趣。

学而思对于学生的帮助和影响也是不可忽视的。

学而思不仅提供了优质的教学资源和专业的教师团队,还能够为学生提供各种学习支持和帮助。

在学而思的学习环境中,学生们能够更好地学习和成长,为自己的未来打下坚实的基础。

总的来说,学而思六年级暑假 b 班奥数是一个很好的学习平台,它
不仅能够为学生们提供优质的教学资源,还能够为学生们提供各种学习支持和帮助。

六年级学而思奥数

六年级学而思奥数

六年级学而思奥数11111123420261220420L +++++36579111357612203042++++++1111112123123100+++++++++++L L222222222222233333333333331121231234122611212312341226L L L +++++++++-+-+-+++++++++测试题【例1】(★★)111111357911_____.612203042+++++=计算A .53614 B .7512 C .4121D .1712【例2】(★★★)计算:2337911 345122030+++++=( )A.3227B.4112C.4121D.2312【例3】(★★★★)11111_____ 12123123412310+++++= +++++++++LLA.1113B.111C.712D.2011【例4】(★★★★)计算:222222222222 1324351820 213141191++++++++= ----L()A.7 2019B.15138190C.1402D.73620本讲学习重点:1.海哥、海马学奥数时的那点笑话~2.整体约分与连锁约分技巧(2010第8届·走进美妙的数学花园·六年级初赛)211354117997⎛⎫⎛⎫+÷+⎪ ⎪⎝⎭⎝⎭【附加练习】2129476122323791113791113⎛⎫⎛⎫+++÷+++⎪ ⎪⎝⎭⎝⎭(2009·数学解题能力展示·读者评选活动小学六年级组初赛试题) 89109101110111211121378910111178910++++++++-+--+-1242483612100200400 13926183927100300900⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯LL第二讲小升初计算重点考查内容(二)抵消思想——约分【附加练习】1246248123612181002004006001369261218391827100300600900⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯L L一根铁丝,第1次截去总长度的212,第2次截去剩余长度的213,第3次截去剩余长度的214…第2008次截去剩余长度的212009,此时该铁丝还剩2010厘米,那么该铁丝原长为______厘米?【附加练习】1111111113243520072009⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯⨯+ ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭L已知135979924698100A ⨯⨯⨯⨯⨯L =,24696983579799B ⨯⨯⨯⨯⨯L =,110C =。

学而思-六年级奥数-第七讲.行程问题(一).刘--用-教师版

学而思-六年级奥数-第七讲.行程问题(一).刘--用-教师版

第一讲行程问题学习目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“ 1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。

用 3 个公式迅速作答;汽车间距=(汽车速度+行人速度)X相遇事件时间间隔汽车间距=(汽车速度-行人速度)X追及事件时间间隔汽车间距=汽车速度X汽车发车时间间隔( 2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图一一尽可能多的列3个好使公式一一结合s全程=vXt-结合植树问题数数。

( 3 ) 当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵ 火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶ 火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同) 、班级速度(不同班不同速) 、班数是否变化分类为四种常见题型:( 1)车速不变-班速不变- 班数2 个(最常见)(2)车速不变-班速不变-班数多个( 3)车速不变-班速变-班数 2 个( 4)车速变-班速不变- 班数2 个标准解法:画图+列 3 个式子1、总时间=一个队伍坐车的时间+ 这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间= 班车同时出发后回来接它的时间。

时钟问题:时钟问题可以看做是一个特殊的圆形轨道上 2 人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是 2 个指针“每分钟走多少角度”或者“每分钟走多少小格”。

奥数1-6年级天天练学而思

奥数1-6年级天天练学而思

学而思奥数网天天练(1-6年级)2010年06月30日(中难度)
小学一年级奥数天天练:趣题
一个小朋友吃1个面包需要6分钟.现在有4个小朋友,按同样的速度,同时吃4个同样的面包,需要几分钟?
小学二年级奥数天天练:整数拆分
某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?
小学三年级奥数天天练:
将1,2,3,4,5,6,7,8这8个数分别填入图中的空格中,使四边的加、减、乘、除4个正确的等式。

