高中物理必修二总复习知识点归纳完整

合集下载

高中物理必修二知识点整理

高中物理必修二知识点整理

必修二知识点第五章一、曲线运动1.曲线运动的速度方向做曲线运动的物体,在某点的速度方向,就是通过这一点的轨迹的切线方向.物体在曲线运动中的速度方向时刻在改变,所以曲线运动一定是变速运动.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)2.物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力的方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.3.曲线运动的轨迹做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.二、运动的合成与分解的方法1.运动的合成与分解:平行四边形定则,等效分解。

2.运动分解的基本方法根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解.★两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定.(1).根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变速运动;若合加速度变化(包括大小或方向)则为非匀变速运动.(2).根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速度的方向在同一直线上则为直线运动,否则为曲线运动.★如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题.θsin 11d s v d t v ==,船渡河的位移短直河岸),渡河时间最垂直河岸时(即船头垂当以最小位移渡河:当船在静水中的速度1v 大于水流速度2v 时,小船可以垂直渡河,显然渡河的最小位移s 等于河宽d ,船头与上游夹角满足21cos v v =θ,此时渡河时间θsin 1v dt =三、平抛运动平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动飞行时间:t =2hg,取决于物体下落的高度h ,与初速度v 0无关. 水平射程:x =v 0t =v 02hg,由平抛初速度v 0和下落高度h 共同决定. 四、圆周运动1、描述圆周运动的物理量线速度v 角速度ω向心加速度a n 向心力F n 公式v = s/t= 2πr / T = 2πrfω=θ/t =2π/ T = 2πfa n = v 2/r =ω2r =ωv F n = mv 2/r =m ω2r = m ωv 意义表示运动快慢表示转动快慢表示速度方向变化快慢向心力是合力。

高中物理必修二知识点

高中物理必修二知识点

高中物理必修二知识点高中物理必修二知识点第一章电学基础1.电荷与电场2.静电场及其能量3.恒定电流4.恒定电流的欧姆定律5.功率6.电功及其应用7.简单电路的分析和计算8.肖特基二极管原理第二章流体静力学1.流体静力学引论2.液体静压力3.大气压力与气压计4.液体表面张力和毛细现象5.流体动力学引论6.连通管和泵的基本原理第三章阻力和三大运动定律1.弹性和塑性2.卡车定理3.摩擦力和牛顿第一定律4.牛顿第二定律5.牛顿第三定律6.匀加速直线运动7.平抛运动第四章动量和能量守恒定律1.动量定理和动量守恒定律2.力的功3.能量守恒定律4.弹性碰撞和非弹性碰撞5.约束系统的动能变化定理第五章万有引力和行星运动1.万有引力的发现2.牛顿万有引力定律3.行星运动4.卫星运动第六章震动和波动1.周期、频率和相位2.简谐振动3.阻尼振动和强迫振动4.波动的基本概念和分类5.机械波和电磁波的传播6.多普勒效应第七章光学1.光的波动理论2.光速的测定3.光的干涉和衍射4.杨氏双缝干涉实验5.菲涅尔衍射和菲涅尔透镜6.偏振光与双折射现象7.光的反射和折射8.球面镜成像第八章原子物理1.原子的结构和能级2.玻尔原子模型和玻尔-里德堡公式3.氢谱系和能级图4.量子力学的基本概念5.波粒二象性6.爱因斯坦光电效应7.康普顿效应和弗兰克-赫兹实验。

高中物理必修二知识点总结(优秀3篇)

高中物理必修二知识点总结(优秀3篇)

高中物理必修二知识点总结(优秀3篇)高中物理必修二知识点总结篇一1.万有引力定律:引力常量G=6.67×N?m2/kg22.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距。

(物体的尺寸比两物体的。

距离r小得多时,可以看成质点)3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)(2)重力=万有引力地面物体的重力加速度:mg=Gg=G≈9.8m/s2高空物体的重力加速度:mg=Gg=G9.8m/s24.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的。

由mg=mv2/R或由==7.9km/s5.开普勒三大定律6.利用万有引力定律计算天体质量7.通过万有引力定律和向心力公式计算环绕速度8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)高中物理必修二知识点总结篇二一、直线运动1、质点:用来代替物体的有质量的点。

2、说明:(1)质点是一个理想化模型,实际上并不存在。

(2)物体可以简化成质点的情况:①物体各部分的运动情况都相同时(如平动)。

②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转)。

二、参考系和坐标系1、参考系:在描述一个物体的运动时,用来作为标准的另外的物体。

说明:(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同。

(2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系。

2、坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系。

三、时刻和时间1、时刻:指的是某一瞬间,在时间轴上用—个确定的点表示。

如“3s末”;和“4s初”。

(完整版)高中物理人教版必修二知识点总结

(完整版)高中物理人教版必修二知识点总结

(完整版)高中物理人教版必修二知识点总

力学
第一章机械基础知识
- 机械运动和参照系
- 直线运动的描述
- 动能和动能定理
- 动量和动量定理
- 机械能守恒定律
第二章力的作用和力的效果
- 分类和测量力
- 推力和拉力
- 摩擦力
- 弹力
- 合力和力的分解
- 牛顿第一和第二定律
第三章牛顿第三定律和力的平衡
- 牛顿第三定律
- 力的合成
- 力的平衡和不平衡
- 平衡的条件
- 弹簧测力计
热学
第四章热学基础知识
- 热学现象和热量的传递
- 温度和热平衡
- 热膨胀和热机械转换
- 热力学第一定律
第五章气体的分子动理论
- 分子动理论的基本假设
- 气体分子的速率分布
- 热力学温度和分子动理论温度的联系- 分子自由度和平均动能定理
第六章热力学第二定律及其应用
- 热力学第二定律
- 卡诺热机
- 熵和热力学第二定律的表述
光学
第七章光的直线传播
- 光的直线传播
- 光的反射
- 光的折射
- 光的透射和光的反射、折射定律
- 可见光谱和线性偏振光
第八章光的波动性
- 光的干涉
- 光的衍射
- 杨氏实验和光的相干性
- 光的偏振和偏振器
- 波粒二象性
第九章光的粒子特性
- 光电效应
- 光子的概念
- 康普顿散射
- 波粒二象性的应用
以上是高中物理人教版必修二的知识点总结。

