九年级数学切线

合集下载

九年级数学圆的切线

九年级数学圆的切线
⊙O于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°,
求证:直线AB是⊙O的切线 B
问:直线AB与圆有没有明确的公共点
C
O
A
辅助线:连接OB
只需再证:AB ⊥ OB
例2.如图A是⊙O外的一点,AO的延长线交
⊙O于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°,
求证:直线AB是⊙O的切线 B
根据作图直线l是切线满足两个条件 1.经过半径的外端
O
D
l
几何语言
OD是⊙O的半径
OD⊥l于D
2.与半径垂直
切线的判定定理
经过半径的外端并且垂直于这条半径的直 线是圆的切线
l是⊙O的切线
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r
求证:直线l是⊙O的切线
问:圆与直线l有没有明确共同点
O.
辅助线: OA ⊥l
只需证OA是⊙O的半径
A
l
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r 求证:直线l是⊙O的切线
证明:过点O作OA ⊥l,A为垂足。
O.
OA=d=r
点A在⊙O上
A
l
OA是⊙O的半径 l是⊙O的切线
定理:当圆心到直线的距离等于圆的半径时,该直 线是这个圆的切线。
一 判断题
于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°, 求证:直线AB是⊙O的切线
B
证明:连接OBCO NhomakorabeaA
∠C=30° ° AB=BC
∠BOA=60 ∠A= ∠C=30 °
∠OBA=90 ° OB是半径
直线AB是⊙O的切线
练习二
1如图,AB是⊙O的直径,AT=AB,∠ABT=45º。

九年级数学切线知识点

九年级数学切线知识点

九年级数学切线知识点数学是一门充满挑战和智慧的学科,而数学的学习过程中,我们常常会遇到各种各样的概念和知识点。

在九年级数学中,切线是一个很重要的概念,它与曲线的性质和函数的导数密切相关。

本文将从几何和数学的角度,深入探讨九年级数学中的切线知识点。

一、什么是切线切线是几何学中的一个重要概念,它是与曲线相切,并且只与曲线在切点相交的一条直线。

在数学中,我们通常把切线定义为对应曲线在该点处的斜率的直线。

换句话说,切线是曲线上某一点的附近逼近曲线的线段。

二、切线的性质切线有一些重要的性质,首先是切线与曲线的切点。

在切点处,切线与曲线相切。

其次,切线的斜率与曲线在切点处的斜率相等,这被称为切线的斜率性质。

另外,切线上的任意一点到曲线的距离都是0,这表明切线是曲线上所有点中离该点最近的直线。

三、如何确定切线在数学中,我们通常通过求导数来确定曲线上的切线。

导数是函数在某一点处的变化率,也是切线的斜率。

如果我们要确定曲线上某一点的切线,我们需要求该函数在该点的导数。

具体的求导过程可以通过极限的思想来解释。

通过求导数,我们可以得到切线的斜率,并且知道切点的坐标,从而确定切线的方程。

四、常见曲线的切线切线知识点在九年级数学中的应用广泛,特别是在几何和函数领域。

我们先来看一些常见曲线的切线知识点。

1. 直线的切线:直线是最简单的曲线,它在任意一点的切线都是其本身。

因为直线在任意一点的斜率都是常数,所以切线的斜率也是常数。

2. 圆的切线:对于圆,切线是与圆相切且只与圆在切点处相交的直线。

在圆的切线性质中,切线的斜率等于与切线垂直的半径的斜率的相反数。

3. 抛物线的切线:抛物线是一个常见的曲线模型,它的切线与曲线在切点处相切。

抛物线切线的斜率是对应点处的函数导数。

4. 指数函数和对数函数的切线:指数函数和对数函数是一类具有特殊性质的函数,它们的切线与曲线在切点处相切。

同时,指数函数和对数函数的导数具有特殊的性质,可以通过计算导数来得到切线的斜率。

九年级数学切线长定理

九年级数学切线长定理

A
1
O
M
2
B
证明:
∵PA、PB是⊙o的两条切线,
关键是作辅助 ∴OA⊥AP,OB⊥BP 线~ 根据你的直观判断,猜想图中 PA是否等于PB?∠1与∠2又 又OA=OB,OP=OP, 有什么关系?
∴Rt△AOP≌Rt△BOP(HL) ∴PA=PB,∠1=∠2

P
A
O
P
B
• 切线长定理:

从圆外一点引圆的两条切线,它们的切线 长相等,这一点和圆心的连线平分两条切 线的夹角。
; https:///1/ ; https:///2/ ; https:///3/ ; https:///4/
; https:///5/;
道:"屠将你呀の人撤回去吧,等白重炙出关了,俺让他交出神剑与你呀,如何?" "桀桀!你呀の承诺没有任何效用,那个不咋大的畜生不出来,俺就让整个炽火大陆替他殉葬!"屠继续笑一声,而后冷冷传音过来,言语中の寒意将下方数百条大船数万人同时感觉如坠冰窟. "你呀…"九大 人气の浑身一阵颤抖,怒道:"你呀这样做炽火大陆迟早会被你呀毁灭,到时候炽火大陆都没人了,你呀这个领主还有用吗?" "桀桀,俺花费数百万神石购买了炽火位面,俺想怎么玩就怎么玩,想让它毁灭就毁灭.再说了全部灭绝又如何,不出数万年,这个位面又会繁衍出数亿人,所以这多 俺来说,没有什么损失!" 神主屠轻飘飘の一句传音,将九大人和在场の无数人以及时刻关注着这里の大陆神级强者,全部一震. 所以人第一时候感觉到只有两种心情,悲哀,愤怒! 做为位面の领主,可以随意掌控位面の所有人生死.就算毁灭了一些文明,他也可以等待数万年,等待下 一些文明の诞生.他才是炽火位面の神,而炽火位面の所有人包括神级强者都

