燃料电池双极板PPT课件
合集下载
燃料电池专业知识 ppt课件
ppt课件
10
气体扩散层GDL (gas diffusion layer)
作用:传质,导电,传热,支持催化层,导水 要求:高孔隙率,接触电阻小,内阻小,导热好,稳定性高不降解,强度高 材料:石墨化碳纸或碳布
ppt课件
11
流场板FP (Flow Plate)
对于水冷流场,又称为双极板Bipolar-plate 作用:气体分配,集流,导热,密封 要求:重量小,高电导,高热导,耐腐蚀,耐压,低成本 材料:石墨,合金
燃料电池专业知识
ppt课件
1
第一章 燃料电池原理和构成
ppt课件
2
什么是燃料电池
定义: 燃料电池(Fuel Cell)是一种将存在于燃料与氧化剂中的化学能直接
转化为电能的发电装置。
燃料
氧化剂
电能
其他?
ppt课件
3
Hydrogen
Fuel Cell
Oxygen Heat
Electric power
增程器 动力电池
电能
电机
机械能
ppt课件
22
150~200公里
ppt课件
23
整车 控制系 统
动力电池
燃料 电池
DC/DC
电机 控制 器
储氢 供氢系 统
车辆 附件总 成 燃料 电池附 件
驱动 电机
驱动桥
ppt课件
24
DCDC
DC:直流电,direct current AC:交流电,Alternating current DCDC:直流到直流变换器,主要是将某个直流电压转化至另一个直流电压。 解决两个设备电压不匹配的问题。
作为锂离子电池负极材料-钛酸锂(区别于石墨),可与锰酸锂、三元材料或 磷酸铁锂等正极材料组成电池。
PEMFC——燃料电池课件.
由图可知,构成 PEMFC 的关键材料与部件 为电催化剂、电极 ( 阴极与阳极 ) 、质子交换 膜和双极板。
PEMFC 中的电极反应类同于其他酸性电解质燃料电 池。阳极催化层中的氢气在催化剂作用下发生电极反 应: 阳极反应: H 2 2H 2e 该电极反应产生的电子经外电路到达阴极,氢离子则 经质子交换膜到达阴极。氧气与氢离子及电子在阴极 发生反应生成水。生成的水不稀释电解质,而是通过 电极随反应尾气排出。
2.电池组: 电池组的主体为MEA,双极板及相应 可兼作电流导出 板,为电池组的正极;另一端为阳单极板,也可兼作 电流导入板,为电池组的负极,与这两块导流板相邻 的是电池组端板,也称为夹板。在它上面除布有反应 气与冷却液进出通道外,周围还布置有一定数目的圆 孔,在组装电池时,圆孔内穿入螺杆,给电池组施加 一定的组装力。 若两块端板用金属(如不锈钢、铁板、超硬铝等)制作, 还需在导流板与端板之间加入由工程塑料制备的绝缘 板。
质子交换膜燃料电池
1 工作原理
质 子 交 换 膜 型 燃 料 电 池 (Proton exchange membrane fuel cells,PEMFC)以全氟磺酸型固体 聚合物为电解质,铂 / 炭或铂 - 钌 / 炭为电催化剂, 氢或净化重整气为燃料,空气或纯氧为氧化剂, 带有气体流动通道的石墨或表面改性的金属板为 双极板。 下图为PEMFC的工作原理示意图。
流场结够对 PEMFC 电池组至关重要,而且与反应 气纯度、电池系统的流程密切相关。 因此,在设计电池组结构时,需根据具体条件,如 反应气纯度、流程设计(如有无尾气回流,如有, 回流比是多少等)进行化工设计,各项参数均要达 到设计要求,并经单电池实验验证可行后方可确定。
电池组密封: 要求是按照设计的密封结构,在电池组组装力的 作用下,达到反应气、冷却液不外漏,燃料、氧 化剂和冷却液不互窜。
燃料电池简介PPT课件
燃料
高纯H2
H2
H2
H2-CO CH4
H2-CO CH4
氧化剂
高纯O2
空气
空气
空气+CO2
空气
电解质
KOH
H3PO4 质子交换膜 (K,Li)2CO3 Y2O3,ZrO2
阳极催化剂
Pt
阴极催化剂
Pt
Pt
Pt
Pt
Pt
CHENLI
Ni
Ni, ZrO2
NiO
La-SrMnO2
6
燃料电池的分类
按燃料电池所用原始燃料的类型,可大致 分为
CHENLI
3
燃料电池的基负极和夹在正负极中间的电解质板所组 成。工作时向负极供给燃料(氢),向正极供给氧化剂(空气)。氢在负极 分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向 正极。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形 成水。
采用200℃高温下的磷酸作为其电解质
熔融碳酸盐型燃料电池(Molten Carbonate Fuel Cell,MCFC)
采用熔融态碳酸盐作为其电解质
固体氧化物型燃料电池(Solid Oxide Fuel Cell,SOFC)
采用固态电解质
固体聚合物燃料电池(Solid Polymer Fuel Cell,SPFC,又称为质子交换膜 燃料电池,Proton Exchange Membrane Fuel Cell,PEMFC)
氢燃料电池
通用汽车公司已研制成功使用液氢燃料电池产生动 力的零排放概念车“氢动一号”,该车加速快,操 作灵活,从0~100km/h加速仅16秒,最高时速可达 140km/h,续驰里程400km。
燃料电池工作原理分类及组成ppt课件
而 当 以 氢 为 燃 料 时 , 当 电 池 工 作 电 流 密 度 达 1A/m2 时.阳极极化也仅几十毫伏;
2)燃料甲醇通过浓差扩散和电迁移由膜的阳极侧 迁移至阴极侧(甲醇渗透,Crossover),在阴极电 位与Pt/C或Pt电催化剂作用下发生电化学氧化,并 与氧的电化学还原构成短路电池,在阴极产生混合 电位。
因此与PEMFC相比,DMFC阴极侧不但排水负荷增 大,而且阴极被水掩的情况更严重,在设计DMFC 阴极结构与选定制备工艺时必须考虑这一因素。
