信息论与编码第6章

合集下载

信息论与编码(第三版) 第6章 信道编码理论

信息论与编码(第三版) 第6章 信道编码理论
信号无失真传 输条件:通频 带内系统增益 为常数;相位 为线性(群延时
相等)
❖ 信号差错的指标通常用概率大小表征,符号差错概率 也称为误码元率,是指信号差错的概率;
❖ 误比特率则是表示信息差错概率的一种方法 ;
❖ 对于M进制码元,差图样E为
E (C R)(mod M )
❖ 二进制码而言 E CR
2需要反馈信道, 占用额外频率资源
二、前向纠错方式(FEC)
检测 结果
发送端
信道
接收端
发送
纠错码
接收码字
根据编译 码规则
Y 错误
N
译码 规则 纠错
纠错能力足够好,能够纠 正信道引入的数据错误
输出信息
优点 不足
1.不需要反馈信道,能够实现一对多的同 步广播通信 2.译码实时性好,控制电路比ARQ也简 单 由于假设纠错码的纠错能力足够纠正信息序 列传输中的错误,也就是纠错码与信道的干 扰是相匹配的,所以对信道的适应性较差
❖ 差错图样中的1就是符号差错,同时也是比特差错,而差错 的个数就是汉明距离。
C (1010)
R (0011)
E C R (1001)
一、功能
纠错码的分类
检测码
纠错码
只检测信息传输是否出现错 误,本身没有纠错的能力
不仅能够检测信 息传输中的错误,
并且能够自动纠
循环冗余校验码、 奇偶校验码等
信号传输过程中出现大的 信号波形畸变,导致信号 检错时发生错误,进而出 现 码元错误
叠加强的干扰 或者噪声
信号传输过程 中出现线性或 者非线性失真
线性失真
信号传输过程中不同的频率 分量增益不同,或者由于非
线性相位引起的延时不同

信息论与编码理论2012-ch6 信道编码-卷积码2

信息论与编码理论2012-ch6 信道编码-卷积码2

V1
g0(1,1) g1(1,1) g2(1,1)
U
g0(1,2)
σ1
g1(1,2)
σ2
g0(1,3)
V2
图6.4.13 (2,1,2)卷积码编码电路
2012/12/27
9
第六章 信道编码
6.4.5 卷积码的状态转移图与栅格描述
U
σ (0) (1) (σ’2σ’1)(V1V2) (00) (00)(00) (01)(11) (σ’2σ’1)(V1V2) (01) (10)(10) (11)(01) (σ’2σ’1)(V1V2) (10) (00)(11) (01)(00) (σ’2σ’1)(V1V2) (11) (10)(01) (11)(10)
(01/0,10/1)
图6.4.15 (2,1,2)码状态转移图(开放型)
2012/12/27
12
第六章 信道编码
6.4.5 卷积码的状态转移图与栅格描述

(2) 卷积码的状态转移图
闭合型的状转移态图:直接地描述了卷积编码器在任 一时刻的工作状况; 开放型的状态转移图:更适合去描述一个特定输入序 列的编码过程。
2
6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 6.4.8 6.4.9
2012/12/27
第六章 信道编码
6.4.4 卷积码的译码
(1) 卷积码译码的种类:卷积码的译码可分为代数译码和 概率译码。 (2) 代数译码:从码的代数结构出发,以一个约束度的接 收序列为单位,对该接收序列的信息码组进行译码。 大数逻辑译码是代数译码的主要方法。 代数译码中,用矩阵描述比较方便。 (3) 概率译码:从信道的统计特性出发,以远大于约束度 的接收序列为单位,对信息码组进行最大似然的判决。 维特比译码和序列译码是其最主要的方法。 在维特比译码中,用篱笆图来描述码的译码更为方便。

信息论与编码第6

信息论与编码第6

第6章 线性分组码
6.1.2 码的重量和码的距离 在信道编码中,定义码字中非零码元的数目为码字的汉
明(Hamming)重量,简称码重。例如“010”码字的码重为 1,“011”码字的码重为2。把两个码字之间对应码位上具 有不同二元码元的位数定义为两码字的汉明距离,简称码距。 在一种编码中,任意两个许用码字间距离的最小值,即码字 集合中任意两码字间的最小距离,称为这一编码的最小汉明 距离,以dmin表示;在非零码字中,重量最小者称为该码的 最小汉明重量。
已知(n,k,d)线性分组码的最小距离dmin≤n-k+1。若 系统码的最小距离dmin=n-k+1,则称此码为极大最小距离 可分码,简称MDS码。
第6章 线性分组码
6.1.3 码的检错及纠错能力
下面讨论码的检错、纠错能力与最小码距的数量关系。
在一般情况下,对于分组码有以下结论:
(1)若一个码组内能检测e
第6章 线性分组码
【例6-2】 已知GF(2)中码组C= {0000,1010,0101,1111}是一个分组长度n=4的线性分组码。 观察码字之间所有十种可能的和:
0000+0000=0000,0000+1010=1010,0000+0101=0101, 0000+1111=1111,1010+1010=0000,1010+0101=1111, 1010+1111=0101,0101+0101=0000,0101+1111=1010, 1111+1111=0000 它们都在C中,全零码字也在C中。该码组的最小距离为 dmin=2。为了验证这个线性码的最小距离,可计算所有码字 对(共6对)之间的距离:
第6章 线性分组码