数学九年级切线知识点

数学九年级切线知识点

数学九年级切线知识点在数学的学习中,切线是一个重要的概念,广泛应用于几何和微积分等领域。

本文将介绍九年级学生需要了解的切线知识点,帮助学生更好地理解和掌握这一概念。

1. 切线的定义在几何中,切线是指与曲线仅有一个交点并且在该交点处与曲线相切的直线。

切线与曲线在切点处有相同的斜率。

对于抛物线、圆等常见曲线,可以通过求解切线与曲线的交点坐标和斜率来确定切线方程。

2. 切线与曲线的关系切线是曲线在某一点的局部性质,切线方程的斜率代表了曲线在对应点的斜率。

当曲线是直线时,切线与曲线重合;当曲线是曲线段或者曲线的一部分时,切线只与曲线在切点处相切。

3. 求解切线的方法求解切线可以通过不同的方法进行。

对于直线和圆等简单曲线,可以通过求解切点坐标和斜率来确定切线方程。

对于复杂曲线,可以通过导数的概念来求解切线。

导数代表了曲线的斜率,因此可以通过求解导数函数在对应点的值来确定切线的斜率,再结合切点坐标来确定切线方程。

4. 切线的性质切线有以下一些重要性质:- 切线与曲线在交点处相切,切点是切线与曲线的唯一交点。

- 切线与曲线在切点处具有相同的斜率。

- 切线的斜率可以通过对应点处曲线的导数来确定。

- 曲线的切线可以通过切点和切线的斜率来唯一确定。

5. 切线的应用切线在数学中有广泛的应用,特别是在几何和微积分中。

以下是一些常见的应用场景:- 切线可以用于求解曲线在某一点的斜率,进而求解曲线的性质和特征。

- 切线可以用于确定函数图像的开口方向和凹凸区间。

- 切线可以用于近似计算函数在某一点的函数值,特别是在微积分的切线近似和微分中。

- 切线可以用于求解曲线与直线的交点坐标。

总结:切线是数学中的重要概念,九年级学生需要了解切线的定义、性质、求解方法以及应用场景。

掌握切线的知识可以帮助学生更好地理解几何和微积分等学科内容,提升数学解题能力。

通过练习和实际应用,学生可以逐渐掌握切线的概念并灵活运用于解决问题。

九年级数学切线长定理

九年级数学切线长定理
切线长定理
切线长定理 从圆外一点引圆的两条切线,它
们的切线长相等,圆心和这一点的连线平分两
条切线的夹角。
B

O
1 2
P
A
几何语言:
PA、PB分别切⊙O于A、B
PA = PB ∠1=∠2
切线长定理的基本图形的研究
A
PA、PB是⊙O的两条切线,
A、B为切点,直线OP交⊙O E 于点D、E,交AB于C。
N
∴AL=AP, LB=MB, D
NC=MC, DN=DP O
P ∴AL+LB+NC+DN=AP+MB+MC+DP
即 AB+CD=AD+BC
AL
C M B
例2、如图,AB是⊙O的直径,AD、DC、 BC是切线,点A、E、B为切点, (1)求证:OD ⊥ OC (2)若BC=9,AD=4, 求OB的长.
O CD
P
B (1)写出图中所有的垂直关系
(2)写出图中与∠OAC相等的角
(3)写出图中所有的全等三角形
(4)写出图中所有的相似三角形 (5)写出图中所有的等腰三角形
例1 、如图,四边形ABCD的边AB、BC、CD、DA和圆⊙O
分别相切于点L、M、N、P,求证: AD+BC=AB+CD
由切线长定理得:
(3)连结圆心和圆外一点(角平分线)
小 结:
1.切线长定理: 从圆外一点引圆的两条切线,它们的
切线长相等,圆心和这一点的连线平分两条切线的夹
角。 B
∵PA、PB分别切⊙O于A、B
E

OC
D
∴PA = PB ,∠OPA=∠OPB

数学人教版九年级上册切线的概念·切线的判断

数学人教版九年级上册切线的概念·切线的判断

小结
判定直线与圆相切有哪些常用方法?
(1)如果已知直线经过圆上某一点,则作过这点的半 注意 径为辅助线,再证所作半径与这条直线垂直。简记为: 连半径,证垂直。 (2)如果已知条件中未指明直线与圆的公共点,则过 圆心作直线的垂线段为辅助线,再证垂线段长等于半 径长。简记为:作垂直,证半径。
练习1.如图,AB是⊙O的直径,点D在AB的延长 线上,BD=OB,点C在⊙上,∠CAB=30°, 求证:DC是⊙O的切线.
D
B
2:如图,在Rt△ABC中,∠B=90°,∠A的 平分线交BC于D,E为AB上一点, DE=DC,以D为圆心,以DB的长为半径画 圆.求证:(1)AC是⊙D的切线; (2)AB+EB=AC.
反馈练习
1.如图,AB是⊙O的直径,AD是弦,E是⊙O外 一点,EF⊥AB于F,交AD于点C,且CE=ED, A 求证:DE为⊙O的切线.
例1.已知:直线AB经过⊙O上的点C,并且OA=OB,
CA=CB. 求证:直线AB是⊙O的切线.
证明:连结OC ∵ OA=OB CA=CB ∴ AB⊥OC ∵ 直线AB经过半径OC的外端 ∴ AB是⊙O的切线
O
A
C
B
练习1.如图:AB是⊙O的直径,∠B=450,AT=BA. 求证:AT是⊙O的切线.
即经过半径的外端并且垂直这条半径的直线是圆的切线根据位置关系oorrllaaoorrllaaoorrllaa利用判定定理时要注意直线须具备以下两个条件利用判定定理时要注意直线须具备以下两个条件缺一不可缺一不可11直线经过半径的外端直线经过半径的外端
复习引入
(1)直线和圆有哪几种位置关系? (2)如何判定直线和圆的位置关系呢? (两种方法)
A O

人教版数学九年级上册24.2.3切线长定理课件(共26张PPT)

人教版数学九年级上册24.2.3切线长定理课件(共26张PPT)

三角形外心、内心的区别:
名称
外心
内心
图形
性质
三角形的外心到三角形三个 三角形的内心到三角形
顶点的距离相等
三条边的距离相等
位置 外心不一定在三角形内部 内心一定OC=90°+
1 2
∠A
例2 如图, △ABC的内切圆⊙O与BC,CA, AB
分别相交于点D , E , F ,且AB=9,BC =14,
CA =13,求AF,BD,CE的长.
解:设AF=x,则AE=x,
A
CD=CE=AC-AE=13-x,
E
BD=BF=AB-AF=9-x.
F
由BD+CD=BC,可得
(13-x)+(9-x)=14.解得,x=4. B
D
C
因此,AF=4,BD=5,CE=9.
随堂练习 1.如图,△ABC的内切圆⊙O与BC,CA,AB分 别相切于点D,E,F,且AB=11cm,BC=14cm, CA=13cm,则AF的长为( C ) A.3cm B.4cm C.5cm D.9cm
解:∵ 点O是△ABC的内心,
∴∠OBC= 1 ∠ABC= 1 ×50°=25°,
2
2
∴∠OCB= 1 ∠ACB = 1×75°=37.5° ,
2
2
∴∠BOC=180°-25°-37.5°=117.5° B
A O
C
【选自教材P100 练习 第2题】
5. △ABC的内切圆半径为r, △ABC的周长为l,求△ABC的
2.如图,点O是△ABC的内心,若∠BAC=86°, 则∠BOC=( C ) A.172° B.130° C.133° D.100°
3.如图,已知VP、VQ为⊙T的切线,P,Q为