正因为如此,在至今评价DMFC时,阴极氧化剂(如 空气中氧)的利用率均很低,其目的是增加阴极流 场内氧化剂的流动线速度,以利于向催化层的传质 和水的排出,但这势必增加DMFC电池系统的内耗, 这是研究高效大功率DMFC电池系统时必须解决的 技术问题。
目前交换膜的质子传导性都与液态水含量有关,因此, 当电池工作温度超过1000C时,反应气的工作压力要高 于大气压,这样电池系统就会变得很复杂。
至今尚没有开发出能够在150-2000C下稳定工作,且不需 液态水存在的交换膜。
因此,这种DMFC目前研究的很少。
2)以甲醇水溶液为燃料
采用不同浓度的甲醇水溶液为燃料的液体DMFC,在室温 及100 oC之间可以在常压下运行。当电池工作温度超过 100 oC时,为防止水汽化而导致膜失水,也要对系统加 压。
当采用甲醇水溶液作燃料时,DMFC的核心部件MEA阳 极侧是浸入甲醇水溶液中的,加之在DMFC工作时, 又有C02的析出;而阴极侧,排水量也远大于电化学 反应生成水,不管是气化蒸发以气态排出,还是靠 毛细力渗透到扩散层外部被气体吹扫以液态排水, 均会对电极与膜之间结合界面产生一定分离作用力。
因此,在制备DMFC的MEA时,与PEMPC的MEA相比,要改 进结构与工艺,增加MEA的电极与膜之间的结合力,防 止MEA在电池长时间工作时膜与电极分离、增加欧姆极 化,大幅度降低电池性能,严重时导致电池失效。
2)燃料甲醇通过浓差扩散和电迁移由膜的阳极侧 迁移至阴极侧(甲醇渗透,Crossover),在阴极电 位与Pt/C或Pt电催化剂作用下发生电化学氧化,并 与氧的电化学还原构成短路电池,在阴极产生混合 电位。
因此与PEMFC相比,DMFC阴极侧不但排水负荷增 大,而且阴极被水掩的情况更严重,在设计DMFC 阴极结构与选定制备工艺时必须考虑这一因素。
正因为如此,在至今评价DMFC时,阴极氧化剂(如 空气中氧)的利用率均很低,其目的是增加阴极流 场内氧化剂的流动线速度,以利于向催化层的传质 和水的排出,但这势必增加DMFC电池系统的内耗, 这是研究高效大功率DMFC电池系统时必须解决的 技术问题。
目前交换膜的质子传导性都与液态水含量有关,因此, 当电池工作温度超过1000C时,反应气的工作压力要高 于大气压,这样电池系统就会变得很复杂。
至今尚没有开发出能够在150-2000C下稳定工作,且不需 液态水存在的交换膜。
因此,这种DMFC目前研究的很少。
2)以甲醇水溶液为燃料
采用不同浓度的甲醇水溶液为燃料的液体DMFC,在室温 及100 oC之间可以在常压下运行。当电池工作温度超过 100 oC时,为防止水汽化而导致膜失水,也要对系统加 压。
当采用甲醇水溶液作燃料时,DMFC的核心部件MEA阳 极侧是浸入甲醇水溶液中的,加之在DMFC工作时, 又有C02的析出;而阴极侧,排水量也远大于电化学 反应生成水,不管是气化蒸发以气态排出,还是靠 毛细力渗透到扩散层外部被气体吹扫以液态排水, 均会对电极与膜之间结合界面产生一定分离作用力。
因此,在制备DMFC的MEA时,与PEMPC的MEA相比,要改 进结构与工艺,增加MEA的电极与膜之间的结合力,防 止MEA在电池长时间工作时膜与电极分离、增加欧姆极 化,大幅度降低电池性能,严重时导致电池失效。
燃料电池(课件)
得失电子数目的求算
燃料分子失电子的数目,可根据整体化合价变化情况 进行求算,也可以直接根据分子所含的原子数目进行 计算。1mol的CxHyOz失去电子的数目为4x+y- 2z(碳四氢一氧减二)。我们可以计算,每个C₃H₈失电 子数为4×3+1×8=20,每个C₂H₅OH分子失电子数 为4×2+1×6-2=12。
电解质为固体电解质 (如固体氧化锆—氧 化钇)O2+4e-=2O2-。
燃料电池负极反应式的书写
产物判断规则
一般来说,负极反应物一般为燃料,常常含有碳元素和 氢元素,有时也含有氧元素。在酸性溶液(如硫酸溶液) 下,负极燃料失电子,C元素变为+4价,转化为CO₂; H元素转化为H⁺,氧元素结合H⁺转化为水。在碱性溶 液(如氢氧化钠溶液)下,负极燃料失电子,C元素转化 为碳酸根离子,+1价的氢元素不能在碱性条件下以离 子形态稳定存在,结合OHˉ生成水,氧元素变成氢氧根 离子或者水。
谢谢
燃料电池
基础知识
燃料电池(Fuel cell),是一种不经过燃烧,将燃料化学能经过电化学反 应直接转变为电能的装置。它和其它电池中的氧化还原反应一样,都是自 发的化学反应,不会发出火焰,其化学能可以直接转化为电能,且废物排 放量很低。其中燃料电池电化学反应的最终产物与燃料燃烧的产物相同
基础知识
燃料电池的两极材料都是用多孔碳、多孔镍、铂、钯等兼有催化剂特性 的惰性金属,两电极的材料相同。 燃料电池的电极是由通入气体的成分来决定。通入可燃物的一极为负极 ,可燃物在该电极上发生氧化反应;通入空气或氧气的一极为正极,氧 气在该电极上发生还原反应。
量为1mol,在标准状况下为22.4L,D错误;【答案】C
真题突破
(2019·全国高考真题)利用生物燃料电池原理研究室温下氨 的合成,电池工作时MV2+/MV+在电极与酶之间传递电子,示意 图如下所示。下列说法错误的是
燃料电池全面总结PPT课件
练习1分别写出甲烷在酸性电解质溶液碱性电解质溶液熔融固体氧化物熔融碳酸盐四种条件下的总反应和电极反应
一 定义:燃料电池是一种不经过燃烧,将 燃
料化学能经过电化学反应直接转变为电 能优点:高效、环保。
注的:装置。
(1)两电极材料可以相同,只起导电的作用。 (2)反应物不是储存在电池内部,而由外设装
备提供燃料和氧化剂。
• 正极2反C应H:3OH – 12e- + 16OH-= 2CO32- +12H2O
• 总反应离子方程式:
3O2 + 12e- + 6H2O = 12OH-
2CH3OH + 3O2 + 4OH -= 2CO3 2-+ 6H2O
注:碱性条件下CO2和OH-反应最终生成CO32思考:乙醇燃料电池在碱性条件下的负极反应?