小学四年级奥数天天练:约数
在555555的约数中,最大的三位数是多少?
小学五年级奥数天天练:行程问题
小红和小强同时从家里出发相向而行。

小红每分走52米,小强每分走70米,二人在途中的A处相遇。

若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。

小红和小强两人的家相距多少米?
小学六年级奥数天天练:追及问题
小明和爷爷沿着湖边散步,他们从湖边某地同时出发,同向而行。

如果他们两人都慢走,小明走3圈就可以追上爷爷;如果他们两人都慢走,小明走6圈就可以追上爷爷。

已知他们两人快走的速度都比慢走每分钟多行9千米,那么小明快走的速度是多少?。

学而思奥数知识点总结最新

学而思奥数知识点总结最新

学而思小学奥数知识点梳理概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质 若111a b c>>,则c>b>a.。

形如:312123m m m n n n >>,则312123n n n m m m <<。

5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n ②()()612121222++=+++n n n n ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则 形如:abc =100a+10b+c4. 整除性质① 如果c|a 、c|b ,那么c|(a ±b)。

学而思小学六年级奥数电子版教材.doc

学而思小学六年级奥数电子版教材.doc

测试 1·计算篇1 1 1 1 1 1 1 1 1.算(24 48 80 120 168 224 ) 1288 2882.(11 1 1) (1 1 1 1)(1 1 1 1 1)(1 1 1 ) 5 7 9 11 7 9 11 13 5 7 9 11 13 7 9 113.算: 2004 ×2003- 2003 ×2002+ 2002 ×2001-2001 ×2000+⋯+ 2×1= 4.有一列数:⋯⋯第2008 个数是 ________ .5.看律13 = 12,13 + 23 = 32,13 + 23 + 33 = 62⋯⋯,求63 + 73 + ⋯ + 143第 1 讲 小升初专项训练·计算四五年级经典难题回顾例 1 求下列算式计算结果的各位数字之和:66 666 67 252006个 62005个 6例2 求数1的整数部分是几?1 1 1 1 10 11 12 19小升初重点题型精讲例 15125 71 37 91 49 .3 34 45 5195 395.221993 0.41.6例 2910527(0.5 )19 6 5.221995 19959 50例3(132383) (1 1218 1) .2008 1004 2512008 10042516 4014 914016巩固 计算:2 .13 4014 360244例4 算:12322532 502 .1 3 5 7 99 101拓展算:5 7 19 .2 3 2 3 4 8 91 10例 5 1 2+2 3+3 4+4 5+5 6+6 7+7 8+8 9+9 10=. 巩固: 2 3+3 4+4 5+⋯ +100 101=.拓展算:1 2 3+2 3 4+3 4 5+⋯+9 10 11=.例 6[2007–(8.58.5-1.5 1.5)÷ 10]÷ 160-0.3=.巩固算:53×57–47×43 =.例 7 算: 11×19+12 ×18+13 ×17+14 ×16=.拓展 算: 1×99+2 ×98+3 ×97+⋯ +49 ×51= .例 8 算:1×99+2 ×97+3 ×95+⋯ +50 ×1= .家庭作1.7217 8138 91 29 .3 3 5 5 7 736215 3222.33 .4 2 )40 (5.653.(173797)(11319 1) .2007 669 223200766922332 1 52 1 72 119932 1 1995 2 1 4. 算:21 52 1 72 119932 1 1995 2 .3 15. 算: 11×29+12 ×28+ ⋯ +19 ×21= .名校真题1.如图,AD = DB,AE = EF = FC,已知阴影部分面积为5 平方厘米,△ABC的面积是 _________平方厘米 .2.如图 ,ABCD与 AEFG均为正方形 , 三角形 ABH的面积为 6 平方厘米 , 图中阴影部分的面积为_________.3.如图,长方形ABCD的面积是36,E 是 AD的三等分点 ,AE = 2ED, 则阴影部分的面积是.4.如图,边长为1的正方形ABCD中,BE = 2EC,CF = FD,求三角形AEG的面积 .5.如图, 3 个边长为 3 的正方形,甲的中心在乙的一个顶点上,乙的中心在丙的一个顶点上,甲与丙不重叠,求甲、乙、丙叫共覆盖的面积是。