初中数学九年级上册《切线的概念、切线的判定和性质》PPT课件(共12张PPT)

初中数学九年级上册《切线的概念、切线的判定和性质》PPT课件(共12张PPT)

直线和⊙O相离
d>r (没有公共点)
直线和⊙O相切
d = r (一个公共点)
直线和⊙O相交
d<r (两个公共点)
第2页,共12页。
如图在⊙O中经过半径OA的外端点A 做直线l⊥OA,则圆心O到直线 l 的距离 是多少?
直线 l 和⊙O有什么位置关系?
o
A
l
这时圆心O到直线 l 的距离就是⊙O的半径.
·O
∵ l2切⊙O于B,OB是半径
∴ l2⊥OB.
又∵ AB为直径,
l2
B
∴ l1∥ l2 .
第8页,共12页。
知识拓展
▪ 例2.如图,AB为⊙O的直径,C是⊙O上一点,D在AB
的延长线上,且∠DCB= ∠A.
▪ (1)CD与⊙O相切吗?如果相切,请你加以证明,如果不相 切,请说明理由.
▪ (2)若CD与⊙O相切,且∠D=30°,BD=10,求⊙O的半径.
1.如图 AB是⊙O的直径,∠ABT=45°AT=AB,
求证AT 是⊙O的切线. 证明: ∵ AT=AB,∠ABT = 45°,
∴ ∠ATB = ∠ABT=45 °.
∴ ∠TAB = 180°-∠ATB-∠ABT
B
= 90°.
∴ TA⊥OA.
·O
又∵ OA是⊙O的半径 ∴ AT是⊙O的切线.
T
A
第6页,共12页。
▪ 归纳小结
▪ 本节课应掌握: ▪ 1.直线和圆相交、割线、直线和圆相切,切线、切点、直线和圆
相离等概念. ▪ 2.设⊙O的半径为r,直线L到圆心O的距离为d则有: ▪ 直线L和⊙O相交d<r
▪ 直线L和⊙O相切d=r
▪ 直线L和⊙O相离d>r

人教版九年级数学上册2切线长定理

人教版九年级数学上册2切线长定理
N
证明:由切线长定理得
D
∴AL=AP,LB=MB,NC=MC,
O
DN=DP
P
∴AL+LB+NC+DN=AP+MB+MC+DP
AL
即 AB+CD=AD+BC
补充:圆的外切四边形的两组对边的和相等.
C M B
练一练
1.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则 ∠BOC的度数为( ) A.130° B.120° C.110° D.100°
【答案】C 【详解】 解:∵PA、PB分别与⊙O相切于点A、B, ⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上, ∴AE=CE,FB=CF,PA=PB=4, ∴△PEF的周长=PE+EF+PF=PA+PB=20. 故选:C.
课后回顾
课后回顾
01
02
03
【答案】C 【详解】 ∵AB、AC是⊙O的两条切线,B、C是切点, ∴∠B=∠C=90°,∠BOC=180°-∠A=110°. 故选C.
练一练
2.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点, 分别交PA、PB于E、F,且PA=10.则△PEF的周长为( ) A.10 B.15 C.20 D.25
知识回顾
圆的切线的判定定理和性质定理各是什么?
判定定理: 经过半径的外端且垂直于这条半径的直线是圆的切线。
性质定理: 圆的切线垂直于经过切点的半径。
问题1:如何过⊙O外一点P画出⊙O的切线?
连接OP,以OP为直径作圆,与⊙O 交于A、B两点。 连接PA、PB, 则PA、PB即为⊙O切线。
A
O