其余环境都生成CO2。
第9页/共15页
练习1 分别写出甲烷在酸性电解质溶液、碱性电解 质溶液、熔融固体氧化物、熔融碳酸盐四种条件下 的总反应和电极反应。 (1)酸性电解质
负极: CH4 - 8e- + 2H2O = 8H+ + CO2 正极: 2O2 + 8e- + 8H+ = 4H2O 总反应: CH4 + 2O2 =CO2 + 2H2O
(2)碱性电解质溶液
两极为石墨电极, 电解质是KOH溶液。
碱性 介质
负极:2H2 - 4e- + 4OH- = 4H2O 正极:O2 + 4e- + 2H2O = 4OH总反应:2H2 + O2 = 2H2O
注:碱性溶液电荷守恒配OH- 。
第4页/共15页
• 甲醇燃料电池 • 碱性电解质(铂为两极、电解液KOH溶液) • 负极反应:
一 定义:燃料电池是一种不经过燃烧,将 燃
料化学能经过电化学反应直接转变为电 能优点:高效、环保。
注的:装置。
(1)两电极材料可以相同,只起导电的作用。 (2)反应物不是储存在电池内部,而由外设装
备提供燃料和氧化剂。
• 正极2反C应H:3OH – 12e- + 16OH-= 2CO32- +12H2O
• 总反应离子方程式:
3O2 + 12e- + 6H2O = 12OH-
2CH3OH + 3O2 + 4OH -= 2CO3 2-+ 6H2O
注:碱性条件下CO2和OH-反应最终生成CO32思考:乙醇燃料电池在碱性条件下的负极反应?
其余环境都生成CO2。
第9页/共15页
练习1 分别写出甲烷在酸性电解质溶液、碱性电解 质溶液、熔融固体氧化物、熔融碳酸盐四种条件下 的总反应和电极反应。 (1)酸性电解质
负极: CH4 - 8e- + 2H2O = 8H+ + CO2 正极: 2O2 + 8e- + 8H+ = 4H2O 总反应: CH4 + 2O2 =CO2 + 2H2O
(2)碱性电解质溶液
两极为石墨电极, 电解质是KOH溶液。
碱性 介质
负极:2H2 - 4e- + 4OH- = 4H2O 正极:O2 + 4e- + 2H2O = 4OH总反应:2H2 + O2 = 2H2O
注:碱性溶液电荷守恒配OH- 。
第4页/共15页
• 甲醇燃料电池 • 碱性电解质(铂为两极、电解液KOH溶液) • 负极反应:
燃料电池课件PPT(47页)
采用非铂系催化剂
化学性质稳定
缺点:
氧化剂中必须不含有CO2。 燃料中必须不含CO2 电池电化学反应生成的水必须及时排出,维持水
平衡。
磷酸盐燃料电池(PAFC)
PAFC 是一种以磷酸为电解质的燃料电池 。 PAFC采用重整天然气作燃料,空气作氧化剂, 浸有浓磷酸的SiC 微孔膜作电解质 , Pt/C 作 催化剂 ,工作温度 200℃ 。
具体做法是将全氟磺酸树脂玻璃化温度下施加一定压力,将以加入全氟磺酸树脂的氢电极( 阳极 )、隔膜( 全氟磺酸型质 子交换膜) 和 已加入全氟磺酸树脂的氧电极(阴极)压和在一起,形成了电极-膜-电极三合一组 件 ,
200℃左右 ,能量 SOFC的电解质是固体氧化物 , 如 ZrO2 、 Bi2O3 等 , 其阳 极是Ni-YSZ陶瓷 , 阴 极目前主要采用 锰酸镧 (LSM,La1-xSrxMnO3 ) 材料。
碱性燃料电池的工作温度大约80℃。
碱性燃料电池工作示意图
AFC电极的制备工艺
AFC的电极设计要求电极具有高度稳定性的气、液、 固三相界面。
双孔结构电极 电极分两层,粗孔层和细孔层,粗孔层与 气室相连,细孔层与电解质接触。电极工作时,粗孔层 内充满反应气体,细孔层内填满电解液。细 孔层的电解 液浸润粗孔层,液气界面形成并发生电化学反应,离子 和水在电解液中传递,而电子则在构成粗孔层和细孔层 的合金骨架内传导 。
黏结型电极 是将亲水的导电体( 如电催化剂材料铂 / 碳 )与具有粘结能力的防水剂 ( 如聚四氟乙烯乳液 ) 按比例混合制成电极。 它在微观尺度上是相互交错的两 相体系,由防水剂构成的疏水网络为反应气体提供内部 的扩散通道;由电催化剂构成 的亲水网络可以被电解液 充满浸润,它为水和OH- 提供通道的同时,也为电子的 传导提供通道。
化学性质稳定
缺点:
氧化剂中必须不含有CO2。 燃料中必须不含CO2 电池电化学反应生成的水必须及时排出,维持水
平衡。
磷酸盐燃料电池(PAFC)
PAFC 是一种以磷酸为电解质的燃料电池 。 PAFC采用重整天然气作燃料,空气作氧化剂, 浸有浓磷酸的SiC 微孔膜作电解质 , Pt/C 作 催化剂 ,工作温度 200℃ 。
具体做法是将全氟磺酸树脂玻璃化温度下施加一定压力,将以加入全氟磺酸树脂的氢电极( 阳极 )、隔膜( 全氟磺酸型质 子交换膜) 和 已加入全氟磺酸树脂的氧电极(阴极)压和在一起,形成了电极-膜-电极三合一组 件 ,
200℃左右 ,能量 SOFC的电解质是固体氧化物 , 如 ZrO2 、 Bi2O3 等 , 其阳 极是Ni-YSZ陶瓷 , 阴 极目前主要采用 锰酸镧 (LSM,La1-xSrxMnO3 ) 材料。
碱性燃料电池的工作温度大约80℃。
碱性燃料电池工作示意图
AFC电极的制备工艺
AFC的电极设计要求电极具有高度稳定性的气、液、 固三相界面。
双孔结构电极 电极分两层,粗孔层和细孔层,粗孔层与 气室相连,细孔层与电解质接触。电极工作时,粗孔层 内充满反应气体,细孔层内填满电解液。细 孔层的电解 液浸润粗孔层,液气界面形成并发生电化学反应,离子 和水在电解液中传递,而电子则在构成粗孔层和细孔层 的合金骨架内传导 。
