青岛版九年级上学期期末数学测试题及参考答案

合集下载

(基础题)青岛版九年级上册数学期末测试卷及含答案

(基础题)青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD边长为6,E是BC的中点,连接AE,以AE为边在正方形内部作∠EAF=45°,边交于点,连接,则下列说法中:①;②;③tan∠AFE=3;④正确的有( )A.①②③B.②④C.①④D.②③④2、在下列网格中,小正方形的边长为1,点A,B,O都在格点上,求∠A的余弦值()A. B. C. D.3、在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径4、一个边长为4的等边三角形ABC的高与⊙O的直径相等,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长是( )A. B. C.2 D.35、已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1) D.(8,-4)6、如图,在正方形ABCD中,对角线AC, BD相交于点O,点E在DC边上,且CE=2DE,连接AE交BD于点G,过点D作DF⊥AE,连接OF并延长,交DC于点P,过点O作OQ⊥OP分别交AE、AD于点N、H,交B、A的延长线于点Q,现给出下列结论:①∠AFO=45°;②OG= DG:③DP2 = NH·OH ;④sin∠AQO= ;其中正确的结论有( )A.①②③B.②③④C.①②④D.①②③④7、下列方程中,是一元一次方程的是()A. B. C. D.8、若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4B.1:2C.2:1D.1:169、已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是A.3或﹣1B.3C.1D.﹣3或110、在菱形ABCD中,∠ABC=60°,若AB=3,则菱形ABCD的面积是()A. B.8 C. D.11、如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A.100°B.90°C.80°D.70°12、如图,四边形ABCD是的内接四边形,B=70° ,则D的度数为()A.110°B.90°C.70°D.50°13、下列命题:①是最简二次根式;②方程x2+4=0有两个实数根;③一组数据1,2,3,4,4,10,若去掉10,剩下的数据与原数据相比,平均数变小,中位数和众数不变;④若一个多边形的内角和为1080°,则这个多边形为八边形.其中正确的有()A.1个B.2个C.3个D.4个14、下列语句中正确的是()A.相等的圆心角所对的弧相等B.平分弦的直径垂直于弦C.长度相等的两条弧是等弧D.经过圆心的每一条直线都是圆的对称轴15、若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.0B.1C.2D.3二、填空题(共10题,共计30分)16、若a,b是一元二次方程的两根,则________.17、关于x的一元二次方程x2﹣(k+2)x+ k2﹣1=0的两根互为倒数,则k的值是________.18、如图,AB是⊙O的直径,弦CD⊥AB于点E,⊙O的半径为,弦CD的长为3cm,则图中阴影部分面积是________..19、如图,⊙O的半径为6,直线AB是⊙O的切线,切点为B,弦BC∥AO,若∠A=30°,则劣弧BC的长为 ________.20、若方程x2﹣12x+5=0的两根分别为a,b,则a2b+ab2的值为________.21、要确定一个圆,需要知道________和________.22、如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为________.23、如图,为的直径,直线与相切于点,垂足为交于点,连接若,则线段的长为________.24、如图,将含有60°角的直角三角尺ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是________25、如图,在⊙O中,OB为半径,AB是⊙O的切线,OA与⊙O相交于点C,∠A=30°,OA=8,则阴影部分的面积是________.三、解答题(共5题,共计25分)26、已知关于x的方程有一个根是0,求另一个根和的值.27、如图,地面上小山的两侧有A、B两地,为了测量A、B两地的距离,让一热气球从小山两侧A地出发沿与AB成30°角的方向,以每分钟50m的速度直线飞行,8分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(取1.7,sin20°取0.3,cos20°取0.9,tan20°取0.4,sin70°取0.9,cos70°取0.3,tan70°取2.7.)28、已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)对于任意的实数k,判断原方程根的情况,并说明理由.29、某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,则平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?30、(1)解方程:x(x﹣1)﹣(x﹣1)=0.(2)已知抛物线y=﹣2x2+8x﹣6,请用配方法把它化成y=a(x﹣h)2+k的形式,并指出此抛物线的顶点坐标和对称轴.参考答案一、单选题(共15题,共计45分)1、D2、C3、C5、A6、D7、B8、B9、B10、D11、C12、A13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在□ABCD中,是上一点,且,与交于点,若的面积是1 ,则□ABCD的面积是:( )A.16.5B.17.25C.17.5D.18.752、如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1B.C.2D.23、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=4,CD=1,则EC的长为( )A. B. C. D.44、若cosα=,则锐角α的大致范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60° D.0°<α<90°5、一元二次方程x2+3x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根6、如图,⊙O是△A BC的外接圆,∠OCB=40°则∠A的度数等于( )A.60°B.50°C.40°D.30°7、如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2B.C.π﹣4D.8、如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A. B. C. D.9、已知x1, x2是关于x的方程x2-(2m-2)x+(m2-2m)=0的两根,且满足x1•x2+2(x1+x2)=-1,那么m的值为()A. 或3B. 或1C.D.110、如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P 分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是()A.2B.4C.6D.811、如图,AC与BD相交于点E,AD∥BC.若AE=2,CE=3,AD=3,则BC的长度是()A.2B.3C. 4.5D.612、下列一元二次方程中,有两个相等实数根的是()A. ﹣8=0B. 2 ﹣4x+3=0C. 9 +6x+1=0D.5x+2=13、若x1, x2是一元二次方程x2+4x﹣2016=0的两个根,则x1+x2﹣x1x2的值是()A.﹣2012B.﹣2020C.2012D.202014、已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0B.1C.-1D.215、如图,正方形的边长为,在正方形外,,过作于,直线,交于点,直线交直线于点,则下列结论正确的是()①;②;③;④若,则A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、若关于x的一元二次方程kx2+2x﹣1=0有两个实数根,则k的取值范围是________.17、用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为=sin30°=cos60°=tan45°•sin30°=…;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:________=________=________ =…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,填空:1=________ .18、已知是一元二次方程()的一个根,则另一根是________.19、若关于x的方程x2+5x+m=0的两个根分别为为x1, x2,且=1,则m=________.20、如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO 于点P,则∠P的度数为________.21、如图,的顶点都是正方形网格中的格点,则等于________.22、在直角三角形ABC中,是AB的中点,BE平分交AC于点E连接CD交BE于点O,若,则OE的长是________.23、⊙O的半径为10cm,A、B、C三点到圆心O的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在________;点B在________;点C在________.24、已知一个扇形的圆心角为45°,扇形所在圆的半径为4cm,则这个扇形的面积为________.25、如果x1, x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=﹣,x1x2= ,这就是一元二次方程根与系数的关系(韦达定理).利用韦达定理解决下面问题:已知m与n是方程x2﹣5x﹣25=0的两根,则+=________.三、解答题(共5题,共计25分)26、解方程:x2+3x﹣2=0.27、如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=60°,∠BEQ=45°;在点F处测得∠AFP=45°,∠BFQ=90°,EF=2km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果保留根号).28、某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,部分),在起点处测得大楼部分楼体的顶端点的仰角为,底端点的仰角为,在同一剖面沿水平地面向前走20米到达处,测得顶端的仰角为(如图②所示),求大楼部分楼体的高度约为多少米?(精确到1米)(参考数据:,,,,)29、周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽.测量时,他们选择河对岸边的一棵大树,将其底部作为点,在他们所在的岸边选择了点,使得与河岸垂直,并在点竖起标杆,再在的延长线上选择点竖起标杆,使得点与点,共线.已知:,,测得,,.测量示意图如图所示.请根据相关测量信息,求河宽.30、如图是某路灯在铅垂面内的示意图,灯柱的高为米,灯柱与灯杆的夹角为,路灯采用锥形灯罩,在地面上的照射区域的长为米,从两处测得路灯A的仰角分别为和,且,求灯杆的长度.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、D6、B7、A8、A9、B10、D11、C12、C13、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、29、。

青岛版九年级上册数学期末测试卷及含答案(夺分金卷)(综合卷)

青岛版九年级上册数学期末测试卷及含答案(夺分金卷)(综合卷)