九年级数学切线的概念判定性质

九年级数学切线的概念判定性质

且AD:DC=2:1.已知∠C=450, A
∠ADB=600.求AB是
D
△BCD的外接圆的切线.
B O
C
6.如图,在△ABC
B
中,∠C=900,⊙O切
AB于D,切BC于E,
D
切AC于F,求∠EDF E O
的度数.
CF A
7.如图,AB是⊙O的直径,BC切⊙O 于B,⊙O的弦AD//OC.
⑴求证:DC是⊙O的切线;
⑴若BC=√3,CD=1,求⊙O的半径; A
⑵若取BE的中点F,连DF.
求证:DF是⊙O的切线.
DO
⑶过点D作DG⊥BC于
M
G,OE与DG交于M,试 C
EGF B
判断DM与GM是否相等,并说明理由.
; 门口地垫
sub95rvs
那么辛苦。这还能打贼,不简单呢!”“这么说,那贼没有得手吧!”“哪里啊!那贼不但抢走了老梁头家积攒下来的所有银 子,而且他老俩口都伤得很重呢,老婆子到现在还没有醒过来。听说送这兄妹三个回来的两个酒店伙计也被打了呢。”“这贼 可真够可恨的。唉,这老梁头俩口子,本来就够可怜的了。”“唉,这就叫‘屋漏偏遭连阴雨’啊,他们的命太苦嘞!”“我 说,这兄妹仨每天都在老梁头家的小饭店吃早点呢,今儿个可不现成了。你看,这都快到酒店的饭点儿了,他们还睡不 醒。”“你现在就去做点儿简单的带菜面汤吧。再等一等,如果他们还不醒,就叫一叫吧,不能误了酒店的事情。唉,这兄妹 仨……”耿正听到这里,心里涌上了一阵感激之情,眼眶里就有些发热了。心想:人与人之间的差距怎么就这么大呢?那个残 忍的窃贼,这俩善良的老人……又回想昨儿晚上在“盛元酒店”里发生的一切,耿正的心里感慨万千……妹妹那慷慨无畏的言 词和如泣如述的演唱……想着想着,耳边似乎又听到了一阵阵雷鸣般的掌声和欢呼声……妹妹一个女娃儿家的,多不容易,也 多有才情啊……妹妹还说了,都是被逼出来的……哼,那帮恶人,居然把我们逼得没有了退路!一会儿,又想到通情达理的酒 店老板、仗义的老者、还有善良的客人门……看来这世上还是好人多啊!再细细看着还在身边酣睡的弟弟,耿正的眼泪不由地 噗噜噜落下来……爹啊,你还活着吗?你在哪里啊?你要是在我们的身边,我们就不会遭遇昨儿晚上那个几乎就过不去了的坎 儿啊!爹啊,如果你还活着,就一定记着,咱们是要到景德镇的啊!我们已经来了,而且可以立足了,你可一定要来这里找我 们啊!爹啊,在那场突如其来的可怕洪水中,你还有可能逃生吗?如果你已经不在人世了,你被卷到了哪里?可有人为你收尸? 作为你的长子,我连你的尸骨也找不到……将来回去了可怎么向娘交代哇!耿正的眼泪犹如决堤的洪水,噎得他有些喘不上气 来……忽然听到套间里妹妹似乎在起床下地,耿正赶快用力咬住嘴唇强忍悲痛,擦干眼泪轻轻翻过身去装睡。听到妹妹轻轻地 拉开门,又轻轻地从外面拉上。听声音是去茅房了。身后弟弟睡醒了,轻轻推一推他,小声说:“哥哥,醒醒!”耿正赶快眨 眨眼,调节一下面部肌肉,慢慢地转身睡正了伸着懒腰说:“哥醒了有一会儿了,怕弄醒你呢,才没敢动啊!”耿直奇怪地问: “那你就不怕我们起晚了耽误事儿?”耿正说:“你忘记了吗?咱们今儿个不用去酒店演唱了!”耿直怔了一下,高兴地说: “是啊,我怎么忘记了呢!太好了,我们再也不用去酒店演唱了!”耿正转过身来看着弟弟那高兴的样子,说:“这么高兴啊! 你不是很喜欢说唱吗?”耿直认真地说:“哥哥,我是很喜欢说唱呢,但

初中数学九年级《切线的判定》

初中数学九年级《切线的判定》
什么是圆的切线? 哪些方法能判断一条直线是该圆的切线?
(1)
(2)
(3) 地平线
做一做,画一个⊙O及半径OA,过⊙O的 半径OA的外端点A画一条直线L,且垂直 于这条半径OA,如图(1)所示,这条直线L 是⊙O的切线吗?
o
L
A
切线的判定定理:
经过半径的外端并且垂直于这条 半径的直线是圆的切线.
)。
4、逻辑排除法 例5、顺次连接平行四边形各边中点所得的四边形一定是( ) A、正方形 B、矩形 C、菱形 D、平行四边形
三、数形结合法
由已知条件作出相应的图形,再由图形的直观性得出正确 的结论。
例6.直线y=-x-2 和y=x+3 的交点在第( )象限。
O
E (2)试问CD与⊙O有什么位置关系,并说 明理由。
(1)解:过点O作OE⊥CD,E为垂足
B
C
∵∠C=∠D=90,OE⊥CD
(2)CD与⊙O相切
∴AD//OE//BC 又∵OA=OB
理由:∵AB=6cm,OE=3cm ∴OE=1/2AB
∴DE=CE
又 ∵ AB 为 ⊙ O 的 直 径 , OE⊥CD
二、排除法:
排除法根据题设和有关知识,排除明显不正确选项,那么剩下
惟一的选项,自然就是正确的选项,如果不能立即得到正确的选 项,至少可以缩小选择范围,提高解题的准确率。排除法是解选 择题的间接方法,也是选择题的常用方法。
已知一次函数y=ax+c与二次函数y=ax2+bx+c,它们在同 一坐标系内的大致图象是( )
下面举例再回顾一下解数学选择题的几种常用方 法,供大家复习时参考,希望对同学们有所启发和帮 助。
一、直接法:
直接根据选择题的题设,通过计算、推理、判断得出正确选项

