平行四边形性质判定题型分类

合集下载

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区平行四边形是初二数学必考内容,甚至于中考卷里也时常出现它的身影,而且所占分值还不少。

为此,特意给大家整理了初二数学下册必考之【平行四边形】,7大常见题型+知识点+误区!平行四边形定义:有两组对边分别平行的四边形是平行四边形。

表示:平行四边形用符号“□”来表示。

平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。

平行四边形的判定:两组对边分别平行的四边形是平行四边形两组对角分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形从对角线看:对角钱互相平分的四边形是平行四边形从角看:两组对角分别相等的四边形是平行四边形。

若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。

7大常见题型分析(1)利用平行四边形的性质,求角度、线段长、周长等例题1:如图,E、F在ABCD的对角线AC上,AE=EF=CD,∠ADF=90°,∠BCD=54°,求∠ADE的度数分析:直角三角形斜边上的中线等于斜边的一半,由此可以得到DE=AE=EF=CD,多条线段相等,可设最小的角为x,即设∠EAD=∠ADE=x,根据外角等于不相邻的内角和,得到∠DEC=∠DCE=2x,由平行四边形的性质得出∠DCE=∠BCD-∠BCA=54°-x,得出方程,解方程即可。

例题2:如图,已知四边形ABCD和四边形ADEF均为平行四边形,点B,C,F,E在同一直线上,AF交CD于O,若BC=10,AO=FO,求CE的长。

分析:根据平行四边形的性质得出AD=BC=EF,AD∥BE,从而得到∠DAO=∠CFO,再加上对顶角相等,可以得到△AOD≌△FOC,根据全等三角形的性质得到AD=CF,即AD=BC=EF=CF,从而得到线段CE的长度。

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( )A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( )A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( )2.正十边形的外角和为 ( )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( )A.12B.13C.14D.154.八边形的内角和为°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练(解析版)题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( B)A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是 ( B)A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=61度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10或4或2.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形. 6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.略题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是100m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( B)A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=4.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( D)2.正十边形的外角和为 ( B )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( C)A.12B.13C.14D.154.八边形的内角和为 1 080°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为n(n-3).答案:n-3 n(n-3)(2)∵3×6=18,∴数学社团的同学们一共将拨打电话×18×(18-3)=135(个).(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n-3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n-3);数学社团有18名同学,当n=18时,×18×(18-3)=135.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.答案:略.。

平行四边形的性质与判定

平行四边形的性质与判定

平行四边形的性质与判定一、平行四边形的性质1.对边平行且相等:平行四边形的对边分别平行且相等。

2.对角相等:平行四边形的对角线互相平分,且对角线交点将平行四边形分为两个相等的三角形,这两个三角形的角相等。

3.对角线互相平分:平行四边形的对角线互相平分,即平行四边形的对角线交点是对角线中点的两倍。

4.相邻角互补:平行四边形的相邻角互补,即它们的和为180度。

5.对边角相等:平行四边形的对边角相等,即平行四边形的对边上的角相等。

6.对角线所在的平行线间的距离相等:平行四边形的对角线所在的平行线间的距离相等。

二、平行四边形的判定1.两组对边分别平行的四边形是平行四边形。

2.两组对边分别相等的四边形是平行四边形。

3.一组对边平行且相等的四边形是平行四边形。

4.对角线互相平分的四边形是平行四边形。

5.相邻角互补的四边形是平行四边形。

6.对边角相等的四边形是平行四边形。

7.对角线所在的平行线间的距离相等的四边形是平行四边形。

8.矩形:矩形是四个角都是直角的平行四边形。

9.菱形:菱形是四条边都相等的平行四边形。

10.正方形:正方形是四个角都是直角且四条边都相等的平行四边形。

四、平行四边形的应用1.计算平行四边形的面积:平行四边形的面积可以通过底边长乘以高得到。

2.证明平行四边形的性质:利用平行四边形的性质证明四边形的形状或关系。

3.解决实际问题:应用平行四边形的性质解决生活中的实际问题,如设计图形、计算面积等。

知识点:__________习题及方法:1.习题:已知ABCD是平行四边形,AB=6cm,AD=4cm,求BC和CD 的长度。

答案:BC和CD的长度分别为6cm和4cm。

解题思路:根据平行四边形的性质,对边相等,所以BC=AD=4cm,CD=AB=6cm。

2.习题:在平行四边形ABCD中,∠B=60°,求∠D的度数。

答案:∠D的度数为120°。

解题思路:根据平行四边形的性质,相邻角互补,所以∠D=180°-∠B=120°。

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。

2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。

3.面积:S = 底 ×高。

4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。

角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。

对角线:有一组对边相等,且互相平分的四边形是平行四边形。

要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。

要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 长 ×宽。

4.判定:有四个角都是直角的平行四边形是矩形。

要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。

要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 对角线之积的一半。

4.判定:有一组对边平行且相等的四边形是菱形。

要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。

3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。

4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。

平行四边形知识点总结及分类练习题

平行四边形知识点总结及分类练习题

平行四边形知识点总结及分类练习题一、知识点总结平行四边形是几何学中一个重要的概念,其性质和判定方法对于理解几何学中的其他问题有着至关重要的作用。

以下是对平行四边形知识点的总结:1、定义:平行四边形是一个四边形,其中相对的两边平行且相等。

可以用符号“▭”表示。

2、性质:1)对边平行:平行四边形的对边平行且相等。

2)对角相等:平行四边形的对角相等,邻角互补。

3)平行四边形的面积等于其底乘高。

3.判定方法:1)两组对边分别平行的四边形是平行四边形。

2)两组对边分别相等的四边形是平行四边形。

3)一组对边平行且相等的四边形是平行四边形。

4)对角线互相平分的四边形是平行四边形。

5)邻角互补的四边形是平行四边形。

4.特殊平行四边形:矩形、菱形和正方形都是特殊的平行四边形,它们分别具有以下性质:1)矩形:对角线相等,四个角都是直角。

2)菱形:对角线垂直且平分,四边相等。

3)正方形:对角线垂直且相等,四个角都是直角。

二、分类练习题1、选择题:1)下列哪个条件可以判定一个四边形为平行四边形?A.一组对边相等,一组对角相等B.一组对边平行,另一组对边相等C.一组对角相等,另一组对边平行D.一组对角相等,一组邻角互补答案:(C)一组对角相等,另一组对边平行。

因为一组对角相等,另一组对边平行的四边形可以由一组对边平行,另一组对边相等的四边形经过平移得到,因此选项C正确。

其他选项都不满足平行四边形的定义或判定方法。

2)下列哪个条件可以判定一个四边形为矩形?A.三个内角都是直角B.对角线相等且互相平分C.对角线互相垂直且平分D.一组对边平行且相等,一组邻角互补答案:(B)对角线相等且互相平分的四边形是矩形。

因为矩形的定义是对角线相等的平行四边形,而对角线相等且互相平分的四边形是平行四边形,因此选项B正确。

其他选项分别是矩形的定义或判定方法的一部分,但不足以单独判定一个四边形为矩形。

特殊平行四边形知识点总结及题型一、平行四边形的性质:1、平行四边形的对边平行且相等;2、平行四边形的对角相等;3、平行四边形的对角线互相平分。

平行四边形性质及判定练习题

平行四边形性质及判定练习题

平行四边形性质及判定练习题在几何学中,平行四边形是一种特殊类型的四边形,具有许多独特的性质。

本文将介绍平行四边形的性质,并提供一些判定平行四边形的练习题供读者练习。

一、平行四边形的定义和性质平行四边形定义:如果一组四边形的对边是平行的,那么这个四边形就是平行四边形。

平行四边形的性质如下:1. 对边性质:平行四边形的对边相等。

2. 对角线性质:平行四边形的对角线互相平分。

3. 内角和性质:平行四边形的内角和为180度。

4. 对顶角性质:平行四边形的对顶角相等。

二、判定平行四边形的方法1. 判定对边相等:如果一个四边形的对边相等,那么它是一个平行四边形。

2. 判定对角线平分:如果一个四边形的对角线互相平分,那么它是一个平行四边形。

3. 判定内角和:如果一个四边形的内角和为180度,那么它是一个平行四边形。

4. 判断对顶角相等:如果一个四边形的对顶角相等,那么它是一个平行四边形。

三、判定练习题1. 判断以下四边形是否是平行四边形:题目一:ABCD是一个四边形,AB = CD,AD = BC,AC = BD。

证明:ABCD是一个平行四边形。

解答一:由题意知,AB = CD,AD = BC,根据判定对边相等的方法可得,ABCD是一个平行四边形。

题目二:ABCD是一个四边形,AC是对角线,且AC平分∠BAD。

证明:ABCD是一个平行四边形。

解答二:由题意知,AC平分∠BAD,根据判定对角线平分的方法可得,ABCD是一个平行四边形。

题目三:ABCD是一个四边形,∠A + ∠C = 180°,∠B + ∠D = 180°。

证明:ABCD是一个平行四边形。

解答三:由题意知,∠A + ∠C = 180°,∠B + ∠D = 180°,根据判定内角和的方法可得,ABCD是一个平行四边形。

题目四:ABCD是一个四边形,∠A = ∠C,∠B = ∠D。

证明:ABCD是一个平行四边形。

平行四边形判定经典题型

平行四边形判定经典题型

平行四边形判定经典题型摘要:一、平行四边形的定义和性质二、平行四边形的判定方法1.两组对边分别平行2.两组对边分别相等3.一组对边平行且相等4.两组对角分别相等5.对角线互相平分三、经典题型解析1.题目一2.题目二3.题目三4.题目四5.题目五正文:平行四边形是初中数学中一个重要的基本图形,它具有许多独特的性质,其中最重要的性质之一就是可以通过一些特定的条件来判定一个四边形是否为平行四边形。

这些判定方法包括两组对边分别平行、两组对边分别相等、一组对边平行且相等、两组对角分别相等以及对角线互相平分。

首先,如果一个四边形的两组对边分别平行,那么这个四边形就是平行四边形。

这是最直接的判定方法。

其次,如果两组对边分别相等,那么这个四边形也是平行四边形。

这种情况下,四边形的一组对边可能相等,也可能不等。

再者,如果一组对边平行且相等,那么这个四边形也是平行四边形。

这种情况下,另一组对边可能平行,也可能相等。

此外,如果两组对角分别相等,那么这个四边形也是平行四边形。

最后,如果对角线互相平分,那么这个四边形也是平行四边形。

在实际做题过程中,我们需要根据题目给出的条件,灵活运用这些判定方法。

下面,我们通过五个经典题型来具体解析这些判定方法的应用。

题目一:如果一个四边形的两组对边分别平行,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

题目二:如果一个四边形的两组对边分别相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

题目三:如果一个四边形的一组对边平行且相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

题目四:如果一个四边形的两组对角分别相等,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

题目五:如果一个四边形的对角线互相平分,那么这个四边形是什么?解析:根据上述判定方法,这个四边形是平行四边形。

平行四边形的判定与性质

平行四边形的判定与性质

平行四边形的性质与判定一、平行四边形定义及其性质:1、两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等。