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知线段AB坐标两端点的坐标分别为A(1,2),B(3,1),以点O为位似中心,相似比为3,将AB在第一象限内放大,A点的对应点C的坐标为()A.(3,6)B.(9,3)C.(-3,-6)D.(6,3)2、如图,是的弦,,交于点,连接,,,若,则的大小是()A. B. C. D.3、如图,某地修建高速公路,要从A地向B地修一条隧道(点A,B在同一水平面上).为了测量A,B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A,B两地之间的距离为()A.800sinα米B.800tanα米C. 米D. 米4、已知在矩形ABCD中,AB=5,对角线AC=13.⊙C的半径长为12,下列说法正确是()A.⊙C与直线AB相交B.⊙C与直线AD相切C.点A在⊙C上 D.点D在⊙C内5、如图,在同圆中,弧等于弧的倍,试判断与的大小关系是()A. B. C. D.不能确定6、如图,,为射线上一点,以点为圆心,长为半径做,要使射线与相切,应将射线绕点按顺时针方向旋转()A.40°或100°B.100°C.70°D.40°7、如图,在2×2正方形网格中,以格点为顶点的△ABC,则sin∠CAB=()A. B. C. D.8、如图,直线 EF 是矩形 ABCD 的对称轴,点 P 在 CD 边上,将△BCP 沿 BP 折叠,点 C 恰好落在线段 AP与 EF 的交点 Q 处,BC= ,则线段 AB 的长是()A.8B.C.D.109、AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是()A.25°B.35°C.15°D.20°10、如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,2),M是第三象限内⊙C上一点,∠BMO=120°,则圆心C的坐标为()A.(1,1)B.(1,)C.(2,1)D.(﹣,1)11、如图,AB是直径,点在的延长线上,切于已知为( )A.25°B.40°C.50°D.65°12、某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()A. B. C. D.13、如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2= AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②14、如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,则的值为()A. B.3﹣ C.6﹣ D.15、已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP相似的是()A.∠APB=∠EPCB.∠APE=90°C.P是BC的中点D.BP︰BC =2︰3二、填空题(共10题,共计30分)16、对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是________ (填序号即可)17、 2019﹣2020赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为552场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为________.18、如图,在平行四边形中,,点在上,点D在优弧上,,则________ .19、关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是________.20、若一元二次方程x2-3x+c=0有两个相等的实数根,则c的值是________。