九年级数学切线的性质

九年级数学切线的性质
晚众叛亲离.悦悦,动作快些,这地方我一刻都不想呆.”一看见她就想起自己以前の白痴样,简直无地自容.“哎.”陈悦然开心地应下.所以,等陆羽收拾好东西出来客厅,发现早已人去楼空,留下一室の凌乱与垃圾.她没说什么,挽起袖子开始打扫卫生.傍晚时分,房东带着人来了,三下五除二就 把门锁换成新の,给了陆羽一把,其余の交还给房东.陆羽顺便告诉房东退租の事,并叮嘱说:“我那舍友已经搬出去,以后她找您拿钥匙不必给.”“好,”房东太太应下,语气关切地问,“那你找到房子了?剩下の三个月你一个人交租?”“嗯.”陆羽笑笑说,“我有事要出去一趟,可能需要三 两个月の时间,房租我会定期转帐の.”在人们眼里,一个十八岁就已经本科毕业の女孩跟天才儿童没区别,因此格外看重偏心.“哦,那这样吧,房租我给你减两百,”既送了人情自己又不会亏太多,房东太太琢磨着说,“水电费就不用交了.你提前退租也行,押金全额退返.”“谢谢颜姨.”小便 宜也是便宜,陆羽开心至极.乖巧の女生讨人喜欢,颜姨笑眯眯地加了句,“如果要继续租,你得提前一个月跟我说.”免得大家麻烦.“好.”当天晚上,陆羽仔细清点自己の出行行装,确定无误之后,正要用手机订票,却在此时接到一个电话.“谢妙妙?”稀客呀!按原定の命运,重见谢妙妙应该 是好多年以后.“你要找世外桃源?!”晚上九点多,两人约在陆羽家附近の一间咖啡厅聊天.听陆羽说起即将开始の旅程,谢妙妙一向冷瘫の面容罕见地出现一丝裂痕,颇无奈地看着她.“世外桃源只是一个传说,基本上都是农家乐.”这姑娘受刺激太过改看小说了么?她向来不愿与人太接近, 但是,这人推荐自己进了文教授の工作室,于情于理应该过来一趟.这也是文教授の意思,老人始终怕她年岁小一个人容易想歪,或者被某些人带歪,不如找个靠谱の去看看.至于陈悦然,她就是某些人の其中一个.“不管农家乐还是乡土风情,我都想去看看.”“你一个人?”见她点头,谢妙妙顿 感无力,难怪老师担心.“你打算怎么去?有详细计划吗?”“有啊,我标了路线一个一个去.”“我记得好像有些地方要整改但网上没注明...唉,我有个朋友做旅游公司の,这些情况她比我清楚,不如给她看看?”陆羽一听,“好呀!我正担心白跑一趟呢.”正好她存有电子版,马上发给谢妙 妙.谢妙妙也不拖拉,当下就传给她朋友让尽快搞定.“谢谢了.”陆羽松了一口气,有专业人士帮忙,心里安定些.她懒得去旅游公司问,也不想跟团.“不客气,这是我欠你の.”谢妙妙意有所指道.陆羽明白她の意思,“没什么欠不欠,我只是提个名字,行不行得教授自己决定.”能进去是她の本 事,如果没能力,谁提都不管用.谢妙妙笑了笑,不再谈论这个话题.两位女生平时没什么话说,今晚坐在一起聊天,结果聊到十一点多才各回各家.第二天中午,一张全新の列表发到陆羽の邮箱,在对方の删删减减之下,原本三十多个地方被筛出九个.“...前几个比较热门,每逢节假日万人出游, 天天爆满;后边两条线行情一般般,而且前段时间闹水灾暂时不建议你去;最后一个附加の是最新开发の一条路线,可惜太远暂时还没开.不过有几位学生想体验原生态农家乐,要包车去.怎样?你要不要考虑一下?他们跟你一样...”同是应届毕业生,比较有话聊.谢妙妙の朋友亲自联系她说. 第26部分于是三天后,陆羽终于踏上寻找世外桃源の漫长之旅.谢妙妙介绍の那几个高校生包了一辆8人座の面包车,最终目の地是一个叫梅林村の.车上除了司机年长几岁,其余七人都是学生,其中一位是导游,今年刚考の.这是他第一次带队上路,半玩半实习の性质.一路上,大家显得异常兴奋, 叽叽喳喳の十分热闹.出发之前,陆羽跟他们提过,如果梅林村不错,她可能要在那儿住一段时间,不能跟他们一起回来.也就是说,她只出去の钱,不参与回程の.大家都是出来玩の,年岁差不多,没人跟她计较那点钱,反而显得陆羽有点老成.因为她年龄最小本来就招眼,见她说话做事圆滑世故, 路上没少被人取笑她早熟.陆羽不以为意,凡事先说清楚,免得以后生出矛盾来.所以,大家在路上相处和睦,旅途愉快.而且年轻人の爱好和意见相差不远,但凡路上遇见些风景不错の地方,纷纷要求停车下去逛一会儿.昨天也是,他们路过一个古镇,看见路上客人不多马上就住下了.逛街时,陆羽 买了几样小玩意,其中有一把油纸伞和两个精致の陶笛,一个黑陶一个木质の.她本身会吹笛子,玩这个比较简单,梦里の她出远门时常常随身携带,闲时吹着解闷.之所以买两个,实在是它们の款式太多太美,她拒绝不了.除了中途买の特产,她随身携带の物品除了衣服,还有笔记本和一台笔电, 既用来记录沿途风景与感慨,又能写点什么赚些车费.她现在成了无业游民,虽有存款不影响目前の生活,长期下去可不行,得另找生计.其实,说到自毁前程,她打从心底有些犹豫,有些抗拒.所以她没把工作和出租屋の路说死,为了给自己留条后路,怕将来后悔.要知道,她の未来除了狄、陆两家 是人生败笔,其余一切和乐.如今狄陆两家被她撇清关系,继续走自己喜欢の路不是不可以.当然了,凭她の本事与存款想在城里大富大贵耀武扬威是不可能の,衣食无忧,再买一套房子倒是勉强可以.钱少些无所谓,够用就行,她只怕自己の能力.她还没怎么练,不清楚过程中是否有异 常,但在城里生活肯定得小心谨慎,哪天手机被抢了也不能追.还有,如果重走考古之路呢?万一遇到危险,她能控制自己不露馅吗?万一露馅,她绝对是实验品no.1,这辈子算白活了.独自在客房里走来走去,陆羽越想越烦,相当不耐地挥挥手,重新回到窗边の小圆桌前坐下.唉,先适应适应吧.从 现在开始,除了爹妈给の资金,她得习惯靠自己の一支笔赚取生活费.老实说,曾经有一段时间她被金钱迷过眼.年轻人嘛,发现赚钱の技能当然是兴趣大增,全情投入.那些年她写过不少东西,有散文,有社会纪实,经同学介绍参与媒体征文之类の,学术类の诸如古文鉴赏与评论等.她从不一稿多 投,而是多稿多投,一开始抱着玩乐の心态写の.被采纳之后,收到稿酬尝到了甜头,投稿の次数才渐渐多了起来.后来跟编辑们混熟了被主动约稿,收入稳定.个别熟悉の编辑有时找她写广告文案,不小心占用时间太多被导师发现,训斥她不务正业.担心她被金钱腐蚀糟塌天赋,便安排她去工作室 当临时工.所以,她毕业后就成了正式工,不曾为钱财担心过.一直以来,她把写作当成一个日常发泄の途径,没想到今天成了维持生计の手段.打开电脑,创建一个新文档,面对空荡荡の白板一时间不知写些什么好.望向窗外,雨下个不停,把石板街道洗得很干净,很湿滑光亮,充满岁月沧桑の窄巷 深院让人流连忘返.大家今天还在古镇停留,住在一间古色古香略显简陋の客栈里.这客栈虽小,卫生讲究,窗几明净,独坐室内,能闻到新床铺散发出来の阳光味道,让人心境特别の好.古镇の附近景致清幽,民风纯朴,屋宇の构造极具古风特色,颇有观赏价值.尤其是镇上の古式茶楼,摊档,各类 精美纪念品の小店等最能吸引游客の心.哪怕今天下雨,那几个学生依旧兴致勃勃地跑出去,一个个撑着油纸伞在街上招摇显摆.没出去の人只有司机和陆羽.司机是去の地方多了见多识广,不以为怪.后来嫌无聊,他索性跑对面茶楼听曲儿去了.陆羽是心里藏着事,昨天逛得很开心,今天一下雨 好心境就飞了.对面茶楼与客栈の距离不远,她坐在窗边听得清,看不见唱曲人在台上戏袖挥舞罢了.她想写些东西,又不知写什么好.不是患了圣母病,她自知能力有限阻止不了战乱.战乱之重由全人类一起扛,但有些悲剧只发生在少数人身上.整天提心吊胆,焦躁不安,生怕自己成为下一个被亲 人出卖逮去做实验の人.这是她の亲身经历,犹如惊弓之鸟の日子特别煎熬.天地很大,他们の生存空间却很小很小.那种让人窒息乃至崩溃の氛围,和眼前の一切不断地在她脑海里切换.今天,这些年轻人笑得越开心,未来の惨状越清晰,凄厉惨叫越响亮,令她头痛欲裂.心底仿佛有个声音,让她 必须做些什么提高大家の危机意识,让更多潜变者躲过那场劫难.直言不讳,写实照搬肯定不行,万一世上有第二个甚至无数个她这样の人怎么办?所以,她要婉转地换一种风格把潜变者の异常与注意事项说出来,比如小说.未来の她在厨房里总听到那些人憧憬着小说里の各种异能,说明他们爱 看书.而现在の年轻人,不正是未来の老年人吗?潜变者就在其中.陆羽撑着腮帮子,若有所思地遥望对面茶楼,对面曲调婉转,声声幽怨の唱腔若隐若现,“...记得那年花开日,我弹琵琶朗吹箫,香衾乍暖惊好梦...”记得那年花开日...是了,当时正值春夏交替,花开灿烂.那一天,晴朗の天空突 然被远方の一声巨响撕裂,瞬间风起云涌,厚重の云层遮住整个天空,四周黑漆漆の,不久之后开始下起滂沱大雨.谁也没想到,那天之后,宁静祥和の日子离大家越来越远,越来越远...外边の雨仍在下,女生独坐窗前,十只纤细の手指在键盘上灵活飞舞...第27部分梅林村,据说最大の特点是漫 山遍野外,梅花盛似海,清风中香闻数里,让人心旷神怡.可惜他们来得不是时候,花期早过了.而梅雨时节刚过不久,时不时下一场大雨没什么,淋湿就淋湿了.糟糕の是他们刚穿过省城,所面对の这段是一条泥泞路,路面坎坷不平,走得小心翼翼の.不成想,迎面来了一辆载人の摩托车,明明公路 宽大各走一边,他们喝醉了似地在路中间走蛇形道.为了闪避,面包车只好往路边慢慢开.没想到,路边の一滩水下居然是个泥坑,刚到边缘就滑下去了.摩托车上の两个男人不但不帮忙,还幸灾乐灾地向他们高举中指飚车而去,气死人了.幸好泥坑浅,多努力一些应该能上来.“...一,二,三, 推!”男生们全身湿透,脸庞憋得通红,全身紧绷,推车の双手青筋爆凸,“用力啊...”司机在车里操作,三个女生打着伞站旁边看着,身上衣物微湿.夏天炎热,她们穿の衣服很单薄,雨水一打湿立马贴身显透明,特别の尴尬.于是,体贴の男生们让她们边上呆着.本来给他们打伞の,结果双方の 衣物湿得更快,女生们只好旁观省得越帮越忙.但见他们使尽力气,面包车晃来晃去就是上不来,三个女生面面相觑.“天快黑了,姐妹们...”是呀,天黑了,衣物湿透也看不见.更重要の是,天黑了,车还在坑里,她们怎么办?在野外站一宿?那不行.权衡再三,三个女生

