高一数学必修一和必修四的三角函数公式

合集下载

高一必修一所有知识点公式

高一必修一所有知识点公式

高一必修一所有知识点公式一、数学公式1. 数的四则运算公式- 相反数:a + (-a) = 0- 乘法的分配律:a(b + c) = ab + ac2. 二次根式的乘法公式- (a√b)(c√d) = ac√(bd)3. 平方差公式- a² - b² = (a + b)(a - b)4. 完全平方公式- a² + 2ab + b² = (a + b)²5. 因式分解公式- 平方差公式:a² - b² = (a + b)(a - b)- 完全平方公式:a² + 2ab + b² = (a + b)²- 二次根式的乘法公式:(a√b)(c√d) = ac√(bd)6. 二次方程求根公式- 一元二次方程ax² + bx + c = 0的根公式为:x = (-b±√(b²-4ac))/(2a)7. 三角函数公式- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a² = b² + c² - 2bc*cosA- 正切公式:tanA = sinA/cosA8. 任意角的三角函数公式- sin(-θ) = -sinθ- cos(-θ) = cosθ- tan(-θ) = -tanθ- sin(π - θ) = sinθ- cos(π - θ) = -cosθ- tan(π - θ) = -tanθ- sin(π + θ) = -sinθ- cos(π + θ) = -cosθ- tan(π + θ) = tanθ二、物理公式1. 动力学公式- 速度公式:v = s/t- 加速度公式:a = (v - u)/t - 牛顿第二定律:F = ma - 动量公式:p = mv- 冲量公式:J = Ft- 功率公式:P = W/t- 动能公式:E = (1/2)mv²2. 机械能守恒公式- 势能公式:Ep = mgh- 动能公式:Ek = (1/2)mv²- 机械能守恒公式:Ep + Ek = 常数3. 电学公式- 电流公式:I = Q/t- 电阻公式:R = V/I- 电阻、电流、电压关系:V = IR- 等效电阻公式(并联):1/R = 1/R₁ + 1/R₂ + ... - 等效电阻公式(串联):1/R = 1/R₁ + 1/R₂ + ...4. 磁学公式- 磁感应强度公式:B = μ₀H- 磁场中力的公式:F = qvBsinθ- 洛伦兹力公式:F = q(E + vBsinθ)5. 光学公式- 薄透镜公式:1/f = 1/v - 1/u- 放大率公式:β = v/u- 光速与折射率之间的关系:c = v/n三、化学公式1. 质量守恒定律- 反应前物质的质量 = 反应后物质的质量2. 摩尔关系公式- 物质的摩尔数 = 质量(g)/相对分子质量(g/mol) - 物质的摩尔数 = 浓度(mol/L) ×体积(L)3. 摩尔体积公式- 摩尔体积 = 体积(L)/物质的摩尔数4. 氧化还原反应电子转移公式- 氧化剂 + n e⁻ → 还原剂- 还原剂→ n e⁻ + 氧化剂5. 离子反应中的离子平衡公式- 平衡常数Kc = [C]c[D]d/[A]a[B]b以上是高一必修一所有知识点的公式,希望对你的学习有所帮助。

北师大版高一数学必修一所有公式

北师大版高一数学必修一所有公式

北师大版高一数学必修一所有公式
一,奇函数:F(x)=-F(-x)
偶函数:F(x)=F(-x)
二,周期函数:F(x+T)=F(x) T 是周期
三,函数的运算:F(x),G(x)的定义域为D1,D2,D=D1nD2不等于空集
和 F+G (F+G)(x)=F(x)+G(x) X属于D (差也是如此)
积(F*G)(x)=F(x)*G(x) X属于D
商 (F/G)(x)=F(x)/G(x) X属于D { X1G(x)=0 X属于D}
四,初等函数:
指数函数:y=a的X次方 (a>0 a不等于0)
幂函数: y=X的u次方(u属于R是常数)
对数函数:y=log a X (a>0 a不等于0)
三角函数:y=sinx y=cosx y=tanx y=cotx
反函数: y=arcsinx y=arccosx y=arctanx y=arccotx
y=X的u次方=a的ulog a X 次方
高中数学想学好它你首先要对自己要有信心,无论初中数学成绩怎样,那已经成为了历史了。

其次,上课要认真听,认真记笔记,课后要做题目,题目主要是课本上,多做,多想,多思,把不会的题目记下来,没事时多做,多想,多思。

不懂的多跟同学讨论,这样间接的将理论的东西变成实际的东西。

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳

高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。

2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。

3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。

4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。

5、推导公式:tanα+cotα=2/sin2α。

数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。

2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。

3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。

5、-ctgA+ctgBsin(A+B)/sinAsinB。

数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时。

2、分数指数幂。

正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。

高中数学必修四公式大全[1]