信息论与编码第六章

信息论与编码第六章

编码矩阵的第i行第j列元素表示由一个状态转移到
下一个状态时发送的码字。“.”表示该状态转移 不可能。
信息论与编码-卷积码
还可以用状态流图(状态转移图)来表示,如下图所示。
1/111
S2
1/100
S0
1/110
0/011
S3
0/000 0/001
S1
0/010
1/101
所以当输入信息序列是10110…时,输出码字为:
码流首先经串并转换送入移位寄存器中,移位寄 存器的一列存放一个信息组。由于约束长度为 L+1,所以共有k行L+1列。这L+1个信息码组 的k(L+1)个码元信息送入线性组合器,得到线性
组合后的n个码元 c0 i、 c1i、 、 cn i1 ,经并串
转换后作为编码器的输出。
信息论与编码-卷积码
S 1/111
0
……。
S 0/011
2
S S S 1/110 1
S 1/100
0/010
2
3
1
信息论与编码-卷积码
从例题中可以看出,编码矩阵C比较好地展示了 状态转移规律,但不足之处在于没有状态随时 刻变化的状态转移轨迹。网格图解决了这一问 题。
网格图分两部分:一部分实际上就是状态转移图, 即在某移时刻从某一状态可能转移到下一时刻 的哪些状态,输入/输出信息是什么;另一部 分是对编码过程的纪录,即状态随时刻变化的 轨迹。通过一个例题来说明。
解:本题 n=3,k=1,L=2,可以得到编码器的状态 定义、不同状态和输入时的输出以及不同状态和 输入时的下一个状态,如下表所示。
信息论与编码-卷积码
信号入
m
i 0

信息论与编码理论基础(第六章)

信息论与编码理论基础(第六章)
可逆行变换变为H ', H '是同一个线性分组码的另一个校验矩阵。
(2)固定一个校验矩阵H。则一个N维向量u是一个码字,当且仅当: uHT=全0的N-L维行向量。
(3)设一个D元(N, L)线性分组码的生成矩阵G,校验矩阵H。则H 是一个D元(N, N-L)线性分组码的生成矩阵,G是此码的一个校验 矩阵。称这两个码互为对偶码。
2021/6/19
3
§6.1 分组码的概念
预备知识1:有限域 设D是一个素数。于是字母表{0, 1, …, D-1}中的所有字母关
于(modD)加法、(modD)乘法构成了一个封闭的代数结构, 称作有限域,又称作Galois域,记作GF(D): GF(D)=({0, 1, …, D-1}, (modD)加法, (modD)乘法)。 即
2021/6/19
17
§6.2 线性分组码
例 此二元(7, 4)码是线性分组码,生成矩阵G是由信息向量 (1000)、(0100)、(0010)、(0001)的码字组成的4行
1 1 0 1 0 0 0 G0 1 1 0 1 0 0
1 1 1 0 0 1 0 1 0 1 0 0 0 1
该码是系统码。
1 1
0 0
1 0
0,则可取 H 1
1 0
0 1
1 0
1 1
10。
1 0 1 0 0
其中(x1, x2, …, xL)是信息向量,(u1, u2, …, uN)是对应的码字。 (1)称此码为D元(N, L)线性分组码。 (2)称矩阵G为此码的生成矩阵。
2021/6/19
12
§6.2 线性分组码
线性分组码的代数结构 命题1 不同的信息向量对应不同的码字。