黏结型电极 是将亲水的导电体( 如电催化剂材料铂 / 碳 )与具有粘结能力的防水剂 ( 如聚四氟乙烯乳液 ) 按比例混合制成电极。 它在微观尺度上是相互交错的两 相体系,由防水剂构成的疏水网络为反应气体提供内部 的扩散通道;由电催化剂构成 的亲水网络可以被电解液 充满浸润,它为水和OH- 提供通道的同时,也为电子的 传导提供通道。
PEMFC——燃料电池PPT课件
电极结构示意图
-
催化层 扩散层
9
(一)扩散层 功能:
1)起支撑作用,为此要求扩散层适于担载催化层,扩 散层与催化层的接触电阻要小;催化层主要成分是Pt/C 电催化剂,故扩散层一般选炭材制备; 2)反应气需经扩散层才能到达催化层参与电化学反应, 因此扩散层应具备高孔隙率和适宜的孔分布,有利于 传质。
⑤因为PEMFC电池组效率一般在50%左右,双权板材 料必须是热的良导体,以利于电池组废热的排出。
为降低电池组的成本,制备双极板的材料必须易于 加工(如加工流场),最优的材料是适于用批量生产工 艺加工的材料。
至今,制备PEMFC双极板广泛采用的材料是石墨和 金属板。
-
18
1.石墨双极板:
厚度为2~5mm, 机加 工共用通道, 利用电 脑刻绘机在其表面上 加工流场。这种工艺 费时,价高,不易批 量生产。
这种复合双极板技术的关键是尽量减少多孔石墨流 场板与薄金属分隔板间的接触电阻。
-
23
(四)流场:作用是引导反应气流动方向,确保反 应气均匀分配到电极各处,经扩散层到达催化层参 与电化学反应。
流场主要有:网状,多孔,平行沟槽,蛇形和交指 状等。
流场设计是至关重要的,而且很多是高度保密的专 有技术。
-
但在美国航天飞机用电源的竞争中未能中标,让位于 石棉膜型碱性氢氧燃料电池(AFC),造成PEMFC的研 究长时间内处于低谷。
-
5
1983年,加拿大国防部资助了巴拉德动力公司进行 PEMFC的研究。在加拿大、美国等国科学家的共 同努力下,FEMFC取得了突破性进展。
采用薄的(50-150m)高电导率的Nafion和Dow全氟 磺酸膜,使电池性能提高数倍。
全氟磺酸型质子交换膜传导质子必须要有水存在 才行,其传导率与膜的含水率呈线性关系。
燃料电池的工作原理PPT培训课件
• 碱性燃料电池的特点
• (1) AFC具有较高的效率(50%~55%);
• (2) 工作温度大约80℃,启动很快,但其电力密度却比质子交换 膜燃料电池的密度低十几倍;
• (3) 性能可靠,可用非贵金属作催化剂;
• (4) 是燃料电池中生产成本最低的一种电池;
• (5) 是技术发展最快的一种电池,主要为空间任务,包括航天飞 机提供动力和饮用水,用于交通工具,具有一定的发展和应用 前景;
• (6) 使用具有腐蚀性的液态电解质,具有一定的危险性和容易造 成环境污染。
1. 质子交换膜燃料电池的基本结构
1)质子交换膜:兼有隔膜和电解质的作用,且是选择 通过性膜,只允许H+穿过,其他粒子、气体及液体不 能通过。 2)电催化剂:气体扩散电极上都有一定量的催化剂, 有铂系和非铂系两类。
3)电极:多孔扩散电极,由扩散层和催化层构成。
•熔融碳酸盐燃料电池的工作原理 •燃料电池工作过程实质上是燃料的氧化和氧化剂的还原过程。
式中,a、c分别表示阳极、 阴极; e—表示电子; E0—表示基本发电量; Q0—表尔基本放热量。
•熔融碳酸盐燃料电池的特点
•MCFC是一种高温电池(600~700℃),具有效率较高(高于 40%)、噪音低、无污染、燃料多样化(氢气、煤气、天然气 和生物燃料等)、余热利用价值高和电池构造材料价廉等诸多 优点,是未来的绿色电站。
• 磷酸燃料电池的结构 • PAFC的电池片由基材及肋
条板触媒层所组成的燃料 极、保持磷酸的电解质层、 与燃料极具有相同构造的 空气极构成。
• 磷酸燃料电池的工作原理
• PAEC使用液体磷酸为电解质,通常位于碳化硅基质中。当以氢气为 燃料,氧气为氧化剂时,在电池内发生电化学反应。
高中化学选修四燃料电池ppt课件
如甲烷燃料电池 酸性电解质中2O; 碱性电解质中生成CO32-离子和H2O,
即CH4+2OH-+2O2=CO32-+3H2O。
完整编辑ppt
5
第一步,先写出燃料电池的总反应方程式;
燃料 种类
H2 CH4 CO
H2S
CH3OH
CH3CH2OH
电解质溶液 的酸碱性
⑷电解质为固体电解质(如固体氧化锆—氧化钇) 该固体电解质在高温下可允许O2-离子在其间通过,故其
正极反应式应为 O2+4e-=2O2-。
完整编辑ppt
9
第三步,在电子守恒的基础上用燃料电池的
总反应式减去正极反应式即得到负极反应式。
减去正 例如:甲极 物烷反氧燃应气料电池的电解质溶液为KOH溶液
总反应式: CH4+2OH-+2O2=CO32-+3H2O
完整编辑ppt
15
完整编辑ppt
14
例5、我国首创以铝–空气–海水电池作为能源的新型 海水标志灯,以海水为电解质,靠空气中的氧气使铝
不断被氧化而产生电流。只要把灯放入海水中数分钟,
就会发出耀眼的白光。
电源负极材料为:铝;
电源正极材料为:石墨、铂网等能导电的惰性材料。 负极的电极反应式为: 4Al-12e-= 4A;l3+ 正极的电极反应式为: 3O2+6H2O+12e-。=12OH- 总 说反明应:铝式板为要:及时4A更l+换3O, 2+6H2O = 4Al。(OH)3 铂做成网状是为了 增大与氧气的接触. 面积