定义的几何语言表述 ∵ AB ∥CD AD ∥BC ∴四边形ABCD 是平行四边形 。

∵四边形ABCD 是平行四边形(或在 ABCD 中) ∴ AB=CD ,AD=BC 。

例题1、如图5,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE2、平行四边形除了对边平行且相等外,其对角也相等。

∵四边形ABCD 是平行四边形(或在ABCD 中) ∴ ∠A=∠C ,∠B=∠D 。

例题2、在平行四边形ABCD 中,若∠A :∠B=2:3,求∠C 、∠D 的度数。

3、平行四边形的对角线互相平分。

例题3.已知O 是平行四边形ABCD 的对角线的交点,AC=24cm ,BD=38 cm ,AD= 28cm ,求三角形OBC 的周长。

5.如图,平行四边形ABCD 中,AC 交BD 于O ,AE ⊥BD 于E ,∠EAD=60°,AE=2cm,AC+BD=14cm, 求三角形BOC 的周长。

例题4:已知平行四边形ABCD ,AB=8cm ,BC=10cm,∠B=30°, 求平行四边形平行四边形ABCD 的面积。

对边分别平行 边 对边分别相等 对角线互相平分 平行四边形角 对角相等 邻角互补图(5)DCB AA B C D二、平行四边形的判定 方法一(定义法):两组对边分别平行的四边形的平边形。

几何语言表达定义法:∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形方法二:两组对边分别相等的四边形是平行四边形。

∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形 方法三:对角线互相平分的四边形是平行四边形。

∵OA=OC , OB= OD ∴四边形ABCD 是平行四边形 方法四:有一组对边平行且相等的四边形是平行四边形 ∵AB=CD ,AB ∥CD ,∴四边形ABCD 是平行四边形方法五:两组对角分别相等的四边形是平行四边形∵ ∠A =∠C ,∠B=∠D ,∴四边形ABCD 例1:已知:E 、F 分别为平行四边形ABCD 两边AD 、BC 的中点,连结BE 、DF 求证:2∠1∠=三、三角形中位线:三角形两边的中点连线线段(即中位线)与三角形的第三边平行,并且等于第三边的一半。

专题训练(3) 平行四边形的性质与判定的四种运用

专题训练(3) 平行四边形的性质与判定的四种运用

专题训练(三) 平行四边形的性质与判定的四种运用► 类型一 平行四边形与全等三角形1.用两个全等三角形最多能拼成________个不同的平行四边形.2.如图3-ZT -1,在平行四边形ABCD 中,分别以BC ,AD 为边作等边三角形BCM 和等边三角形AND ,MN 与AC 交于点O .求证:OM =ON .图3-ZT -13.如图3-ZT -2,△ABC 中,分别以AB ,AC 为边向三角形外作△ABD 和△ACE ,使AD =AB ,AE =AC ,∠BAD =∠CAE =90°.AH ⊥BC ,H 为垂足,点F 在HA 的延长线上,且AF =BC .求证:四边形AEFD 是平行四边形.图3-ZT -2► 类型二 平行四边形与等腰三角形4.如图3-ZT -3所示,在▱ABCD 中,AC 的垂直平分线交AD 于点E ,且△CDE 的周长为8,则▱ABCD 的周长是( )A .10B .12C .14D .16图3-ZT -35.如图3-ZT -4,在平行四边形ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径画弧,与AB ,AD 分别交于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是( )A .AG 平分∠DAB B .AD =DHC .DH =BCD .CH =DH图3-ZT-46.如图3-ZT-5,平行四边形ABCD和平行四边形DCFE的周长相等,∠B+∠F=220°,则∠DAE的度数为________.图3-ZT-57.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为________.8.如图3-ZT-6所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE =BE,求▱ABCD各内角的度数.图3-ZT-69.如图3-ZT-7,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.图3-ZT-7►类型三平行四边形中的中点问题10.如图3-ZT-8所示,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA长的取值范围是()图3-ZT-8A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8 cm11.已知:如图3-ZT-9,四边形ABCD中,AC=7,BD=8,E,F,G,H分别是边AB,BC,CD,DA的中点,则四边形EFGH的周长是________.图3-ZT-912.如图3-ZT-10所示,▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD=__________.图3-ZT-1013.如图3-ZT-11,AC,BD是四边形ABCD的对角线,E,F分别是AD,BC的中点,M,N分别是BD,CA的中点,求证:EF,MN互相平分.图3-ZT-1114.如图3-ZT-12所示,在▱ABCD中,M是BC的中点,且AM=9,BD=12,AD =10,求▱ABCD的面积.图3-ZT-12►类型四平行四边形中数学思想的运用15.整体思想如图3-ZT-13,在平行四边形ABCD中,对角线AC与BD交于点O,△AOB与△AOD的周长之和为11.4 cm,两对角线的长度之和为7 cm,则这个平行四边形的周长为________cm.图3-ZT-1316.转化思想——分散向集中转化如图3-ZT-14,等边三角形ABC的边长为7 cm,M为△ABC内任一点,MD∥AC,ME∥AB,MF∥BC,则MD+ME+MF=________.图3-ZT-1417.分类讨论思想如图3-ZT-15,直线a和b平行,直线a上有一个定点M和一个动点P,点P从点M开始以2 cm/s的速度向点A的方向运动;直线b上有两个定点E和N,EN=12 cm,动点Q以4 cm/s的速度从点E向点N的方向运动,则经过几秒后,以点P,Q,M,N为顶点的四边形是平行四边形?图3-ZT-15详解详析1.[答案] 32.证明:在平行四边形ABCD 中,AD ∥BC ,AD =BC , ∴∠OAD =∠OCB .∵在等边三角形BCM 和等边三角形AND 中, ∠NAD =∠MCB =60°,AN =AD ,BC =MC , ∴∠NAO =∠MCO ,AN =MC . 又∵∠AON =∠COM , ∴△AON ≌△COM ,∴OM =ON .3.证明:∵∠BAD =90°,点F 在HA 的延长线上, ∴∠DAF +∠BAH =90°.∵AH ⊥BC ,∴∠ABC +∠BAH =90°, ∴∠DAF =∠ABC .又∵AD =BA ,AF =BC , ∴△DAF ≌△ABC (SAS), ∴DF =AC ,∠ADF =∠BAC . ∵AE =AC ,∴AE =DF .∵∠DAE +∠BAC =180°, ∴∠DAE +∠ADF =180°, ∴AE ∥DF ,∴四边形AEFD 是平行四边形. 4.[答案] D5.[解析] D 根据作图可知,AG 平分∠DAB ,故A 正确;再由平行线的性质知∠BAH =∠DHA ,故∠DAH =∠DHA ,所以AD =DH ,再由AD =BC ,得DH =BC .所以应选D.6.[答案] 20° 7.[答案] 3或5[解析] 易知BE =AB =DC =FC .(1)如图①,当AE ,DF 在▱ABCD 内部没有交点时,AB =12×(AD -EF )=3;(2)如图②,当AE ,DF 在▱ABCD 内部相交时,AB =12×(AD +EF )=5.8.解:∵四边形ABCD 是平行四边形, ∴∠BAD =∠C ,∠B =∠D ,AD ∥BC , ∴∠BAD +∠B =180°,∠DAE =∠BEA . 又∵AE 平分∠BAD ,∴∠BAE =∠DAE , ∴∠BAE =∠BEA ,∴AB =BE .又∵AE =BE ,∴AB =BE =AE ,∴∠B =60°, ∴∠D =60°,∠BAD =∠C =120°.[点评] 当平行四边形中有角平分线、线段垂直平分线或特殊角(30°,60°角等)时,通常可以得到等腰三角形,反之亦然.9.解:(1)证明:∵DE ∥AB ,EF ∥AC ,∴∠ABD =∠BDE ,四边形ADEF 是平行四边形,∴AF =DE .∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE ,∴∠DBE =∠BDE ,∴BE =DE ,∴BE =AF .(2)如图,过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H . ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°, ∴DG =12BD =12×6=3.∵BE =DE ,∴BH =DH =12BD =3,∴EH =3,DE =2 3,∴四边形ADEF 的面积=DE ·DG =6 3.10.[答案] C 11.[答案] 15[解析] ∵EF 是△ABC 的中位线,∴EF 平行且等于12AC ,同理,HG 平行且等于12AC ,∴EF 平行且等于HG ,∴四边形EFGH 是平行四边形, ∴四边形EFGH 的周长=2(EF +FG )=2×(12×7+12×8)=15.12.[答案] 2 213.证明:如图,连接EM ,MF ∵FN 是△ABC 的中位线, ∴FN 平行且等于12AB ,同理,EM 平行且等于12AB ,∴FN 平行且等于EM ,∴四边形EMFN 是平行四边形, ∴EF ,MN 互相平分.14.解:如图,延长BC 至点E ,使CE =CM ,连接DE . ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∴AD ∥ME .又∵M 是BC 的中点,∴BC =2CM =2CE =2BM , ∴AD =ME =10,BE =15,∴四边形AMED 是平行四边形,∴DE =AM =9.∵BD 2+DE 2=122+92=225=152=BE 2,∴BD ⊥DE ,∴▱ABCD 的面积=2(△BDE 的面积-△DCE 的面积)=2×(12×9×12-12×9×12×13)=72.[点评] 在平行四边形的对角线互相平分这一性质中,体现出了线段中点的特点,有中点时就有可能有三角形的中线、中位线、线段垂直平分线等,需灵活处理,积累经验.15.[答案] 8.8[解析] △AOB 的周长等于AO +BO +AB ,而△AOD 的周长等于AO +DO +AD ,即两个三角形的周长之和为AB +AD +AC +BD .因为AC 与BD 的长度之和等于7 cm ,所以AB 与AD 的长度之和等于4.4 cm ,因此平行四边形的周长为8.8 cm.16.[答案] 7 cm[解析] 过点D 作DQ ∥MF ,延长FM 交AB 于点P ,易证△ADQ 和△DPM 为等边三角形, 故MD =PD ,MF =DQ =AD ,ME =BP ,所以MD +ME +MF 可转化为边AB 的长,等于7 cm. 17.解:设运动时间为t s ,则MP =2t cm ,QN =(12-4t )cm(t <3)或QN =(4t -12)cm(t >3). 当t <3时,如图①,因为MP ∥QN ,所以当MP =QN 时,四边形PQNM 为平行四边形, 即2t =12-4t ,解得t =2;当t >3时,如图②,因为MP ∥QN ,所以当MP =QN 时,四边形PNQM 为平行四边形, 即2t =4t -12,解得t =6.所以经过2 s或6 s后,以点P,Q,M,N为顶点的四边形为平行四边形.。