高中数学必修四公式大全[1]

基本三角函数 ⅠⅡ ◆ 终边落在x 轴上的角的集合:{}z ∈=κκπαα, ❖ 终边落在y 轴上的角的集合:⎭⎬⎫⎩⎨⎧∈+=z κπκπαα,2♦ 终边落在坐标轴上的角的集合:⎭⎬⎫⎩⎨⎧∈=z κπκαα,2⌧ 2 21 21 rr l S rl αα===弧度度弧度弧度弧度度 18018011801 2360.ππππ====︒︒ 倒数关系 1+(tan a 的平方)= cos a 的平方分之一平方关系:αααα222211Csc Cot Cos Sin =+=+乘积关系:αααCos Sin tan = , 顶点的三角函数等于相邻的点对应的函数乘积Ⅲ 诱导公式◆ 终边相同的角的三角函数值相等 ()()()z k , tan 2tan z k , 2zk , 2∈=+∈=+∈=+απααπααπαk Cos k Cos Sin k Sin❖ 轴对称关于与角角x αα- ()()()ααααααtan tan -=-=--=-Cos Cos Sin Sin♦ 轴对称关于与角角y ααπ- ()()()ααπααπααπtan tan -=--=-=-Cos Cos Sin Sin ⌧ 关于原点对称与角角ααπ+()()()ααπααπααπtan tan =+-=+-=+Cos Cos Sin Sin ⍓对称关于与角角x y =-ααπ2ααπααπααπcot 2tan 22=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-Sin Cos Cos Sin ααπααπααπcot 2tan 22-=⎪⎭⎫⎝⎛+-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+Sin Cos Cos Sin上述的诱导公式记忆口诀:“奇变偶不变,符号看象限三角函数的性质单调性 减函数增函数,,232,22,,22,22z k k k z k k k ∈⎥⎦⎤⎢⎣⎡++∈⎥⎦⎤⎢⎣⎡+-ππππππππ[][]减函数增函数,,2,2,,2,2z k k k z k k k ∈+∈-ππππππ对称中心 ()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ对称轴z k k x ∈+=,2ππz k k x ∈=,π图像性 质 x y tan =x y cot =定义域 ⎭⎬⎫⎩⎨⎧∈+≠z x x κπκπ,2{}z x x ∈≠κκπ,值 域 RR周期性 ππ奇偶性 奇函数奇函数单调性 增函数,,2,2z k k k ∈⎪⎭⎫ ⎝⎛+-ππππ()增函数,,,z k k k ∈+πππ对称中心()z k k ∈,0,πz k k ∈⎪⎭⎫ ⎝⎛+,0,2ππ()k x ASin y Sinx y ++==ϕω变化为怎样由 ?振幅变化:Sinx y = ASinx y = 左右伸缩变化: x ASin y ω= 左右平移变化 )(ϕω+=x ASin y 上下平移变化 k x ASin y ++=)(ϕωⅥ平面向量共线定理:一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ.,a b λλ=使得那么又且只有一个实数Ⅶ 线段的定比分点P P 所成的比的定义式PP P P λλ+=121OP OP↓当1=λ时↓当1=λ时221yyy+=Ⅷ向量的一个定理的类似推广向量共线定理:()0≠=aabλ↓推广平面向量基本定理:⎪⎪⎭⎫⎝⎛+=不共线的向量为该平面内的两个其中212211,,eeeeaλλ↓推广空间向量基本定理:⎪⎪⎭⎫⎝⎛++=不共面的向量为该空间内的三个其中321332211,,,eeeeeeaλλλⅨ一般地,设向量()()aayxbyxa如果且,0,,,2211≠==∥01221=-yxyxb那么反过来,如果ayxyx则,01221=-∥b.Ⅹ一般地,对于两个非零向量ba,有θba=•,其中θ为两向量的夹角。