希望对你有所帮助。

高中物理必修二知识点总结

高中物理必修二知识点总结

高中物理必修二知识点总结一、功与机械能1. 功:力对物体做功,即改变物体的位置、速度或形状。

力的功的大小:F·s=FScosφ。

其中,F为力的大小,s是力的方向上的位移的大小,φ是力与位移方向的夹角。

2. 功与能:功是一种能的转移。

把能从一个物体或一个系统转移到另一个物体或系统,就是做功。

功是能的量度。

3. 功率:单位时间内做功的多少。

功率的大小P等于功W对时间t的比值,即P=W/t。

功率的单位是瓦特(W),1W=1J/s。

4. 机械能守恒定律:系统总机械能守恒的条件是:只要物体之间的相互作用力是保守力,当没有非保守力对系统做功时,系统的总机械能守恒。

二、牛顿运动定律1. 牛顿第一定律:当物体没有受到合外力,或合外力为零时,物体要么静止,要么以匀速直线运动。

2. 牛顿第二定律:物体受合外力作用时,其加速度与合外力成正比,与物体的质量成反比。

F=ma。

其中,F为合外力,m为物体的质量,a为物体的加速度。

3. 牛顿第三定律:当两个物体相互作用时,彼此之间的作用力大小相等,方向相反。

这两个物体所受的合外力是相等的,方向相反。

三、万有引力与万有引力定律1. 万有引力:地球是一个大质量物体,可以给周围的物体施加吸引力,这种吸引力称为地球引力。

地球引力的大小与物体的质量和地球的质量成正比,与物体和地球的距离的平方成反比。

2. 万有引力定律:两个物体之间的引力与它们质量的乘积成正比,与它们之间距离的平方成反比。

两个物体之间的引力大小由万有引力定律来描述:F=G(m1m2/r^2),其中,F为引力的大小,m1、m2分别是两个物体的质量,r为它们之间的距离,G为万有引力常量。

四、牛顿引力定律1. 地球引力:地球上物体所受重力,是一种宏观现象。

重力的大小与物体的质量成正比,与地球到物体距离的平方成反比。

2. 重力加速度:地球每个地方都存在一个重力加速度g,大小约为9.8m/s²。

3. 牛顿引力定律:两个质量分别为m1,m2的物体之间的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。

物理高中必修二知识点总结

物理高中必修二知识点总结

物理高中必修二知识点总结一、运动的描述1. 机械运动:物体位置的变化。

2. 参考系:描述物体运动时所选定的基准物体。

3. 时间和时刻:时间是两个时刻之间的间隔,时刻是时间轴上的一个点。

4. 位移和路程:位移是物体在参考系中位置变化的矢量,路程是物体运动轨迹的长度。

5. 速度和速率:速度是位移与时间的比值,是矢量;速率是路程与时间的比值,是标量。

6. 加速度:速度变化的快慢,是矢量。

二、匀变速直线运动1. 定义:物体沿直线且加速度恒定的运动。

2. 速度-时间关系:v = v0 + at。

3. 位移-时间关系:x = v0t + 1/2at^2。

4. 速度-位移关系:v^2 - v0^2 = 2ax。

5. 匀变速直线运动的图像分析。

三、力的作用1. 力的概念:物体间相互作用的基本物理量。

2. 力的作用效果:改变物体的运动状态或形状。

3. 力的分类:重力、弹力、摩擦力、分子力等。

4. 力的合成与分解:力的矢量运算。

5. 力的平衡:物体静止或匀速直线运动时所受的力。

四、牛顿运动定律1. 牛顿第一定律(惯性定律):物体保持静止或匀速直线运动状态的性质。

2. 牛顿第二定律(动力定律):F = ma。

3. 牛顿第三定律(作用与反作用定律):作用力与反作用力大小相等,方向相反。

五、万有引力定律1. 万有引力:任何两个物体之间都存在的引力。

2. 万有引力定律:F = G * (m1m2) / r^2。

3. 重力和万有引力的关系。

六、圆周运动1. 圆周运动的定义:物体沿圆形轨迹的运动。

2. 向心力:维持圆周运动所需的力。

3. 向心加速度:a = v^2 / r。

4. 匀速圆周运动和非匀速圆周运动。

七、功和能1. 功的概念:力在位移方向上所做的工。

2. 功的计算公式:W = F * d * cosθ。

3. 动能:物体由于运动而具有的能量。

4. 重力势能:物体由于位置而具有的能量。

5. 机械能守恒定律。

八、简单机械1. 杠杆原理:力臂乘力的平衡。

高中物理人教版必修二知识点总结(最新8篇)

高中物理人教版必修二知识点总结(最新8篇)

高中物理人教版必修二知识点总结(最新8篇)高中物理必修二知识篇一第一节认识静电一、静电现象1、了解常见的静电现象。

2、静电的产生(1)摩擦起电:用丝绸摩擦的玻璃棒带正电,用毛皮摩擦的橡皮棒带负电。

(2)接触起电:(3)感应起电:3、同种电荷相斥,异种电荷相吸。

二、物质的电性及电荷守恒定律1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。

而原子核又是由质子和中子组成的。

质子带正电、中子不带电。

在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。

2、电荷守恒定律:任何孤立系统的电荷总数保持不变。

在一个系统的内部,电荷可以从一个物体传到另一个物体。

但是,在这个过程中系统的总的电荷时不改变的。

3、用物质的原子结构和电荷守恒定律分析静电现象(1)分析摩擦起电(2)分析接触起电(3)分析感应起电4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。