平行四边形的性质及判定归纳

平行四边形的性质及判定归纳

平行四边形的性质及判定归纳平行四边形是指有两组对边分别平行的四边形。

例如,四边形ABCD是平行四边形,因为AB∥CD且AD∥BC。

矩形是一种特殊的平行四边形,它的两组对边也分别平行,例如AB∥CD且AD∥BC。

菱形是另一种特殊的平行四边形,其两组对边相等,例如AB=CD且AD=BC。

正方形是菱形的一种特殊情况,其四条边都相等。

平行四边形、矩形、菱形和正方形都有特殊的性质。

例如,平行四边形的两组对角分别相等,因为∠ABC=∠ADC且∠BAD=∠BCD。

矩形的四个角都是直角,因为∠ABC=∠XXX∠BAD=∠BCD=90.菱形的两组对角分别相等,因为∠ABC=∠ADC且∠BAD=∠BCD。

正方形的四个角也都是直角,且其对角线互相平分且相等。

对角线也是平行四边形、矩形、菱形和正方形的重要性质之一。

例如,平行四边形的对角线互相平分,因为OA=OC且OB=OD。

矩形的对角线相等且互相平分,因为OA=OC且OB=OD且AC=BD。

菱形的对角线互相垂直、平分且每一条对角线平分一组对角,因为OA=OC且OB=OD且AC⊥BD且AC平分∠BAD与∠BCD,BD平分∠ABC与∠ADC。

正方形的对角线互相平分且垂直,因为其对角线互为垂直平分线,且对角线相等。

因此,通过这些性质和判定条件,我们可以轻松地判断一个四边形是否为平行四边形、矩形、菱形或正方形。

对于一个几何图形,如果它是一个四边形且其对角线互相垂直平分且相等,那么我们可以得出结论:这个四边形是一个正方形。

正方形是一种特殊的四边形,它的四条边相等且四个角都是直角。

此外,正方形的对角线相等且互为垂直平分线,这也是正方形与其他四边形不同的一个重要特征。

在计算正方形的面积时,我们可以使用对角线的长度来求解。

具体而言,正方形的面积等于对角线长度的平方除以2.这个公式可以帮助我们快速计算出正方形的面积,而不必手动测量每条边的长度。

正方形在日常生活中有着广泛的应用。

例如,在园艺设计中,我们经常会使用正方形的花坛或者草坪来营造整齐、规整的感觉。

平行四边形的性质和判定讲义(教师版)

平行四边形的性质和判定讲义(教师版)

平行四边形的性质和判定【知识梳理】一、什么是平行四边形?两组对边分别平行的四边形就是平行四边形.如图四边形ABCD ,AB CD AD BC ∥,∥,四边形ABCD 就是平行四边形二、平行四边形的性质:平行四边形的的边:平行四边形的对边平行且对边相等平行四边形的角:平行四边形的对角相等,邻角互补.平行四边形的对角线:平行四边形的对角线互相平分平行四边形的对称性平行四边形是中心对称图形平行四边形的周长与面积周长:邻边之和的2倍面积:底乘高(常利用面积相等来求线段的长)三、平行四边形的判定判定一:两组对边分别平行的四边形是平行四边形判定二:两组对边分别相等的四边形是平行四边形判定三:一组对边平行且相等的四边形是平行四边形判定四:两组对角分别相等的四边形是平行四边形判定五:对角线互相平分的四边形是平行四边形四、三角形中位线性质:三角形的中位线平行且等于第三边长的一半判定:点E 是三角形ABC △的中点,且DE BC ∥,则点D 为AB 中点【诊断自测】1.下列说法错误的是()A .对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形2.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.3.四边形ABCD中,AB=7cm,BC=5cm,CD=7cm,当AD=cm时,四边形ABCD 是平行四边形.4.如图所示,DE∥BC,DF∥AC,EF∥AB,图中共有个平行四边形.【考点突破】类型一:平行四边形的性质例1、如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13B.17C.20D.26答案:B解析:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+6+8=17.故选:B.例2、如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.答案:50°.解析:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.例3、如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.答案:1<a<7.解析:如图所示:∵四边形ABCD是平行四边形,∴OA=AC=4,OD=BD=3,在△AOD中,由三角形的三边关系得:4﹣3<AD<4+3.即1<a<7;故答案为:1<a<7.例4、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.答案:见解析解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.类型二:平行四边形的判定例5、如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A 出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2s D.1s答案:B解析:设运动时间为t秒,则CP=12﹣3t,BQ=t,根据题意得到12﹣3t=t,解得:t=3,故选B.例6、四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①∠ABC=∠ADC,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC,其中一定能判定这个四边形是平行四边形的条件有()A.4组B.3组C.2组D.1组答案:B解析:如图,①∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形;②∵AB=CD,AD=BC,∴四边形ABCD是平行四边形;③∵AO=CO,BO=DO,∴四边形ABCD是平行四边形;④∵AB∥CD,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.∴其中一定能判定这个四边形是平行四边形的条件有3组.故选B.例7、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.答案:见解析解析:证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.例8、如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.答案:见解析解析:证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.类型三:平行四边形的性质和判定例9、如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.答案:见解析解析:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.例10、如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=4,FN=3,求BN的长.答案:见解析解析:(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=3,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴DM===5,∴BN=DM=5.例11、如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.答案:见解析解析:证明:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.类型三:中位线定理例12、如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE答案:B解析:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.例13、如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).答案:见解析解析:证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).【易错精选】1.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°2.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.63.已知:A(﹣2,1),B(﹣3,﹣1),C(0,﹣1).点D在坐标平面内,且以A、B、C、D四个点构成的四边形是平行四边形,则这样的D点有个.4.如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.【精华提炼】一、平行四边形的性质:平行四边形的的边:平行四边形的对边平行且对边相等平行四边形的角:平行四边形的对角相等,邻角互补.平行四边形的对角线:平行四边形的对角线互相平分平行四边形是中心对称图形二、平行四边形的判定判定一:两组对边分别平行的四边形是平行四边形判定二:两组对边分别相等的四边形是平行四边形判定三:一组对边平行且相等的四边形是平行四边形判定四:两组对角分别相等的四边形是平行四边形判定五:对角线互相平分的四边形是平行四边形【本节训练】训练【1】如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC ⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm训练【2】已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=DCB.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE训练【3】如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC 为对角线的平行四边形ADCE中,DE的最小值是.训练【4】在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.基础巩固一.填空题1.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE 的面积为cm2.2.如图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,若△ABC的周长为10cm,则△DEF的周长是cm.3.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是.4.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.5.如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC的周长为cm.二、选择题1.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5B.7C.9D.112.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm3.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.724.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE 的长为1100m,则隧道AB的长度为()A.3300m B.2200m C.1100m D.550m5.如图,在▱ABCD中,AB=3,AD=5,AM平分∠BAD,交BC于点M,点E,F分别是AB,CD的中点,DM与EF交于点N,则NF的长等于()A.0.5B.1C.D.2三、简答题1.如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=2DE,连接CF.判断四边形BCFE的形状,并证明.2.在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.(1)求证:BD=DE;(2)求DM的长.巅峰突破1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.2.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.3.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN ∥AB,连接NH,如果∠D=68°,则∠CHN=.4.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形;(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.5.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.参考答案【诊断自测】1、D解:A、两条对角线互相平分的四边形是平行四边形,故本选项说法正确;B、两组对边分别相等的四边形是平行四边形,故本选项说法正确;C、一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误;故选:D.2、解:可以添加:AD∥BC(答案不唯一).3、5.解:当AD=5cm时,四边形ABCD是平行四边形,∵AB=7cm,BC=5cm,CD=7cm,AD=5cm,∴四边形ABCD是平行四边形,故答案为:5.4、3个.解:由两组对边分别平行的四边形是平行四边形,可得图中的平行四边形有▱ADFE、▱BFED、▱CFDE三个.故答案为:3个【易错精选】1、C解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.2、C解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.3、3解:如图,D点共有3个,故答案为:3.4、.解:当=时,四边形ADFE是平行四边形.理由:∵=,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形.故答案为:.【本节训练】1、B解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.2、D解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=DC,OE∥DC,∴OE∥AB,∴∠BOE=∠OBA,∴选项A、B、C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误;故选:D.3、4解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.4、2解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.基础巩固一、填空题1、解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.2、解:∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.3、解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE==2,∴AB=,故答案为:.4、解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.5、解:∵EF为△ABC的中位线,△AEF的周长为6cm,∴BC=2EF,AB=2AE,AC=2AF,∴BC+AB+AC=2(EF+AE+AF)=12(cm).故答案为:12.二、选择题1、解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.2、解:∵▱ABCD的周长为26cm,∴AB+AD=13cm,OB=OD,∵△AOD的周长比△AOB的周长多3cm,∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,∴AB=5cm,AD=8cm.∴BC=AD=8cm.∵AC⊥AB,E是BC中点,∴AE=BC=4cm;故选:B.3、解:作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=BC=AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF==,∴S▱ABCD=BC•FD=10×=72.故选D.4、解:∵D,E为AC和BC的中点,∴AB=2DE=2200m,故选:B.5、解:过点M作MG∥AB交AD于点G,∵AD∥BC,AB∥MG,∴四边形ABMG是平行四边形,∴∠AGM=∠ABM.∵AM平分∠BAD,∴∠GAM=∠MAB,∴∠AMB=∠AMG.在△AGM与△ABM中,,∴△AGM≌△ABM,∴AB=AG=3,∴四边形ABMG是菱形,∴MC=5﹣3=2.∵EF∥BC,点E,F分别是AB,CD的中点,∴NF是△DCM的中位线,∴NF=MC=1.故选B.三、简答题1、证明:连接DE,FG,∵BD、CE是△ABC的中线,∴D,E是AB,AC边中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.2、(1)证明:∵AD平分∠BAC ∴∠BAD=∠DAE∵AD⊥BD∴∠ADB=∠ADE=90°在△ADB与△ADE中∴△ADB≌△ADE∴BD=DE(2)∵△ADB≌△ADE∴AE=AB=12∴EC=AC﹣AE=8∵M是BC的中点,BD=DEDM=EC=4巅峰突破1、解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.2.解:∵BD=AD,BE=EC,∴DE=AC=4cm,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=14cm.故答案为14.3.解:连接MH,∵AH⊥CD于H,M为AD的中点,∴MH=AD=DM,∴∠D=∠MHD=68°,∵MN∥AB,∴∠NMH=∠MHD=68°,又∵MN=AB=AD,∴MN=MH,∴∠MHN=(180°﹣68°)÷2=56°,∴∠CHN=180°﹣∠DHM﹣∠MHN=56°.故答案为:56°4.解:(1)∵四边形PQDC是平行四边形∴DQ=CP当P从B运动到C时,∵DQ=AD﹣AQ=16﹣t,CP=21﹣2t∴16﹣t=21﹣2t解得t=5当P从C运动到B时,∵DQ=AD﹣AQ=16﹣t,CP=2t﹣21∴16﹣t=2t﹣21,解得t=,∴当t=5或秒时,四边形PQDC是平行四边形;(2)若点P、Q分别沿AD、BC运动时,即解得t=9(秒)若点P返回时,CP=2(t﹣),则解得t=15(秒).故当t=9或15秒时,以C ,D ,Q ,P 为顶点的梯形面积等60cm 2;(3)当PQ=PD 时作PH ⊥AD 于H ,则HQ=HD∵QH=HD=QD=(16﹣t )由AH=BP 得解得秒;当PQ=QD 时QH=AH ﹣AQ=BP ﹣AQ=2t ﹣t=t ,QD=16﹣t ,∵QD 2=PQ 2=t 2+122∴(16﹣t )2=122+t 2解得(秒);当QD=PD 时DH=AD ﹣AH=AD ﹣BP=16﹣2t ,∵QD 2=PD 2=PH 2+HD 2=122+(16﹣2t )2∴(16﹣t )2=122+(16﹣2t )2即3t 2﹣32t+144=0∵△<0,∴方程无实根,当点P 从C 向B 运动时,观察图象可知,只有PQ=PD ,由题意:2t ﹣26=(16﹣t ),t=.综上可知,当秒或秒或秒时,△PQD是等腰三角形.5.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.第31/31页。