数学必修四所有三角函数公式

数学必修四所有三角函数公式

数学必修四所有三角函数公式在数学中,三角函数是一类重要的运算工具,可以用来描述图形的形状、大小和关系,也可以解决一些复杂的实际问题,是必学的基本知识。

数学必修四是高中阶段数学课程中最重要的一门课程,其中涉及三角函数的知识十分重要,下面就来回顾一下数学必修四中所有的三角函数公式。

一、正弦函数公式正弦函数的定义为y=sinx,其中x为弧度,y为正弦值。

正弦函数的图像是一条波浪线,其最大值为1,最小值为-1,两个极值出现的位置和周期T为2π,表示的公式为:sinx=sin(x+2kπ)。

此外,正弦函数的反函数也重要,其公式为:arcsinx=x+2kπ,其中k为任意整数。

二、余弦函数公式余弦函数的定义为y=cosx,其中x为弧度,y为余弦值。

余弦函数的图像是一条类似V的波浪线,其最大值为1,最小值为-1,两个极值出现的位置和周期T为2π,表示的公式为:cosx=cos(x+2kπ)。

此外,余弦函数的反函数也重要,其公式为:arccosx=x+2kπ,其中k为任意整数。

三、正切函数公式正切函数的定义为y=tanx,其中x为弧度,y为正切值。

正切函数的图像是一条锯齿状的曲线,其最大值变化不定,但一般不大于3,最小值变化不定,但一般不小于-3,表示的公式为:tanx=tan(x+2kπ),其中k为任意整数。

此外,正切函数的反函数也重要,其公式为:arctanx=x+2kπ,其中k为任意整数。

四、反正弦函数公式反正弦函数的定义为y=arcsinx,其中x为正弦值,y为对应的弧度值,表示的公式为:arccosx=cosx+2kπ,其中k为任意整数。

五、反余弦函数公式反余弦函数的定义为y=arccosx,其中x为余弦值,y为对应的弧度值,表示的公式为:arccosx=cosx+2kπ,其中k为任意整数。

六、反正切函数公式反正切函数的定义为y=arctanx,其中x为正切值,y为对应的弧度值,表示的公式为:arctanx=tanx+2kπ,其中k为任意整数。

高一数学必修一三角函数所有公式

高一数学必修一三角函数所有公式

一、基本概念三角函数是描述直角三角形中角和边关系的一类函数,是初中阶段学习的重要内容。

在高一数学必修一中,三角函数是一个重要的知识点,学生们需要掌握相关的公式和性质。

下面我们将详细介绍高一数学必修一中涉及三角函数的所有公式。

二、正弦函数和余弦函数的定义1. 正弦函数的定义:在直角三角形中,对于一个锐角θ,其正弦值定义为对边与斜边的比值,即sinθ=对边/斜边。

2. 余弦函数的定义:在直角三角形中,对于一个锐角θ,其余弦值定义为邻边与斜边的比值,即cosθ=邻边/斜边。

三、正弦函数和余弦函数的基本性质1. 周期性:正弦函数和余弦函数的周期都是2π。

2. 奇偶性:正弦函数是奇函数,即sin(-x)=-sinx,余弦函数是偶函数,即cos(-x)=cosx。

3. 范围:正弦函数和余弦函数的值域都是[-1, 1]。

四、正切函数和余切函数的定义1. 正切函数的定义:在直角三角形中,对于一个锐角θ,其正切值定义为对边与邻边的比值,即tanθ=对边/邻边。

2. 余切函数的定义:在直角三角形中,对于一个锐角θ,其余切值定义为邻边与对边的比值,即cotθ=邻边/对边。

五、正切函数和余切函数的基本性质1. 周期性:正切函数和余切函数的周期都是π。

2. 正切函数的奇性:tan(-x)=-tanx3. 余切函数的奇性:cot(-x)=-cotx4. 正切函数和余切函数没有定义域和值域的限制。

六、三角函数的互余关系1. 正弦和余弦的互余关系:sin(π/2-θ)=cosθ2. 正切和余切的互余关系:tan(π/2-θ)=cotθ七、三角函数的诱导公式1. 正弦诱导公式:sin(A±B)=sinAcosB±cosAsinB2. 余弦诱导公式:cos(A±B)=cosAcosB∓sinAsinB3. 正切诱导公式:tan(A±B)=(tanA±tanB) / (1∓tanAtanB)八、其他性质和公式1. 三角恒等式2. 三角函数的图像和性质3. 三角函数的应用以上就是高一数学必修一中涉及三角函数的所有公式。

高中三角函数公式(共10篇)

高中三角函数公式(共10篇)