第二节电荷间的相互作用一、电荷量和点电荷1、电荷量:物体所带电荷的多少,叫做电荷量,简称电量。

单位为库仑,简称库,用符号C表示。

2、点电荷:带电体的形状、大小及电荷量分布对相互作用力的影响可以忽略不计,在这种情况下,我们就可以把带电体简化为一个点,并称之为点电荷。

二、电荷量的检验1、检测仪器:验电器2、了解验电器的工作原理三、库仑定律1、内容:在真空中两个静止的点电荷间相互作用的库仑力跟它们电荷量的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。

2、大小:方向:在两个电电荷的连线上,同性相斥,异性相吸。

3、公式中k为静电力常量,4、成立条件①真空中(空气中也近似成立),②点电荷第三节电场及其描述一、电场1、电场:电荷的周围存在着电场,带电体间的相互作用是通过周围的电场发生的。

2、电场基本性质:对放入其中的电荷有力的作用。

3、电场力:电场对放入其中的电荷有作用力,这种力叫电场力电荷间的静电力就是一个电荷受到另一个电荷激发电场的作用力。

必修二物理知识点归纳总结

必修二物理知识点归纳总结

必修二物理知识点归纳总结
以下是《必修二物理》的知识点归纳总结:
1. 力学
-运动学:位移、速度、加速度、匀速直线运动、匀加速直线运动、自由落体运动、斜抛运动等。