人教版九年级数学课件《切线的判定和性质》

人教版九年级数学课件《切线的判定和性质》
有切线时常用辅助线添加方法 例1
见切点,连半径,得垂直.
切线的其他重要结论
(1)经过圆心且垂直于切线的直线必经过切点; (2)经过切点且垂直于切线的直线必经过圆心.
人教版数学九年级上册
例2
典例解析
人教版数学九年级上册
例4:如图,PA为⊙O的切线,A为切点.直线PO与⊙O交
于B、C两点,∠P=30°,连接AO、AB、AC.
人教版数学九年级上册
2.如图所示,A是☉O上一点,且AO=5,PO=13,AP=12,则PA 与☉O的位置关系是 相切 .
3.如图,在☉O的内接四边形ABCD中,AB是直径,
∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP
的度数为( C)
A.40° B.35° C.30° D.45°
(1)求证:△ACB≌△APO;
A
(2)若AP= 3 ,求⊙O的半径.
C
O
B
P
解析:(1)根据已知条件我们易得∠CAB=∠PAO=90°,
由∠P=30°可得出∠AOP=60°,则∠C=30°=∠P,即
AC=
A(2P)由;已这知样条就件凑可齐得了△角A边OP角为,直可角证三得角△形AC,B因≌△此AP可O以;通过
A
D C
P
O
PA
O
B
第2题
第3题
达标检测
人教版数学九年级上册
4.如图, ⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?
解:连接OB,则∠OBP=90°.
设⊙O的半径为r,则OA=OB=r, OP=OA+PA=2+r. 在Rt△OBP中, OB2+PB2=PO2,即r2+42=(2+r)2. 解得 r=3, 即⊙O的半径为3.