平行四边形判定-题型归纳(较难)

平行四边形判定-题型归纳(较难)

对角线取值范围问题(同三角形第三边中线取值范围)平行四边形一边长为10,一条对角线长为6,则它的另一条对角线长a的取值范围为( ) A.4<a<16 B.14<a<26 C.12<a<20 D.8<a<32平行四边形的判定:1:定义法:两组对边分别平行的四边形是平行四边形2:一组对边平行且相等的四边形是平行四边形3:两组对边分别相等的四边形是平行四边形4:对角线相互平分的四边形是平行四边形14.平行四边形的判定(一)定义法:两组对边分别平行的四边形是平行四边形例题1:如图,四边形ABCD是平行四边形,连接AC.过点A作AE⊥BC于点E;过点C作CF∥AE,交AD于点F;求证:四边形AECF为平行四边形练习:1、已知:如图,△ABC是等边三角形,D、E分别是BA、CA的延长线上的点,且AD=AE,连接ED并延长到F,使得EF=EC,连接AF、CF、BE.(1)求证:四边形BCFD是平行四边形;证明:(1)∵△ABC为等边三角形,且AE=AD,∴由题可知∠AED=∠ADE=∠EAD=60°∴EF∥BC,又∵EC=EF,∴△ECF为等边三角形,即∠EFC=∠EDB=60°,∴CF∥BD∴四边形BCFD为平行四边形.2、如图:平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM相交于点Q。

试说明PQ与MN互相平分。

3、如图,在四边形ABCD中,AH、CG、BE、FD分别是∠A、∠C、∠B、∠D的角平分线,且BE∥FD,AH∥CG,证明四边形ABCD为平行四边形.15.平行四边形的判定(二):一组对边平行且相等的四边形是平行四边形例题1:如图,在ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G。

求证:AF=DF【答案】解:(1)证明:如图1,连接BD、AE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD。

第03讲 平行四边形的性质和判定(知识解读+达标检测)(解析版)

第03讲 平行四边形的性质和判定(知识解读+达标检测)(解析版)

第03讲平行四边形的性质和判定【题型1 根据平行四边形的性质求边长】【题型2根据平行四边形的性质求角度】【题型3根据平行四边形的性质求周长】【题型4 平行四边形的判定】【题型5 平行四边形的判定与全三角形综合】【题型6 平行四边形的性质与判定综合】考点1:平行四边形的性质1.边的性质:两组对边分别平行且相等,如下图:AD∥BC,AD=BC,AB∥CD,AB=CD;2.角的性质:两组对角分别相等,如图:∠A=∠C,∠B=∠D3.对角线的性质:对角线互相平分。

如图:AO=CO,BO=DO【题型1 根据平行四边形的性质求边长】【典例1】(2023秋•龙口市期末)如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=8,AC=12,则BD的长是( )A.16B.18C.20D.22【答案】C【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OB=OD,OA=OC=AC=6,∵AB⊥AC,由勾股定理得:OB===10,∴BD=2OB=20.故选:C.【变1-1】(2023春•历下区校级期中)如图,在平行四边形ABCD中,∠A的平分线AE交CD于E,AB=8,BC=6,则EC等于( )A.1B.1.5C.2D.3【答案】C【解答】解:∵四边形ABCD为平行四边形,∴CD=AB=8,AD=BC=6.CD∥AB,∵∠DAB的平分线AE交CD于E,∴∠DAE=∠BAE,∵CD∥AB,∴∠AED=∠BAE,∴∠DAE=∠AED.∴ED=AD=6,∴EC=CD﹣ED=8﹣6=2.故选:C.【变式1-2】(2022秋•牟平区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD 于点E,∠BCD的平分线交AD于点F,若AB=4,AD=5,则EF的长度( )A.1B.2C.3D.4【答案】C【解答】解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∵AB=4,AD=BC=5,∴2AB﹣BC=AE+FD﹣BC=EF=3.故选:C.【变式1-3】(2022秋•安化县期末)如图,F是平行四边形ABCD对角线BE上的点,若BF:FD=1:3,AD=12,则EC的长为( )A.6B.7C.8D.9【答案】C【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=12,∵BF:FD=1:3,∴EB:AD=BF:FD,∴EB:12=1:3,∴EB=4,∴EC=BC﹣EB=12﹣4=8.故选:C.【题型2根据平行四边形的性质求角度】【典例2】(2023春•环翠区期末)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.60°C.65°D.75°【答案】D【解答】解:延长EH交AB于N,∵△EFH是等腰直角三角形,∴∠FHE=45°,∴∠NHB=∠FHE=45°,∵∠1=30°,∴∠HNB=180°﹣∠1﹣∠NHB=105°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2+∠HNB=180°,∴∠2=75°,故选:D.【变式2-1】(2023秋•二道区校级期末)如图,在▭ABCD中,∠A+∠C=80°,则∠D=( )A.80°B.40°C.70°D.140°【答案】D【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠A+∠D=180°,∵∠A+∠C=80°,∴∠A=∠C=40°,∴∠D=180°﹣∠A=140°,故选:D.【变式2-2】(2023春•北安市校级期中)如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为( )A.155°B.130°C.125°D.110°【答案】B【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于E,∠BED=155°,∴∠ABE=∠CBE=∠AEB=180°﹣∠BED=25°,∴∠A=180°﹣∠ABE﹣∠AEB=130°.故选:B.【变式2-3】(2023•巴东县模拟)四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC交AD于点E,DF∥BE交BC于点F,则∠CDF的度数为( )A.55°B.50°C.40°D.35°【答案】D【解答】解:∵∠ABC=70°,BE平分∠ABC,∴∠CBE=∠ABC=35°,∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°,AD∥BC,∴∠AEB=∠CBE=35°,∵DF∥BE,∴∠EDF=∠AEB=35°,∴∠CDF=∠ADC﹣∠EDF=70°﹣35°=35°,故选:D.【题型3根据平行四边形的性质求周长】【典例3】(2023春•光明区校级期中)如图,在平行四边形ABCD中,AE平分∠BAD交BC于E,BE=4,EC=3,则平行四边形ABCD的周长为( )cm.A.11B.18C.20D.22【答案】D【解答】解:∵四边形ABCD是平行四边形,∴AD与BC平行,AD=BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BA=BE=4,∵BC=BE+EC=4+3=7=AD,∴平行四边形ABCD的周长为2×(7+4)=22(cm),故选:D.【变式3-1】(2023春•东港区校级期中)在平行四边形ABCD中,∠A的角平分线把边BC 分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【答案】B【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【变式3-2】(2023春•沙坪坝区期中)如图,在▱ABCD中,对角线AC、BD交于点O,周长为18,过点O作OE⊥AC交AD于点E,连结CE,则△CDE的周长为( )A.18B.9C.6D.3【答案】B【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD周长为18,∴AD+CD=9,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+AE+DE=AD+CD=9.故选:B.【变式3-3】(2023秋•南关区校级期末)如图,在▱ABCD中,AD=10,对角线AC与BD 相交于点O,AC+BD=24,则△BOC的周长为 22 .【答案】22.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,AD=BC=10,∵AC+BD=24,∴OC+BO=12,∴△BOC的周长=OC+OB+BC=12+10=22.故答案为:22考点2:平行四边形的判定1.与边有关的判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形2.与角有关的判定:两组对角分别相等的四边形是平行四边形3.与对角线有关的判定:对角线互相平分的四边形是平行四边形【题型4 平行四边形的判定】【典例4】(2023秋•朝阳区校级期末)如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB∥DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD=BC【答案】B【解答】解:A、AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;B、AB∥DC,AD=BC不能判定这个四边形是平行四边形,故此选项符合题意;C、AO=CO,BO=DO可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;D、AB=DC,AD=BC可利用两组对边分别相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;故选:B.【变式4-1】(2022秋•泰山区期末)下列条件中,能判定四边形是平行四边形的是( )A.一组对边相等,另一组对边平行B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角互补,另一组对角相等【答案】C【解答】解:A、一组对边相等,另一组对边平行,也有可能是等腰梯形B、一组对边平行,一组对角互补,也有可能是等腰梯形C、一组对角相等,一组邻角互补可得到两组对角分别相等,所以是平行四边形D、一组对角互补,另一组对角相等,可能是含两个直角的一般四边形.故选:C.【变式4-2】(2023春•台山市校级期中)在四边形ABCD中,AB∥DC,要使四边形ABCD 成为平行四边形,还需添加的条件是( )A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠D=180°D.∠A+∠B=180°【答案】D【解答】解:选项A,B中的两对角是对角关系,不能推出AD∥BC,选项C只能推出AB∥DC,选项D中两角是同旁内角,∵∠A+∠B=180°,∴AD∥BC,又∵AB∥DC,∴四边形ABCD为平行四边形,故选:D.【变式4-3】(2023•中牟县校级开学)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A.①②B.①④C.②④D.②③【答案】C【解答】解:∵只有②④两块碎玻璃的角的两边互相平行,且中间部分相连,角的两边的延长线的交点就是平行四边形的另两个顶点,∴带②④两块碎玻璃,就可以确定原来平行四边形玻璃的大小,能在商店配到一块与原来相同的平行四边形玻璃,故选:C.【题型5 平行四边形的判定与全三角形综合】【典例5】(2022秋•周村区期末)已知,如图,在▱ABCD中,点E、F分别在AD、BC上,且∠BAF=∠DCE.求证:(1)△ABF≌△CDE.(2)四边形AECF是平行四边形.【答案】(1)见解析过程;(2)见解析过程.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AD=BC,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA);(2)∵△ABF≌△CDE,∴AF=CE,BF=DE,∴AE=CF,∴四边形AECF是平行四边形.【变式5-1】(2023春•惠城区期末)如图,在▱ABCD中,点E,F在对角线BD上,且BE =DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.【变式5-2】(2023春•鱼台县期中)如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】见试题解答内容【解答】证明:(1)∵四边形ABCD是平行四边形.∴AD∥BC,AD=BC.∴∠ADE=∠CBF.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°.∵在△ADE与△CBF中,∴△ADE≌△CBF(AAS),∴AE=CF.(2)∵AE⊥BD,CF⊥BD,∴∠AEF=∠CFE=90°.∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.【变式5-3】(2023•新疆模拟)如图,在▱ABCD中,点E,F在对角线BD上,且BF=DE.证明:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∵BF=DE,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【题型6 平行四边形的性质与判定综合】【典例6】(2023春•温州月考)如图,在▱ABCD中,点E在AB上,点F在CD上,且AE =CF.(1)求证:四边形DEBF是平行四边形;(2)若DE为∠ADC的角平分线,且AD=6,EB=4,求▱ABCD的周长.【答案】(1)见解析;(2)32.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴DF∥BE,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形;(2)解:∵DE为∠ADC的角平分线,∴∠ADE=∠CDE,∵CD∥AB,∴∠AED=∠CDE,∴∠ADE=∠AED,∴AE=AD=6,∵BE=4,∴AB=AE+BE=10,∴▱ABCD的周长=2(AD+AB)=2(6+10)=32.【变式6-1】(2023春•成都期末)如图,在▱ABCD中,点E,F在对角线AC上,且AF=CE,连接BE,DE,BF,DF.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=80°,AB=AF,DC=DF,求∠EBF的度数.【答案】(1)证明过程见解答;(2)30°.【解答】(1)证明:在▱ABCD中,AB=CD,AB∥CD,∴∠BAF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴BF=DE,∠DEF=∠BFA,∴ED∥BF,∴四边形BEDF是平行四边形;(2)解:∵四边形BEDF是平行四边形,∴BE=DF,∵AB=DC=DF,∴AB=BE,∴∠BEA=∠BAC=80°,∴∠ABE=180°﹣2×80°=20°,∵AB=AF,∴∠ABF=∠AFB=(180°﹣80°)=50°,∴∠EBF=∠ABF﹣∠ABE=50°﹣20°=30°.【变式6-2】(2023秋•锦江区校级期末)如图,点E、F是平行四边形ABCD对角线AC上两点,BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AC=8,BC=6,∠ACB=30°,求平行四边形ABCD的面积.【答案】(1)证明见解答过程;(2)24.【解答】(1)证明:平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CAD,又∵BE∥DF,∴∠BEC=∠DFA,在△BEC和△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF,又BE∥DF,∴四边形BEDF是平行四边形;(2)解:过A点作AG⊥BC,交CB的延长线于G,在Rt△AGC中,AC=8,∠ACB=30°,∴AG=4,∵BC=6,∴平行四边形ABCD的面积=BC•AG=4×6=24.【变式6-3】(2023春•和县校级期末)如图,BD是四边形ABCD的对角线,∠ADB=∠CBD,AD=BC,过点A作AE∥BD交C的延长于E.(1)求证:四边形ABDE是平行四边形;(2)过点E作EF⊥BC交BC的延长线于点F,连接DF,若,求DF的长.【答案】(1)见解析;(2)2.【解答】(1)证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠ADE=∠BCD.∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CE,AB=CD,∵AE∥BD,∴∠EAD=∠BDA,∴∠EAD=∠DBC,在△EAD和△DBC中,,∴△EAD≌△DBC(ASA),∴DE=CD,∵AB=DE.∴四边形ABDE是平行四边形;(2)∵DE=CD=AB,∴FD是CE的中线,∵EF⊥BC,∴DF=CE==2.考点3:三角形的中位线三角形中位线:在△ABC 中,D,E 分别是A C,AC 的中点,连接DE.像DE 这样,连接三角形_两边中点的线段叫做三角形的中位线.B中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的二分之一。