青岛版九年级数学上册期末测试卷及答案期末检测试卷1

青岛版九年级数学上册期末测试卷及答案期末检测试卷1

期末检测试卷一、选择题(每小题3分,共24分)1.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A.③④②①B.②④③①C.③④①②D.③①②④【考点】平行投影.【分析】根据影子变化规律可知道时间的先后顺序.【解答】解:从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.所以正确的是③④①②.故选C.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.2.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA=B.tanA=C.cosB=D.tanB=【考点】特殊角的三角函数值;锐角三角函数的定义.【分析】根据三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠ACB=90°,BC=1,AB=2.∴AC===,∴sinA==,tanA===,cosB==,tanB==.故选D.【点评】解答此题关键是正确理解和运用锐角三角函数的定义.3.如图,分別将三角形、矩形、菱形、正方形各边向外平移1个单位并适当延长,得到下列图形,其中变化前后的两个图形不一定相似的有()A.1对B.2对C.3对D.4对【考点】相似图形.【分析】利用相似图形的判定方法:对应角相等,对应边成比例的图形相似,进而判断即可.【解答】解:∵三角形、矩形对应边外平移1个单位后,对应边的比值不一定相等,∴变化前后的两个三角形、矩形都不相似,∵菱形、正方形边长改变后对应比值仍相等,且对应角相等,∴变化前后的两个菱形、两个正方形相似,故选:B.【点评】此题主要考查了相似图形的判定,正确掌握相似图形的判定方法是解题关键.4.计算:cos30°+sin60°tan45°=()A.1 B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=+×1=.故选:C.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.将抛物线y=x2向下平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的表达式为()A.y=(x﹣1)2+2 B.y=(x+1)2﹣2 C.y=(x﹣2)2﹣1 D.y=(x﹣1)2﹣2【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先利用顶点式得到抛物线y=x2的顶点坐标为(0,0),再根据点利用的规律得到点(0,0)平移后所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后抛物线的解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),点(0,0)向下平移2个单位,再向右平移1个单位所得对应点的坐标为(1,﹣2),所以所得到的抛物线的解析式是y=(x﹣1)2﹣2.故选D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.如图,在△ABC中,点D、E分别是边AB和AC上的点,AD=2BD,DE∥BC,S△ABC=36,则S△ADE=()A.9 B.16 C.18 D.24【考点】相似三角形的判定与性质.【分析】由平行线的性质得出△ADE∽△ABC,得出相似三角形的面积比等于相似比的平方: =()2=,即可得出结果.【解答】解:∵AD=2BD,∴AD=AB,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE=×36=16;故选:B.【点评】本题考查了相似三角形的判定与性质;证明三角形相似得出面积比等于相似比的平方是解决问题的关键.7.如图,已知线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为()A.C.或(﹣4,2)【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B 与点D 是对应点,则点D 的坐标为(8×,4×),即(4,2),故选:A .【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .8.对于二次函数y=﹣2(x ﹣1)(x+3),下列说法正确的是( )A .图象的开口向上B .图象与y 轴交点坐标是(0,6)C .当x >﹣1时,y 随x 的增大而增大D .图象的对称轴是直线x=1【考点】二次函数的性质.【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【解答】解:A 、y=﹣2(x ﹣1)(x+3),∵a=﹣2<0,∴图象的开口向下,故本选项错误;B 、y=﹣2(x ﹣1)(x+3)=﹣2x 2﹣4x+6,当x=0时,y=6,即图象与y 轴的交点坐标是(0,6),故本选项正确;C 、y=﹣2(x ﹣1)(x+3)=﹣2(x+1)2+8,即当x >﹣1,y 随x 的增大而减少,故本选项错误;D 、y=﹣2(x ﹣1)(x+3)=﹣2(x+1)2+8,即图象的对称轴是直线x=﹣1,故本选项错误.故选B .【点评】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.二、填空题(每小题3分,共18分)9.观察图1中的三种视图,在图2中与之对应的几何体是 ③ (填序号)【考点】由三视图判断几何体.【分析】首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.【解答】解:结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰①②,选③,故答案为:③.【点评】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大.10.小华的爸爸存入银行1万元,先存一个一年定期,一年后将本息自动转存另一个一年定期,两年后共得本息10609元.设存款的年利率为x,则由题意列方程应为10000(1+x)2=10609 .【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得一年后的本息和为:10000(1+x),则两年后的本息和为:10000(1+x)(1+x),进而得出答案.【解答】解:设存款的年利率为x,则由题意列方程应为:10000(1+x)2=10609.故答案为:10000(1+x)2=10609.【点评】此题主要考查了由实际问题抽象出一元二次方程,正确表示出第2年的本息和是解题关键.11.如图,把两个全等的矩形ABCD和矩形CEFG拼成如图所示的图案,则∠AFC= 45 °.【考点】矩形的性质;等腰直角三角形.【分析】根据矩形的性质得出AB=CE,BC=EF,∠B=∠E=90°,根据SAS推出△ABC≌≌△CEF,根据全等得出∠BAC=∠FCE,AC=CF,求出△ACF是等腰直角三角形,即可得出答案.【解答】解:∵四边形ABCD和四边形CEFG是全等的矩形,∴AB=CE,BC=EF,∠B=∠E=90°,在△ABC和△CEF中,,∴△ABC≌≌△CEF(SAS),∴∠BAC=∠FCE,AC=CF,∵∠B=90°,∴∠BAC+∠ACB=90°,∴∠ACB+∠FCE=90°,∴∠ACF=90,∴△ACF是等腰直角三角形,∴∠AFC=45°.故答案为:45.【点评】本题考查了矩形的性质,全等三角形的性质和判定的应用,能根据定理推出三角形ACF是等腰直角三角形是解此题的关键.12.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是210 cm.【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,求得CD的长,继而求得答案.【解答】解:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD﹣AD=270﹣60=210(cm).∴AC的长度是210cm.故答案为:210.【点评】此题考查了解直角三角形的应用:坡度问题.此题难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.13.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为.【考点】菱形的性质;平移的性质.【分析】首先得出△MEC∽△DAC,则=,进而得出=,即可得出答案.【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴=,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴=,∴=,∴图中阴影部分图形的面积与四边形EMCN的面积之比为: =.故答案为:.【点评】此题主要考查了菱形的性质以及相似三角形的判定与性质,得出=是解题关键.14.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(﹣1,0),(3,0).对于下列结论:①abc>0,;b2﹣4ac>0;③当x1<x2<0时,y1>y2;④当﹣1<x<3时,y>0.其中正确的有①②③个.【考点】二次函数图象与系数的关系.【分析】首先根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出①的正误;抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,故②正确;根据二次函数的性质即可判断出③的正误;由图象可知:当﹣1<x<3时,y<0,即可判断出④的正误.【解答】解:根据图象可得:抛物线开口向上,则a>0.抛物线与y交与负半轴,则c<0,对称轴:x=﹣>0,∴b<0,∴abc>0,故①正确;∵它与x轴的两个交点分别为(﹣1,0),(3,0),则△=b2﹣4ac>0,故②正确∵抛物线与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∵抛物线开口向上,∴当x<1时,y随x的增大而减小,∴当x1<x2<0时,y1>y2;故③正确;由图象可知:当﹣1<x<3时,y<0,故④错误;故正确的有①②③.故答案为①②③.【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右..三、作图题(共4分)15.画出如图所示几何体的主视图、左视图.【考点】作图-三视图.【分析】分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【解答】【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.四、解答题(本题共9小题,共74分)16.解方程:(1)x2﹣6x=11(配方法)(2)(x+5)(x+1)=12.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣6x=11x2﹣6x+9=11+9(x﹣3)2=20,x﹣3=x1=3+2,x2=3﹣2;(2)(x+5)(x+1)=12,整理得:x2+6x﹣7=0,(x+7)(x﹣1)=0,x+7=0,x﹣1=0,x1=﹣7,x2=1.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程转是解此题的关键.17.如图,某高尔夫球手击出的高尔夫求的运动路线是一条抛物线,当球水平运动了24m时达到最高点.落球点C比击球点A的海拔低1m,它们的水平距离为50m.(1)按如图所示的直角坐标系,求球的高度y(m)关于水平距离x(m)的函数关系式;(2)与击球点相比,球运动到最高点时有多高?【考点】二次函数的应用.【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量,可得函数值.【解答】解:(1)以海拔0米为x轴,过最高点为y轴,可设函数关系式:y=ax2+b,函数图象过(﹣24,0)(26,﹣1),把坐标点(﹣24,0),(26,﹣1)代入y=ax2+b,得,解得函数关系式为:y=﹣0.01x2+5.76;(2)当x=0时,y=b=5.76,答:球运动到最高点时最高为5.76米.【点评】本题考查了二次函数的应用,建立平面直角坐标系是解题关键.18.小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小颖和小凡做“石头、剪刀、布”游戏,如果两人的手势相同,那么小明获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小颖和小凡每次出这三种手势的可能性相同:(1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对三人公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列表得出所有等可能的情况数,找出两人手势相同的情况,求出小凡获胜的概率即可;(2)找出小明与小颖获胜的情况数,求出两人获胜的概率,比较即可得到结果.【解答】解:(1)列出表格,如图所示:石头剪刀布石头(石头,石头)(剪刀,石头)(布,石头)剪刀(石头,剪刀)(剪刀,剪刀)(布,剪刀)布(石头,布)(剪刀,布)(布,布)由列表可知所有等可能的情况有9种;(2)小明获胜的情况有3种,小颖获胜的情况有3种,∴P(小明获胜)=P(小颖获胜)==,∴P(小凡获胜)=,∴这个游戏对三人公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平19.在某次反潜演习中,我军舰A测得离开海平面的下潜潜艇C的俯角为37°,位于军舰A正上方1100米的反潜飞机B測得此时潜艇C的俯角为67°,求前艇C离开海平面的下潜深度.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin67°≈,cos67°≈,tan26°≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】作CD⊥AB于点D.设AD=x米,在直角△ACD中利用三角函数利用x表示出CD,然后在直角△ACD 中利用三角函数即可列方程求得x的值.【解答】解:作CD⊥AB于点D.设AD=x米,∵在直角△ACD中,∠ACD=37°,tan∠ACD=,∴CD====.∴BD=AB+AD=1100+x,∵直角△ACD中,∠DBC=23°,tan∠ACD=,∴=,解得:x=.答:潜艇下潜深度是米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.20.如图,正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于点A、B两点,已知点A的横坐标为1,点B的纵坐标为﹣3.(1)请直接写出A、B两点的坐标;(2)求处这两个函数的表达式;(3)根据图象写出正比例函数的值不小于反比例函数的值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据题意得出A、B关于原点成中心对称,根据中心对称的性质从而求得A(1,3),B(﹣1,﹣3),(2)把A(1,3)代入y=k1x(k1≠0)与y=即可求得k1,k2;(3)根据图象和交点A、B的坐标即可求得.【解答】解:(1)∵正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于点A、B两点,∴A、B关于原点成中心对称,∵点A的横坐标为1,点B的纵坐标为﹣3.∴A(1,3),B(﹣1,﹣3),(2)把A(1,3)代入正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0),得k1=3,k2=3,∴这两个函数的表达式为y=3x和y=;(3)由图象可知:正比例函数的值不小于反比例函数的值的x的取值范围为﹣1≤x<0或x>1.【点评】本题考查了反比例函数和一次函数的交点问题,根据题意求得A、B的坐标是解题的关键.21.已知,如图,在▱ABCD中,AC是对角线,AB=AC,点E、F分别是BC、AD的中点,连接AE,CF.(1)四边形AECF是什么特殊四边形?证明你的结论;(2)当△ABC的角满足什么条件时,四边形AECF是正方形?证明你的结论.【考点】正方形的判定;平行四边形的性质.【分析】(1)平行四边形的性质得出AD=BC,AD∥BC,求出AF=CE,AF∥CE,求出四边形AECF是平行四边形,求出∠AEC=90°,即可得出答案;(2)求出AE=EC=BC,即可得出答案.【解答】(1)四边形AECF是矩形,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E、F分别是BC、AD的中点,∴AF=AD,CE=BC,∴AF=CE,AF∥CE,∴四边形AECF是平行四边形,∵AB=AC,E为BC的中点,∴AE⊥BC,∴∠AEC=90°,∴四边形AECF是矩形;(2)当△ABC满足∠BAC=90°时,四边形AECF是正方形,证明:∵∠BAC=90°,E为BC的中点,∴AE=EC=BC,∵四边形AECF是矩形,∴四边形AECF是正方形,∴当△ABC满足∠BAC=90°°时,四边形AECF是正方形.【点评】本题考查了矩形的判定、菱形的判定、正方形的判定,平行四边形的性质和判定,等腰三角形的性质,直角三角形的性质的应用,能综合运用知识点进行推理是解此题的关键.22.某商店购进一批单价为30元的日用商品,如果以单价40元销售,那么每星期可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.设销售单价为x(元)(x>40)时,该商品每星期获得的利润y(元).(1)求出y与x之间的函数关系式及自变量x的取值范围;(2)求出销售单价为多少元时,每星期获得的利润最大?最大利润是多少?【考点】二次函数的应用;二次函数的最值;根据实际问题列二次函数关系式.【专题】应用题;函数思想;二次函数的应用.【分析】(1)根据“实际销量=原计划销量﹣因价格提高减少的销量”表示出销售量,再根据:每周利润=每件利润×实际销售量可列出函数关系式;由销售量≥0确定x的取值范围;(2)将(1)中函数关系式配方成顶点式,依据顶点式可得其最大值.【解答】解:(1)根据题意,当销售单价定为x元时,其每周销售量为:400﹣20(x﹣40),则该商品每星期获得的利润y=(x﹣30)[400﹣20(x﹣40)]=﹣20x2+1800x﹣36000,即y=﹣20x2+1800x﹣36000,∵其每周销售量400﹣20(x﹣40)≥0且x>40,∴40<x≤60;(2)由(1)知y=﹣20x2+1800x﹣36000,配方得:y=﹣20(x﹣45)2+4500,∵﹣20<0,且40<45<60,∴当x=45时,y最大值=4500,答:销售单价为45元时,每星期获得的利润最大,最大利润是4500元.【点评】本题主要考查二次函数的实际应用能力,将实际问题根据相等关系建立二次函数关系是关键.23.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.探究一:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12解得,x1=x2=∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍探究二:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)探究三:巳知边长为1的正方形ABCD,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n 倍?(n>2)(仿照上述方法,完成探究过程)【考点】四边形综合题.【分析】探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.【解答】解:探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12整理得x2﹣x+1=0b2﹣4ac=3﹣4<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=2﹣x在Rt△AEB中,由勾股定理,得x2+(2﹣x)2=12整理得2x2﹣4x+3=0b2﹣4ac=16﹣24<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,故答案为:不存在;探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12整理得2x2﹣2x+n﹣1=0b2﹣4ac=8﹣4n<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及一元二次方程的解法,读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键.24.已知,如图,在△ABC中,已知AB=AC=5cm,BC=6cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1cm/s,且QD⊥BC,与AC,BC分别交于点D,Q;当直线QD停止运动时,点P也停止运动.连接PQ,设运动时间为t(0<t<3)s.解答下列问题:(1)当t为何值时,PQ∥AC?(2)设四边形APQD的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APQD:S△ABC=23:45?若存在,求出t的值;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)设当ts时PQ∥AC,再用t表示出BP与BQ的长,根据相似三角形的性质即可得出结论;(2)分别过点A、P作AN⊥BC,PN⊥BC于点N、M,根据勾股定理求出AN的长,再由相似三角形的性质求出PM的长,根据三角形的面积公式即可得出结论;(3)分别用t表示出四边形APQD与三角形ABC的面积,进而可得出结论.【解答】解:(1)当ts时PQ∥AC,∵点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1cm/s,∴BP=t,BQ=6﹣t.∵PQ∥AC,∴△BPQ∽△BAC,∴=,即=,解得t=(s).答:当t为s时,PQ∥AC;(2)过点A、P作AN⊥BC,PN⊥BC于点N、M,∵AB=AC=5cm,BC=6cm,∴BN=CN=3cm,∴AN===4cm.∵AN⊥BC,PN⊥BC,∴△BPM∽△BAN,∴=,即=,解得PM=,∴S△BPQ=BQPM=(6﹣t)=﹣+t.∵AB=AC=5cm,∴∠C=45°,∴QC=DQ,∴S△CDQ=CQDQ=t2.∵S△ABC=BCAN=×6×4=12,∴y=S四边形APQD=S△ABC﹣S△CDQ﹣S△BPQ=12﹣t2﹣(﹣+t)=12﹣t2﹣t(0<t<3);(3)存在.∵由(2)知,S四边形APQD=S△ABC﹣S△CDQ﹣S△BPQ=12﹣t2﹣(﹣+t)=12﹣t2﹣t,S△ABC=12,∴=,解得t1=﹣12+,t2=﹣12﹣(舍去).答:当t=(﹣12+)s时,S四边形APQD:S△ABC=23:45.【点评】本题考查的是相似形综合题,涉及到相似三角形的判定与性质、等腰直角三角形等知识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.。