精品课件-信息论与编码-第6章

精品课件-信息论与编码-第6章

第6章 离散信源及其信息冗余
6.1.1 由于信源输出的消息载荷着信息,这种消息所具有的一
个基本属性便是随机性,因此信源输出的符号或符号序列可 以使用随机变量、随机矢量或随机过程表示。由第2章的讨 论我们知道,如果已知信源的消息集合(即样本空间或值域) 和消息发生的概率分布,则可以使用由样本空间和它的概率
第6章 离散信源及其信息冗余
1. 根据信源输出消息X的取值特点,可将信源划分为连
1) 信源输出符号为离散随机变量的信源称为离散信源。 设离散信源输出随机变量X的值域R为一离散集合 R={a1, a2, …, an},其中,n可以是有限正数,也可以 是可数的无限大正数。若已知R上每一消息发生的概率分 布为
P(a1), P(a2), …, P(an)
第6章 离散信源及其信息冗余
则离散信源X的概率空间为
[
R,
P]
[
X
,
P]
a1 p(a1
)
a2 pБайду номын сангаасa2 )
an p(an )
(6.1)
其中, 信源输出消息的概率 P(ai)(i=1, 2, …, n)满 足:
p(ai )
n
p(ai
i 1
0 )
第6章 离散信源及其信息冗余
第6章 离散信源及其信息冗余
6.1 信源的描述与分类 6.2 离散无记忆信源的扩展信源 6.3 离散平稳信源 6.4 马尔可夫信源 6.5 信源的信息冗余 习题6
第6章 离散信源及其信息冗余
6.1 信源是发出信息的某种设备,可以是人、生物、机器 或其他任何向外发出信息的事物。信源的输出称做消息。 在人类的社会活动中,发出信息的信息源多种多样,其输 出可以是离散的符号,如书信中的文字和字母,也可以是

信息论与编码第六章课后习题答案(曹雪虹)(word文档良心出品).docx

信息论与编码第六章课后习题答案(曹雪虹)(word文档良心出品).docx

第六章:信道 (本章复大我重新修改了一下,尤其要关注色内容 )1、基本概念:差符号、差比特;差:随机差、突差;分:和、分和卷、性与非性、随机差和突差;矢量空、空及其偶空;有离散信道的定理:P e e- NE ( R)(掌握信道定理的内容及减小差概率的方法);形分的展与短(掌握奇偶校及短的校矩、生成矩与原形分的关系)。

2、性分 (封性 ):生成矩及校矩、系形式的 G 和 H、伴随式与准列表、距与能力、完(明 )、循的生成多式及校多式、系形式的循。

作: 6-1、6-3、6-4、6-5 和 6-6 一、 6-7 6-8 和 6-9 一6-1 二元域上 44重失量空的元素个数共有24=16 个,它分是(0,0,0,0),(0,0,0,1)⋯ (1,1,1,1),它的一个自然基底是(0,0,0,1),(0,0,1,0),(0,1,0,0)和(1,0,0,0);其中一个二子空含有的元素个数 22个,取其中一个自然基底(0,0,0,1)和(0,0,1,0),其二子空中所包含的全部矢量(0,0,0,0,),(0,0,0,1),(0,0,1,0)和(0,0,1,1)(注不唯一 );上述子空的偶子空可以有三种不同的:(0,0,0,0) ,(0,1,0,0),(1,0,0,0),(1,1,0,0)或(0,0,0,0) ,(0,1,0,0)或(0,0,0,0) (1,0,0,0)。

(注意本中所包含的关于矢量空的一些基本概念 )6-3 由可以写出系 (8,4)的形方程如下:v 7 u 3 v 6 u 2 v 5 u 1v 4 u 0(注:系统码高四位与信息位保持一致, u i 为信息位 )v 3 u 3 u 2 u 0 v 2 u 3 u 1 u 0 v 1 u 2 u 1 u 0 v 0 u 3 u 2 u 1把上述方程组写成矩阵形式, 可以表示为 V=UG ,其中 V 为码字构成的矢量,即 V=(v 7,v 6,v 5,v 4,v 3,v 2,v 1,v 0),U 为信息位构成的矢量,即U=( u 3,u 2,u 1,u 0),观察方程组可得系统生成矩阵为:1 0 0 0 1 1 0 10 1 0 0 1 0 1 1 4| P4*4G0 1 0 0 1 1 I 0 1 0 0 0 1 1 1 1 0由系统生成矩阵和校验矩阵的关系可得:1 1 0 1 1 0 0 0 HP 4*4T1 0 1 1 0 1 0 0| I 41 1 1 0 0 1 01 1 1 0 0 0 0 1由校验矩阵可以看出,矩阵 H 的任意三列都是线性无关的 (任意三列之和不为 0),但存在四列线性相关的情况 (如第 1、5、6、8 列,这四列之和为 0),即校验矩阵 H 中最小的线性相关的列数为 4,从而得该线性分组码的最小码距为 4。