学而思小学六年级奥数电子版教材

学而思小学六年级奥数电子版教材

.
5. 计算:11×29 + 12×28 + … + 19×21 =
.
名校真题
1. 如图,AD = DB, AE = EF = FC,已知阴影部分面积为 5 平方厘米,△ABC 的面积是 _________平方厘米.
2. 如图,ABCD 与 AEFG 均为正方形,三角形 ABH 的面积为 6 平方厘米,图中阴影部分的面 积为_________.
5.如图,阴影部分四边形的外接图形是边长为 12cm 的正方形,则阴影部分四边形的面 积是多少?
名校真题
1. 已知三角形 ABC 是直角三角形,AC=4cm,BC=2cm,求阴影部分的面积.
10
2. 已知图中正方形的面积是 20 平方厘米,则图中里外两个圆的面积之和是 取 3.14)
.(л
3. 奥运会的会徽是五环图,一个五环图是由内圆直径为 6 厘米,外圆直径为 8 厘米的 五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环 盖住的面积是了 7.1 平方厘米,求每个小曲边四边形的面积.(л=3.14 )
3. 如图,长方形 ABCD 的面积是 36,E 是 AD 的三等分点,AE = 2ED,则阴影部分的面积 是 .
5
4. 如图,边长为 1 的正方形 ABCD 中,BE = 2EC,CF = FD,求三角形 AEG 的面积.
5. 如图,3 个边长为 3 的正方形,甲的中心在乙的一个顶点上,乙的中心在丙的一个顶 点上,甲与丙不重叠,求甲、乙、丙共覆盖的面积是 。
15
例 5 一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是 ______立方厘米.(л取 3.14)
巩固 一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为 26.4x 立方厘米.当瓶子正放时,瓶内的酒精的液面高为 6 厘米:瓶子倒放时,空余部分的高 为 2 厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?

学而思小学奥数知识点大全

学而思小学奥数知识点大全

学而思小学奥数知识点大全小学奥数知识点汇编一、计算1.2 数列求和给定一个数列,要求将其中的所有数加起来,得到它们的和。

1.3 数字谜给定一些数字和运算符号,要求通过运算得到一个特定的数字。

1.4 数的拆分将一个数拆分成它的各个位上的数字,例如将1234拆分成1、2、3、4四个数字。

1.5 定义新运算定义一种新的运算,例如“星号”运算,规定a*b=(a+b)^2-a^2-b^2,然后进行相关的计算。

二、应用题综合2.1 和差问题给定两个数的和或差,要求求出这两个数。

2.2 和差问题给定两个数的和或差,要求求出这两个数。

2.3 差倍问题给定两个数的差和一个倍数,要求求出这两个数。

2.4 植树问题给定一定的面积和树的密度,要求求出需要植树的数量。

2.5 年龄问题给定几个人的年龄和年龄之间的关系,要求求出他们的具体年龄。

2.6 盈亏问题给定一些交易的收支情况,要求求出最终的盈亏情况。

2.7 鸡兔同笼问题给定一定数量的鸡和兔,以及它们的总数量和腿的总数量,要求求出鸡和兔的具体数量。

2.8 平均数问题给定一组数的平均数和其中的一些数,要求求出其他数的值。

2.9 牛吃草问题给定一些牛和一块草地,要求求出需要多长时间才能将草吃完。

2.10 分数百分数问题给定一些分数或百分数,要求进行相关的计算。

2.11 浓度问题给定一些溶液的浓度和体积,要求求出其中的物质的质量。

2.12 经济问题给定一些商品的价格和数量,要求求出总的花费或总的收益。

2.13 工程问题给定一些工程的参数,要求进行相关的计算。

2.14 行程问题给定一些车辆的行驶速度和时间,要求求出它们的行程。

小学奥数知识点汇编大全(II)三、数论综合3.1 数的整除性判断一个数是否能够被另一个数整除。

3.2 奇数与偶数判断一个数是奇数还是偶数。

3.3 质数与合数判断一个数是质数还是合数。

3.4 约数与倍数求一个数的所有约数或倍数。

3.5 带余除法对两个数进行带余除法的计算。

学而思小学奥数知识点梳理大纲视图

学而思小学奥数知识点梳理大纲视图

学而思小学奥数知识点梳理学而思教材编写组侍春雷前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。

概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。

形如:,则。

5.定义新运算6.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如:=100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测试题【例1】(★★)111111357911_____.612203042+++++=计算 A .53614 B .7512 C .4121 D .1712【例2】(★★★)计算:2337911345122030+++++=( )A .3227B .4112C .4121D .2312【例3】(★★★★)11111_____12123123412310+++++=+++++++++L LA .1113B .111C .712D .2011 【例4】(★★★★)计算:2222222222221324351820213141191++++++++=----L ( ) A .72019 B .15138190 C .1402D .73620本讲学习重点:1.海哥、海马学奥数时的那点笑话~2.整体约分与连锁约分技巧(2010第8届·走进美妙的数学花园·六年级初赛)【附加练习】(2009·数学解题能力展示·读者评选活动小学六年级组初赛试题)【附加练习】一根铁丝,第1次截去总长度的212,第2次截去剩余长度的213,第3次截去剩余长度的214…第2008次截去剩余长度的212009,此时该铁丝还剩2010厘米,那么该铁丝原长为______厘米?【附加练习】已知135979924698100A ⨯⨯⨯⨯⨯L =,24696983579799B ⨯⨯⨯⨯⨯L =,110C =。