-动力学:牛顿三定律、力的合成与分解、摩擦力、弹力、重力、万有引力、惯性、动量、动量守恒定律、冲量等。

2. 热学
-温度与热量:温度计、摄氏度、热平衡、热传递、热传导、热辐射、热对流等。

-热力学定律:热力学第一定律(能量守恒定律)、热力学第二定律、热机效率、热量传递、功的转化等。

3. 光学
-光的传播:光的直线传播、光的反射、光的折射、光的色散、光的干涉、光的衍射等。

-光的成像:凸透镜成像规律、凹透镜成像规律、透镜组成像、眼睛的调节等。

4. 电学
-静电场:电荷与电场、库仑定律、电场强度、电势、电势差、电容、电容器、电场能、静电场的应用等。

-电流与电路:电流、电阻、电压、欧姆定律、串联与并联电路、电功率、安培表、电磁铁、电化学等。

-磁学:磁场、磁感应强度、磁通量、安培力、洛伦兹力、电磁感应、电磁感应定律、电磁感应的应用等。

5. 现代物理
-光电效应:光电效应的实验现象、光电效应方程、光电倍增管、波粒二象性等。

-原子物理:原子的核结构、放射性衰变、核反应、裂变与聚变、半衰期等。

-量子物理:量子假设、波粒二象性、波函数、不确定性原理等。

这只是《必修二物理》的一些主要知识点归纳总结,具体内容可能更加广泛和详细。

希望这个总结对你有所帮助!。

高中物理必修二知识点总结

高中物理必修二知识点总结

第一节 曲线运动 运动的合成与分解【基本概念、规律】 一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动. 3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上. 二、运动的合成与分解 1.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响. (3)等效性:各分运动叠加起来与合运动有完全相同的效果. 【重要考点归纳】考点一 对曲线运动规律的理解 1.曲线运动的分类及特点(1)匀变速曲线运动:合力(加速度)恒定不变. (2)变加速曲线运动:合力(加速度)变化. 2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧. 3.速率变化情况判断(1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 考点二 运动的合成及合运动性质的判断 1.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则. 2.合运动的性质判断⎩⎪⎨⎪⎧加速度或合外力⎩⎨⎧变化:变加速运动不变:匀变速运动加速度或合外力与速度方向⎩⎨⎧共线:直线运动不共线:曲线运动3.两个直线运动的合运动性质的判断两个互成角度的分运动 合运动的性质 两个匀速直线运动 匀速直线运动 一个匀速直线运动、匀变速曲线运动进行各量的合成运算.【思想方法与技巧】两种运动的合成与分解实例一、小船渡河模型1.模型特点两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.2.模型分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)两个极值①过河时间最短:v1⊥v2,t min=dv1(d为河宽).②过河位移最小:v⊥v2(前提v1>v2),如图甲所示,此时x min=d,船头指向上游与河岸夹角为α,cos α=v2v1;v1⊥v(前提v1<v2),如图乙所示.过河最小位移为x min=dsin α=v2v1d.3.求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.二、绳(杆)端速度分解模型1.模型特点绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.2.模型分析(1)合运动→绳拉物体的实际运动速度v(2)分运动→⎩⎨⎧其一:沿绳或杆的分速度v 1其二:与绳或杆垂直的分速度v 2(3)关系:沿绳(杆)方向的速度分量大小相等. 3.解决绳(杆)端速度分解问题的技巧(1)明确分解谁——分解不沿绳(杆)方向运动物体的速度; (2)知道如何分解——沿绳(杆)方向和垂直绳(杆)方向分解;(3)求解依据——因为绳(杆)不能伸长,所以沿绳(杆)方向的速度分量大小相等.第二节 抛体运动【基本概念、规律】 一、平抛运动1.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线.2.规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则(1)水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t .(2)竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 2. (3)合运动①合速度:v =v 2x +v 2y ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0. ②合位移:x 合=x 2+y 2,方向与水平方向夹角为α,则tan α=y x =gt2v 0.二、斜抛运动 1.性质加速度为g 的匀变速曲线运动,轨迹为抛物线.2.规律(以斜向上抛为例说明,如图所示)(1)水平方向:做匀速直线运动,v x =v 0cos θ. (2)竖直方向:做竖直上抛运动,v y =v 0sin θ-gt . 【重要考点归纳】考点一 平抛运动的基本规律及应用 1.飞行时间:由t =2hg 知,时间取决于下落高度h ,与初速度v 0无关.2.水平射程:x =v 0t =v 02hg ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x轴正方向的夹角,有tan θ=v y v x =2ghv 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.6.“化曲为直”思想在抛体运动中的应用(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.(2)运用运动合成的方法求出平抛运动的速度、位移等.考点二与斜面相关联的平抛运动1.斜面上的平抛问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下:2.(1)从斜面上某点抛出又落到斜面上,位移与水平方向夹角等于斜面倾角;(2)从斜面外抛出的物体落到斜面上,注意找速度方向与斜面倾角的关系.考点三与圆轨道关联的平抛运动在竖直半圆内进行平抛时,圆的半径和半圆轨道对平抛运动形成制约.画出落点相对圆心的位置,利用几何关系和平抛运动规律求解.平抛运动的临界问题(1)在解决临界和极值问题时,正确找出临界条件(点)是解题关键.(2)对于平抛运动,已知平抛点高度,又已知初速度和水平距离时,要进行平抛运动时间的判断,即比较t1=2hg与t2=xv0,平抛运动时间取t1、t2的小者.(3)本题中,两发子弹不可能打到靶上同一点的说明:若打到靶上同一点,则子弹平抛运动时间相同,即t =Lv 0+v =L -90v ,L =3 690 m ,t =4.5 s >2hg =0.6 s ,即子弹0.6 s 后就已经打到地上.第三节 圆周运动【基本概念、规律】一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,T =1f . 4.向心加速度:描述线速度方向变化的快慢.a n =rω2=v 2r =ωv =4π2T 2r .5.向心力:作用效果产生向心加速度,F n =ma n . 二、匀速圆周运动和非匀速圆周运动的比较 项目 匀速圆周运动 非匀速圆周运动 定义 线速度大小不变的圆周运动 线速度大小变化的圆周运动 运动特点 F 向、a 向、v 均大小不变,方向变化,ω不变F 向、a 向、v 大小、方向均发生变化,ω发生变化向心力F 向=F 合由F 合沿半径方向的分力提供三、离心运动1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动. 2.供需关系与运动如图所示,F 为实际提供的向心力,则: (1)当F =mω2r 时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出; (3)当F <mω2r 时,物体逐渐远离圆心; (4)当F >mω2r 时,物体逐渐靠近圆心. 【重要考点归纳】考点一 水平面内的圆周运动1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.3.涉及静摩擦力时,常出现临界和极值问题. 4.水平面内的匀速圆周运动的解题方法(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件; (2)确定圆周运动的圆心和半径; (3)应用相关力学规律列方程求解.考点二竖直面内的圆周运动1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒.3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形.考点三圆周运动的综合问题圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.2.分析每个运动过程的受力情况和运动性质,明确遵守的规律.3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.【思想方法与技巧】竖直平面内圆周运动的“轻杆、轻绳”模型1.模型特点在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.2.模型分析绳、杆模型常涉及临界问题,分析如下:(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.(2)确定临界点:v 临=gr ,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N 表现为支持力还是拉力的临界点. (3)定规律:用牛顿第二定律列方程求解.第四节 万有引力与航天【基本概念、规律】 一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2.3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 二、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同. 3.经典力学的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界. 【重要考点归纳】考点一 天体质量和密度的估算 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T 2(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR .(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 3.(1)利用圆周运动模型,只能估算中心天体质量,而不能估算环绕天体质量.(2)区别天体半径R 和卫星轨道半径r :只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二 卫星运行参量的比较与运算 1.卫星的各物理量随轨道半径变化的规律2.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大. 3.极地卫星、近地卫星和同步卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)同步卫星①轨道平面一定:轨道平面和赤道平面重合.②周期一定:与地球自转周期相同,即T =24 h =86 400 s. ③角速度一定:与地球自转的角速度相同. ④高度一定:卫星离地面高度h =3.6×104 km.⑤速率一定:运动速度v=3.07 km/s(为恒量).⑥绕行方向一定:与地球自转的方向一致.考点三卫星(航天器)的变轨问题1.轨道的渐变做匀速圆周运动的卫星的轨道半径发生缓慢变化,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动.解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r是增大还是减小,然后再判断卫星的其他相关物理量如何变化.2.轨道的突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.(1)当卫星的速度突然增加时,G Mmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,G Mmr2>mv2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时增大;卫星的发射和回收就是利用这一原理.不论是轨道的渐变还是突变,都将涉及功和能量问题,对卫星做正功,卫星机械能增大,由低轨道进入高轨道;对卫星做负功,卫星机械能减小,由高轨道进入低轨道.考点四宇宙速度的理解与计算1.第一宇宙速度v1=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMmR2=mv21R,所以v1=GMR. (2)mg=mv21R,所以v1=gR.【思想方法与技巧】双星系统模型1.模型特点(1)两颗星彼此相距较近,且间距保持不变.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.2.模型分析(1)双星运动的周期和角速度相等,各以一定的速率绕某一点转动,才不至于因万有引力作用而吸在一起.(2)双星做匀速圆周运动的向心力大小相等,方向相反.(3)双星绕共同的中心做圆周运动时总是位于旋转中心的两侧,且三者在一条直线上.(4)双星轨道半径之和等于它们之间的距离.3.(1)解决双星问题时,应注意区分星体间距与轨道半径:万有引力定律中的r为两星体间距离,向心力公式中的r为所研究星球做圆周运动的轨道半径.(2)宇宙空间大量存在这样的双星系统,如地月系统就可视为一个双星系统,只不过旋转中心没有出地壳而已,在不是很精确的计算中,可以认为月球绕着地球的中心旋转.求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法. 一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.二、二次函数极值法对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a .也可以采取配方法求解. 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值. 四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值. 五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小. 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.第五节 功和功率【基本概念、规律】 一、功1.做功的两个必要条件:力和物体在力的方向上发生的位移.2.公式:W =Fl cos_α.适用于恒力做功.其中α为F 、l 方向间夹角,l 为物体对地的位移. 3.功的正负判断(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或说物体克服该力做功. (3)α=90°,力对物体不做功.特别提示:功是标量,比较做功多少看功的绝对值. 二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)定义式:P =Wt ,P 为时间t 内的平均功率.(2)推论式:P=Fv cos_α.(α为F与v的夹角)【重要考点归纳】考点一恒力做功的计算1.恒力做的功直接用W=Fl cos α计算.不论物体做直线运动还是曲线运动,上式均适用.2.合外力做的功方法一:先求合外力F合,再用W合=F合l cos α求功.适用于F合为恒力的过程.方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合外力做的功.3.(1)在求力做功时,首先要区分是求某个力的功还是合力的功,是求恒力的功还是变力的功.(2)恒力做功与物体的实际路径无关,等于力与物体在力方向上的位移的乘积,或等于位移与在位移方向上的力的乘积.考点二功率的计算1.平均功率的计算:(1)利用P=W t.(2)利用P=F·v cos α,其中v为物体运动的平均速度.2.瞬时功率的计算:利用公式P=F·v cos α,其中v为t时刻的瞬时速度.注意:对于α变化的不能用P=Fv cos α计算平均功率.3.计算功率的基本思路:(1)首先要明确所求功率是平均功率还是瞬时功率,对应于某一过程的功率为平均功率,对应于某一时刻的功率为瞬时功率.(2)求瞬时功率时,如果F与v不同向,可用力F乘以F方向的分速度,或速度v乘以速度v 方向的分力求解.考点三机车启动问题的分析1.两种启动方式的比较v↑⇒F=P不变v↓⇒a=F-F阻m↓F-F2.三个重要关系式(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速度,即v m=PF min=PF阻(式中F min为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的过程中,匀加速过程结束时,功率最大,速度不是最大,即v=P F<v m=P F阻.(3)机车以恒定功率运行时,牵引力做的功W=Pt.由动能定理:Pt-F阻x=ΔE k.此式经常用于求解机车以恒定功率启动过程的位移大小.3.分析机车启动问题时的注意事项(1)在用公式P=Fv计算机车的功率时,F是指机车的牵引力而不是机车所受到的合力.(2)恒定功率下的加速一定不是匀加速,这种加速过程发动机做的功可用W=Pt计算,不能用W=Fl计算(因为F是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W=Fl计算,不能用W=Pt计算(因为功率P是变化的).【思想方法与技巧】变力做功的求解方法一、动能定理法动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.二、平均力法如果力的方向不变,力的大小对位移按线性规律变化(即F=kx+b)时,F由F1变化到F2的过程中,力的平均值为F=F1+F22,再利用功的定义式W=F l cos α来求功.三、微元法当物体在变力的作用下做曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,可将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和.通过微元法不难得到,在往返的运动中,摩擦力、空气阻力做的功,其大小等于力和路程的乘积.四、等效转换法若某一变力的功和某一恒力的功相等,即效果相同,则可以通过计算该恒力做的功,求出该变力做的功,从而使问题变得简单,也就是说通过关联点,将变力做功转化为恒力做功,这种方法称为等效转换法.五、图象法由于功W=Fx,则在F-x图象中图线和x轴所围图形的面积表示F做的功.在x轴上方的“面积”表示正功,x轴下方的“面积”表示负功.六、用W=Pt计算机车以恒定功率P行驶的过程,随速度增加牵引力不断减小,此时牵引力所做的功不能用W=Fx来计算,但因功率恒定,可以用W=Pt计算.第六节动能动能定理【基本概念、规律】一、动能1.定义:物体由于运动而具有的能.2.表达式:E k =12mv 2.3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. 4.矢标性:标量. 二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =E k2-E k1=12mv 22-12mv 21. 3.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动. (2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用. 【重要考点归纳】考点一 动能定理及其应用 1.对动能定理的理解(1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系: ①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系. ②因果关系:合外力的功是引起物体动能变化的原因.(2)动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理.2.运用动能定理需注意的问题(1)应用动能定理解题时,不必深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程初末的动能.(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式. 3.应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: 受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 考点二 动能定理与图象结合问题 解决物理图象问题的基本步骤1.观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. 2.根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.3.将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.4.解决这类问题首先要分清图象的类型.若是F -x 图象,则图象与坐标轴围成的图形的面积。