平行四边形的性质分类题组(精排版_有答案)

平行四边形的性质分类题组(精排版_有答案)

平行四边形的性质分类题组类1 平行四边形-性质-辨析1.平行四边形对角线一定具有的性质是( )A .相等;B .互相平分;C .互相垂直;D .互相垂直且相等;类2 平行四边形-性质-边长与周长2.用20边与短边的比为3︰2,则它的边长为_______长为________.类3 平行四边形-性质-对角线的中垂线3.如图,□ABCD 的周长为16cm ,AC 、BD 点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为( A .4 cm ; B .6cm ; C .8cm ; D .10cm ;AEBDOC类4 平行四边形-性质-等腰模型4.在△MNB 中,BM =6,点A 、C 、 D 分别在BN ,NM 上,四边形ABCD 为平行四边形,∠=∠MDA ,平行四边形ABCD 的周长是( ) A .24; B .18; C .16; D .12;ABMNC D5.在△ABC 中,AB =AC ,点D ,E ,F 分别是AC BC ,BA 延长线上的点,四边形ADEF 形.求证:AD =BF .AB CDEF类5 平行四边形-性质-三角形周长ABCD 的周长为60cm ,对角线交于O ,△OAB 的周长比△OBC 的周长大8cm ,则=____________cm .6 平行四边形-性质-高与面积已知平行四边形面积是144,相邻两边上的高分8和9,则它周长是__________.7 平行四边形-性质-三边关系平行四边形的两条对角线的长分别是6和8,则x 可能的取值范围是( )A .2<x <6;B .2<x <14;C .1<x <7;D .不能确定; 平行四边形的两条对角线长和一边长可依次为( )A .6,6,6B .6,4,3C .6,4,6D .3,4,58 平行四边形-性质-对角线与边垂直.在平行四边形ABCD 中,AC 与BD 相交于点O ,⊥AC ,∠DAC =45°,AC =2,求BD 的长.9 平行四边形-性质-角分线+平行线.如图,在平行四边形ABCD 中,AD =5,AB =AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC ( ) A BC DEA .2和3;B .3和2;C .4和1;D .1和4; .如图,四边形ABCD 是平行四边形,BE 平分ABC ,CF 平分∠BCD ,BE 、CF 交于点G .若使=3,AD =5,EF =____________. A C DE F G.如图,已知四边形ABCD 是平行四边形,∠BCDCF 交边AB 于F ,∠ADC 的平分线DG AB 于G .(1)求证:AF =GB .(2)得△EFG 为等腰直角三角形,并说明理由.A BCD EFG类10 平行四边形-性质-对角邻角计算14.已知平行四边形ABCD 中,∠B =4∠A ,=( )A .18°;B .36°;C .72°;D .144°; 15.如图,□ABCD 与□DCFE 的周长相等,且∠=60°,∠F =110°,则∠DAE 的度数为 A BCDEF类11 平行四边形-性质-对角线互相平分16.如图,□ABCD 中,AE ⊥BD 于E ,∠EAC =30AE =3,则AC 的长等于____________. A DBCE类12 平行四边形-性质-面积17.如图,在▱ABCD 中,AB =4,BC =6,∠B 30°,则此平行四边形的面积是( ) ABCDA .6;B .12;C .18;D .24;类13 平行四边形-性质-面积与周长18( ) A .1种;B .2种;C .4种;D .无数种; .在平行四边形ABCD 中,EF 过对角线交点O , AB =6cm ,AD =5cm ,OF =2cm ,那么四边BCEF 的周长为_____________..已知:点P 是▱ABCD 的对角线AC 的中点,经P 的直线EF 交AB 于点E ,交DC 于点F .求AE =CF . A BCDEF P14 平行四边形-性质-对角线上两个点.如图,四边形ABCD 是平行四边形,BE 、DF ABC ,∠ADC 的平分线,且与对角线AC E 、F .求证:AE =CF .ABCDE F.如图,E 、F 是平行四边形ABCD 对角线AC 上BE ∥DF .求证:BE =DF .AFE D15 平行四边形-性质-对角平行线.如图,在平行四边形ABCD 中,∠B ,∠D 的E 、F ,交四边形对角线AC于点G 、H .求证:AH =CG .ABCDE FHG类16 平行四边形-性质-一边中点※24.如图,在平行四边形ABCD 中,AB =4,∠的平分线与BC 的延长线交于点E ,与DC F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G 若DG =1,则AE 的边长为( )A .B .C .4;D .8;A B CDFEG※25.如图 ,在平行四边形ABCD 中,BC =2M 为AD 的中点,CE ⊥AB 于E ,试说明∠DME 3∠AEM .A BCDEM类17 平行四边形-性质-折叠26.如图,将□ABCD 沿对角线AC 折叠,使点落在B ′处,若∠1=∠2=44°,则∠B 为( )114°;D .124°; C最值1的⊙A 上一点,AC 为对角线作ABCD 面积的最大值( ) C .对角互补;AB =4,则BC =( ) D .28;中,AB =3cm ,BC O ,则OA 的取B .2cm <OA <8cm ;D .3cm <OA <8cm ; (端点除外)作两腰 B .一腰的长; D .两腰的和; 2AB ,CE 平分∠BCD AB 的长为( )A .4;B .3;C .52; D .2;BC DAE33.如图,在Rt △ABC 中,∠B =90°,AB =3,=4,点D 在BC 上,以AC 为对角线的所有□中,DE 最小的值是( )A .2;B .3;C .4;D .5; CA B DEO34.如图,平行四边形ABCD 的对角线相交于点且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△的周长为10,则平行四边形ABCD 的周长为____________. ABDC E O35.在平行四边形ABCD 中,AD ∥BC ,AC ⊥AB =4,AC =6,则BD =__________.36.如图,□ABCD 中,点E 、F 分别在AD ,上,且AE =CF .求证:BE =DF .BCDAFE37.如图,在□ABCD 中,E 、F 为对角线BD 两点,且∠BAE =∠DCF .ABCD 的对角线线段BE 与线C∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°.15.&【答案】25°.【解答过程】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE, ∠ADE=∠BCF=60°+70°=130°.∴∠DAE=11(180)5025 22ADE︒-∠=⨯︒=︒.类11 平行四边形-性质-对角线互相平分16.解:∵在直角△AOE中,cos∠EAC=,∴OA===2,又∵四边形ABCD是平行四边形,∴AC=2OA=4.故答案是:4.类12 平行四边形-性质-面积17.B.;解:过点A作AE⊥BC于E,∵直角△ABE中,∠B=30°,∴AE=AB=×4=2∴平行四边形ABCD面积=BC•AE=6×2=12,类13 平行四边形-性质-过中心直线平分面积与周长18.D.;19.15;20.证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠P AE=∠PCF,∵点P是▱ABCD的对角线AC的中点,∴P A=PC,在△P AE和△PCE中,,∴△P AE≌△PCE(ASA),∴AE=CF.类14 平行四边形-性质-对角线上两个点21.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABC=∠CDA,AB∥CD∴∠BAC=∠DCA∵BE、DF分别是∠AB C.∠ADC的平分线,且与对角线AC分别相交于点E、F∴∠ABE=21∠ABC,∠CDF=21∠ADC∴∠ABE=∠CDF∴ABE∆≌CDE∆(AAS)∴AE=CF;22.证明:∵四边形ABCD是平行四边形∴BC=AD BC∥AD …2分∴∠ACB=DAC………………3分∵BE∥DF∴∠BEC=∠AFD………………4分∴△CBE≌△ADF………………5分∴BE=DF………………6分类15 平行四边形-性质-对角平行线23.证明:∵∠ABC=∠CDA(平行四边形对角相等) BE平分∠ABC,DF平分∠CDA(已知)∴∠ADH=∠CBG在△ADH和△CBG中AD=CB∠ADH=∠CBG(已证)∠DAH=∠BCG(两直线平行,内错角相等)∴△ADH≌△CBG(SAS)∴AH=CG(全等三角形的对应边相等);类16 平行四边形-性质-一边中点24.B.;解:∵AE为∠ADB的平分线,∴∠DAE=∠BAE,∵DC ∥AB , ∴∠BAE =∠DF A , ∴∠DAE =∠DF A , ∴AD =FD , 又F 为DC 的中点, ∴DF =CF ,∴AD =DF =12DC =12AB =2,在Rt △ADG 中,根据勾股定理得:AG =3, 则AF =2AG =23, 在△ADF 和△ECF 中, ⎩⎪⎨⎪⎧∠DAF =∠E ∠ADF =∠ECF DF =CF, ∴△ADF ≌△ECF (AAS ), ∴AF =EF ,则AE =2AF =43.25.解:连接CM 并延长交BA 于F ,A BCD EM F x2xxx x αα αα α 2α设CD =x ,∴BC =2AB =2x , ∵M 为AD 的中点, ∴AM =MD =x , ∴DM =DC =x ,∴设∠DCM =∠DMC =α=∠AMF , 在平行四边形ABCD 中,AB ∥CD , ∠DCM =∠F =α, ∴△CDM ≌△FAM ∴MF =MC 又∵CE ⊥AB在Rt △CEF 中,M 为CF 的中点,∴EM =12 CF =MF∴∠F =∠FEM =α, ∵∠EMC 为△EFM ∴∠EMC =∠F +∠=2α,∴∠EMD =∠EMC +∠CMD =3α=3∠∠EMC ; 即,∠DME =3∠AEM .