2022-2023学年山东省青岛市市北区九年级(上)期末数学试卷+答案解析(附后)

2022-2023学年山东省青岛市市北区九年级(上)期末数学试卷+答案解析(附后)

一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.B.C.D.2.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是2023-2024学年山东省青岛市市北区九年级(上)期末数学试卷( )A. B. C. D.3.若关于x 的方程有实数根,则实数m 的取值范围是( )A.B.C.D.4.已知反比例函数的图象经过点,那么该反比例函数图象也一定经过点( )A. B. C.D.5.如图,在中,,,若,则( )A. B. C.D.6.如图,一条河的两岸互相平行,为了测量河的宽度与河岸PQ垂直,测量得P,Q两点间距离为m米,,则河宽PT的长为( )A.B.C.D.7.如图,在中,分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于M,N两点,作直线直线MN与AB相交于点D,连接CD,若,则CD的长是( )A. 6B. 3C.D. 18.抛物线上有两点,,若,则下列结论正确的是( )A. B.C. 或D. 以上都不对9.在同一平面直角坐标系中,函数与其中a,b是常数,的大致图象是( )A. B.C. D.10.如图1,在菱形ABCD中,,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F的坐标为,则图象最低点E的坐标为( )A. B. C. D.二、填空题:本题共7小题,每小题3分,共21分。

11.质检部门对某批产品的质量进行随机抽检,结果如下表所示:抽检产品数n1001502002503005001000合格产品数m89134179226271451904合格率在这批产品中任取一件,恰好是合格产品的概率约是结果保留一位小数______.12.如图,点在双曲线的图象上,轴,垂足为A,若,则该反比例函数的解析式为______.13.据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程______ .14.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作于点E,连接BE,若,,则矩形ABCD的面积为______ .15.如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为,反射角为反射角等于入射角,于点C,于点D,且,,,则的值为______.16.图1是装了液体的高脚杯示意图数据如图,用去一部分液体后如图2所示,此时液面______.17.当时,二次函数有最大值m,则______.三、解答题:本题共8小题,共64分。

青岛版初中数学九年级上册期末检测试卷(3套)含答案

青岛版初中数学九年级上册期末检测试卷(3套)含答案

青岛版数学九年级上册期末检测试卷1一.选择题1.下列哪个方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣3 2.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元3.把一元二次方程(x+3)(x﹣5)=2化成一般形式,得()A.x2+2x﹣17=0 B.x2﹣8x﹣17=0 C.x2﹣2x=17 D.x2﹣2x﹣17=0 4.sin60°+tan45°的值等于()A.B.C.D.15.已知⊙P的半径为5,点P的坐标为(2,1),点Q的坐标为(0,6),则点Q与⊙P的位置关系是()A.点Q在⊙P外B.点Q在⊙P上C.点Q在⊙P内D.不能确定6.已知,在Rt△ABC中,∠C=90°,AB=5,BC=3,则sin A的值是()A.B.C.D.7.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为()A.90 B.180 C.270 D.36008.一元二次方程x2+6x+9=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.如图,AB是⊙O的直径,∠BOD=120°,点C为的中点,AC交OD于点E,OB =2,则AE的长为()A.B.C.D.10.已知一元二次方程ax2+bx+c=0(a≠0)①若方程两根为﹣1和2,则2a+c=0;②b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立其中正确的是()A.只有①②③B.只有①③④C.只有①②③④D.只有①④11.如图,在等腰△ABC中,AB=AC,tan C=2,BD⊥AC于点D,点G是底边BC上一点,过点G向两腰作垂线段,垂足分别为E、F,若BD=4,GE=1.5,则BF的长度为()A.0.75 B.0.8 C.1.25 D.1.3512.如图,分别以△ABC的三个顶点为圆心作⊙A、⊙B、⊙C,且半径都是0.5cm,则图中三个阴影部分面积之和等于()A.cm2B.cm2C.cm2D.cm2二.填空题13.在△ABC中,∠A、∠B为锐角,且|tan A﹣1|+(﹣cos B)2=0,则∠C=°.14.已知⊙O的半径为3cm,点A、B、C是直线l上的三个点,点A、B、C到圆心O的距离分别为2cm,3cm,5cm,则直线l与⊙O的位置是.15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为.16.两个相似三角形的相似比为2:3,他们的周长差为30,则较大三角形的周长为.17.如图,等边三角形ABC的外接圆⊙O的半径OA的长为2,则其内切圆半径的长为.三.解答题18.计算(1)2sin30°﹣tan60°+tan45°;(2)tan245°+sin230°﹣3cos230°19.用适当的方法解下列方程:(1)(x﹣2)2﹣16=0(2)5x2+2x﹣1=0.20.如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)如果E是AC的中点,AD=8,AB=10,求AE的长.21.如图,AD是△ABC的中线,tan B=,cos C=,AC=.求:(1)BC的长;(2)∠ADC的正弦值.22.如图,⊙O是△ABC的外接圆,圆心O在AB上,M是OA上一点,过M作AB的垂线交BC的延长线于点E,点F是ME上的一点,且EF=CF.(1)求证:直线CF是⊙O的切线;(2)若∠B=2∠A,AB=8,且AC=CE,求BM的长.。

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3B.4C.D.2、已知关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x 1x2=0,则a的值是()A.a=1B.a=1或a=﹣2C.a=2D.a=1或a=23、已知方程2x2﹣x﹣1=0的两根分别是x1和x2,则x1+x2的值等于()A.2B.﹣C.D.﹣14、将一个菱形放在2倍的放大镜下,则下列说法不正确的是()A.菱形的各角扩大为原来的2倍B.菱形的边长扩大为原来的2倍C.菱形的对角线扩大为原来的2倍D.菱形的面积扩大为原来的4倍5、已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是( ).A.12B.13C.14D.156、在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D 上C.点A在⊙D内D.无法确定7、若,,则以,为根的一元二次方程是()A. B. C. D.8、已知关于x的一元二次方程有两个不相等的实数根,那么m的值为()A. B. C. D.9、已知,在中,,,,作.小亮的作法如下:①作,②在上截取,③以为圆心,以5为半径画弧交于点,连结.如图,给出了小亮的前两步所画的图形.则所作的符合条件的()A.是不存在的B.有一个C.有两个D.有三个及以上10、如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.1B.C.D.11、把方程(x- )(x+ )+(2x-1)2=0化为一元二次方程的一般形式是()A. B. C. D.512、按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1 个B.2 个C.3 个D.4 个13、若关于x的方程x2+(m+1)x+ =0的一个实数根的倒数恰是它本身,则m 的值是()A.﹣B.C.﹣或D.114、如图,四边形ABCD是⊙O的内接四边形,若∠B=80°,则∠ADC的度数是()A.60°B.80°C.90°D.100°15、已知弦AB把圆周分成1:5的两部分,则弦AB所对应的圆心角的度数为()。

青岛新版九年级数学上册期末检测试卷含答案

青岛新版九年级数学上册期末检测试卷含答案

青岛新版九年级数学上册期末检测试卷含答案一、单选题
1.如图,是的弦,点在上,已知,则等于()
A.40°B.50C.60°D.80°
2.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=50°,则∠C的度数为()
A.60°B.50°C.40°D.30°
3.在Rt△ABC中,△C=90°,若AC=2,BC=1,则tanA的值是()
A.B.2 C.D.
4.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数及方差如下表所示.
若要选出一个成绩较好且状态稳定的运动员去参赛,那么应选运动员()A.甲B.乙C.丙D.丁
5.下列各点中,与不在同一反比例函数图象上的是
A .B.C.D.
6.如图,点的坐标是,是等边三角形,点在第一象限,若反比例函数的图象经过点,则的值()
A .B.8C.D.
7.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB =6,BE=3,则EC的长是()
A.4B.2C.D.
8.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()。

青岛出版社九年级上学期数学期末试题及答案

青岛出版社九年级上学期数学期末试题及答案

九年级数学试题时间:120分钟 总分:120分一、选择题(每小题3分,共36分.)1.用配方法将方程267x x -+=0变形,结果正确的是( )。

A 、2(3)4x -+=0B 、2(3)2x --=0C 、2(3)2x -+=0D 、2(3)4x ++=02.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )。