法正确的是
B、C
1. A. 在熔融电解质中,O2-由负极移向正极
2. B. 电池的总反应是:2C4H10+13O2 = 8CO2+10H2O 3. C. 通入空气的一极是正极,
即CH4+2OH-+2O2=CO32-+3H2O。
完整编辑ppt
5
第一步,先写出燃料电池的总反应方程式;
燃料 种类
H2 CH4 CO
H2S
CH3OH
CH3CH2OH
电解质溶液 的酸碱性
⑷电解质为固体电解质(如固体氧化锆—氧化钇) 该固体电解质在高温下可允许O2-离子在其间通过,故其
正极反应式应为 O2+4e-=2O2-。
完整编辑ppt
9
第三步,在电子守恒的基础上用燃料电池的
总反应式减去正极反应式即得到负极反应式。
减去正 例如:甲极 物烷反氧燃应气料电池的电解质溶液为KOH溶液
总反应式: CH4+2OH-+2O2=CO32-+3H2O
完整编辑ppt
15
完整编辑ppt
14
例5、我国首创以铝–空气–海水电池作为能源的新型 海水标志灯,以海水为电解质,靠空气中的氧气使铝
不断被氧化而产生电流。只要把灯放入海水中数分钟,
就会发出耀眼的白光。
电源负极材料为:铝;
电源正极材料为:石墨、铂网等能导电的惰性材料。 负极的电极反应式为: 4Al-12e-= 4A;l3+ 正极的电极反应式为: 3O2+6H2O+12e-。=12OH- 总 说反明应:铝式板为要:及时4A更l+换3O, 2+6H2O = 4Al。(OH)3 铂做成网状是为了 增大与氧气的接触. 面积
法正确的是
B、C
1. A. 在熔融电解质中,O2-由负极移向正极
2. B. 电池的总反应是:2C4H10+13O2 = 8CO2+10H2O 3. C. 通入空气的一极是正极,
燃料电池双极板
复合材料
要点一
总结词
复合材料结合了多种材料的优点,具有较高的机械强度、 耐腐蚀性和抗氧化性。
要点二
详细描述
复合材料由两种或多种材料组成,可以结合各种材料的优 点,弥补单一材料的不足。在燃料电池双极板制造中,常 用的复合材料包括碳纤维增强复合材料、玻璃纤维增强复 合材料等。这些复合材料具有较高的机械强度、耐腐蚀性 和抗氧化性,能够承受燃料电池运行过程中的压力和温度 变化,同时保持稳定的性能。
02
燃料电池双极板材料
金属材料
总结词
金属材料具有较高的导电性和导热性,但易腐蚀,需要采取防腐蚀措施。
详细描述
金属材料如不锈钢、钛等在燃料电池双极板制造中应用广泛。它们具有良好的导电性和导热性,能够满足双极板 对电和热传导的要求。然而,金属材料容易受到腐蚀,特别是在燃料电池的酸性或碱性环境中,因此需要采取表 面涂层、合金化等防腐蚀措施来提高其耐久性。
其他领域
船舶
燃料电池双极板可用于船舶动力系统,提供清洁、高效的能 源,促进船舶行业的绿色发展。
航空航天
在航空航天领域,燃料电池双极板具有轻量化和高效能的特 点,为航天器和无人机提供动力支持。
05
燃料电池双极板的发展趋势与挑 战
技术材料如碳纤维复合材料、金属基复合材料等在双极板制造
精度与性能
新型制造工艺具有更高的制造精度和更优异的性能,尤其在复杂形 状和微孔结构的制造方面具有明显优势。
环境影响
传统制造工艺通常需要大量的材料和能源,而新型制造工艺可实现材 料的有效利用和节能减排。
04
燃料电池双极板的应用
交通工具领域
燃料电池汽车
燃料电池双极板作为核心组件, 为燃料电池汽车提供电力,具有 零排放、高效率和长续航里程等 优点。
1质子交换膜燃料电池PPT课件
33
膜电极(MEA)的制备
❖ 膜电极的组成: 质子交换膜 电催化剂 气体扩散层
34
膜电极的特性
❖ 最大限度的减小气体的传输阻力,使反应气体顺 利由扩散层到达催化层发生电化学反应,须具备 适当的疏水性。
❖ 形成良好的离子通道,降低离子传输阻力,能在 催化层内建立质子通道。
❖ 形成良好的电子通道。 ❖ 保证良好的机械强度及导热性。 ❖ 具有高的质子传导性能很好隔绝反应气体互窜,
19
金属板
❖ 金属不仅强韧性好,而且机械加工性能、导 电性、导热性、致密性均较好,可以用来制 作很薄的PEMFC双极板。
❖ 但金属板存在腐蚀,腐蚀金属离子对催化剂 产生毒化作用,金属离子还与质子交换膜发 生离子交换,金属板表面腐蚀形成钝化层, 使电极与双极板间的接触电阻增大,降低电 池输出功率。
20
1改性的过酸碱络合形成的高分子质子交换膜全氟型磺酸膜性质作为电解质还充当电极反应的介质铂催化剂在膜中的催化活性高缺水是电导率很低水字处理问题一氧化碳的中毒效应冷却和热的回收利用用非水或低挥发性溶剂溶胀的全氟型磺酸膜含聚四氟乙烯的超薄膜含有吸湿性氧化物的复合膜含有固体无机质子导体的复合膜非全氟高分子材料的类型非全氟高分子材料的磺化磺酸膜的性质有机无机复合膜有两种方法
化剂在膜中的催化活性高 ❖ 高的机械强度和低的气体透气率 ❖ 价格昂贵 ❖ 缺水是电导率很低
24
使用全氟膜的燃料电池存在的问题
❖ 水字处理问题 ❖ 一氧化碳的中毒效应 ❖ 冷却和热的回收利用
25
全氟型磺酸膜的改性
❖ 用非水或低挥发性溶剂溶胀的全 氟型磺酸膜
❖ 含聚四氟乙烯的超薄膜 ❖ 含有吸湿性氧化物的复合膜 ❖ 含有固体无机质子导体的复合膜
复合板
膜电极(MEA)的制备
❖ 膜电极的组成: 质子交换膜 电催化剂 气体扩散层