信息论与编码第六章课后习题答案

信息论与编码第六章课后习题答案
3 3 2 5 5 C5 p p + C54 p 4 p + C5 p = 1.02961 × 10 −5
【6.3】设某二元码为 C = {11100,01001,10010,00111} (1) 计算此码的最小距离 d min ; (2) 计算此码的码率 R ,假设码字等概率分布;
(3) 采用最小距离译码准则,试问接收序列 10000,01100 和 00100 应译成什 么码字? (4) 此码能纠正几位码元的错误? 解: (1) 此码字的最小距离 d min = 3 ; (2) 此码字的码率 R = log M 2 = 比特/码符号; n 5
试找出一种译码规则使平均错误概率 PE 最小。 解: 设接收码字为 Vi ,则一共可能有 16 种不同的码字序列,而 P(V j | Wi ) = p 列出所有的输出,如下表所示。
n − D (V j ,Wi )
p
D (V j ,Wi )
Wi
接收码字 V j
0000 1 P(V j | W1 ) 2 1 4 p 2 1 3 p p 2 1 3 p p 2 1 2 2 p p 2 1 3 p p 2 1 2 2 p p 2 1 2 2 p p 2 1 3 pp 2 1 3 p p 2 1 2 2 p p 2 1 2 2 p p 2 1 3 pp 2 1 2 2 p p 2 1 3 pp 2 1 3 pp 2 1 4 p 2
目标序列
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0000 0000 0000 0011 0000 0000 0000 1111 0000 0000 0000 1111 1100 1111 1111 1111

信息论与编码第6章(2)

信息论与编码第6章(2)

17
第6章 信道编码
已知(7,3)线性分组码的生成矩阵为 1 0 0 1 1 1 0 G 0 1 0 0 1 1 1 0 0 1 1 1 0 1 如果信息位为m [m0 , m1 , m2 ],则有 1 0 0 1 1 1 0 C [c6 , c5 , c4 , c3 , c2 , c1 , c0 ] [m0 , m1 , m2 ] 0 1 0 0 1 1 1 0 0 1 1 1 0 1 c6 m0,c5 m1,c4 m2,c3 m0 m2, c2 m0 m1 m2 , c1 m0 m1,c0 m1 m2
2010/12/19
g ( k 1)0 ....... g10 g 00
9
第6章 信道编码
生成矩阵
码空间中任何一个码字都可以写成基底的线性组合,即:
C [cn 1 , cn 2 ,....., c1 , c0 ] mk 1g k 1 mk 2 g k 2 ...... m1g1 m0 g 0 mG
• 当信息元确定后,码字仅由G矩阵决定,因此我们称这 k×n 矩阵G为该(n,k)线性分组码的生成矩阵。 • 如果已知线性分组码的生成矩阵,则任何一个k位信息 组对应的码字都可以由mG运算得到。
2010/12/19
10
第6章 信道编码
生成矩阵G(k×n)的特点
• 想要保证 (n,k)线性分组码能够构成k维n重子空间,G 的k个行 矢量gk-1,…, g1, g0必须是线性无关的,只有这样才符合作为基底 的条件。
c1c0可与n维矢量空间中的一个点对应全体码字所对应的点构成矢量空间里的一个子集发码一定在这个子集里传输无误时的收码也一定位于该子集对应到该子集却对应到该子集的另一点上633mdc36dmin3c1c2c3c4c5码集各码字间的距离是不同的码距最小者决定码的特性称之为最小距离dmin这里dmin3纠错能力是1检错能力是237dmincicic及ci定理61任何最小距离dmin的线性分组码其检错能力为dmin1纠错能力t为最小距离dmin表明码集中各码字差异的程度差异越大越容易区分抗干扰能力就越强是衡量分组码性能的最重要的指标之一

信息论与编码第六章3

信息论与编码第六章3
信息论与编码-线性分组码
上次课小结: • 信道编码定理:
Pe eNE (R)
• 差错控制的途径 增加码长、增加带宽、提高信噪比、噪声均
化 • 码距与检错纠错的关系
ec dmin 1 / 2 ed dmin 1
信息论与编码-线性分组码
• 最优译码与最大似然译码
最优译码:
Cˆi
max
i1,2, ,2k
系统码的前k位为信息位,后n-k位为校验位。
信息论与编码-线性分组码
校验矩阵H除了可以用来检验码字外,还与码的最 小距离(也就和码的检错纠错能力)有关。
因为
h11 H h(hn21k)1
h12 h22 h(nk)2
h1n
h2n h(nk )n
(h1 , h 2 ,
,hn
)
其中,h1,h2, ,hn 是H矩阵的列向量。
h
T j
项,而右边为零。
也就是说, dmin个
h
T j
是线性相关的。