类17 平行四边形-性质-折叠26.C .;【考点】平行四边形的性质. 解:∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B ′AC , ∴∠BAC =∠ACD =∠B ′AC =∠1=22°, ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;类18 平行四边形-性质-最值27.解:由已知条件可知,当AB ⊥AC 时□ABCD 的面积最大,以点A 为圆心,3AB =3,所以点B 为圆上动点,要使□ABCD 面积最大,即是要△ABC 的面积最大,我们以AC 为底,高即是B 点到直线AC 的垂线段BH 的长,如下图,点B 与点E 重合时,垂线段BH 最长,即AB ⊥AC时□ABCD 的面积最大,APBD EH∵AB =3,AC =2 ∴S △ABC =132AB AC ⋅= ∴S □ABCD =2S △ABC =3∴□ABCD面积的最大值为故答案为作业28.C .;29.B . 30.C .; 31.D .;32.B33.B.;解:∵在Rt △ABC 中,∠B =90°,AB =BC =4, ∴AC 5=.∵四边形ADCE 是平行四边形, ∴OD =OE ,OA =OC =2.5.∴当OD 取最小值时,DE 线段最短(点O 到BC 垂线段最短),此时OD ⊥BC ,∴OD =12AB =1.5,∴ED =2OD =3.34.20.解:∵四边形ABCD 是平行四边形, ∴OB =OD ,AB =CD ,AD =BC , ∵OE ⊥BD , ∴BE =DE ,∵△CDE 的周长为10,即CD +DE +EC =10, ∴平行四边形ABCD 的周长为:AB +BC +CD +=2(BC +CD )=2(BE +EC +CD )=2(DE +EC +CD )=2×10=20. 35.10; ABCDO 4 3 35 536.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∵AE =CF ,∴DE =BF ,DE ∥BF , ∴四边形DEBF 是平行四边形, ∴BE =DF .37.证明:∵□ABCD 中,AB =CD ,AB ∥CD , …………2分∴∠ABE =∠CDF ……4分BAE =∠DCF ,∴△ABE ≌△CDF ,…6分 BE =DF …8分 .猜想:BEDF .∵四边形ABCD 是平行四边形 ,…2分 CB AD =,CB ∥AD . BCE DAF ∠= . BCE △和DAF △,CB ADBCE DAF CE AF =∠=∠= BCE △≌DAF △. ………………5分 BE DF =,BEC DFA ∠=∠, BE ∥DF . BE DF .……………7分。

特殊的平行四边形专题(题型详细分类)要点

特殊的平行四边形专题(题型详细分类)要点

特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。

·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。

对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。

专题24 平行四边形及其性质-重难点题型

专题24 平行四边形及其性质-重难点题型

专题4.2 平行四边形及其性质-重难点题型【知识点1 平行四边形的性质】平行四边形的性质有:对边平行且相等,对角线互相平分,对角相等,邻角互补,两条平行线之间的距离处处相等,夹在两条平行线间的平行线段相等.【题型1 平行四边形的性质(求长度)】【例1】(2021春•天府新区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作AF⊥BE,垂足为点F,若AF=5,BE=24,则CD的长为()A.8B.13C.16D.18【变式1-1】(2021秋•九龙坡区校级期末)如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为()A.8B.10C.16D.20【变式1-2】(2021春•淮南月考)在▱ABCD中,对角线AC与BD相交于点O,△BOC的周长为20cm,BC=12cm,则AC+BD的长是()A.8cm B.16cm C.24cm D.32cm【变式1-3】(2021秋•让胡路区校级期末)在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为.【题型2 平行四边形的性质(求角度)】【例2】(2021•河北一模)如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED =80°,则∠EAC的度数是()A.10°B.15°C.20°D.25°【变式2-1】(2021春•锦州期末)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,点E在▱ABCD 的对角线AC上,AE=BE=BC,∠D=105°,则∠BAC的度数是()A.35°B.30°C.25°D.20°【变式2-2】(2021春•西安期末)如图,四边形ABCD为平行四边形,DE⊥BC于点E,BF⊥CD于点F,DE、BF 相交于点H,若∠A=60°,则∠EHF的度数为()A.100°B.110°C.120°D.150°【变式2-3】(2021春•西湖区校级期中)如图所示,以▱ABCD的边AB为边向内作等边△ABE,使AD=AE,且点E在平行四边形内部,连接DE,CE,则∠CED的度数为()A.150°B.145°C.135°D.120°【题型3 平行四边形的性质(求面积)】【例3】(2021春•西湖区校级期中)如图所示,点E为▱ABCD内一点,连接EA,EB,EC,ED,AC,已知△BCE 的面积为2,△CED的面积为10,则阴影部分△ACE的面积为()A.5B.6C.7D.8【变式3-1】(2021春•娄星区期末)如图,E、F分别是▱ABCD的边AB、CD上的点,AF与DE相交于点P,BF 与CE相交于点Q.若S△APD=15,S△BQC=25,则阴影部分的面积为()A.40B.45C.50D.55【变式3-2】(2021春•成华区期末)如图,▱ABCD的面积为S,点P是它内部任意一点,△P AD的面积为S1,△PBC的面积为S2,则S,S1,S2之间满足的关系是()A.S1+S2>12S B.S1+S2<12SC.S1+S2=12S D.无法判定【变式3-3】(2021秋•海曙区校级期末)如图,在▱ABCD中,点E在边AD上,过E作EF∥CD交对角线AC于点F,若要求△FBC的面积,只需知道下列哪个三角形的面积即可()A.△ECD B.△EBF C.△EBC D.△EFC【题型4 平行四边形的性质与坐标】【例4】(2021秋•甘井子区期末)如图,平面直角坐标系中,点B,点D的坐标分别为(0,2)和(0,﹣2),以BD为对角线作▱ABCD,若点A的坐标为(2,1),则点C的坐标为.【变式4-1】(2021秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1)B.(1,2)C.(2,1)D.(2,2)【变式4-2】(2021秋•张店区期末)如图,已知▱ABCD三个顶点坐标是A(﹣1,0)、B(﹣2,﹣3)、C(2,﹣1),那么第四个顶点D的坐标是()A.(3,1)B.(3,2)C.(3,3)D.(3,4)【变式4-3】(2021•商河县校级模拟)如图,已知平行四边形OABC的顶点A,C分别在直线x=1和x=4上,点O是坐标原点,则点B的横坐标为()A.3B.4C.5D.10【题型5 平行四边形中的最值问题】【例5】(2021春•舞钢市期末)如图,△ABC中,AB=10,△ABC的面积是25,P是AB边上的一个动点,连接PC,以P A和PC为一组邻边作平行四边形APCQ,则线段AQ的最小值是()A.3B.4C.5D.6【变式5-1】(2021春•河南期末)如图,在△ABC中,AB=AC=4,∠B=15°,点P是射线BA上的一个动点,以AP,PC为邻边作平行四边形APCQ,则边AQ的最小值为()A.4B.2C.2√3D.4√3【变式5-2】(2021春•费县期末)如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以P A,PC为边作平行四边形P AQC,则对角线PQ的长度的最小值为.【变式5-3】(2021•碑林区校级模拟)如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为.【题型6 平行四边形中的折叠问题】【例6】(2021春•黄浦区期末)如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC=.【变式6-1】(2021•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.【变式6-2】(2021•滨湖区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,D是边AB上一点,连接CD,将△ACD沿CD翻折得到△ECD,连接BE.若四边形BCDE是平行四边形,则BC的长为()A.√3B.3C.2√3D.3√2【变式6-3】(2020秋•锦江区校级期中)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,DE交BC于点F,连接CE,则下列结论:①BE=CD;②BF=DF;③S△BEF=S△DCF;④BD∥CE,其中正确的有()A.1个B.2个C.3个D.4个。