试求A 、B 、C 三者大小关系。

【开裆裤的课堂笔记总结】 第一讲 小升初计算重点考查内容(一)抵消思想——裂项第二讲 小升初计算重点考查内容(二)抵消思想——约分1.整体约分:被除数、除数中的分母对应相等:要么带化假、要么假化带,考虑提取公因数后整体约分;2.连锁约分:多分数连乘,将分子、分母都化成乘积形式,伺机约分。

测试题例1 测:计算:212332213535⎛⎫⎛⎫+÷+ ⎪ ⎪⎝⎭⎝⎭A .1118B .118C .118D .518例2测:计算: 124245357478357911113579+++++++++-++-+ A .2B .4C .3D .1 例3 测:123246369153045234468691281216304560⨯⨯+⨯⨯+⨯⨯++⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯++⨯⨯L L A .34B .114C .14D .35例4测: 一条丝带,第1次剪去总长度的212,第2次剪去剩余长度的213,第3次剪去剩余长度的214…第15次剪去剩余长度的2116,此时该丝带还剩17米,那么该丝带原长为( )米? A .30B .36C .32D .35例5测: 已知13533352463436A ⨯⨯⨯⨯⨯L =,24632343573335B ⨯⨯⨯⨯⨯L =,16C =。

试求A 、B 、C 三者中最大的一个数是( )。

A .B B .AC .CD .不确定用0、1、2、3、4、5六张卡片可组成几个无重复数字的四位数?其中能被2整除的有____个。

【举一反三】还是用数字0、1、2、3、4、5六个数字可组成_____个没有重复数字且能被5整除的四位数?第三讲 小升初计数重点考查内容(三)计数两大原理——加乘原理(2010年北大附中小升初试题)一个三位数,若它的中间数字恰好为首尾数字的平均值,则称它为“好数”。

则“好数”总共有______个。

【举一反三】一个三位数,其反序数也是一个三位数,用这个三位数减去它的反序数得到的差大于0,且为4的倍数,满足条件的三位数有_____个。

1~1999的自然数中,有______个与5678相加时,至少发生一次进位?一个七位数,其数码只能为1或3,且无两个3是相邻的。

问这样的七位数共有多少个?如图所示,水通过管道从A输送到B,管道网一共有5个阀门,阀门可以是开或关,即可以让水流通过,也可以阻止水流通过。

5个阀门的开或关一共有25=32种不同的组合。

问这32种不同的组合中有______种组合可以让水从A流到B。

【本讲重要内容回顾】1.加乘原理16字方针:分步计数,步步相乘;分类计数,类类相加;2.排列组合问题原则:先选后排;3.乘法原理注意事项:特殊位置(元素)、优先考虑。

测试题1.用1 、2 、3 、4 、5 、6 六个数字,一共可以组成多少个数字不重复且能被4整除的4位数?A.84B.72C.60D.962.如果一个大于9的整数,其每个数位上的数字都比他右边数位上的数字大,那么我们称它为迎春数。

那么,小于2008的迎春数一共有多少个?A.225B.205C.185D.1653.若自然数n使得作竖式加法n+(n+1)+(n+2)时均不产生进位现象,便称n为“连绵数”。

如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则不超过100的“连绵数”共有()个。

A.9B.11C.12D.154.地图上有A,B,C,D四个国家(如下图),现有红、黄、蓝、绿四种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?A.80B.78C.69D.845.某人射击8枪,命中4枪,命中4枪中恰好有3枪连在一起的情况的种数是。

A.20B.25C.15D.32第四讲小升初计数重点考查内容(四)容斥原理——总结容斥原理中最常考的几种题型在1~2004的所有自然数中,既不是2的倍数,也不是3和5的倍数的数有______个。

某科室有12人,其中6人会英语,5人会俄语,5人会日语,3人既会英语又会俄语,2人既会俄语又会日语,2人既会英语又会日语,1人三种语言全会。

只会1种外语的人比1种外语也不会的人多______个。

2006盏亮着的电灯,各有一个拉线开关控制,按顺序编号为1、2、…2006。

将编号为2的倍数的灯各拉一下,再将编号为3的倍数的灯各拉一下,最后将编号为5的倍数的灯各拉一下,最后亮着的灯有______盏。

在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的人数多3;只摘草莓者比摘了山莓和草莓但是没有摘李子者多4人;50人没摘草莓;11人摘了山莓和李子但没有摘草莓;总共有60人摘了李子。