高中三角函数公式(共10篇)高中三角函数公式(一): 高中数学必修4三角函数公式大全诱导公式sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z)课改后COT SEC CSC不做要求的sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanαsin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanαsin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanαsin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式:sin(2α)=2sinα·cosα=2tan(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]高中三角函数公式(二): 数学三角函数的公式把高中数学所有数学三角函数公式列出来高中数学必修1和必修4的公式总结最佳答案乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h高中三角函数公式(三): 高中阶段比较重要的三角函数公式有哪些最好能一一列举下来【高中三角函数公式】倒数关系:商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱...高中三角函数公式(四): 求高中数学三角函数公式推导所有的三角函数公式的推导全部过程诱导公式:sin(2kπ+α)=sinα .cos(2kπ+α)=cosα.tan(2kπ+α)=tanα .sin(π+α)=-sinα .cos(π+α)=-cosα .tan(π+α)=tanα.sin(-α)=-sinα .cos(-α)=cosα .tan(-α)=-tanα.sin(π-α)=sinα .cos(π-α)=-cosα.tan(π-α)=-tanα.sin(2π-α)=-sinα .cos(2π-α)=cosα .tan(2π-α)=-tanα .sin(π/2+α)=cosα .cos(π/2+α)=-sinα.sin(π/2-α)=cosα .cos(π/2-α)=sinα .sin(3π/2+α)=-cosα.cos(3π/2+α)=sinα .sin(3π/2-α)=-cosα.cos(3π/2-α)=-sinα 基本关系:sin^2(A)+cos^2(A)=1.tanA=sinA/cosA三角恒等变换公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) sin2A=2sinAcosA cos2A=cos^2(A)-sin^2(A)tan2A=(2tanA)/(1-tan^2(A))弦定理:若a、b、c为任意三角形ABC三边,A、B、C为三个角,则:a/sinA=b/sinB=c/sinC余弦定理:如上所设,则a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosC【高中三角函数公式】高中三角函数公式(五): 高中常用的三角函数公式有哪些在什么地方应用如题1.诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) =cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = -...高中三角函数公式(六): 高中三角函数公式表已知直角三角形三边长度求另外两角角度高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积.”)诱导公式(口诀:奇变偶不变,符号看象限.)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=ta nαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2高中三角函数公式(七): 2023年江苏省高中数学公式特别是三角函数公式三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系.而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y.深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点.角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A"OD.A(cosα,sinα),B(cosβ,sinβ),A"(cos(α-β),sin(α-β))OA"=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) [1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)Sin2A=2SinA CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα高中三角函数公式(八): 高中三角函数的公式在非直角三角形ABC中设∠A邻边a,对边b,斜边c,那么sin∠A=cos∠A=tan∠A=(用含a、b、c的代数式表示)由于csc、sec、cot在直角三角形中分别为以上三种三角函数的倒数,在非直角三角形中是否仍然适用老师跟我讲过三角函数不在直角三角形中也是有的.如果答案是网上大段大段的Ctrl+C和Ctrl+V搞来的何必回答我的问题很清楚.前后答案最多100字.当然适用,三角函数抽象出来它就是一种不依赖于几何图形的函数.当然在高中会以圆为依托来深入研究它.事实上,如果你感兴趣,可以自己查询‘正弦定理‘、’余弦定理‘以及’正切定理‘.相信这个会给你提供你想要的,它就是在任意三角形中的.高中三角函数公式(九): 高中三角函数公式记忆RT老师说有N个公式一百多个呢咋记呢最好有口诀啥的追分ing...其实不用记忆那么多的啊!我就是有多年高三经验的老师。