专题25平行四边形的判定定理-重难点题型

专题25平行四边形的判定定理-重难点题型

专题4.3 平行四边形的判定定理-重难点题型【知识点1 平行四边形的判定】(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.【题型1 平行四边形的判定条件】【例1】(2021春•玄武区期中)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD【变式1-1】(2021春•驿城区期末)在四边形ABCD中,对角线AC、BD相交于点O,在下列条件中,①AB∥CD,AD∥BC,②AB=CD,AD=BC;③AB∥CD,AD=BC,④OA=OC,OB=OD,⑤AB∥CD,∠BAD=∠BCD,能够判定四边形ABCD是平行四边形的个数有()A.2个B.3个C.4个D.5个【变式1-2】(2021春•凤翔县期末)在四边形ABCD中,对角线AC,BD相交于点O.给出下列四组条件:①AB ∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有()A.①②③B.②③④C.①②④D.①③④【变式1-3】(2021春•宜兴市月考)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AB∥CD,AD=BC;④AO=CO,BO=DO.其中一定能判定这个四边形是平行四边形的条件有()A.4组B.3组C.2组D.1组【题型2 平行四边形的判定与坐标】【例2】(2021春•江油市期末)如图,△OAB的顶点O、A、B的坐标分别是(0,0)(3,0),(1,1),下列点M中,O、A、B、M为顶点的四边形不是平行四边形的是()A .(1,﹣1)B .(2,﹣1)C .(﹣2,1)D .(4,1)【变式2-1】(2021春•石狮市期末)在平面直角坐标系中,已知点A (0,0)、B (2,2)、C (3,0),若以点A 、B 、C 、D 为顶点的四边形是平行四边形,则点D 的坐标不可能为( )A .(﹣1,2)B .(5,2)C .(1,﹣2)D .(2,﹣2)【变式2-2】(2020春•彭州市期末)如图,Rt △OAB 的两直角边OA 、OB 分别在x 轴和y 轴上,A (﹣2,0),B (0,4),将△OAB 绕O 点顺时针旋转90°得到△OCD ,直线AC 、BD 交于点E .点M 为直线BD 上的动点,点N 为x 轴上的点,若以A ,C ,M ,N 四点为顶点的四边形是平行四边形,则符合条件的点M 的坐标为 .【变式2-3】(2021春•开封期末)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 的坐标为(4,0),点C 在y 的正半轴上,且OB =2OC ,在直角坐标平面内确定点D ,使得以点D 、A 、B 、C 为顶点的四边形是平行四边形,请写出点D 的坐标为 .【题型3 平行四边形的判定与动点】【例3】(2021春•阳谷县期末)如图,在四边形ABCD 中,AD ∥BC ,且AD <BC ,BC =6cm ,动点P ,Q 分别从点D ,B 同时出发,点P 以1cm /s 的速度向点A 运动,点Q 以2cm /s 的速度向点C 运动,几秒后四边形CDPQ 是平行四边形( )A .1B .2C .3D .4 【变式3-1】(2021秋•芝罘区期末)如图,四边形ABCD 中,AD ∥BC ,AD =8cm ,BC =12cm ,M 是BC 上一点,且BM =9cm ,点E 从点A 出发以1cm /s 的速度向点D 运动,点F 从点C 出发,以3cm /s 的速度向点B 运动,当其中一点到达终点,另一点也随之停止,设运动时间为t (s ),则当以A 、M 、E 、F 为顶点的四边形是平行四边形时,t 的值是( )A .34B .3C .3或32D .32或34 【变式3-2】(2021春•抚州期末)在平面直角坐标系中,已知点A (4,0),点B (﹣3,2),点C (0,2),点P 从点B 出发,以2个单位每秒的速度沿射线BC 运动,点Q 从点A 出发,开始以1个单位每秒的速度向原点O 运动,到达原点后立刻以原来3倍的速度沿射线OA 运动,若P ,Q 两点同时出发,设运动时间为t 秒,则当t=时,以点A,Q,C,P为顶点的四边形为平行四边形.【变式3-3】(2021春•惠来县期末)如图,在△ABC中,AB=AC=20cm,BD⊥AC于点D,且BD=16cm.点M 从点A出发,沿AC方向匀速运动,速度为4cm/s;同时点P由B点出发,沿BA方向匀速运动,速度为1cm/s,过点P的直线PQ∥AC,交BC于点Q,连接PM,设运动时间为t(s)(0<t<5),解答下列问题:(1)线段AD=cm;(2)求证:PB=PQ;(3)当t为何值时,以P、Q、D、M为顶点的四边形是平行四边形?【题型4 平行四边形的判定与证明】【例4】(2021•郓城县模拟)如图,F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,连结AE、BD,求证:四边形ABDE是平行四边形.【变式4-1】(2021春•西安期末)如图,在△AFC中,∠F AC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD,求证:四边形ABCD是平行四边形.【变式4-2】如图,四边形ABCD的对角线AC、BD相交于点O,过点O画直线EF分别交AD、BC于点E、F,已知OE=OF,且AO+AE=CO+CF,求证:四边形ABCD为平行四边形.【变式4-3】(2020春•长宁区期末)已知:如图,△ABC和△ADE都是等边三角形,点D在BC边上,EF∥BC 交AC于点F,联结BE.求证:四边形BEFC为平行四边形.【题型5 二次证明平行四边形】【例5】如图,在平行四边形ABCD中,AE=CF,M、N分别为ED、FB的中点,试说明四边形ENFM为平行四边形.【变式5-1】如图,O为四边形ABCD的对角线BD的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF,AE∥CF,AE=CF.求证:四边形ABCD是平行四边形.【变式5-2】如图,E、F是△ABC的边AB、BC边的中点,在AC上取G、H两点,使AG=GH=HC,连接EG、FH并延长交于点D求证:四边形ABCD是平行四边形.【变式5-3】如图,E、F是四边形ABCD的对角线BD上两点,DF=BE,AE∥CF,AE=CF.求证:四边形ABCD 是平行四边形.【题型6 平行四边形的判定与性质综合】【例6】(2021春•西湖区校级月考)如图,已知△ABC为等边三角形,动点P在△ABC内,以PB,PC为边向外作等边三角形△PBD,△PCE.(1)若PB=8,PC=6,BC=10,①求证:四边形PEAD是平行四边形;②求出四边形PEAD的面积;(2)随着点P在△ABC所在平面上运动时,当△PBC满足什么条件时,平行四边形PEAD一定存在?(直接写出答案)【变式6-1】(2021秋•南岗区校级月考)如图,在△AFC中,∠F AC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,若AB平分∠F AC,延长FE交CD于点H,请直接写出与∠ABE相等的角.【变式6-2】(2021春•安国市期末)如图,平面直角坐标系中,四边形ABCD是平行四边形,A(﹣3,0),B(3,0),C(0,4),连接OD,点E是线段OD的中点.(1)求点E和点D的坐标;(2)平面内是否存在一点N,使以C、D、E、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.【变式6-3】(2021春•修水县期末)如图,在▱ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD上的两个动点(点E,F始终在▱ABCD的外面),连接AE,CE,CF,AF.(1)若DE=12OD,BF=12OB,①求证:四边形AFCE为平行四边形;②若CA平分∠BCD,∠AEC=60°,求四边形AFCE的周长.(2)若DE=13OD,BF=13OB,四边形AFCE还是平行四边形吗?请写出结论并说明理由.若DE=1n OD,BF=1n OB呢?请直接写出结论.。