信息论与编码-线性分组码
dmin 1

h
T j
一定是线性无关的(反证法:如
果 dmin 1

h
T j
列矢量是线性相关的,则可以把
其对应的系数当成码字,而该码字的重量
为 dmin
盾)。
1
,这与码字的最小重量为
d min
相矛
由于H是 (n k) n 的矩阵,其秩最大为n-k,也就是 说,最多有n-k个列矢量线性无关。所以
p1(nk )
p2(n
k
)
pk (nk )
这样生成的(n,k)码是系统码。
信息论与编码-线性分组码

信息论与编码第六章课后习题答案(曹雪虹)(word文档良心出品)

信息论与编码第六章课后习题答案(曹雪虹)(word文档良心出品)

第六章:信道编码(本章复习大纲我重新修改了一下,尤其要关注红色内容)1、基本概念:差错符号、差错比特;差错图样:随机差错、突发差错;纠错码分类:检错和纠错码、分组码和卷积码、线性码与非线性码、纠随机差错码和纠突发差错码;矢量空间、码空间及其对偶空间; 有扰离散信道的编码定理:-()NE R e P e (掌握信道编码定理的内容及减小差错概率的方法);线形分组码的扩展与缩短(掌握奇偶校验码及缩短码的校验矩阵、生成矩阵与原线形分组码的关系)。

2、线性分组码(封闭性):生成矩阵及校验矩阵、系统形式的G 和H 、伴随式与标准阵列译码表、码距与纠错能力、完备码(汉明码)、循环码的生成多项式及校验多项式、系统形式的循环码。

作业:6-1、6-3、6-4、6-5和6-6选一、6-7 6-8和6-9选一 6-1 二元域上4维4重失量空间的元素个数总共有24=16个,它们分别是(0,0,0,0),(0,0,0,1)…(1,1,1,1),它的一个自然基底是(0,0,0,1),(0,0,1,0),(0,1,0,0)和(1,0,0,0);其中一个二维子空间含有的元素个数为22个,选取其中一个自然基底为(0,0,0,1)和(0,0,1,0),则其二维子空间中所包含的全部矢量为(0,0,0,0,),(0,0,0,1),(0,0,1,0)和(0,0,1,1)(注选择不唯一);上述子空间对应的对偶子空间可以有三种不同的选择:(0,0,0,0) ,(0,1,0,0),(1,0,0,0),(1,1,0,0)或(0,0,0,0) ,(0,1,0,0)或(0,0,0,0) (1,0,0,0)。

(注意本题中所包含的关于矢量空间的一些基本概念)6-3 由题设可以写出该系统(8,4)码的线形方程组如下:736251403320231012100321v u v u v u v u v u u u v u u u v u u u v u u u=⎧⎪=⎪⎪=⎪=⎪⎨=++⎪⎪=++⎪=++⎪⎪=++⎩(注:系统码高四位与信息位保持一致,u i 为信息位) 把上述方程组写成矩阵形式,可以表示为 V =U G ,其中V 为码字构成的矢量,即V =(v 7,v 6,v 5,v 4,v 3,v 2,v 1,v 0),U 为信息位构成的矢量,即U =( u 3,u 2,u 1,u 0),观察方程组可得系统生成矩阵为:[]44*41000110101001011G I |P 0010011100011110⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦由系统生成矩阵和校验矩阵的关系可得:4*441101100010110100H P |I 0111001011100001T ⎡⎤⎢⎥⎢⎥⎡⎤==⎣⎦⎢⎥⎢⎥⎣⎦由校验矩阵可以看出,矩阵H 的任意三列都是线性无关的(任意三列之和不为0),但存在四列线性相关的情况(如第1、5、6、8列,这四列之和为0),即校验矩阵H 中最小的线性相关的列数为4,从而得该线性分组码的最小码距为4。

信息论与编码理论基础(第六章)

信息论与编码理论基础(第六章)
进 行编码再送入信道传送,以降低平均差 错率而进行的编码称为信道编码。

信道编码主要分为:检验码、纠错码。

检验码只检查信息在传输过程中是否有差错, 而纠错码不但检查是否有差错,而且还可以 将错误的信息纠正。
3
2013-7-15
为什么要引入线性码

信道编码研究的主要问题是:发现或构造实际 上可实现的好码(纠错能力和传信率都比较理 想的码)。
注3:有限域GF(D)与实数域的区别是:传统的“逼 近”、“极限”的概念消失了。
2013-7-15 13
预备知识 -- Galois域
例:GF(2)上的方阵 1 0 1 是否可逆?
1 0 1 1 0 0
回答是肯定的。两种不同的判别方法都能够证明它是可逆的 : (1)它经过可逆行变换能够变成单位阵; (2)它的行列式不等于0。(等于1!)
信道编码的引入