A 、256)x 1(2892=- B 、289)x 1(2562=- C 、256)x 21(289=- D 、289)x 21(256=-3.你玩过万花筒吗?它是由三块等宽等长的玻璃片围成的。

下图是看到的万花筒的一个图形,图中所有的小三角形均是全等的等边三角形,其中的 菱形AEFG 可以看成是把菱形ABCD 以A 为中心( )。

A 、顺时针旋转60°得到B 、顺时针旋转120°得到C 、逆时针旋转60°得到D 、逆时针旋转120°得到4.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b .例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( )。

A 、-5,9B 、13,15C 、 2,3D 、2,-3 5.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC的面积是 ( )A 、10B 、16C 、18D 、206.若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是( ) A 、123y y y << B 、213y y y <<C 、312y y y <<D 、132y y y <<7.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A 、3≤OM ≤5 B 、4≤OM ≤5 C 、3<OM <5 D 、4<OM <5 8.已知反比例函数xk y =的图象如右下图所示,则二次函数222k x kx y +-=的图象大致为( )yOyx图 1OA B D C P4 9图 2. BOMA 第7题图9.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A 、94π- B 、984π-C 、948π-D 、988π-10.如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A 、1<m <11B 、2<m <22C 、10<m <12D 、5<m <6 11.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,与AB 交于点E ,若AD =2,BC =6,则⌒DE 的长为( ) A 、23π B 、43π C 、83πD 、π3 12.如图,已知正三角形ABC 的边长为1,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE=BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数的图象大致是( )一、请将选择题答案填入下面表格中:二、填空题(每小题3分,共18分,请把答案填在横线上)13.⊙O 的半径为3cm ,点M 是⊙O 外一点,OM =4 cm ,则以M 为圆心且与⊙O 相切的圆1 2 3 4 5 6 7 8 9 10 11 12P AEFDCBA .B .C .D .第11题图A MDE BC第12题图FA GEBCAxyO43xyO43 B xyO43 CxyO43 Dy Ox y O x yO x yO xyOxDABCO第10题图2y x=xyOP 1P 2P 3P 4 12 3 4(第17题)的半径是 cm.14.将抛物线2(0)y ax bx c a =++≠向下平移3个单位,再向左平移4个单位得到抛物线2245y x x =--+,则原抛物线的顶点坐标是15.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.16.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系12b x x a +=-,x 1.2x =ac 根据该材料填空: 已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为____ __。

青岛市九年级上册期末数学试题(含答案)

青岛市九年级上册期末数学试题(含答案)

青岛市九年级上册期末数学试题(含答案)一、选择题1.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º2.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .43.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-4.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=5.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;6.△ABC 的外接圆圆心是该三角形( )的交点. A .三条边垂直平分线 B .三条中线 C .三条角平分线D .三条高7.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .238.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 9.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2 B .3C .4D .510.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5) 11.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6 B .7C .8D .912.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +13.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°14.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3415.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252-B .25-C .251-D .52-二、填空题16.若a b b -=23,则ab的值为________. 17.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.18.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.19.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.20.一组数据:2,5,3,1,6,则这组数据的中位数是________.21.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 22.一组数据3,2,1,4,x 的极差为5,则x 为______. 23.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.24.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.25.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.26.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.27.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm . 28.已知234x y z x z y+===,则_______ 29.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题31.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目. (1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.32.(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P ,求证:DP EP BQ CQ=; (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN .33.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2.34.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.35.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.四、压轴题36.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.37.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.38.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.39.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.40.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°. 故选B. 【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.3.C解析:C 【解析】 【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案. 【详解】解:∵(1)(2)0x x --=, ∴x -1=0或x -2=0, 解得:1x =或2x =. 故选:C. 【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.4.D解析:D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC ,∴△ADE∽△ABC ,AD AEAB AC =, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D.5.C解析:C 【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】 如图:由勾股定理得:22222133AC BC ++==, 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.6.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC 的外接圆圆心是△ABC 三边垂直平分线的交点, 故选:A . 【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.D解析:D 【解析】 【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D . 【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.8.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.9.B解析:B 【解析】 【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可. 【详解】∵这组数据有唯一的众数4, ∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4, ∴中位数为:3. 故选B . 【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.10.D解析:D 【解析】 【分析】根据二次函数的顶点式即可直接得出顶点坐标. 【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5), 故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 11.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.12.D解析:D【解析】【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.A解析:A【解析】【详解】解:∵四边形ABCO 是平行四边形,且OA=OC ,∴四边形ABCO 是菱形,∴AB=OA=OB ,∴△OAB 是等边三角形,∴∠AOB=60°,∵BD 是⊙O 的直径,∴点B 、D 、O 在同一直线上,∴∠ADB=12∠AOB=30° 故选A . 14.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38. 故选B .【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.15.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 二、填空题16.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.17.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式. 18.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点. 19.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:解析:817【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴817 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.20.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.21.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.22.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.23.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.24..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx nym n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.25.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.26.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 27.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长. 28.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k来表示x、y、z. 29.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB =5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tan A=BCAC=34,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴FHCD=EFDE,∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM⊥AF∵六边形ABCDEF 为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r1=3 3a同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(1)14;(2)716;【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=1 4 .(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=7 16.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.32.(1)证明见解析;(2)①29;②证明见解析.【解析】【分析】(1)易证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出DP EP BQ CQ=;(2)①根据等腰直角三角形的性质和勾股定理,求出BC边上的高22,根据△ADE∽△ABC,求出正方形DEFG的边长23.从而,由△AMN∽△AGF和△AMN的MN边上高26,△AGF的GF边上高22,GF=23,根据 MN:GF等于高之比即可求出MN;②可得出△BGD∽△EFC,则DG•EF=CF•BG;又DG=GF=EF,得GF2=CF•BG,再根据(1)DM MN ENBG GF CF==,从而得出结论.【详解】解:(1)在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴DP AP BQ AQ=,同理在△ACQ和△APE中,EP AP CQ AQ=,∴DP PE BQ QC=;(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=22,∵DE=DG=GF=EF=BG=CF ∴DE:BC=1:3又∵DE∥BC∴AD:AB=1:3,∴AD=13,DE=23,∵DE边上的高为26,MN:GF=26:22,∴MN:23=26:22,∴MN=29.故答案为:29.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD ∽△EFC , ∴DG BG CF EF=, ∴DG•EF=CF•BG ,又∵DG=GF=EF ,∴GF 2=CF•BG ,由(1)得DM MN EN BG GF FC ==, ∴MN MN DM EN GF GF BG CF =, ∴2()MN DM EN GF BG CF=, ∵GF 2=CF•BG ,∴MN 2=DM•EN .【点睛】 本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.33.(1)x 1=1+3,x 2=1-3;(2)x 1=13,x 2=-3 【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=∴x 1=1x 2=1 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.34.(1)()4,1;(2)4l 的函数表达式为()21412y x =--+,24x ≤≤;(3)120a a +=,理由详见解析【解析】【分析】(1)设x=0,求出y 的值,即可得到C 的坐标,根据抛物线L 3:21(2)12y x =--得到抛物线的对称轴,由此可求出点C 关于该抛物线对称轴对称的对称点D 的坐标; (2)由(1)可知点D 的坐标为(4,1),再由条件以点D 为顶点的L 3的“友好”抛物线L 4的解析式,可求出L 4的解析式,进而可求出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)根据:抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,可以列出两个方程,相加可得(a 1+a 2)(h-m )2=0.可得120a a +=.【详解】解:(1)∵抛物线l 3:21(2)12y x =--, ∴顶点为(2,-1),对称轴为x=2,设x=0,则y=1,∴C (0,1), ∴点C 关于该抛物线对称轴对称的对称点D 的坐标为:(4,1);(2)解:设4l 的函数表达式为()241y a x =-+由“友好”抛物线的定义,过点()2,1- ()21241a ∴-=-+12a ∴=- 4l 的函数表达式为()21412y x =--+ 3l ∴与4l 中y 同时随x 增大而增大的自变量的取值范围是24x ≤≤(3)120a a +=理由如下:∵ 抛物线()21y a x m n =-+与抛物线()22y a x h k =+-互为“友好”抛物线,()()2122k a h m n n a m h k ⎧=-+⎪∴⎨=-+⎪⎩①② ①+②得:()()2210+-=a a m h m h ≠。

青岛版九年级数学上册期末测试题及参考答案

青岛版九年级数学上册期末测试题及参考答案

九年级数学试题一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相平分的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形3.如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的对角线AC 的长是( )A .2B .4C .23D .434.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )A .矩形B .直角梯形C .菱形D .正方形5.方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x =6.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的坐标为( )A.(-2,2)B.(4,1)C.(3,1)D.(4,0)7.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )ODCABA .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠58.2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。