如果参与采摘的总人数为100,你能回答下列问题吗?⑴有______人摘了山莓;⑵有______人同时摘了三种水果;⑶有______人只摘了山莓;⑷有______人摘了李子和草莓,而没有摘山莓;⑸有______人只摘了草莓。

在长方形ABCD 中,AD =15cm ,AB =8cm ,四边形OEFG 的面积是9cm 2,求阴影总面积。

测试题1.分母是105的最简真分数有多少个?A .45B .48C .50D .522.某自习室有15人,据调查其中6人有英语作业,5人有数学作业,7人有语文作业,3人既有英语作业又有数学作业,2人既有数学作业又有语文作业,3人既有英语作业又有语文作业,1人语、数、英三门功课都要做,问只有一门功课的人比一门功课都没有的人多多少?A .1B .2C .3D .43.2000盏亮着的电灯,各有一个拉线开关控制,按顺序编号为1、2、…2000将编号为2的倍数的灯各拉一下,再将编号为3倍数的灯各拉一下,最后将编号为5倍数的灯各拉一下,最后亮着的灯有多少盏?A .1000B .998C .1004D .10024.五年级3班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数。

A .20B .21C .22D .235.边长为6、5、2的三个正方形,如图所示,求它们覆盖部分的面积。

A .53B .54C .55D .60经济问题几个关键词及其基本关系1.关键词:成本、预计利润(率)、定价、实际利润(率);2.基本关系:利润率=100% 利润成本,利润率是相对于成本来说的一个百分比。

(★★☆)某家商店决定将一批苹果的价格降到原价的70%卖出,这样所得利润就只有原计划第五讲 小升初应用题重点考查内容(五)经济利润问题的13。

已知这批苹果的进价是每千克6元6角,原计划可获利润2700元,那么这批苹果共有多少千克?【举一反三】某商家决定将一批苹果的价格提高20%,这时所得的利润就是原来的两倍。

已知这批苹果的进价是每千克6元,按原计划可获利润1200元,那么这批苹果共有多少千克?某商店到苹果产地去收购苹果,收购价为每千克元。

从产地到商店的距离是400千米,运费为每吨货物每运1千米收元。

如果在运输及销售过程中的损耗是10%,那么商店要想实现25%的利润率,零售价应是每千克多少元?【举一反三】果品公司购进苹果万千克,每千克进价是元,付运费等开支1840元,预计损耗为1%,如果希望全部进货销售后能获利17%,每千克苹果零售价应当定为多少元?甲、乙两种商品成本总共200元。

甲商品按30%的利润定价,乙商品按20%的利润定价。

后来两种商品都按定价的9折销售,结果仍获利元。

问甲商品的成本是多少元?某店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售。

由于定价过高,无人购买。

后来不得不按38%的利润重新定价,这样出售了其中的40%。

此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。

结果,实际获得的总利润是原定利润的%。

那么第二次降价后的价格是原定价格的百分之多少?利民商店从一家日杂公司买进了一批蚊香,然后按希望获得的利润,每袋加价40%定价出售。

但是,按这种定价卖出这批蚊香的90%时,夏季即将过去。

为了加快资金的周转,利民商店按照定价打七折的优惠价,把剩余的蚊香全部卖出。

这样,实际所得的纯利润比希望获得的纯利润少了15%。

按规定,不论按什么价钱出售,卖完这批蚊香必须上缴营业税300元(税金与买蚊香用的钱一起作为成本)。

请问利民商店买进这批蚊香时一共用了多少元?【本讲重要内容回顾】1.经济问题中几个关键量及它们之间的关系;2.一类重要的数学思想:类比思想,比较相似条件。

3.应用题重要思想:目标倒退,自问一下:要求什么?需要先求什么?注意题目中描述结果的综合性话语。

4.应用题重要方法:方程法。

测试题五1.某家商店决定将一批苹果的价格降到原价的70%卖出,这样所得利润就只有原计划的13。

已知这批苹果的进价是每千克3元,原计划可获利润2700元,那么这批苹果共有多少千克?A .1200B .500C .600D .11002.某商店到苹果产地去收购苹果,收购价为每千克2元。

相关文档
最新文档