信息传输系统的基本功能是:在系统输 出端及时、准确地再现系统输入端发送 的信息。
我们希望信息传输多快好省,但现实与 我们的良好愿望之间总是存在差距。



首先,信息传输的速度受信道容量的限制, 不可能无限大; 其次,由于信道噪声的干扰,传输错误不可 避免。
1
2013-7-15
信道编码的引入
编码方案太多,以至全局搜索好码是不可能的,现 实的做法是对编码方案加以一定的约束,在一个子集中 寻找局部最优,这种约束既要能包含尽可能好的码,又 要便于分析,便于译码,目前对线性系统的研究远比非 线性系统充分
2013-7-15 4
线性分组码定义
n长向量 k长信息分组 。。。。。 n长码字 。。。。。

香农的信道编码定理指出:只要信息传输速 率低于信道容量,通过对信息进行适当的编 码,可以在不牺牲信息传输或存储速率的情 况下,将有噪信道或存储媒质引入的差错降 到任意低的程度。 这就是说,可以通过编码使通信过程实际上 不发生错误,或者使错误控制在允许的数值 之下。

信息论导论第六章信源编码

信息论导论第六章信源编码
信源编码
第6章 信源编码
从数学意义上,信源编码就是信源符号序列到码 字之间的映射。 无失真信源编码 选择适合信道传输的码集,现在一般选二进 制数 寻求一种将信源符号序列变换为码字的系统 方法,这种方法要保证符号序列与码字之间的 一一对应关系
信源编码
衡量编码方法优劣的主要指标中,码长和易实现 性最受重视。
i 1 i 1 i 1
nN
nN
nN
H(X N ) NH(X) K H(X N ) 1 NH(X) 1
K 1 H(X) H(X) N N 1 任意给定 ,只要NN
信源编码
三、无失真信源编码 1、香农码
香农码直接基于最优码码长的界,是一种采用异 前置码实现的无失真不等长编码。
信源编码
例2
X x1 x 2 x 3 P(X) 0.5 0.3 0.2
分别对该信源和其二次扩展信源编香农码,并计 算编码效率。 (1)对信源编码
log P(x1 ) log 2 1 k1 1 log P(x 2 ) log 0.3 1.74 取k 2 2
码B 码C 0 01 0 10
x 3 0.15 x 4 0.05
011 110 0111 111
码A不是单义可译码,它有二义性;码B和码C是 单义可译码;码B是延时码,它需等到对应与下一 个符号的码字开头0才能确定本码字的结束,存在 译码延时;码C是即时码。
信源编码
码C的特点——任何一个码字都不是其它码字的前 缀,因此将该码称为异前置码。 异前置码可以用树图来构造。 一个三元码树图 从树根开始到每一个终节 点的联枝代表一个码字, 相应的异前置码
x1
x2
0.5

信息论与编码(第三版) 第6章 信道编码理论

信息论与编码(第三版) 第6章 信道编码理论

(2,1,2)卷积码编码器
定义6.3两个n重(x,y)之间对应码元取值不同的个数, 称为这两个重之间的汉明距离,记做d(x,y)
定义6.4 n重x非零码元的个数称为汉明重量,简称重 量,用w(x)表示
X:(10101) y:(00111)
w(x)=3 w(y)=3 d(x,y)=2
定义6.5 (n,k)分组码中,任意两个码字x、y之间的 汉明距离的最小值,称为该分组码的最小汉明距离, 简称为最小距离,用d0表示
6.3.1两种译码规则
最大概率译码(MAP) 错误译码的概率最小,也称最小错误概率译码
最大似然译码(MLD)
MAP的简化形式
单个符号传输情况(二元信道)
信道
输入X
0 1 pe
信道 输出Y
0
根据接收符号y来估计 发送符号x是0还是1
计算后验概率p(xi|y)
估值准则
x$ max P(xi | y)
结果是译码错误最 小,所以也称最小
d0
min {d(x,
x, y(n,k )
y)}
计算最小汉明距离方法1 将所有许用码字进行比较,记录每次比较的 汉明距离,最后取汉明距离的最小值即可
总的比较次数为 1 2 3 L 2k 1 (2k 1)2k
2
无论是否 线性分组

这种方法 都有效
特点:计算量很 大但是很简洁
❖ 例6.1 (3,2)码共有四个码字,分别为000,011,101, 110,显然d0 =2。 最小汉明距离d0是分组码的重要参数之一,表明 了该分组码抗干扰能力的大小,与码字的检错、 纠在错相能同力的有译关码,规则d0下越,大错,误码译的码抗的干概扰率能越力小越。强,
(4) 纠正t个随机错误, ρ个删除,则要求码的最小距离满足 d0 ≥ ρ +2t+1