受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是( ) A .2200(1%)148a += B .2200(1%)148a -= C .200(12%)148a -=D .2200(1%)148a -=9. 两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是( ) A .相交B .外离C .内含D .外切10.如图,⊙O 的弦AB 垂直平分半径OC ,若AB=,6则⊙O 的半径为( ) A.2 B.22 C.22 D.26 11.弧长等于半径的圆弧所对的圆心角是( ) A.360πB.180πC.90πD.60012.已知反比例函数xky =的图象经过点P(一l ,2),则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 13.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( ) A.点A B.点B C.点C D.点D14.如图,⊙O 内切于△ABC ,切点为D ,E ,F .已知∠B=50°,∠C=60°,•连结OE ,OF ,DE ,DF ,那么∠EDF 等于( )A .40°B .55°C .65°D .70°AB CD MNPP 1M 1N 1 (第13题图)15.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC =12,BD =9,则该梯形的面积是( )A. 30B. 15C. 7.5D. 5416.某校数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是( )17. 若n (0n ≠)是关于x 的方程220x mx n ++=的根,则n m +的值为( ) A 、1 B 、2 C 、-1 D 、-218.已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A. y 3<y 1<y 2B. y 2<y 1<y 3C. y 1<y 2<y 3D. y 3<y 2<y 1 19.如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如右图所示,则△ABC 的面积是()94xyOPDC BAA 、10B 、16C 、18D 、2020. 如图,直线y kx b =+经过(2,1)A --和(3,0)B -两点,双曲线为y=x1的图像,利用函数图象判断不等式1kx b x<+的解集为( ) (A)3132x --<或3132x -+>(B)353522x ---+<< (C)31331322x ---+<< (D)3535022x x ---+<<<或二、填空题(本大题共5个小题,满分15分,只要求填写最后结果,每小题填对得3分) 21.方程25)1(2=-x 的解是__________________. 22. 函数31-=x y 的自变量的取值范围是_________________.23.如图:矩形纸片ABCD ,AB =2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .24.如图,正方形ABCD 的边长为1,E 、F 分别是BC 、CD 上的点,且△AEF 是等边三角形,则BE 的长为_________________. 25.如图,同心圆O 中,大圆半径OA 、OB 分别交小圆于D 、C ,OA ⊥OB,若四边形ABCD 的面积为50,则图中阴影部分的面积为____________________. 三、解答题(解答应写出必要的文字说明、证明过程或推演步骤) 26.(本题满分10分)xyOA (-2,-1)B (-3,0)A B C DE第23题图如图,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.27. (本题满分11分)如图,利用一面墙(墙的长度不超过45m )当做一边,用80m 长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为750m 2?⑵能否使所围矩形场地的面积为810m 2,为什么?28.(本题满分12分)如图,AB 为⊙O 的直径,PQ 切⊙O 于T ,AC PQ ⊥于C ,交⊙O 于D . 求证:(1)AT 平分∠BAC(2)AT 2=A B ·AC29. (本题满分12分) 已知:如图,在平面直角坐标系x O y 中,Rt △OCD 的一边OC 在x 轴上,∠C=90°,点D 在第一象限,OC=3,DC=4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,在x 轴上求一点P ,使PA PB +最小.AB C D OP T Q (第28题图)九年级数学试题一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 选项 B C B A D D C B A A 题号 11 12 13 14 15 16 17 18 19 20 选项BDBBDADAAD二、填空题:21. x 1=6 x 2 =4-; 22. x >3 ; 23. 4 ; 24. 2-3; 25. 75π 三、解答题: 26.(1) 内. ············································································································· 3分(2) 证法一:连接CD , ∵ DE ∥AC ,DF ∥BC , ∴ 四边形DECF 为平行四边形,…………………………2分 又∵ 点D 是△ABC 的内心, ∴ CD 平分∠ACB ,即∠FCD =∠ECD ,…………………………3分 由DF ∥BC 知∠FDC =∠ECD ,∴ ∠FCD =∠FDC …………………………5分 ∴ FC =FD , ∴ □DECF 为菱形.……………………………………………………………7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH . ∴DH =DI .∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF . ∴□DECF 为菱形.27.解:⑴设所围矩形ABCD 的长AB 为x 米,则宽AD 为)80(21x -米.………1分依题意,得 ,x x 750)80(21=-∙………………3分即,.x x 01500802=+-解此方程,得 ,x 301= .x 502= ……………5分∵墙的长度不超过45m ,∴502=x 不合题意,应舍去.当30=x 时,.x 25)3080(21)80(21=-⨯=-………6分所以,当所围矩形的长为30m 、宽为25m 时,能使矩形的面积为750m 2.……7分 ⑵不能.因为由,x x 810)80(21=-∙得.x x 01620802=+- 又∵ac b 42-=(-80)2-4×1×1620=-80<0, ∴上述方程没有实数根.因此,不能使所围矩形场地的面积为810m 2…………………………………4分 28.(1)连接OT, ∵PQ 切⊙O 于T …………………………………1分 ∴OT ⊥PQ, ∵AC ⊥PQ, ∴OT ∥AC, ∴∠OTA=∠TAC …………………3分∵OA=OT, ∴∠OTA=∠TAO, ∴∠TAO=∠TAC, ∴AT 平分∠BAC ……………..6分. (2)连接BT, ∵AB 为⊙O 直径,∴∠BTA=90°,∴∠BTA=∠TCA=90°……9分 又由(1)知∠BAT=∠TAC,∴△BAT ∽△TAC ……………………………10分, ∴AB AT =ATAC ,∴AT 2=AB ·AC …………………………………………12分. 29.(1)过点A 作AE ⊥ x 轴于E, ∵点A 为OD 中点,∴ AE=21DC= 2 ,OE=21OC=1.5,∴点A 坐标为(1.5,2). 设反比例函数解析式为: xky =,把x=1.5,y=2代入得:k=3, ∴反比例函数解析式为: y=x3………………………… 5分 (2)作点B 关于x 轴的对称点B ’. 连接A B ’交x 轴于点P ……………………7分 把x=3代入y=x3得,y=1, ∴点B 坐标为(3,1)……………………8分 设直线A B ’的解析式为:y kx b =+,由点A 坐标(1.5,2),点B 坐标(3,1)解得:直线A B ’的解析式为:y=-2x+5, …………………………..……………10分把y=0代入y=-2x+5得,x=2.5, ∴点P 坐标为(2.5,0)………………………12分。

(考试突破)青岛版九年级上册数学期末测试卷及含答案

(考试突破)青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,矩形的顶点在反比例函数的图象上,点的坐标为则的值为()A.-18B.8C.9D.182、如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树的高度为()A.4.8mB.6.4mC.8mD.10m3、已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交于点C;步骤3:画射线OC.则下列判断:①= ;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A.1B.2C.3D.44、如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B,C两点,连结AC,BC.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°5、一元二次方程x2+3x-1=0的解的情况是()A.无解B.有两个不相等的实数根C.有两个相等的实数根D.只有一个解6、如图,AB为⊙O直径,点D为AB延长线上一点,DC为⊙O切线,切点为C,若AC=CD,则AC:BD的值为()A. B.2 C. D.7、如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述何者正确()A.O是△AEB的外心,O是△AED的外心B.O是△AEB的外心,O不是△AED的外心C.O不是△AEB的外心,O是△AED的外心D.O不是△MEB的外心,0不是△MED的外心8、关于x的方程x2-mx-1=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定9、若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠110、现有如下4个命题:①过两点可以作无数个圆.②三点可以确定一个圆.③任意一个三角形有且只有一个外接圆.④任意一个圆有且只有一个内接三角形.其中正确的有A.1个B.2个C.3个D.4个11、一元二次方程x2﹣9=0的两根分别是a,b,且a>b,则2a﹣b的值为()A.3B.﹣3C.6D.912、如图,∠1=∠2,DE∥AC,则图中的相似三角形有()A.2对B.3对C.4对D.5对13、如图,四边形内接于,连接.若,,则的度数是()A.125°B.130°C.135°D.140°14、方程x2﹣4=0的根是()A.x=2B.x=﹣2C.x1=2,x2=﹣2 D.x=415、已知关于的方程,下列说法正确的是()A.当时,方程无解B.当时,方程有一个实数解C.当时,方程有两个相等的实数解 D.当时,方程总有两个不相等的实数解二、填空题(共10题,共计30分)16、在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,连接AE,若将△ABE 沿AE翻折,点B落在点F处,连接FC,则tan∠BCF=________.17、如图,△ABC中,∠AED=∠B,AD=2,DB=4,AE=3,则EC=________.18、如图,已知⊙O上三点A,B,C,半径OC=,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为________.19、已知x1、x2为方程x2+3x+1=0的两实根,则x13+8x2+20=________.20、如图,在中,,的面积=梯形的面积=梯形的面积,则的值为________.21、已知关于的一元二次方程有实数根,则的取值范围是________.22、若正六边形的内切圆半径为2,则其外接圆半径为________.23、如图,在平面直角坐标系中,的顶点的坐标分别是、. ,,反比例函数的图象经过点B,则k的值为________.24、我国魏晋时期数学家刘徽编撰的最早一部测量数学著作《海岛算经》中有一题:今有望海岛,立两表齐高三丈,前后相去千步,令后表与前表参相直.从前表却行一百二十三步,人目着地,取望岛峰,与表末参合.从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合.问岛高几何?译文:今要测量海岛上一座山峰AH的高度,在B处和D处树立标杆BC和DE,标杆的高都是3丈,B和D两处相隔1000步(1丈=10尺,1步=6尺),并且AH,CB和DE在同一平面内.从标杆BC后退123步的F处可以看到顶峰A和标杆顶端C在同一直线上;从标杆ED后退127步的G处可以看到顶峰A和标杆顶端E在同一直线上.则山峰AH的高度是________.25、若关于x的一元二次方程(m+2)x2+3x+m2﹣4=0的一个根为0,则m的值为=________.三、解答题(共5题,共计25分)26、计算:27、如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE⊥AB交BC于点D,交⊙O于点E,F在DA的延长线上,且AF=AD.若AF=3,tan∠ABD=,求⊙O的直径.28、如图,操场上有一根旗杆AH.为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?29、已知x1、x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,使得(3x1﹣x2)(x1﹣3x2)=﹣80成立,求其实数a的可能值.30、如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于Q,过Q的⊙O的切线交OA的延长线于R.求证:RP=RQ.参考答案一、单选题(共15题,共计45分)1、B3、C4、C5、B6、A7、B8、A9、C10、B11、D12、C13、B14、C15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