(完整版)平行四边形的性质及判定典型例题

(完整版)平行四边形的性质及判定典型例题

平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。

题型专项研究:平行四边形、矩形、菱形、正方形的判定与性质

题型专项研究:平行四边形、矩形、菱形、正方形的判定与性质

题型6平行四边形、矩形、菱形、正方形的判定与性质,备考攻略)1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题.3.平行四边形的存在性问题.4.四边形与二次函数的综合题.1.折叠、轴对称及特殊平行四边形的性质应用出错.2.平行四边形的存在性问题中解有遗漏.3.很难解答四边形与二次函数的综合题,无从下手.1.四边形是几何知识中非常重要的一块内容,因其“变化多端”更是成为中考数学考试的一个热门考点.近几年随着新课改的不断深入,中考题更加考查学生思维能力,如出现一些图形折叠、翻转等问题.这类问题的实践性强,要利用图形变化前后线段、角的对应相等关系,构造一些特殊三角形等知识来求解.2.中考还常把四边形与平面直角坐标系结合起来考查,这类题目不仅仅把“数”与“形”联系起来思考,更提高同学们综合运用知识的能力.数形结合题目可以考查学生对“新事物”“新知识”的接受和理解能力,也考查学生运用所学知识来解决“新事物”“新知识”的能力.3.四边形作为特殊的四边形,一直是中考试题中的主角.尤其是在综合了函数知识后动态研究它的存在性问题,对学生分析问题和解决问题的要求较高.此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题:平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质,它们在计算、证明中都有广泛的应用:(1)求角的度数;(2)求线段的长;(3)求周长;(4)求第三边的取值范围.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题:有关矩形纸片折叠的问题,通过动手操作去发现解决问题的方法.其规律为利用折叠前后线段、角的对应相等关系,构造直角三角形,利用勾股定理来求解.折叠问题数学思想:(1)思考问题的逆向(反方向),(2)转化与化归思想;(3)归纳与分类的思想;(4)从变寻不变性的思想.3.综合了函数知识后动态研究平行四边形的存在性问题:此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.学生在处理问题的时候,往往不能正确分类,导致漏解.此外,在解题时一般需要添设辅助线,利用平行四边形的性质,转化为全等进行计算,学生顺利完成的难度就更大.如何才能让他们有目的的进行分类、简单明了的给出解答,从而减轻学习负担呢?借助平行四边形的对角线性质,来探究平行四边形的存在性问题就是一个很好的途径.4.四边形与二次函数的综合题是压轴题:综合考查了二次函数,一次函数,尺规作图,勾股定理,平面直角坐标系,一元二次方程,轴对称——翻折,最值问题.读懂题目、准确作图、熟悉二次函数及其图象是解题的关键.解决压轴题关键是找准切入点,如添辅助线,构造定理所需的图形或基本图形;紧扣不变量,并善于使用前题所采用的方法或结论;深度挖掘题干,反复认真的审题,在题目中寻找多解的信息,等等.压轴题牵涉到的知识点较多,知识转化的难度较高,除了要熟知各类知识外,平时要多练,提高知识运用和转化的能力.,典题精讲)◆简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题【例1】(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为________.【解析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB =6,由勾股定理求出AD即可.【答案】3 31.(巴中中考)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=__15__°.2.(2017甘肃中考)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.解:(1)∵四边形ABCD 是矩形,O 是BD 的中点, ∴∠A =90°,AD =BC =4,AB ∥DC ,OB =OD, ∴∠OBE =∠ODF.在△BOE 和△DOF 中,⎩⎨⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF(ASA ), ∴EO =FO,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF, 设BE =x ,则DE =x ,AE =6-x. 在Rt △ADE 中,DE 2=AD 2+AE 2, ∴x 2=42+(6-x)2, 解得:x =133.∵BD =AD 2+AB 2=213, ∴OB =12BD =13.∵BD ⊥EF,∴EO =BE 2-OB 2=2133,∴EF =2EO =4133.◆四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题【例2】(宿迁中考)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A .2B . 3C . 2D .1【解析】根据翻折不变性,AB =FB =2,BM =1,在Rt △BFM 中,可利用勾股定理求出FM 的值.【答案】B3.(咸宁中考)已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( D )A .(0,0)B .⎝⎛⎭⎫1,12C .⎝⎛⎭⎫65,35D .⎝⎛⎭⎫107,57(第3题图)(第4题图)4.(苏州中考)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .⎝⎛⎭⎫3,43C .⎝⎛⎭⎫3,53 D .(3,2)5.(黄冈中考)如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且DC =3DE =3a ,将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.6.(2017甘肃中考)如图,E ,F 分别是▱ABCD 的边AD ,BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到EFC′D′,ED ′交BC 于点G ,则△GEF 的周长为( C )A .6B .12C .18D .247.(2017广东中考)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F.(1)求证:△BDF 是等腰三角形;(2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FG 交BD 于点O. ①判断四边形BFDG 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.解:(1)如图①,根据折叠,∠DBC =∠DBE, 又AD ∥BC,∴∠DBC =∠ADB, ∴∠DBE =∠ADB, ∴DF =BF,∴△BDF 是等腰三角形;(2)①∵四边形ABCD 是矩形, ∴AD ∥BC, ∴FD ∥BG.∴四边形BFDG 是平行四边形. ∵DF =BF,∴四边形BFDG 是菱形; ②∵AB =6,AD =8, ∴BD =10, ∴OB =12BD =5.假设DF =BF =x ,∴AF =AD -DF =8-x.∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x)2=x 2,解得x =254,即BF =254, ∴FO =BF 2-OB 2=⎝⎛⎭⎫2542-52=154, ∴FG =2FO =152. ◆解决平面直角坐标系中平行四边形存在性问题【例3】(2017大理中考模拟)如图,A ,B ,C 是平面上不在同一直线上的三个点. (1) 画出以 A ,B ,C 为顶点的平行四边形;(2)若 A ,B ,C 三点的坐标分别为(-1,5),(-5,1),(2,2),请写出这个平行四边形第四个顶点 D 的坐标.【解析】利用坐标系的知识点解题.【答案】(1)如图所示;(2)第四个顶点D 的坐标为(-2,-2)或(6,6)或(-8,4).1.(兰州中考)如图所示,菱形ABCD 的周长为20 cm ,DE ⊥AB ,垂足为E ,sin A =35,则下列结论正确的个数有( C )①DE =3 cm ;②BE =1 cm ;③菱形的面积为15 cm 2;④BD =210 cm . A .1个 B .2个 C .3个 D .4个2.(济南中考)如图,矩形ABCD 中,AB =3,BC =5,过对角线交点O 作OE ⊥AC 交AD 于E ,则AE 的长是( D )A .1.6B .2.5C .3D .3.4(第2题图)3.(珠海中考)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是__4__cm.4.(新疆中考)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A 的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.解:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E.∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′.∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;(2)∵AD=AD′,∴▱DAD′E是菱形.∴D与D′关于AE对称.连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G.∵CD ∥AB ,∴∠DAG =∠CDA =60°. ∵AD =1,∴AG =12,DG =32,BG =52,∴BD =DG 2+BG 2=7, ∴PD ′+PB 的最小值为7.5.(资阳中考)如图,在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),双曲线y =kx(k ≠0,x >0)过点D.(1)求双曲线的解析式;(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.解:(1)∵▱ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3), ∴点D 的坐标为(1,2). ∵点D 在双曲线y =kx 上,∴k =1×2=2,∴双曲线的解析式为y =2x ;(2)∵直线AC 交y 轴于点E , ∴点E 的横坐标为0. ∵AD =2,∵S △ADC =12·(3-1)·AD =2,∴S △CDE =S △EDA +S △ADC =1+2=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16cm, AC 与BD 相交于点 O, OE L AC 交AD 于丘,求厶DCE 的周长
平行四边形的性质和判定
一、角度的运算
1、 在口 ABCD 中,若/ A -Z B = 40 ° 则/ A= __________ ,/ B = __________ .
2、 在平行四边形 ABCD 中,Z A : Z B=3:2,则Z C= _______ 度,/ D= ___________ 度.
3、 如图,在平行四边形 ABCD 中,BC=2AB, CAL AB 贝UZ B= _____ 度,
Z CAD= _____ 度.
4、 已知:如图,在 □ABCD 中,CE L AB 于E , CF 丄AD 于F ,Z 2 = 30 °求Z 1、Z 3的度数.
二、求边长(取值范围)、周长
1、 已知平行四边形的周长是 100cm, AB:BC=4 : 1则AB 的长是 __________________ .
2、 若平行四边形周长为 54cm ,两邻边之差为 5cm ,则这两边的长度分别为 ____________ .
3、 口ABCD 中,对角线 AC 和BD 交于O,若AC = 8, BD = 6,则边AB 长的取值范围是 _______ .
4、 □ ABCD 的周长为60cm ,其对角线交于 O 点,若△ AOB 的周长比厶BOC 的周长多10cm , 贝H AB = __________ , BC = ___________ .
5、 在口ABCD 中 CA L AB , Z BAD = 120 ° 若 BC = 10cm ,则 AC = ______ , AB = ___________ .
6、 如图,平行四边形 ABCD 中,AB=5cm, BC=3cm, Z D 与Z C 的平分线分别交 AB 于F,E,求 AE, EF, BF 的长?
7、□ ABC [中, E 在边AD 上,以BE 为折痕,将△ ABE 向上翻折,点 A 正好落在 CD 上的点F , 若厶FDE 的周长为8,A FCB 的周长为22,求CF 的长.
C B
三、求面积
1、在口ABCD 中,AE ± BC 于 E ,若 AB = 10cm , BC = 15cm , BE = 6cmU DABCD 的面积为
2、 若在口ABCD 中,/ A = 30° AB = 7cm , AD = 6cm ,贝U 9 ABCD= _______ .
3、 如图,平行四边形 ABCD 中,DE 丄AB 于E , DF 丄BC 于F ,若L ABCD 的周长为48, DE = 5, DF = 10,求 L ABCD 的面积。

4.如图,已知 口ABCD AD BC 的距离 AE=15cm AB 求
AB BC 口 ABCD 面积.
A
1•已知:如图,口 ABCD 中,E 、F 分别是AB 、CD 上的点,AE 二CF , M 、N 分 2、已知如图,E 、F 、G 、H 分别是平行四边形 ABCD 的边AB 、BC CD DA 上的点,且 AE
=CG , BF = DH.
求证:四边形EFGH 是平行四边形
A
H D
E /
别是DE 、BF 的中点。

求证:四边形 ENFM 是平行四边形。

O , 四、平行四边形的判
DB 经过点
B F C
3.如图所示,口AECF的对角线相交于点求证:四边形ABCD是平行四边形.
4.已知:如图,在口ABCD中,对角线AC交BD于点0,四边形A0DE是平行四边形.求
证:四边形AB0E、四边形DC0E都是平行四边形.
5 .已知:如图,在口ABCD中,
DF交于H.
求证:EF与GH互相平分.
E、F分另【J在AD、BC上,且AE= CF, A
F、BE交于G,
CE、
F是对角线BD上的两点, ,
连接GE、EH、HF、FG.
6.如图,已知在D ABCD中,和DC的延长线上,且AG=CH
(1)求证:四边形GEHF是平行四边形;
(2)若点G、H分别在线段BA和DC 上,其余条件不变,则用
说明理由)
E

BE=DF,点G、H分别在BA
7 .已知:如图,在等边厶ABC中,D、F分别为CB 等
边三角形ADE.
求证:⑴△ ACD^A CBF;
(2)四边形CDEF为平行四边形.
(1)中的结论是否成立? (不
&如图,以△ ABC的三条边为边向BC的同一侧作等边厶ABP、等边△ ACQ,等边△ BCR 求证:四边形PAQR为平行四边形。

9. 已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC CD DA的中点. 求证:四边形
EFGH是平行四边形.
10. 已知:△ ABC的中线BD、CE交于点O, F、G分别是OB OC的中点.
求证:四边形DEFG是平行四边形.
11. 已知:如图,E为口ABCD中DC边的延长线上一点,且CE= DC,连结AE分别交BC、
BD于点F、G,连结AC交BD于O,连结OF.求证:AB= 2OF.。

相关文档
最新文档