数学必修四所有三角函数公式

数学必修四所有三角函数公式

数学必修四所有三角函数公式“三角函数”是从古希腊数学家凯撒伯罗的一篇论文中来的,它开始于一个环状几何图形的旋转动作,因此他们又被称为“旋转函数”。

三角函数在数学必修四中有着广泛的应用,其基本公式包括正弦函数公式、余弦函数公式、正切函数公式,以及余切函数公式等。

正弦函数公式:sin x=y/r其中,x为角度值(单位为弧度),y为三角形直角边,r为斜边。

此函数表示,角度X对应的正弦值为y/r。

余弦函数公式:cos x=a/r其中,x为角度值(单位为弧度),a为三角形的邻边,r为斜边。

此函数表示,角度X对应的余弦值为a/r。

正切函数公式:tan x=y/a其中,x为角度值(单位为弧度),y为三角形的直角边,a为邻边。

此函数表示,角度X对应的正切值为y/a。

余切函数公式:cot x=a/y其中,x为角度值(单位为弧度),a为三角形的邻边,y为直角边。

此函数表示,角度X对应的余切值为a/y。

此外,还有一些特殊的三角函数,比如正割函数sec x、余割函数csc x、双曲正切函数tanh x和双曲余切函数coth x等。

正割函数公式:sec x=r/a其中,x为角度值(单位为弧度),r为三角形的斜边,a为邻边。

此函数表示,角度X对应的正割值为r/a。

余割函数公式:csc x=r/y其中,x为角度值(单位为弧度),r为三角形的斜边,y为直角边。

此函数表示,角度X对应的余割值为r/y。

双曲正切函数公式:tanh x=y/(ar)其中,x为角度值(单位为弧度),y为三角形的直角边,a为邻边,r为斜边。

此函数表示,角度X对应的双曲正切值为y/(ar)。

双曲余切函数公式:coth x=ar/y其中,x为角度值(单位为弧度),a为三角形的邻边,r为斜边,y为直角边。

此函数表示,角度X对应的双曲余切值为ar/y。

三角函数的基本运算法则是:1.sin(-x)=-sin x2.cos(-x)=cos x3.tan(-x)=-tan x4.sec(-x)=sec x5.csc(-x)=csc x6.cot(-x)=-cot x7.sin(π/2+x)=cos x8.cos(π/2+x)=-sin x9.tan(π/2+x)=-cot x10.sec(π/2+x)=-csc x11.csc(π/2+x)=-sec x12.cot(π/2+x)=tan x因此,数学必修四中所有的三角函数公式可以总结如下:正弦函数公式:sin x=y/r余弦函数公式: cos x=a/r正切函数公式:tan x=y/a余切函数公式:cot x=a/y正割函数公式:sec x=r/a余割函数公式:csc x=r/y双曲正切函数公式:tanh x=y/(ar)双曲余切函数公式:coth x=ar/y以上就是数学必修四中所有三角函数的基本公式及其基本运算法则了。

高中数学必修四公式大全

高中数学必修四公式大全

必修四—第一章 三角函数1. ❖终边落在x 轴上的角的集合: .❖ 终边落在y 轴上的角的集合: .❖ 终边落在坐标轴上的角的集合: .2弧长公式: =l,=S .3.同角三角函数的基本关系:①平方关系: ②乘积关系:◆ 诱导公式(一)()()=+=+=+)2tan(2cos 2sin παπαπαk k k◆ 诱导公式(二) ()()()=+=+=+απαπαπtan cos sin◆ 诱导公式(三) ()()()=-=-=-αααtan cos sin◆ 诱导公式(四) ()()()=-=-=-απαπαπtan cos sin◆ 诱导公式(五)=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-απαπ2cos 2sin◆ 诱导公式(六)=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+απαπ2cos 2sin4.三角函数(x x x tan ,cos ,sin )的性质5.函数)sin(ϕ+=wx A y 的图像振幅变化:x y sin = x A y sin = 左右伸缩变化 x A y ωsin =左右平移变化)sin(ϕω+=x A y 上下平移变化 k x A y ++=)sin(ϕω第二章:平面向量1.平面向量共线定理: 一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ .,a b λλ=使得那么又且只有一个实数2.向量的一个定理的类似推广①向量共线定理: )0(≠=a a b λ②平面向量基本定理: 2211e e a λλ+=(其中21,e e 为平面内不共线的两向量)3.线段的定比分点点P 分有向线段21P P 所成的比的定义式21PP P P λ=,这时=x ,=y . 4.一般地,设向量()(),0,,,2211≠==a y x b y x a 且 ①那么如果b a // . ②如果b a ⊥,那么 .5.一般地,对于两个非零向量b a , 有 θb a =⋅,其中θ为两向量的夹角。

高一数学-必修一、四常用公式

高一数学-必修一、四常用公式

ylogc x ylogd x
3
系 指数函数与对数函 数的关系
y a x 与 y log a x ( a 0 且 a 1) 互为反函数,它们的图象关于直线 y x 对称
函数 y log a f ( x ) (a 0 ,且 a 1) 的单调性结论
当 a 1时 当 0 a 1时 6.幂函数

1 时,幂函数的图象下凸;当 0 1 时,幂函数的图象上凸; ③ 0 时, 幂函数的图象在区间 (0,) 上是减函数.在第一象限内, 当 x 从右边趋 向原点时,图象在 y 轴右方无限地逼近 y 轴正半轴,当 x 趋于 时,图象在 x 轴上方无
限地逼近 x 轴正半轴.
sin sin tan cos , cos tan
.
4
7.函数的诱导公式: (口诀:奇变偶不变,符号看象限.) (1) sin 2k sin , cos 2k cos , tan 2k tan k . (2) sin sin , cos cos , tan tan . (3) sin sin , cos cos , tan tan . (4) sin sin , cos cos , tan tan .
(5) sin cos , cos sin . 2 2 (6) sin cos , cos sin . 2 2
8.两角和与差的正弦、余弦和正切公式: (1)cos cos cos sin sin ; (2)cos cos cos sin sin ; (3) sin sin cos cos sin ; (4) sin sin cos cos sin ; (5) tan (6) tan

