渗透德育的数学教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组的应用
-----德育渗透教案
教学目的:
1、使学生掌握二元一次方程组在生活实际中的运用。
2、使学生在探索实际问题的过程中渗透德育教育,激发学生对祖国数学的热爱。
教学重点:二元一次方程组的实际运用,德育教育。
教学难点:二元一次方程组的实际运用。
教学过程:
师:同学们,刚才我们已学习了二元一次方程组的一种解法即代入消元法,下面我们运用所学的知识一起来研究一个有趣的数学题目。
生1(迫不及待地):老师是什么问题啊?
师:同学们,《孙子算经》是我国南北朝时期一部重要的数学著作。是我国古代《算经十书》之一,许多问题浅显有趣。其中“鸡兔同笼”流传尤为广泛,它还漂洋过海流传到了日本等国呢!
师:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?意思是:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?同学们你们会解吗?
……【同学们一阵思考讨论后】
生2:老师,我会解。(用小学算术方法求解)
生3:老师我有另外的解法。(学生用一元一次方程求解)
……【学生小组讨论非常激烈】
生4:用今天所学的二元一次方程组的方法,这个问题就更容易解决了。设鸡有只,兔有只,则根据题意有,用代入消元法解这个方程组。
师:同学们的解法都很好,特别是生4的解法,他把我们今天所学
的知识都应用进来了,使我们更容易理解。那你们知道孙子是如何解答这个“鸡兔同笼”问题的吗?
【学生们流露出迫切想知道的神情】
师:原来孙子提出了大胆的设想。他假设砍去每只鸡和每只兔二分之一的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚
鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数。
生5:孙子真伟大啊,《孙子算法》真棒!
师:孙子的这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。
生6:老师,什么是化归法啊?
师:化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。我现在问你们一个问题:今天我们的方程组是怎么来解的啊?
生7:用代入消元法啊。就是先把方程组变形,使得一个未知数能用含另一个未知数的代数式表示,然后把它代到另一个方程,变成一个一元一次方程来解。
师:对,我们今天学习的是用代入消元法来解二元一次方程组的。它的数学思想就是把二元一次方程组转化为我们已很熟悉的一元一次方程,而一元一次方程我们很容易解决。其实代入消元法的思想就是孙子的化归法啊。只不过我们发现用今天的二元一次方程组来表示,更清楚明了罢了。
生8:原来我们今天的解法的思想我们祖先早就会运用了啊。真了不起!
师:是啊,我们祖先用他们的聪明才智创造了世界奇迹。《孙子算
法》中还有一个很著名的数学问题,它的发现比西方要早很多,那个问题的推广及解法被称为中国剩余定理,它在近代抽象代数中占有非常重要的地位。希望同学们能够学习先人,努力学习,争取创造更多的“中国定理”哦!(同学们鼓掌,出现了本节课的又一个小高潮)【同学们热情高涨】
师:同学们,老师现在还有一题类似的题目,有没有兴趣再来解一下啊?!
生(争前恐后地举手):想!
师:今有牛五,羊二,直金十两。牛二,羊五,直金八两。牛羊各直金几何?
(同学们争先恐后进行解答)
作业布置:课本课时作业。