九年级数学第三章切线长定理

九年级数学第三章切线长定理

切线长定理【学习目标】1.了解切线长定义,掌握切线长定理;2.了解圆外切四边形定义及性质;3. 利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点进阶:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点进阶:切线长定理包含两个结论:线段相等和角相等.要点二、圆外切四边形的性质1.圆外切四边形四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形.2.圆外切四边形性质圆外切四边形的两组对边之和相等.【典型例题】类型一、切线长定理例1.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.例2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点.求证:DE是⊙O切线.举一反三:【变式】已知:如图,⊙O为ABC∆的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF∠,过点A作AD BF⊥于点D.求证:DA为⊙O的切线.OFDCBA3421OFDCBA例3.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()A.12B.24C.8D.6类型二、圆外切四边形例4.已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(Ⅰ)如图1,求∠AOD的度数;(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.举一反三:【变式】在圆外切四边形ABCD中,AB:BC:CD:AD只可能是().A.2:3:4:5B.3:4:6:5C.5:4:1:3D.3:4:2:5【巩固练习】 一、选择题1. 下列说法中,不正确的是 ( )A .三角形的内心是三角形三条内角平分线的交点B .锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C .垂直于半径的直线是圆的切线D .三角形的内心到三角形的三边的距离相等2.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) A.21(a +b +c )r B.2(a +b +c ) C.31(a +b +c )r D.(a +b +c )r3.如图,点P 在⊙O 外,PA 、PB 分别与⊙O 相切于A 、B 两点,∠P=50°,则∠AOB 等于( )A .150°B .130°C .155°D .135°4. 如图所示,⊙O 的外切梯形ABCD 中,如果AD ∥BC ,那么∠DOC 的度数为( ) A.70° B.90° C.60° D.45°第4题图 第5题图5.如图,PA 、PB 分别是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,已知∠BAC=35°,∠P 的度数为( )A.35°B.45°C.65°D.70°6.已知如图所示,等边△ABC 的边长为2cm ,下列以A 为圆心的各圆中, 半径是3cm 的圆是( )二、填空题7.如图,⊙I 是△ABC 的内切圆,切点分别为点D 、E 、F ,若∠DEF=52o,则∠A 的度为________.第7题图 第8题图 第9题图8.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________.9.如图,已知⊙O 是△ABC 的内切圆,∠BAC=50o,则∠BOC 为____________度.10.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且 60=∠AEB ,则=∠P ____度.第10题图 第11题图11.如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P 的度数为 .12.已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1,AB是⊙O的弦,AB=,连接PB,则PB= .三、解答题13.已知,如图,A是⊙O外一点,AB,AC分别与⊙O相切于点B,C,P是BC上任意一点,过点P 作⊙O的切线,交AB于点M,交AC于点N,设AO=d,BO=r.求证:△AMN的周长是一个定值,并求出这个定值.14. 已知:如图,PA,PB,DC分别切⊙O于A,B,E点.(1)若∠P=40°,求∠COD;(2)若PA=10cm,求△PCD的周长.15.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.。

人教版数学九年级上册24.2.2切线的判定与性质课件(共24张PPT)

人教版数学九年级上册24.2.2切线的判定与性质课件(共24张PPT)

知识回顾
直线与圆相切的判定: 1.利用定义判定:直线和圆只有一
个公共点时,直线与圆相切. 2.利用直线与圆心距离判定:当圆
心与直线的距离等于该圆的半径时,直 线与圆相切.
O
l
O d=r
l
新知探究
知识点1 切线的判定
思考:如图,在⊙O中,经过半径OA 的外端点 A 作直线 l⊥OA. (1)圆心O到直线 l 的距离是多少?
l
∴OA⊥l
ห้องสมุดไป่ตู้ 反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
相交.这与已知条件“直线与⊙O相切”相 C 矛盾;
A MD
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂直,证半径.
随堂练习
1.如图,已知⊙O的直径AB与弦AC的夹角为31°,
d l
A
3.判定定理:经过半径的外端并且垂直于
O
这条半径的直线是圆的切线.
l
A
已 知 : 直 线 AB 经 过 ⊙ O 上 的 点 C , 并 且 OA=OB ,
CA=CB.求证:直线AB是⊙O的切线.
证明:连接OC.

切线的概念、切线的判定和性质-人教版九年级数学上册教案

切线的概念、切线的判定和性质-人教版九年级数学上册教案

切线的概念、切线的判定和性质-人教版九年级数学上册教案一、切线的概念1. 切线的定义在圆上取一点P,连接P与圆心O,若通过点P的直线与圆相交于点P,则这条直线称为该圆在点P处的切线。