信息论与编码第6章信道编码

信息论与编码第6章信道编码

素(既约)多项式
若 p( x) f ( x), deg( p( x)) 1且p( x)在F[ x] 中只有因式 c和cp( x) 则称 p( x) 为域F上的不可约多项式。
的集合
余类环
多项式剩余类环 n n1 f ( x) an x an1x ... a1x a ai Fq 用 Fq [ x] 或者 GF (q)[ x] 表示所有这样多项式
纠错码的分类
根据监督码元与信息组之间的关系 系统码 信息码元是否发生变化 非系统码 代数码 几何码 算术码 线性码 非线性码 分组码 卷积码
构造编码的数学方法
根据监督码元和信息码元的关系
根据码的功能
按纠误的类型
检错码 纠错码 纠删码 纠随机差错码 纠突发差错码 纠混合差错码 二元码 多元码 等保护纠错码 不等保护纠错码
3 3 2 2 3 2 3 2
x x , x x, x x 1, x 1, x ,
3 3 3 3
x x 1, x x, x 1, x , x 1, x,1, 0
2 2 2 2
4.有限域的性质和代数结构
1)有限域 Fq 的结构 对 a Fq , a 0, 满足 na 0, 的最小正整 数 n ,称为元素 a 的周期。 定理6-6:在有限域 Fq中 (1) ( Fq , ) 是循环加群,它的非零元素的周期等于其 域的特征; (2) ( Fq* , ) 是循环乘群,共有 (q 1) 个乘群的生成 元。 a 乘群 ( Fq* , ) 的生成元 a 称有限域 Fq 的本原元, 的阶为 q 1 ,即 a q 1 e ,且 F * a
q
本原元性质定理6-7
* F (1) q
的元素的阶都是 q 1 的因子, Fq* 的所 q 1 x e 0 的根。 有元恰是 (2) 若 a 是 Fq 的本原元,则当且仅当(k , q 1) 1 k k a 时, 也是本原元。非本原元 a 的阶是

信息论与编码 第6章(1)

信息论与编码 第6章(1)
假设Ci,Cj是某( n,k)分组码的两个码字, 1,2是
码元字符集里的任意两个元素, 当且仅当 也是码字时,才称该码是线性码或群码。
2020/4/6
24
纠错码分类
按照适用的差错类型,分成:
纠随机差错码:用于随机差错信道,其纠错能力用码 组内允许的独立差错的个数来衡量。
纠突发差错码:针对突发差错而设计,其纠错能力主 要用可纠突发差错的最大长度来衡量

将13比特 线性码变为
模拟信号
RP E-LTP 译码器
RP E-LTP 译码器
基 站 系统 BSS
将13比特 线性码变换为 8比特A律码
RP E-LTP 编码器
将8比特A律 码变换为 13比
特线性码
移 动 交换 中心
公 用 电话 交 换网
(P STN/ ISDN)
模拟语音
话音编码 456比特
/帧
8000样本/秒 13比特线性码
前向 纠错编码
交织
无线接入和 GMSK调制
50帧 260比特/帧
8000样本/秒 13比特线性码
8000样本/秒 语8比音特编码A律
456比特 /帧
无线解调
去交织
纠错编码
纠错编码
去交织
无线GMSK 解调
双工器
无线接入 及调制
交织
前向 纠错编码
2020/4/6
3
GSM语音编解码的前向纠错(全速业务信道)
发端发送检错码, 如CRC(循环冗余校验码), 收端译码器判断当前码字传输是否出错; 当有错时按某种协议通过一个反向信道请求发送端 消息重m 传纠已错编发码送的码码字C字(全信道部或接部收向分量)R。纠错译码 消息m’ FEC 应用于数据通信网、计算机网络

信息论与编码第6章

信息论与编码第6章

当校验位数增长时, 能够检测到差错图案 种类数也增长,同步 码率减小。
s 1
t 1
ps,t mi,t ms, j
i0
j0
mod 2
27
(3) 反复消息位措施
• n反复码:码率为 1/n,仅有两个码字 C0和 C1,传送1比特(k=1)
消息;
• C0=(00…0),C1=(11…1)
• n反复码能够检测出任意不大于 n/2 个差错旳错误图案 – BSC信道:pb≤1/2,n比特传播中发生差错数目越少,概率越 大 (1-pb)n> pb(1-pb)n -1>… > pbt(1-pb)n -t>… > pbn – 总以为发生差错旳图案是差错数目较少旳图案,当接受到反
– 是指信号差错概率 • 比特差错率 /比特误码率:
– 在传播旳比特总数中发生差错旳比特数所占百分 比
– 是指信息差错概率
• 对二进制传播系统,符号差错等效于比特差错;对多进 制系统,一种符号差错相应多少比特差错却难以拟定 5
差错率
• 根据不同旳应用场合对差错率有不同旳要求: – 在电报传送时,允许旳比特差错率约为: 10-4~10-5; – 计算机数据传播,一般要求比特差错率不大于: 10-8~10-9; – 在遥控指令和武器系统旳指令系统中,要求有 更小旳误比特率或码组差错率
信 源
信 源 编 码
m
信 道