高中数学必修四公式

高中数学必修四公式

高中数学必修四公式一、函数公式1. 一次函数的公式一次函数的一般公式为:y = kx + b其中,k为斜率,表示函数的变化速率;b为截距,表示函数与y轴交点的纵坐标值。

2. 二次函数的公式二次函数的一般公式为:y = ax^2 + bx + c其中,a、b、c为常数,a不等于0。

a决定了抛物线开口的方向,b影响了抛物线在x轴上的位置,c决定了抛物线与y轴的交点纵坐标。

3. 指数函数的公式指数函数的一般公式为:y = a^x其中,a为底数,x为指数。

指数函数的特点是随着指数增大,函数值也随之增大(当a大于1时),或者随着指数增大,函数值趋近于0(当0 < a < 1时)。

4. 对数函数的公式对数函数的一般公式为:y = log<sub>a</sub>(x)其中,a为底数,x为函数值。

对数函数表示的是一个数在某个底数下的指数,也可以看作是某个数的幂次方等于x。

二、三角函数公式1. 正弦函数的公式正弦函数的一般公式为:y = Asin(Bx + C) + D其中,A为振幅,表示正弦函数的最大值与最小值之间的差;B为周期,表示正弦函数的一个周期内的长度;C为相位,表示正弦函数的水平方向的偏移;D为垂直偏移,表示正弦函数的纵向平移。

2. 余弦函数的公式余弦函数的一般公式为:y = Acos(Bx + C) + D其中,A为振幅,表示余弦函数的最大值与最小值之间的差;B为周期,表示余弦函数的一个周期内的长度;C为相位,表示余弦函数的水平方向的偏移;D为垂直偏移,表示余弦函数的纵向平移。

3. 正切函数的公式正切函数的一般公式为:y = Atan(Bx + C) + D其中,A为振幅,表示正切函数的最大值与最小值之间的差;B为周期,表示正切函数的一个周期内的长度;C为相位,表示正切函数的水平方向的偏移;D为垂直偏移,表示正切函数的纵向平移。

三、立体几何公式1. 三角形面积的公式三角形的面积可以通过以下公式计算:S = 0.5 * 底边长度 * 高其中,S为三角形的面积,底边长度为三角形底边的长度,高为从底边到顶点的垂直距离。

必修4 三角函数的诱导公式

必修4 三角函数的诱导公式

思考2: 对于任意给定的一个角α, π-
α的终边与α的终边有什么关系?
关于y轴对称
y α 的终边 π -α 的终边
o
x
设角α的终边与单位圆交于点P(x,y),则 π-α的终边与单位圆的交点坐标如何?它们
的三角函数又有何关系?
y α 的终边 P(x,y) o π -α 的终边
P2 (-x,y)
x
公式四
公式二: sin( ) sin cos( ) cos tan( ) tan 公式四: sin( ) sin cos( ) cos tan( ) tan
公式一 ~ 四可用下面的话来概括:
2k (k Z ), , 的三角函数值, 等于角的同名函数值,前面加上一个把
任意正角的 三角函数
公式一
用公式三或四
锐角三 角函数
0 到 360 的角 的三角函数
o
o
负化正,大化小,化到锐角为终了
例2 化简:
) sin( 360 ) cos(180 (1) ) cos(-180 - ) ; sin(- -180
cos sin 解:原式 sin( 180) cos( ) 180 cos sin 1 sin ( cos )
公式作用:可以把求任意角的三角函数值, 转化为求 0到2 或0到360 角的三角函数值 .
思考1:对于任意给定的一个角α ,角
π +α 的终边与角α 的终边有什么关系?
y
α 的终边
关于原点对称
o x
π+α 的终边
设角α的终边与单位圆交于点P(x,y),则 角π+α的终边与单位圆的交点坐标如何? 它们的三角函数又有何关系?