34
膜电极的特性
❖ 最大限度的减小气体的传输阻力,使反应气体顺 利由扩散层到达催化层发生电化学反应,须具备 适当的疏水性。
❖ 形成良好的离子通道,降低离子传输阻力,能在 催化层内建立质子通道。
❖ 形成良好的电子通道。 ❖ 保证良好的机械强度及导热性。 ❖ 具有高的质子传导性能很好隔绝反应气体互窜,
19
金属板
❖ 金属不仅强韧性好,而且机械加工性能、导 电性、导热性、致密性均较好,可以用来制 作很薄的PEMFC双极板。
❖ 但金属板存在腐蚀,腐蚀金属离子对催化剂 产生毒化作用,金属离子还与质子交换膜发 生离子交换,金属板表面腐蚀形成钝化层, 使电极与双极板间的接触电阻增大,降低电 池输出功率。
20
1改性的过酸碱络合形成的高分子质子交换膜全氟型磺酸膜性质作为电解质还充当电极反应的介质铂催化剂在膜中的催化活性高缺水是电导率很低水字处理问题一氧化碳的中毒效应冷却和热的回收利用用非水或低挥发性溶剂溶胀的全氟型磺酸膜含聚四氟乙烯的超薄膜含有吸湿性氧化物的复合膜含有固体无机质子导体的复合膜非全氟高分子材料的类型非全氟高分子材料的磺化磺酸膜的性质有机无机复合膜有两种方法
化剂在膜中的催化活性高 ❖ 高的机械强度和低的气体透气率 ❖ 价格昂贵 ❖ 缺水是电导率很低
24
使用全氟膜的燃料电池存在的问题
❖ 水字处理问题 ❖ 一氧化碳的中毒效应 ❖ 冷却和热的回收利用
25
全氟型磺酸膜的改性
❖ 用非水或低挥发性溶剂溶胀的全 氟型磺酸膜
❖ 含聚四氟乙烯的超薄膜 ❖ 含有吸湿性氧化物的复合膜 ❖ 含有固体无机质子导体的复合膜
复合板
质子交换膜燃料电池PPT课件
阴极催化剂中毒等。
改性全氟磺酸膜
增强型复合质子交换膜
聚四氟乙烯/全氟磺酸复合膜(美国Gore公司) 玻璃纤维/全氟磺酸复合膜(英国Johnson Matthery公司、武汉 理工)
高温型复合质子交换膜
杂多酸/全氟磺酸复合膜(磷钨酸、硅钨酸(STA)、磷钼酸、磷
锡酸)(加拿大蒙特利尔大学工学院、,美国普林斯顿大学)
金属板
优点:比石墨具有更好的导电及导热性, 具有极高的气体不透过性,良好的机加 工特性。
缺点:耐腐蚀性能差,表面钝化。
改进:表面处理,表面涂层(石墨粉、 氧化铅、碳化硅等)。
复合双极板
综合了纯石墨板和金属双极板的优点,具 有耐腐蚀、质量轻、强度高等特点,包括:
(1)金属基复合双极板; (2)碳基复合材料双极板。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
38
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
CO在催化剂表面的吸附远强于氢,因此催 化剂上吸附氢的活性位会被CO所占据,从而对 氢的电氧化反应造成阻碍,实验结果表明,即使 氢气中CO的浓度低至10-5也会导致严重的阳极极 化现象,使电池的性能严重下降。
由于价格因素和储氢的困难,一般多使用重 整气制氢用于燃料电池的燃料,这些气体中大多 都含有CO。
改性全氟磺酸膜
增强型复合质子交换膜
聚四氟乙烯/全氟磺酸复合膜(美国Gore公司) 玻璃纤维/全氟磺酸复合膜(英国Johnson Matthery公司、武汉 理工)
高温型复合质子交换膜
杂多酸/全氟磺酸复合膜(磷钨酸、硅钨酸(STA)、磷钼酸、磷
锡酸)(加拿大蒙特利尔大学工学院、,美国普林斯顿大学)
金属板
优点:比石墨具有更好的导电及导热性, 具有极高的气体不透过性,良好的机加 工特性。
缺点:耐腐蚀性能差,表面钝化。
改进:表面处理,表面涂层(石墨粉、 氧化铅、碳化硅等)。
复合双极板
综合了纯石墨板和金属双极板的优点,具 有耐腐蚀、质量轻、强度高等特点,包括:
(1)金属基复合双极板; (2)碳基复合材料双极板。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
38
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
CO在催化剂表面的吸附远强于氢,因此催 化剂上吸附氢的活性位会被CO所占据,从而对 氢的电氧化反应造成阻碍,实验结果表明,即使 氢气中CO的浓度低至10-5也会导致严重的阳极极 化现象,使电池的性能严重下降。
由于价格因素和储氢的困难,一般多使用重 整气制氢用于燃料电池的燃料,这些气体中大多 都含有CO。
双极板功能及特性要求课件
详细描述
目前,一些先进的制造工艺,如3D打印技术、真空镀膜技术等,正在被应用于双极板的制造中。这些 工艺可以大幅度提高双极板的制造精度和表面质量,减少废品率。
双极板在新能源领域的应用前景
总结词
随着新能源技术的不断发展,双极板在 新能源领域的应用前景也越来越广阔。 例如,在燃料电池、太阳能电池等领域 ,双极板都有着重要的应用。
详细描述
目前,科研人员正在研究新型的高性 能双极板材料,如碳纤维复合材料、 钛合金等。这些材料具有更高的强度 、耐腐蚀性和导电性能,能够提高双 极板的稳定性和寿命。
双极板制造工艺的改进
总结词
双极板制造工艺的改进也是当前的重要趋势。通过改进制造工艺,可以提高双极板的制造效率和产品 质量,降低生产成本。
研究更有效的表面处理技 术,以提高双极板的电化 学性能和抗腐蚀能力。
结构设计优化
通过对双极板的结构设计 进行优化,提高其流体动 力学性能和热传导性能。