青岛版数学九年级上册单元、期中、期末测试题及答案(共6套)

青岛版数学九年级上册单元、期中、期末测试题及答案(共6套)

青岛版数学九年级上册单元、期中、期末测试题第一单元测试题一、选择题1.如果把三角形的三边按一定的比例扩大,则下列说法正确的是()A.三角形的形状不变,三边的比变大B.三角形的形状变,三边的比变大C.三角形的形状变,三边的比不变D.三角形的形状不变,三边的比不变2.中,,,,和它相似的三角形的最短边是,则最长边是()A. B. C. D.3.如图,五边形和五边形是位似图形,且,则等于()A. B. C. D.4.如图,下列条件:①;②;③;④,能使的条件的个数为()A.个B.个C.个D.个5.如图,以点为位似中心,作的一个位似三角形,,,的对应点分别为,,,与的比值为,若两个三角形的顶点及点均在第1页(共64页)如图所示的格点上,则的值和点的坐标分别为()A.,B.,C.,D.,6.以为斜边作等腰直角,再以为斜边在外侧作等腰直角,如此继续,得到个等腰直角三角形(如图),则图中与的面积比值是()A. B. C. D.7.下列说法不正确的是()A.含角的直角三角形与含角的直角三角形是相似的B.所有的矩形是相似的C.所有边数相等的正多边形是相似的D.所有的等边三角形都是相似的8.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为米的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为()A.米B.米C.米D.米第2页(共64页)9.如图,小明在时测得某树的影长为,时又测得该树的影长为,若两次日照的光线互相垂直,则树的高度为.A. B. C. D.10.如图,已知,,,为边上一点,且,为边上一点(不与、重合),若与相似,则A. B. C.或 D.或二、填空题11.在中,,,在中,已知,,要使与相似,需添加的一个条件是________.12.若,且相似比,当时,则________ .13.在中,点、分别在边、上,,,,则________.14.四边形与四边形位似,为位似中心,若,那么________.第3页(共64页)。

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,⊙O是△ABC的外接圆,∠B=60o, 0P⊥AC于点P,OP=2,则⊙O的半径为()A.4B.6C.8D.122、如图,在平面直角坐标系中,A(0,2 ),动点B,C从原点O同时出发,分别以每秒1个单位和每秒2个单位长度的速度沿x轴正方向运动,以点A为圆心,OB的长为半径画圆;以BC为一边,在x轴上方作等边△BCD.设运动的时间为t秒,当⊙A与△BCD的边BD所在直线相切时,t的值为()A. B. C.4 +6 D.4 -63、下列命题中,正确的有()①平面内三个点确定一个圆;②平分弦的直径平分弦所对的弧;③半圆所对的圆周角是直角;④相等的圆周角所对的弦相等;⑤在同圆中,相等的弦所对的弧相等.A.1个B.2个C.3个D.4个4、如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为,且sin = ,则该圆锥的侧面积是()A. B.24π C.16π D.12π5、下列各图中,∠1=∠2的图形的个数有()A.3B.4C.5D.66、如图,电灯在横杆的正上方,在灯光下的影子为,,,点到的距离是3m,则点到的距离是()A. m B. C. D.7、若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣38、如图,已知⊙O的半径为,弦垂足为E,且,则的长为()A. B. C. D.9、已知方程x2﹣2x﹣1=0,则此方程A.无实数根B.两根之和为﹣2C.两根之积为﹣1D.有一根为-1+10、下列命题:①三点确定一个圆;②平分弦的直径平分弦所对的弧;③相等的弦所对的圆心角相等;④在半径为的圆中,的圆周角所对的弧长为.错误的有()个.A. B. C. D.11、一个圆锥的侧面积是底面积的2倍。

则圆锥侧面展开图的扇形的圆心角是()A.120°B.180°C.240°D.300°12、如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A.AB>CE>CDB.AB=CE>CDC.AB>CD>CED.AB=CD=CE13、如图,为安全起见,萌萌拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB的长为3m,点D、B、C在同一水平地面上,那么加长后的滑梯AD的长是()A.2 mB.2 mC.3 mD.3 m14、下列说法中正确的是()A.同一平面内,过一点有且只有一条直线与已知直线平行B.三张分别画有菱形、等边三角形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是C.一组对边平行,一组对边相等的四边形是平行四边形 D.当时,关于的方程有实数根15、已知的三边长为a,b,c,且满足方程a2x2-(c2-a2-b2)x+b2=0,则方程根的情况是()。

(能力提高)青岛版九年级上册数学期末测试卷及含答案

(能力提高)青岛版九年级上册数学期末测试卷及含答案

青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,DE∥BC,且AD=4,DB=2,DE=3,则BC的长为()A. B. C. D.82、一元二次方程x2﹣x﹣3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3、把一元二次方程x2﹣6x+1=0配方成(x+m)2=n的形式,正确的是()A.(x+3)2=10B.(x﹣3)2=10C.(x+3)2=8D.(x﹣3)2=84、如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A 1ABB1的面积为,再分别取A1C、B1C的中点A2、B2, A2C、B2C的中点A2、B2,依次取下去…….利用这一图形,计算出+……+ 的值是()A. B. C. D.5、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.x(x-1)=1035x2C.x(x-1)=1035D.2x (x+1)=10356、三角形在正方形网格纸中的位置如图所示,则sina+cosa的值是()A. B. C. D.7、如图,△ABC内接于圆,D是BC上一点,将∠B沿AD翻折,B点正好落在圆点E处,若∠C=50°,则∠BAE的度数是()A.40°B.50°C.80°D.90°8、不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A. a>0,△>0B. a>0,△<0C. a<0,△<0D. a<0,△>09、若弧长为6π的弧所对的圆心角为60°,则该弧所在的圆的半径为( )A.6B.6C.12D.1810、如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值等于()A.2π﹣4B.4π﹣8C.D.11、下列叙述正确的是()A.平分弦的直径垂直于弦B.三角形的外心到三边的距离相等C.三角形的内心到三边的距离相等D.相等的圆周角所对的弧相等12、下列一元二次方程中,两个实数根之和为2的是()A.2x 2+x﹣2=0B.x 2+2x﹣2=0C.2x 2﹣x﹣1=0D.x 2﹣2x ﹣2=013、在中,,,则等于()A. B. C. D.14、如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE =36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③D.①②③15、如图,在矩形ABCD中,AB=4,BC=6,点E是AB中点,在AD上取一点G,以点G为圆心,GD的长为半径作圆,该圆与BC边相切于点F,连接DE,EF,则图中阴影部分面积为()A.3πB.4πC.2π+6D.5π+2二、填空题(共10题,共计30分)16、⊙O的半径为5,直线l和点O的距离为d,若直线l与⊙O有公共点,则d的范围________ .17、若圆锥的母线长为5cm,高为3cm,在它的侧面展开图中扇形的圆心角的度数是________.18、已知关于x的方程(m2﹣1)x2+(m+1)x+m﹣2=0,当m________时,方程为一元二次方程.19、方程x2-3x=0的解为________.20、 tan30°﹣=________.21、一个正八边形要绕它的中心至少转________ 度,才能和原来的图形重合,它有________ 条对称轴.22、关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为________.23、△ABC中,∠ACB=120°,AC=BC=3,点D为平面内一点,满足∠ADB=60°,若CD的长度为整数,则所有满足题意的CD的长度的可能值为________.24、如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E=________°.25、如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C 到航线AB的距离CD等于________海里.三、解答题(共5题,共计25分)26、解方程:x2-3x=5x-127、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.28、如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C,D,B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)29、圆心O到直线L的距离为d,⊙O半径为r,若d、r是方程-6x+m=0的两个根,且直线L与⊙O相切,求m的值.30、解方程:﹣x2﹣2x=2x+1参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、B5、C6、D7、C8、B9、D10、D11、C12、D13、C14、D15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛版九年级上学期期末数学测试题注意事项:本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,36分,第Ⅱ卷为非选择题,84分,共120分,考试时间120分钟。