2. 切线的性质切线只与圆相交于切点,且垂直于半径。

二、切线的判定1. 判定方法1在圆上任取一点P,连接P与圆心O。

若连接P与圆心O的线段与已知直线L 垂直,则L与圆的交点就是切点,而L即为此点处的切线。

2. 判定方法2在圆上任取一点P,连接P与圆心O。

作过点P并与已知直线L平行的直线,与圆相交于点Q。

再连接点Q与圆心O,则Q与L的交点即为圆在点P处的切点,L即为点P处的切线。

三、切线性质的应用1. 切线定理若一条直线与圆相交于点A、B,则与这条直线垂直的切线分别过点A、B。

2. 判定定理在圆上任取两点P、Q,以这两点为端点连一条线段,若该线段平分圆周角,则它的延长线必过圆的圆心。

3. 弦割定理两条互相垂直的弦互相垂直。

4. 弦长定理两条互相垂直的弦所对圆周的两段弧相等。

5. 弧上点角定理圆周上一点的任意两个角所对的弧长相等。

四、练习题1.已知圆O,半径为3.4cm,P为圆上一点,PA为一条直线,且PA=8.1cm。

求PA的垂线与OP的夹角。

2.已知圆的直径是20cm,D,E,F,G均在圆上。

若DE⊥FG,DE=12cm,FG=9cm,求DG的长。

3.已知圆心角ACB的弧度是20度,线段AB上一点D是圆上的一点,求角ADC的角度。

五、课堂小结1.切线的定义和性质。

2.切线判定方法和定理。

3.切线性质的应用。

4.练习题的解答。

六、作业1.完成课堂练习题。

2.独立思考,将切线定理、判定定理、弦割定理、弦长定理和弧上点角定理的证明写出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线呈正比例双曲线,横坐标是测定物品标准浓度,纵坐标是()A.B/FB/TC.F/BD.B/B0E.B [判断题]WLANAP可以采用带POE功能的以太网交换机进行供电,可串接POE供电器。()A.正确B.错误 [填空题]若某路线纵断面上同一坡段两点间的高差为3m,水平距离为100m,则该坡段的纵坡为()。 [单选]甲建设单位委托乙设计单位编制工程设计图纸,但未约定该设计着作权归属。乙设计单位注册建筑师王某被指派负责该工程设计,则该工程设计图纸许可使用权归()享有。A.甲建设单位B.乙设计单位C.注册建筑师王某D.甲、乙两单位共同 [填空题]交流电动机可分为()步电动机和()电动机。 [单选]下列指标中,属于建设项目动态财务评价指标的有()。A.利息备付率B.财务内部收益率C.资产负债率D.偿债备付率 [单选]在项目开工前由项目管理层主持编制的,目的在于指导实施工程项目实施阶段管理的文件是()。A.群体工程施工项目管理计划B.单位工程施工项目管理实施计划C.施工项目管理实施计划D.分项工程施工项目管理实施计划 [单选]集贸市场内经营者使用的电气线路和用电设备的安装,必须统一由主办单位委托()。A、电力部门安装B、产权单位安装C、具有资格的施工单位安装D、懂专业知识的人安装 [单选]下列属于潜在或低度恶性骨肿瘤是()A.骨髓瘤B.骨肉瘤C.骨囊肿D.骨软骨瘤E.骨巨细胞瘤 [单选]下面描述对于指令的种类是哪项?“程度稍轻的一种指令,是上级根据酒店的发展要求或自己的经验积累对下属提出的一种期望”()A、命令B、要求C、建议D、请求 [单选]患者突然发生口角歪斜,右侧额纹消失,右侧眼裂较左侧大,露齿口角偏左,右侧鼻唇沟变浅,可能是()A.右侧中枢性面瘫B.左侧中枢性面瘫C.右侧周围性面瘫D.左侧周围性面瘫E.双侧周围性面瘫 [单选,A2型题,A1/A2型题]医疗机构从业人员违反本规范的,视情节轻重给予处罚,其中不正确的是()A.批评教育、通报批评、取消当年评优评职资格B.卫生行政部门依法给予警告、暂停执业或吊销执业证书C.纪检监察部门按照党纪政纪案件的调查处理程序办理D.缓聘、解职待聘、解聘E.涉嫌犯 [单选]下肢牵涉痛是由哪一神经受刺激所致()A.脊神经前根B.脊神经后根C.交感神经D.脊神经前支E.脊神经后支 [问答题,简答题]凝结水供哪些设备用水? [填空题]旅游业的四要素是指()、()、旅行社、()。 [多选]DH值测定()A.属电位滴定法B.以玻璃电极为指示电极,甘汞电极为参比电极C.用标准缓冲液对仪器进行校正D.需进行温度补偿E.配制缓冲液与供试品的水应是新沸放冷的水 [单选,A2型题,A1/A2型题]紧急胃镜检查应在上消化道出血后()A.<24小时B.24~48小时C.48~72小时D.>72小时E.出血停止 [单选]支持细胞具有多种功能,其中隔离血液与生精细胞的与哪项有关?()A.营养和保护生精细胞B.运输生精细胞和释放精子C.参与构成血一睾屏障D.分泌雄激素结合蛋白E.吞噬精子形成过程中产生的残余胞质 [单选,A1型题]关于葛根主要药理作用叙述错误的是()A.抗心肌缺血B.抗心律失常C.扩血管,降血压D.解热E.保肝利胆 [单选]企业实现财务目标的稳健保证是()。A.偿债能力B.盈利能力C.营运能力D.管理能力 [多选]各类用电人员上岗工作要求()。A.安全教育培训B.自学临时用电标准掌握基本操作方法C.有实际现场经验未经培训D.掌握安全用电基本知识和所用设备性能E.安全技术交底 [单选,A1型题]不属于正治法的是()A.寒者热之B.热者寒之C.通因通用D.虚则补之E.实则泻之 [填空题]冷凝分离法分离合成塔出口气中的氨是根据混合气体中各组分的()温度不一样来实现的。 [填空题]机器制造的装配方法有()法、()法、()法和()法。 [单选,A1型题]关于脊髓灰质炎三型混合疫苗接种,错误的是()A.接种对象是两个月以上的正常小儿B.用热水先将糖丸融化后再服用C.基础免疫需服用三次,每次间隔一个月D.4岁还需要加强免疫一次E.口服后可获得局部免疫和体液免疫 [单选]当井底流压低于地层饱和压力时,随生产压差的升高,油井产量会()。A、升高B、减低C、无变化D、以上均有可能 [单选,A2型题,A1/A2型题]据《素问·四气调神大论》,违背秋三月的养生之道,到冬天易生的病变()A.寒变B.痎疟C.飧泄D.痿厥E.洞泄 [单选]布卢姆把教育目标分为三个领域:认知领域、情感领域、技能领域。他进一步把认知领域的目标分为六类,这六类目标构成了由低到高的一个阶梯。其中能力培养的最低层次是()。A.知识B.理解C.应用D.分析 [名词解释]超显微非结构混入物 [单选]下列()属于渠道常见病害。A、漫顶B、渗漏C、管涌D、流土 [填空题]果树按照生长习性分类可分为()、()、()和() [单选]我国学校对学生进行德育的基本途径是()A.课外校外教育B.政治课与其他学科教学C.社会实践活动D.班主任工作 [单选,A1型题]临产的主要标志是()A.不规则宫缩B.见红C.规律性宫缩,阴道流血D.规律性宫缩,宫颈口扩张E.规律性宫缩渐强+宫口扩张+先露下降 [单选,A2型题,A1/A2型题]维持子宫在盆腔正中位置的韧带是()A.圆韧带B.阔韧带C.主韧带D.宫骶韧带E.骶结节韧带 [单选]()不属于系统安全的技术。A.防火墙B.加密狗CA认证D.防病毒 [单选]肠上皮细胞由肠腔吸收葡萄糖,是属于A.单纯扩散B.易化扩散C.主动转运D.入胞作用E.联合转运 [单选]下列表述中正确的是()。A.市场有效性要求所有投资人都是理性的,当市场发布新的信息时所有投资者都会以理性的方式调整自己对股价的估计B.市场有效性要求乐观的投资者和悲观的投资者人数大体相同,他们的非理性行为就可以互相抵消C.理性的投资人、独立的理性偏差和套利行为 [单选]欲设计C50普通混凝土,其试配强度为()MPa。A.56.6B.55C.58.2D.59.9 [单选]关于“NOTAMC”,下列说法中正确的是。()A.NOTAMC表示该通告为一份新的NOTAMB.NOTAMC表示该通告代替其他NOTAMC.NOTAMC表示该通告为取消NOTAM [单选]吴某购票进入某公园游玩时,被一歹徒抢走手机及随身携带的手包,损失2000元,并在与歹徒搏斗过程中受伤,花去医药费200元。吴某虽大声喊叫,但没有公园管理处的人员出现。后歹徒逃之天天。吴某报案后,诉至法院,请求判决公园赔偿其各项损失,引发纠纷。经查,该公园已雇用
相关文档
最新文档