双极板在环保领域的应用前景
污水处理
利用双极板作为电解设备 的关键组件,进行污水处 理和资源回收。
废气处理
研发基于双极板的电化学 反应器,用于处理工业废 气中的有害物质。
导电性能
良好的导电性能能够确保双极板在燃料电池中的电流传输效 率高,从而提高燃料电池的发电效率。
双极板作为燃料电池中的导电路径,需要具备优异的导电性 能以减小电阻并降低能量损失。导电性能良好的双极板能够 提高燃料电池的能量转换效率,从而提高其整体性能。
机械强度
机械强度是双极板在燃料电池中承受压力和振动的能力, 它能够保证双极板的稳定性和可靠性。
VS
详细描述
双极板在这些领域中起到关键的作用,如 支撑结构、导电通道等。随着新能源技术 的不断进步,双极板的应用前景也将更加 广阔。
目前,一些先进的制造工艺,如3D打印技术、真空镀膜技术等,正在被应用于双极板的制造中。这些 工艺可以大幅度提高双极板的制造精度和表面质量,减少废品率。
双极板在新能源领域的应用前景
总结词
随着新能源技术的不断发展,双极板在 新能源领域的应用前景也越来越广阔。 例如,在燃料电池、太阳能电池等领域 ,双极板都有着重要的应用。
详细描述
目前,科研人员正在研究新型的高性 能双极板材料,如碳纤维复合材料、 钛合金等。这些材料具有更高的强度 、耐腐蚀性和导电性能,能够提高双 极板的稳定性和寿命。
双极板制造工艺的改进
总结词
双极板制造工艺的改进也是当前的重要趋势。通过改进制造工艺,可以提高双极板的制造效率和产品 质量,降低生产成本。
研究更有效的表面处理技 术,以提高双极板的电化 学性能和抗腐蚀能力。
结构设计优化
通过对双极板的结构设计 进行优化,提高其流体动 力学性能和热传导性能。
双极板在环保领域的应用前景
污水处理
利用双极板作为电解设备 的关键组件,进行污水处 理和资源回收。
废气处理
研发基于双极板的电化学 反应器,用于处理工业废 气中的有害物质。
导电性能
良好的导电性能能够确保双极板在燃料电池中的电流传输效 率高,从而提高燃料电池的发电效率。
双极板作为燃料电池中的导电路径,需要具备优异的导电性 能以减小电阻并降低能量损失。导电性能良好的双极板能够 提高燃料电池的能量转换效率,从而提高其整体性能。
机械强度
机械强度是双极板在燃料电池中承受压力和振动的能力, 它能够保证双极板的稳定性和可靠性。
VS
详细描述
双极板在这些领域中起到关键的作用,如 支撑结构、导电通道等。随着新能源技术 的不断进步,双极板的应用前景也将更加 广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 优点:理化性质优秀 • 缺点:成本高,技术要求高,应用水平有待提高
2019/11/3
13
常见材料——metallic meterial
• 优点:机械性能优异,成本低,来源广,能提供较大的动力密度 • 缺点:抗腐蚀性不佳
2019/11/3
14
动力密度
• 金属双极板由于在同类技术中可以提供最好的动力密度,因此在 汽车应用中是作为首选的。这使得汽车制造商能够使用一台紧凑、 轻量且更易装进车里的发动机就可获取巨大的推动力。
2019/11/2
Mirai简介
• Mirai使用了液态氢作为动力能源,液态氢被储存在位于车身后半 部分的高压储氢罐中。Mirai所使用的聚酰胺联线外加轻质金属的 高压储氢罐可以承受70MPa压力,并分别置于后轴的前后。液态 氢添加的过程与传统添注汽油或者柴油相似,但对于安全性和加 注设备具有独立的安全标准。充满Mirai的储氢罐大约需要3-5分 钟,在JC08工况下,Mirai的氢储量可以支持700公里续航里程。 减压后的液态氢进入位于乘员舱下方的燃料电池重,氢原子在燃 料电池阴极上的反应,释放电子从而产生电能。多个燃料电池的 串联使得输出电压达到使用的标准。
基于丰田mirai燃料电池双极板 调研对燃料电池结构(双极板
为主)学习反馈
符策煌 2015.3.20 参考资料:美国专利库US8785080B2,谷歌学术A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells : Materials and Fabrication Methods
2019/11/3
19
Surface Treatments and Coatings
• There are a limited number of materials exhibiting a combination of high corrosion resistance and low interfacial contact resistance for use in PEM fuel cells. Furthermore, many of these metals are rare and prohibitively expensive. As a result, the search for surface treatments of inexpensive and widely available metals that are capable of enhancing their performance in fuel cell environments is well established and underway.