高中物理必修二知识点总结

高中物理必修二知识点总结

高中物理必修二知识点总结
一、电动力学
1、电势:定义为电位差,又称作电位,是电荷的位置的比较基准,它在不同的空间位置上的值是不同的,电势的单位是伏特。

2、电压:指电荷穿过某电阻器时所受的电势单位差,它在某空间位置上具有同样的值,电压的单位是伏,又称作千伏特。

3、电阻:定义为电流穿过某介质时所受的阻力,它取决于电路、电极间的间距、介质的性质、电路的形状和温度等因素,它的单位是欧姆。

4、电流:定义为每秒钟通过相同单位面积处的电荷量,电流的单位是安培。

5、电流守恒定律:定义为电路中所有分支处电流相加等于总电路中的电流,即电流守恒在总电路中。

7、电能:定义为电荷在电势升高的过程中所用的能量,电能的单位是焦耳。

二、电磁现象
1、电感:定义为电磁感应现象的结果,即电流在绕组间的电感之间的变化,电感的单位是亨利。

2、磁感:定义为磁波在磁路中的传播行为,它可以是磁阻现象或者电磁感应现象,磁感的单位是亨利。

3、磁阻现象:定义为一个物体对磁场的阻力,即对附近磁场的阻抗,磁阻现象的单位是欧姆。

4、磁场:定义为磁铁或者线圈等电磁设备在其周围形成的电磁场,它可以看作一个曲线,磁场的单位是特斯拉。

5、磁通现象:定义为实际的磁性体在磁场中的磁力线的变化,即磁通的现象,磁通现象的单位是特斯拉。

7、磁场类型:定义为电磁设备周围形成的磁场的特性或类型,共分为线性磁场、圆形磁场和碟形磁场等等。

8、磁电效应:定义为当线圈或两个导电物体介质间发生电磁交换时,磁场对电流的影响现象,它是电磁声的必要因素之一,磁电效应的单位是特斯拉/安培(T/A)。

高中物理必修二知识点汇总

高中物理必修二知识点汇总

高中物理必修二知识点汇总1.曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。

(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。

(注意:合外力为零只有两种状态:静止和匀速直线运动。

)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。

2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。

(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。

3.匀变速运动:加速度(大小和方向)不变的运动。

也可以说是:合外力不变的运动。

4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。

(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。

①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。

②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。

③当合力方向与速度方向垂直时,物体的速率不变。

(举例:匀速圆周运动)2.绳拉物体合运动:实际的运动。

对应的是合速度。

方法:把合速度分解为沿绳方向和垂直于绳方向。

3.小船渡河例1:一艘小船在200m 宽的河中横渡到对岸,已知水流速度是3m/s ,小船在静水中的速度是5m/s , 求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河。

min cos d dt t v v θ=⇒=船船(此时θ=0°,即船头的方向应该垂直于河岸)解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。

高中物理必修二知识点总结整理

高中物理必修二知识点总结整理

高中物理必修二知识点总结整理高中物理必修二主要包括力学、热学与热力学、波动和光学三个模块。

下面将对这些模块的知识点进行总结整理。

一、力学模块1. 力和运动- 力的概念与分类:接触力和非接触力、重力、弹力、摩擦力、拉力等;- 牛顿第一定律:惯性与惯性系、伽利略相对性原理;- 牛顿第二定律:力的合成与分解、动量的定义与公式、牛顿第二定律的简化表达;- 牛顿第三定律:作用力与反作用力、作用力的性质与特点。

2. 动能与机械能- 动能:动能的定义与公式,动能与功的关系,动能定理;- 势能:重力势能、弹性势能、守恒原理;- 机械能守恒定律:机械能守恒的条件与应用。

3. 动力学- 圆周运动:圆周运动的特点与性质、角速度与线速度、离心力与向心力;- 牛顿第二定律的应用:绳子拉力、平衡与倾斜力、速度与加速度、竖直上抛运动、车辆行驶等。

4. 万有引力- 万有引力定律:万有引力定律的表达式、万有引力与质量、万有引力与距离的关系;- 地球重力:地球的重力与物体重量、落体运动、自由落体。

二、热学与热力学模块1. 热现象与温度- 热学基本概念:热、温度、热平衡、热量等;- 热力学基本定律:热力学第一定律、热力学第二定律;- 温度计的原理与分类。

2. 理想气体- 摩尔质量、摩尔体积、摩尔分数的概念;- 理想气体状态方程:理想气体状态方程的推导与应用;- 理想气体的性质:理想气体的温度、压强、体积与摩尔数之间的关系。

3. 热传递与传热方式- 热传递的基本方式:热传导、热对流、热辐射;- 热传导和热对流的特点与实例;- 热辐射的特点与实例。

4. 相变与气体分子动理论- 相变的基本概念与条件:气体的凝华、沸腾以及液体的汽化、结晶等;- 气体分子动理论的基本假设与推论:分子自由度、平均动能、温度与分子速度的关系;三、波动和光学模块1. 机械波- 机械波的基本特点:波的定义、周期、频率、波长、波速等;- 机械波传播的基本规律:波的反射、折射、绕射、干涉和衍射等。

高中物理必修二知识点汇总

高中物理必修二知识点汇总

高中物理必修二知识点汇总1. 曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。

(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。

(注意:合外力为零只有两种状态:静止和匀速直线运动。

)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。

2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。

3.匀变速运动:加速度(大小和方向)不变的运动。

也可以说是:合外力不变的运动。

4 曲线运动的合力、轨迹、速度之间的关系③当合力方向与速度方向垂直时,物体的速率不变。

(举例:匀速圆周运动)①当合力方向与速度方向的夹角为②当合力方向与速度方向的夹角为锐角时,物体的速率将增大。

钝角时,物体的速率将减小。

1 )轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。

t dv 船cost mindminv船此时 =0° ,即 船头的方向应该垂直于河岸)解:(1) 结论: 欲使船渡河时间最短,船头的方向应该垂直于河岸。

渡河的 最短时间 为:t min = dminv船合位移为:2)分析:合速度为:怎样渡河:船头与河岸成 向上游航行。

最短位移为:2. 绳拉物体合运动: 实际的运动。

对应的是 合速度 。

方法: 把合速度分解为 沿绳方向 和 垂直于绳方向 。

3. 小船渡河例 1:一艘小船在 200m 宽的河中横渡到对岸,已知水流速度是 3m/s ,小船在静水中的速度是 5m/s , 求:( 1 )欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?船渡河时间: 主要看小船 垂直于河岸的分速度 ,如果小船垂直于河岸没有分速度,则不能 渡河。

物理必修二知识点总结6篇

物理必修二知识点总结6篇

物理必修二知识点总结6篇篇1一、机械能1. 功:功是标量,其正负不表示方向,仅表示动力对物体做功还是物体克服阻力做功,功的单位是焦耳,符号是J。

2. 功率:表示做功的快慢,用P表示,单位是瓦特,符号是W。

3. 动能:表示物体由于运动而具有的能量,用Ek表示。

4. 势能:分为重力势能和弹性势能,用Ep表示。

5. 机械能:动能与势能的总和,用E表示。

二、曲线运动1. 曲线运动:物体的运动方向不断改变,即物体的速度方向不断改变。

2. 匀速圆周运动:速度的大小不变,即速率不变,但速度的方向不断改变。

3. 向心力:使物体做匀速圆周运动的力,方向指向圆心。

4. 向心加速度:描述物体做匀速圆周运动时速度方向改变的快慢,用an表示。

5. 万有引力定律:任何两个物体之间都存在引力,用F表示。

6. 卫星的轨道半径、周期、线速度和角速度:描述卫星在太空中的运动状态。

三、能量守恒定律1. 能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。

2. 功和能的关系:功是能量转化的量度,即做了多少功,就有多少能量被转化。

3. 常见的能量转化:如机械能转化为内能、内能转化为机械能等。

4. 热力学第一定律:一个系统在绝热过程中所吸收或放出的热量Q等于系统内能的增量ΔU,即Q=ΔU。

5. 热力学第二定律:不可能把热量从低温物体传到高温物体而不产生其他影响;不可能从单一热源吸收热量并把它全部用来做功而不产生其他影响;不可逆热力学过程中熵的增量总是大于零。