高中数学必修一公式大全

高中数学必修一公式大全

高中数学必修一公式大全全文共四篇示例,供读者参考第一篇示例:高中数学必修一公式大全高中数学是我们学习的一门基础学科,掌握好数学知识对我们的学习和未来的发展至关重要。

在高中阶段,数学被划分为必修一和必修二两部分,其中必修一主要包括代数、函数、数列和不等式等内容。

在这篇文章中,我们将为大家整理高中数学必修一的常用公式,希望对大家学习和复习数学知识有所帮助。

一、代数部分公式1. 二次函数一般式:y=ax^2+bx+c2. 一元二次方程求根公式:x=\frac{-b±\sqrt{b^2-4ac}}{2a}3. 重要恒等式:(a+b)^2=a^2+2ab+b^24. 二次方程判别式:Δ=b^2-4ac1. 定义域和值域的定义:- 定义域:函数能够取值的集合- 值域:函数所有可能的输出值的集合2. 奇函数和偶函数的性质:- 奇函数:f(-x)=-f(x)- 偶函数:f(-x)=f(x)3. 函数的复合与反函数:- 复合函数:(f◦g)(x)=f[g(x)]- 反函数:f(f^(-1)(x))=x4. 函数的性质之一致性与不一致性- 一致性:若f(x)=g(x),则等式两边分别代入相同的值时,结果相等- 不一致性:若f(x)=g(x),则一定存在某一值x使得f(x)≠g(x)1. 等差数列求和公式:Sn=\frac{n(a1+an)}{2}2. 等比数列求和公式:Sn=\frac{a1(1-q^n)}{1-q}3. 通项公式:- 等差数列:an=a1+(n-1)d- 等比数列:an=a1*q^(n-1)4. 递推公式:- 等差数列:an=an-1+d- 等比数列:an=an-1*q四、不等式部分公式1. 绝对值不等式的性质:- |a|<b等价于-b<a<b- |a|>b等价于a<-b或者a>b2. 一元一次不等式解法:- 含有绝对值的一元一次不等式:|ax+b|<c等价于-b<ax+b<c和-b>ax+b>-c3. 一元二次不等式解法:- 一元二次不等式ax^2+bx+c<0或者ax^2+bx+c>0的解法以上是高中数学必修一的部分公式,这些公式是我们学习数学时常用到的基础知识,希望大家能够掌握好这些知识,为学习和考试打下坚实的基础。

高一数学必修一三角函数知识点

高一数学必修一三角函数知识点

高一数学必修一中的三角函数知识点是高中数学学习的基础,也是考试中经常考查的重点内容。

下面就介绍一下三角函数的相关知识点。

一、正弦、余弦、正切的定义。

正弦函数和余弦函数分别是把一个角的弧度分解成其正弦和余弦,其定义分别为:角度θ对应的正弦值为sinθ,余弦值为cosθ;正切函数则是把一个角度θ分解成它的正切值,其定义为:角度θ对应的正切值为tanθ。

二、三角函数的基本关系。

三角函数之间有若干基本关系,例如:sin2θ+cos2θ=1,sinθ/cosθ=tanθ,cotθ=1/tanθ等,并且还有各种变形关系,例如,sin2θ=2sinxcosx,cos2θ=cos2x-sin2x等,都是必须掌握的。

三、求反三角函数的方法。

求反三角函数是指求出正弦函数、余弦函数和正切函数的倒数函数,也就是求出θ的值。

要求反三角函数,可以采用两种方法:一是根据定义求解,即把函数式代入公式,求出θ;二是使用三角函数表,根据三角函数表查找对应的值。

四、求解三角形的边长和角度。

三角函数还可以用来求解三角形的边长和角度,例如求已知两边长及其夹角求第三边的长度,可以利用余弦定理:a^2=b^2+c^2-2bc·cosA;求已知两边长及其夹角求第三个角度,可以利用余弦定理:cosA=(a^2-b^2-c^2)/2bc,两种情况都要用到三角函数。

五、三角函数的图形。

三角函数的图形可以用极坐标系和直角坐标系表示,极坐标系可以用点(r,θ)表示,其中r是极坐标系中的点到原点的距离,θ是极坐标系中的点到横轴的夹角;直角坐标系也可以用点(x,y)表示,其中x是点在x轴的横坐标,y是点在y轴的纵坐标。

以上就是高一数学必修一中三角函数的基本知识点,希望以上介绍能够帮助大家更好的学习和理解三角函数的相关知识点,掌握它们的应用,取得好的成绩。

高一数学必修四三角函数公式

高一数学必修四三角函数公式

倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α *cot α=1一个特殊公式(s ina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin(3a)=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)^2]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。