C调 制 器
传 输 媒 介
解 调 器
R
信 道


m'
信 源


信 宿
图6.1.2 有信道编码的数字通信系统框图
31
• 最大后验概率译码准则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信息论与编码原理》
主讲人:
第 6章
有噪信道编码
本章内容 6.1 错误概率 6.2 有噪信道编码定理 6.3 联合信源信道编码定理 6.7 BCH码和RS码 6.8 卷积码 6.9 交织码
6.4 信道编码的基本概念
6.5 线性分组码 6.6 循环码
6.10 级联码
6.11 Turbo码 6.12 LDPC码
主讲人:
6.11 Turbo码
迭代译码的基本思想是分别对两个 RSC 分量码进行最优译码,以迭代的方式使 两者分享共同的信息,并利用反馈环路来改善译码器的人:
6.12 LDPC码
6.4 信道编码的基本概念
6.4.1 信道编码的分类
6.4.2 线性分组码的检错和纠错能力
6.4.3 最小汉明距离译码
6.4.4 差错控制的三种方式
6.4.5 差错控制的途径
《信息论与编码原理》
主讲人:
6.5 线性分组码
6.5.1 线性分组码的编码
6.5.2 线性分组码的译码
6.6.6 循环码的译码电路
6.6.7 CRC码
《信息论与编码原理》
主讲人:
6.7 BCH码和RS码
了解
6.7.2
二元BCH码
6.7.3 多元BCH码和RS码
《信息论与编码原理》
主讲人:
6.8 卷积码
了解卷积码的解析表示,侧重于解析卷 积码的图形描述。
6.8.2卷积码的图形描述
2
纠错
和线性分组码相似,循环码的译码可采用以下几步来进行: ① 由接收码字 R x 计算伴随式 S x (可采用 g (x) 除法电路)。 ② 由伴随式 S x 得到差错图案 E x 的估值。 ③ 利用关系式 C (x) = R x + E x , 由差错图案 E x 求出发送码 字 C (x) 的估值。
6.6.5 循环码的伴随式
【 例 6.14 】
已知一个循环码的生成多项式为
g (x) ( x 1)( x4 x 1) ,如果编码效率 R 2/3 。
(1)计算码长 n 和信息位数 k; (2)写出所有非全零码中的次数最低的码多项式 C (x) ; (3)写出信息码组为 1010110110 时,系统循环码的编码输 出。 (4)如果该码用于检错,则怎样的错误图样多项式 E x 不 能被收端检出?
《信息论与编码原理》
主讲人:
6.1 错误概率
6.1.1 错误概率和译码规则
如何计算错误概率?
6.1.2 错误概率与编码方法
《信息论与编码原理》
主讲人:
6.2 有噪信道编码定理
《信息论与编码原理》
主讲人:
6.3 联合信源信道编码定理
《信息论与编码原理》
主讲人:
6.5.3
完备码和汉明码
6.5.4 对偶码
6.5.5 扩展码、缩短码和删信码
对照扩展码和缩短码,删信码可以在原码基础上先扩展,然后再
缩短得到。由一个已知的线性分组码构成新码, 还有其它方法。 例如, 由 (7,4,3) 汉明码构成的各种新码之间的关系如图所示。
《信息论与编码原理》
主讲人:
6.6 循环码
6.6.1 循环码的码多项式
6.6.2 循环码的生成多项式和生成矩阵
6.6.3 循环码的监督多项式和监督矩阵
6.6.4 循环码的编码电路
【例 6.13】 当生成多项式 gx x 3 x 1 时, 试画出 (7,4)循环码的编码电路.
图 6.17
卷积码的树状图
图 6.18 卷积码的状态图
图 6.19
卷积码的网格图
6.8.3卷积码的译码方法
6.8.4卷积码的特性
6.8.5删余卷积码
6.8.6 递归型系统卷积码
《信息论与编码原理》
主讲人:
6.9 交织码
《信息论与编码原理》
主讲人:
6.10 级联码
《信息论与编码原理》
相关文档
最新文档