第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来并填在第4页的答题栏中,每小题选对得3分,选错,不选或选出的答案超过一个,均记零分)1. 如图,它们是一个物体的三视图,该物体的形状是( )俯视图正视图左视图A. 圆柱B. 正方体C. 圆锥D. 长方体2..顺次连结等腰梯形各边中点得到的四边形是()A、矩形B、菱形C、正方形D、平行四边形3.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是A.B.C.D.4. 根据下列表格的对应值:02=++c bx ax 的范围是A . 3<x <3.23B . 3.23<x <3.24C . 3.24<x <3.25D .3.25 <x <3.26 5. 下列函数中,属于反比例函数的是 A 、3x y = B 、13y x=C 、52y x =-D 、21y x =+ 6. 将方程122=-x x 进行配方,可得 A .2)1(2=+x B .5)2(2=-x C .2)1(2=-x D .1)1(2=-x7. 对于反比例函数2y x=,下列说法不正确...的是 A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 8. 到三角形三条边的距离相等的点是三角形 A 、三条角平分线的交点 B 、三条高的交点 C 、三边的垂直平分线的交点 D 、三条中线的交点9. 一元二次方程2560x x --=的根是 A 、x 1=1,x 2=6 B 、x 1=2,x 2=3 C 、x 1=1,x 2=-6 D 、x 1= -1,x 2=610. 如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致A B C D11. 顺次连结等腰梯形各边中点得到的四边形是 A 、矩形 B 、菱形 C 、正方形 D 、平行四边形12. 如图,△ABC 中,∠A=30°,∠C=90° AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是A 、AD=DB B 、DE=DC C 、BC=AED 、AD=BCy xOoy xy oy o一、选择题(每小题3分,共36分)填写最后结果,每小题填对得3分)13.在“We like maths.”这个句子的所有字母中,字母“e”出现的频率约为(结果保留2个有效数字).14.任意写出一个经过一、三象限的反比例函数图象的表达式.15.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次鱼共200条,有10条做了记号,则估计湖里有_____________条鱼.16.小明想知道某塔的高度,可是又不能爬上去,便灵机一动,发现身高1.80米的他在阳光下影长为2.4米,而塔的影子正好为36米,则塔的高度为______米17.某商品成本为500元,由于连续两年降低成本,现为190元.若每年成本降低率相同,设成本降低率为x,则所列方程为:.18.菱形的一条对角线长是6cm,周长是20cm,则菱形的面积是 cm2.19. 等腰△ABC一腰上的高为3,这条高与底边的夹角为60°,则△ABC的面积;三、解答题(本大题共7小题,满分63分,解答应写出必要的文字说明、证明过程或推演步骤)20. (本小题满分8分, 每小题答对得4分)解方程:(1)2 x2 + 5 x - 1= 0(2)2(2)-=-x x x21.(本小题满分6分)如图,树、红旗、人在同一直线上。

已知人的影子为AB,树的影子为CD,确定光源在什么位置,并画出红旗的影子。

B DA E C22. (本小题满分8分)某商店四月份的营业额为40万元,五月份的营业额比四月份有所增长,六月份比五月份又增加了5个百分点,即增加了5%,营业额达到了48.3万元。

求五月份增长的百分率。

23. (本小题满分10分)如图,△OAP 、△ABQ 均为等腰直角三角形,点P 、Q 在反比例函数图象上,直角顶点A 、B 均在x 轴上,已知OP =. (1)求此反比例函数表达式; (2)求点Q 的坐标.24. (本小题满分10分)已知:如图,D 是ΔABC 的BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别 是E 、F ,且BF=CE .求证:(1)ΔABC 是等腰三角形; (2)当∠A=900时,试判断四边形AFDE 是怎样的四边形,证明你的结论.EBCAD25. (本小题满分10分)如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB. 求证: ①PE=PD; ②PE ⊥PD26.(本小题满分11分)实验与探究探索一个问题:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”(阅读(1)完成后面的问题)(1) .当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是y x 和,由题意得方程组:⎪⎩⎪⎨⎧==+327xy y x ,消去y 化简得:06722=+-x x ∵△=49-48>0 ∴2,2321==x x ∴满足要求的矩形B 存在.(2) .如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .(3分)(3)对上述(2)中问题,小明同学从“图形”的角度,利用函数图象......给予了解决.小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x+y=23,xy=1.请你按照小明的论证思路完成后面的论证过程.(4分)(4).如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:(4分)①.这个图象所研究的矩形A的两边长为___ __和__ ___;②.满足条件的矩形B的两边长为___ __和___ __.OOx y12341234九年级数学上学期期末测试题参考答案及评分标准 1、 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分。

2、 解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数,本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分。

3、 如果考生在解答的中间过程中出现了计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现了严重的逻辑错误,后续部分就不再给分。

一、 选择题(每小题3分,共36分)二、填空题(本大题共7小题,每小题3分,共21分) 13、0.18 14、答案不定(只要k >0) 15、1000 16、27米17、190)1(5002=-x 18、24 19、3三、(本大题共7小题,满分63分)20.(本小题满分8分)(1)解:(1)2 x 2 + 5 x - 1= 0A=2,b=5,c=﹣1,b-4ac=33>0………………………1分 所以4335243351--+-==x x ,. …………4分(2)x 1=2, x 2=1…………4分21. (本小题满分6分)如图所示,光源为交点,22. (本小题满分解:分率为X,根据题意得:……1分40(1+X )(1+5%)=48.3 ……4分解方程得X=0.15 ………………7分 答:五月份增长的百分率为15% ………………8分23.(本小题满分10分)解:(1)∵△OAP 为等腰直角三角形,OP =OA=PA =2,即P(2,2). ……2分 设反比例函数表达式x k y ,把P(2,2)代入,得k=4, ∴反比例函数表达式为4y=x……………5分(2)设Q(m+2,m),代入表达式,得: m(m+2)=4……6分解之得:m 1=-1,m 2=-1∴Q(11……………………10分 24. (本小题满分10分)证明:(1)∵D 是ΔABC 的BC 边上的中点∴BD=DC∵DE ⊥AC ,DF ⊥AB∴∠DFB=∠DEC=90°又∵BF=CE∴Rt △BFD ≌Rt △CED (HL )∴∠B=∠C∴AC=AB即△ABC 是等腰三角形 …………………………4分(2)当∠A=90°时,四边形AFDE 是正方形………5分 理由:∵∠A=∠AFD=∠AED=90°∴四边形AFDE 是矩形又∵AB=AC,BF=CE∴AF=AE∴四边形AFDE是正方形………………………8分24.证明:(1)∵D是ΔABC的BC边上的中点∴BD=DC∵DE⊥AC,DF⊥AB∴∠DFB=∠DEC=90°又∵BF=CE∴Rt△BFD≌Rt△CED(HL)∴∠B=∠C∴AC=AB即△ABC是等腰三角形………………………5分(2)当∠A=90°时,四边形AFDE是正方形………6分理由:∵∠A=∠AFD=∠AED=90°∴四边形AFDE是矩形又∵AB=AC,BF=CE∴AF=AE∴四边形AFDE是正方形……………………10分25. 证明①∵四边形ABCD是正方形,AC为对角线,∴BC=DC,∠BCP =∠DCP=45°∵PC=PC∴△PBC≌△PDC(SAS)∴PB=PD, ∠PBC=∠PDC又∵PB=PE, ∴PE=PD ……………………………5分②当点E在线段BC上(E与B、C不重合)时∵PB=PE,∴∠PBE =∠PEB∴∠PEB =∠PDC∴∠PEB+∠PEC=∠PDC+∠PEC=180°∴∠DPE=360°—(∠BCD+∠PDC+∠PEC)=90°∴PE⊥PD;当点E与点C重合时,点P恰好在AC中点处,此时PE ⊥PD当点E在BC的延长线上时,∵∠PEC =∠PDC,两个对顶角又相等∴∠DPE =∠DCE=90°,∴PE⊥PD综上所述,PE⊥PD ………………………………10分26.解:(2)设矩形B 的两边分别是y x 和,由题意得方程组:321x y xy ⎧+=⎪⎨⎪=⎩ 消去y 得:22320x x -+= …………2分 2491670b ac -=-=-< ∴矩形B 不存在 ………4分(3)图略。

分别作出y=-x+23及y=x1的图象,因为两图象没有交点,说明满足条件的矩形B 不存在。

相关文档
最新文档