2019/11/3
11
常见材料——Graphite Bipolar Plates
• 优点:良好的导电导热性,耐腐蚀性 • 缺点:强度,气密性(上海交通大学燃料电池研究所采用真空加
压的方式,以硅酸钠浓溶液浸渍石墨双极板,减少了制造过程中的 气孔)
2019/11/3
12
常见材料——composite material
2019/11/3
15
抗腐蚀,高生产率,机械性能优异
• Metals, such as titanium and stainless steels, exhibit excellent mechanical properties and have very low gas permeation rates. They are also suitable for mass production with low scrap rates and are stable in a PEM fuel cell environment where low pH values are common
• One of the promising techniques in surface treatment of austenitic stainless steels is carburization.
• 燃料电池发动机由大量相同的电池元件组成,每个电池元件由一 块双极板和一层催化剂镀膜总成,构成阴阳电极。双极板是燃料 电池堆中重要的性能元件,它负责把燃料和空气分配到两个电极 表面以及电池堆散热。因此,每个双极板都必须包括一个外部的 流动管道负责气体分配,和另一个独立的内部冷冻剂通道。每个 双极板还必须有稳固的密封措施,这样发动机堆中发动机液可以 分开控制。最后还必须要有一个导体表面或涂层使电阻损失最小 化。
2019/11/3
9
双极板在燃料电池中的作用
• 分离氧化剂与还原剂 • 收集电流 • 气体反应场所2019/11/3 Nhomakorabea10
双极板需解决的问题
• 充分反应 • 化学性能(抗腐蚀,最好能促反应) • 机械性能(主要是刚性,导电性,导热性和密度,导热性最好能
控制其保持在相对稳定的高效率状态下) • 成本
2019/11/3
2
问题聚焦——metallic bipolar plates
• 多个燃料电池的串联使得输出电压达到使用的标准。——mirai
• 串联key——双极板
2019/11/3
3
2019/11/3
4
2019/11/3
5
2019/11/3
6
2019/11/3
7
2019/11/3
8
双极板
2019/11/3
16
2019/11/3
17
2019/11/3
18
Bare Metals as Bipolar Plates
• Due to its low cost and favourable physical and chemical properties, stainless steel has become the primary candidate for bipolar plate construction. The formation of a passive oxide layer protects the plate from corrosion, but leads to higher interfacial contact resistance
2019/11/3
13
常见材料——metallic meterial
• 优点:机械性能优异,成本低,来源广,能提供较大的动力密度 • 缺点:抗腐蚀性不佳
2019/11/3
14
动力密度
• 金属双极板由于在同类技术中可以提供最好的动力密度,因此在 汽车应用中是作为首选的。这使得汽车制造商能够使用一台紧凑、 轻量且更易装进车里的发动机就可获取巨大的推动力。
2019/11/2
Mirai简介
• Mirai使用了液态氢作为动力能源,液态氢被储存在位于车身后半 部分的高压储氢罐中。Mirai所使用的聚酰胺联线外加轻质金属的 高压储氢罐可以承受70MPa压力,并分别置于后轴的前后。液态 氢添加的过程与传统添注汽油或者柴油相似,但对于安全性和加 注设备具有独立的安全标准。充满Mirai的储氢罐大约需要3-5分 钟,在JC08工况下,Mirai的氢储量可以支持700公里续航里程。 减压后的液态氢进入位于乘员舱下方的燃料电池重,氢原子在燃 料电池阴极上的反应,释放电子从而产生电能。多个燃料电池的 串联使得输出电压达到使用的标准。
基于丰田mirai燃料电池双极板 调研对燃料电池结构(双极板
为主)学习反馈
符策煌 2015.3.20 参考资料:美国专利库US8785080B2,谷歌学术A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells : Materials and Fabrication Methods
2019/11/3
19
Surface Treatments and Coatings
• There are a limited number of materials exhibiting a combination of high corrosion resistance and low interfacial contact resistance for use in PEM fuel cells. Furthermore, many of these metals are rare and prohibitively expensive. As a result, the search for surface treatments of inexpensive and widely available metals that are capable of enhancing their performance in fuel cell environments is well established and underway.
2019/11/3
11
常见材料——Graphite Bipolar Plates
• 优点:良好的导电导热性,耐腐蚀性 • 缺点:强度,气密性(上海交通大学燃料电池研究所采用真空加
压的方式,以硅酸钠浓溶液浸渍石墨双极板,减少了制造过程中的 气孔)
2019/11/3
12
常见材料——composite material
2019/11/3
15
抗腐蚀,高生产率,机械性能优异
• Metals, such as titanium and stainless steels, exhibit excellent mechanical properties and have very low gas permeation rates. They are also suitable for mass production with low scrap rates and are stable in a PEM fuel cell environment where low pH values are common
• One of the promising techniques in surface treatment of austenitic stainless steels is carburization.
• 燃料电池发动机由大量相同的电池元件组成,每个电池元件由一 块双极板和一层催化剂镀膜总成,构成阴阳电极。双极板是燃料 电池堆中重要的性能元件,它负责把燃料和空气分配到两个电极 表面以及电池堆散热。因此,每个双极板都必须包括一个外部的 流动管道负责气体分配,和另一个独立的内部冷冻剂通道。每个 双极板还必须有稳固的密封措施,这样发动机堆中发动机液可以 分开控制。最后还必须要有一个导体表面或涂层使电阻损失最小 化。
2019/11/3
9
双极板在燃料电池中的作用
• 分离氧化剂与还原剂 • 收集电流 • 气体反应场所2019/11/3 Nhomakorabea10
双极板需解决的问题
• 充分反应 • 化学性能(抗腐蚀,最好能促反应) • 机械性能(主要是刚性,导电性,导热性和密度,导热性最好能
控制其保持在相对稳定的高效率状态下) • 成本
2019/11/3
2
问题聚焦——metallic bipolar plates
• 多个燃料电池的串联使得输出电压达到使用的标准。——mirai
• 串联key——双极板
2019/11/3
3
2019/11/3
4
2019/11/3
5
2019/11/3
6
2019/11/3
7
2019/11/3
8
双极板
2019/11/3
16
2019/11/3
17
2019/11/3
18
Bare Metals as Bipolar Plates
• Due to its low cost and favourable physical and chemical properties, stainless steel has become the primary candidate for bipolar plate construction. The formation of a passive oxide layer protects the plate from corrosion, but leads to higher interfacial contact resistance