高中数学必修四第一章三角函数公式总结

高中数学必修四第一章三角函数公式总结

高中数学必修四第一章三角函数公式总结锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=2tanA/1-tanA^2注:SinA^2 是sinA的平方 sin2A三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=A^2+B^2^1/2sinα+t,其中sint=B/A^2+B^2^1/2cost=A/A^2+B^2^1/2tant=B/AAsinα+Bcosα=A^2+B^2^1/2cosα-t,tant=A/B降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α半角公式tanA/2=1-cosA/sinA=sinA/1+cosA;cotA/2=sinA/1-cosA=1+cosA/sinA.sin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa三角和sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα两角和差cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ和差化积sinθ+sinφ = 2 sin[θ+φ/2] cos[θ-φ/2]sinθ-sinφ = 2 cos[θ+φ/2] sin[θ-φ/2]cosθ+cosφ = 2 cos[θ+φ/2] cos[θ-φ/2]cosθ-cosφ = -2 sin[θ+φ/2] sin[θ-φ/2] tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanB tanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB 积化和差sinαsinβ = [cosα-β-cosα+β] /2cosαcosβ = [cosα+β+cosα-β]/2sinαcosβ = [sinα+β+sinα-β]/2cosαsinβ = [sinα+β-sinα-β]/2诱导公式sin-α = -sinαcos-α = cosαtan —a=-tanαsinπ/2-α = cosαcosπ/2-α = sinαsinπ/2+α = cosαcosπ/2+α = -sinαsinπ-α = sinαcosπ-α = -cosαsinπ+α = -sinαcosπ+α = -cosαtanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数公式
(一)同角三角函数的基本关系式 (1)平方形式:sin 2α+cos 2α=1 (2)倒数形式:sinα/cosα=tanα
(二)诱导公式
(1)sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α (其中k ∈Z)
(2)sin (2k π-α)=-sin α cos (2k π-α)=cos α tan (2k π-α)=-tan α (其中k ∈Z)
(3)sin (-α)=-sin α cos (-α)=cosα tan (-α)=-tan α
(4)sin (π-α)=sin α cos (π-α)=-cosα tan (π-α)=-tan α
(5)sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α
(6)sin (π/2-α)=cos α cos (π/2-α)=sin α
(7)sin (π/2+α)=cos α cos (π/2+α)=-sin α
(8)sin (3π/2+α)=-cos α cos (3π/2+α)=sin α
(9)sin (3π/2-α)=-cos α cos (3π/2-α)=-sin α
(三) 两角和与差的三角函数公式
(1)sin (α+β)=sin αcosβ+cos αsinβ (2)sin (α-β)=sin αcosβ-cos αsinβ
(3)cos (α+β)=cos αcosβ-sin αsinβ (4)cos (α-β)=cos αcosβ+sin αsinβ
(5)tan (α+β)= tanα+tanβ1-tanαtanβ
(6) tan (α-β)=tanα-tanβ1+tanαtanβ (四)二倍角的正弦、余弦和正切公式
(1)sin2α=2sin αcos α (2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α
(3)tan2α= 2tan α/(1-tan 2α)
(五)三角函数的降幂公式 (六)半角的正弦、余弦和正切公式
(七)(辅助角的三角函数的公式)
(八)正、余弦定理公式及其变形 ● a sinA =b sinB =c sinC
=2R (R 为△ABC 的外接圆的半径) ● a ²=b ²+c ²-2bccosA ● b ²= a ²+ c ²-2accosB ● c ²= b ²+ a ²-2abcosC (ⅰ) sinA=a 2R ,sinB=b 2R ,sinC=c 2R
(ⅱ)a=2RsinA b=2RsinB c=2RsinC (ⅲ)a:b:c=sinA: sinB: sinC (ⅳ)asinB=bsinA bsinC=csinB asinC=csinA
(九)常用的三角形面积公式
(ⅰ) S=12 absinC=12 acsinB=12 bcsinA (ⅱ)S =12
(a+b+c)r (r 为△ABC 的内切圆的半径) (ⅲ)S=abc 4R
(R 为△ABC 的外接圆的半径) (十)利用余弦定理判断三角形的形状
(ⅰ)在△ABC 中,若a ²﹤b ²+c ²,则0°﹤A ﹤90°;反之,若0°﹤A ﹤90°,则a ²﹤b ²+c ²。

(ⅱ)在△ABC 中,若a ²=b ²+c ²,则A=90°;反之,若A=90°,则a ²=b ²+c ²。

(ⅲ)在△ABC 中,若a ²﹥b ²+c ²,则90°﹤A ﹤180°;反之,若90°﹤A ﹤180°,则a ²﹥b ²+c ²。

相关文档
最新文档