四、电磁感应1. 电磁感应现象:当导体在磁场中做切割磁感线运动时,会在导体中产生感应电流。

2. 法拉第电磁感应定律:当穿过某一面积的磁通量发生变化时,就会在该面积内产生感应电动势,且感应电动势的大小与磁通量的变化率成正比。

3. 自感现象:线圈自身的电流发生变化时,会在线圈中产生感应电动势。

4. 自感系数:描述线圈自感现象的物理量,用L表示。

高中物理必修二知识点

高中物理必修二知识点

高中物理必修二知识点高中物理必修二知识点一、电学1. 电荷和电场:电荷的基本性质、库仑定律、电场的概念、电场强度和电势、高斯定理、电势能和电势差、电势与电场的关系等。

2. 静电场:导体内部的电场、电容器、电场能与电势能、电介质的极化与电容等。

3. 电流和电阻:电流的概念、欧姆定律、电阻定律、电路中的功率和能量、电路中的串、并联、戴维南定理与诺顿定理等。

4. 磁学:磁场的概念、磁场的产生和磁感应强度、安培力定律、洛伦茨力、电磁感应现象、电磁感应定律、法拉第电磁感应定律、自感和互感等。

二、光学1. 光的特性:光的传播、光的速度、光的波动和粒子性、光的偏振、干涉和衍射等。

2. 光的几何:光线的传播、像的位置和大小、成像公式、球面和平面镜的成像、棱镜等。

3. 光的波动:光的波长、频率和波速、光的相干、干涉和衍射现象、光的波动模型等。

4. 物质的光学:折射的基本定律、透镜的成像、成像公式、光的色散、光的偏振等。

三、物性物理1. 声波:声波的产生和传播、声波的特性、声音的强度、音质和音色等。

2. 热学:热量和温度、气体的状态方程、热量传递、热力学第一定律和第二定律、热功等。

3. 物理光学:光的波动、衍射和干涉现象、光的偏振、色散等。

4. 能量守恒:机械能和能量守恒、碰撞、弹性势能、势能和动能之间的转化等。

四、原子物理1. 原子建构:原子的大小、原子的质量和电荷、原子的结构和稳定性等。

2. 原子谱学:原子光谱、波尔理论、量子数、夫兰克-赫兹实验等。

3. 量子力学:波粒二象性、波函数和波函数的统计解释、不确定关系、双缝干涉实验等。

4. 核物理:放射性衰变、质能方程和核反应等。

物理必修二知识点归纳

物理必修二知识点归纳

物理必修二知识点归纳第一章电磁学1.电荷和电场:电荷的性质、库仑定律、电场的概念和性质。

2.电场强度和电势:电场强度定义、电场强度与电势的关系、电势的定义和计算方法。

3.静电场中的电场分布与电势分布:均匀带电细棒、无限长导线、均匀带电球壳的电场与电势。

4.静电场中的电场能:带电体在电场中的电场能。

5.电容器:电容的定义和计算、平行板电容器、球形和圆柱形电容器。

第二章光学1.光的直线传播和常规反射:光的直线传播、反射定律和虚像的成因。

2.光的折射:折射定律的表述和证明、折射率的定义和计算、全反射和临界角的概念。

3.牛顿环和薄膜干涉:牛顿环的形成和干涉效应、薄膜干涉的原理和公式。

4.光的色散:色散现象的产生和原因、光的复合色。

5.光的波动性:光的干涉和干涉条件、杨氏实验、光的多普勒效应。

第三章波动1.机械波的传播:机械波的定义、波的分类和表示、波的传播方向和速度。

2.机械波的性质:波的叠加原理、波的反射和折射。

3.声波:声波的产生和传播、声音的特征参数、声源和听音受者的关系。

4.波的能量传播和波的干涉:波的能量传播和能量传递、波的干涉的条件和类型、杨氏实验中的波的干涉。

5.立体波浪的传播:波前理论、赫歇尔原理、赫歇尔二次波原理。

第四章电磁感应1.电磁感应的实验发现和电磁感应定律:电磁感应实验、电磁感应定律的表述和解释。

2.法拉第电磁感应定律:法拉第电磁感应定律的表述和应用。

3.电磁感应现象的延伸应用:电磁感应现象的延伸应用、感应电流、自感和互感。

4.电磁感应规律的应用:发电机和电动机的原理和应用、感应电动机的工作原理。

第五章交流电1.电流和电压的基本概念:交流电的概念、电流和电压的正弦变化。

2.交流电的大小和相位关系:交流电的有效值和峰值、交流电的相位关系。

3.交流电的功率和相关知识:交流电的功率和功率表达式、功率因数和视在功率、电能的计算。

4.交流电的发生和传输:电磁感应发电机的原理和变压器的原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 运动时间由下落高度h决定与水平抛出速度无关。 • 在平抛运动中时间t是解题关键。
• 曲线运动的物体必有加速度,当速度方向与所受 合力(加速度)方向不在同一直线上时物体做曲线 运动。
三 匀速圆周运动 质点沿圆周运动,在相等的 时间里通过的圆弧长度相同。
• (1)线速度v:质点通过的弧长和通过该弧长
用,物体做自由落体运动。 • (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作
是水平方向的匀速直线运动与竖直方向的自由落体运动的 合成。 • 运动时间由下落高度h决定与水平抛出速度无关。 • 在平抛运动中时间t是解题关键。 • 曲线运动的物体必有加速度,当速度方向与所受合力(加 速度)方向不在同一直线上时物体做曲线运动。
高中物理必修二总复习知识点归 纳
一 曲线运动特点:
• 1.在曲线运动中,质点在某一时刻(某一位置)的速度方向 是在曲线上这一点的切线方向。
• 2.物体做直线或曲线运动的条件: • (已知当物体受到合外力F作用下,在F方向上便产生加速
度a) • (1)若F(或a)的方向与物体速度v的方向相同,则物体
为参考平面 • 重力势能的变化是绝对的,和参考平面无关
• 4. 弹性势能:物体由于形变而具有的能量
• 弹性势能存在于发生弹性形变的物体中,跟形变的大小有 关
• 弹性势能的变化由弹力做功来量度
• 5.动能.动能定理
• (1) 动能定义:物体由于运动而具有的能量. 用Ek表示
• 表达式 Ek= 1 mv2
公式
• 水平方向速度Vx = Vo .
• 竖直方向速度 Vy =gt • .水平方向位移X= Vot
• 竖直方向位移Y= 1 gt2 2

运动时间t=
2Y g

合速度V=
v2 x

v
2 y
注:
• 平抛运动是匀变速曲线运动,加速度为g,通常可 看作是水平方向的匀速直线运动与竖直方向的自 由落体运动的合成。
所用时间的比值,即v=s/t,单位m/s;属于瞬 时速度,既有大小,也有方向。方向为在圆周 各点的切线方向上
• (2)角速度 :ω=φ/t(φ指转过的角度,转一 圈φ为 ),单位 rad/s或1/s;对某一确定的匀速 圆周运动而言,角速度是恒定的
• (3)周期T,频率:f=1/T
• (4)线速度、角速度及周期之间的关系:
• 3.重力势能 • (1) 定义:物体由于被举高而具有的能量. 用Ep表示 • 表达式 Ep=mgh 是标量 单位:焦耳(J) • (2) 重力做功和重力势能的关系 • W重= Ep1 Ep2 • 重力势能的变化由重力做功来量度 • (3) 重力做功的特点:只和初末位置有关,跟物体运动
路径无关 • 重力势能是相对性的,和参考平面有关,一般以地面
做直线运动; • (2)若F(或a)的方向与物体速度v的方向不同,则物体
做曲线运动。 • 3.物体做曲线运动时合外力的方向总是指向轨迹的凹的
一边。
二 平抛运动:将物体用一定的初速度沿水平方向抛出, 不计空气阻力,物体只在重力作用下所做的运动。
• (1)在水平方向上由于不受力,将做匀速直线运动; • (2)在竖直方向上物体的初速度为零,且只受到重力作
W<0 F做负功 F是阻力
• (4)总功的求法: • W总=W1+W2+W3……Wn • W总=F合Lcosa
• 2.功率
• (1) 定义:功跟完成这些功所用时间的比值. • P=W/t 功率是标量 功率单位:瓦特(w) • 此公式求的是平均功率 • 1w=1J/s 1000w=1kw • (2) 功率的另一个表达式: P=FVcosa • 当F与v方向相同时, P=FV • 此公式即可求平均功率,也可求瞬时功率 • 1)平均功率: 当v为平均速度时 • 2)瞬时功率: 当v为t时刻的瞬时速度 • (3) 额定功率: 指机器正常工作时最大输出功率 • 实际功率: 指机器在实际工作中的输出功率 • 正常工作时: 实际功率≤额定功率

2.万有引力定律
F

G
m1m2 R2
方向在它们的连线上
• 3.适用条件:可作质点的两个物体间的相互作用;
若是两个均匀的球体,r应是两球心间距.(物体的
尺寸比两物体的距离r小得多时,可以看成质点)
• 4.万有引力定律的应用:(中心天体质量M, 天 体半径R, 天体表面重力加速度g )
❤公式

①天体表面物体万有引力等于重力
2
标量 也是过程量
• 单位:焦耳(J) 1kg*m^2/s^2 = 1J

表达式 W合=ΔEk=
1 2
mv22

1 2
mv12
• 适用范围:恒力做功,变力做功,分段做功,全程做功
• (3)解答思路: • ①选取研究对象,明确它的运动过程。 • ②分析研究对象的受力情况和各力做功情况,然后求各个
G
Mm r2

mg

②万有引力充当向心力
G
2 r
m 2r
m
4 T
2 2
r
• 5.第一宇宙速度----在地球表面附近(轨道半径 可视为地球半径)绕地球作圆周运动的卫星的 线速度,在所有圆周运动的卫星中线速度是最 大的。
• 6.地球同步卫星T=24h
• 注:(1)天体运动所需的向心力由万有引力提 供,F心=F万。(2)应用万有引力定律可估算天 体的质量密度等。(3)地球同步卫星只能运行 于赤道上空,运行周期和地球自转周期相同。 (4)卫星轨道半径变小时,势能变小、动能变大、 速度变大、周期变小。(5)地球卫星的最大环 绕速度和最小发射速度均为7.9Km/S。

线速度V=s/t=
2R T
V=ωR
角速度ω=Φ/t= 2 = 2f
T
3.向心加速度
a

v2 R
2R
4 2
T2
R
4.向心力
Fn

ma

m v2 R

m 2R
m 4 2R T2
四.万有引力
T2
• 1.开普勒第三定律 R3 =K《R:轨道半径 T :周期 K:
常量(与行星质量无关) 》
五.机械能守恒定律
• 1.功
• (1)做功的两个条件: 力和物体在力的方向上发生位移
• (2)功的大小: W=FLcosa 功是标量 功的单位:焦耳(J)
• 1J=1N*m
• (3)正功与负功

当0 2
w>0 F做正功 F是动力

• 当 2 w=0 F不作功

• 当2
相关文档
最新文档